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Chapter 10

Spin-Flip TDDFT for Photochemistry

John M. Herbert and Aniket Mandal
Department of Chemistry and Biochemistry, The Ohio State University,
Columbus, Ohio USA
herbert@chemistry.ohio-state.edu

10.1 Computational Photochemistry

10.1.1 Conical Intersections

Conical intersections (CXs) play a central role in photophysics and

photochemistry [74, 97], serving as the “funnels” for nonadiabatic

dynamics between coupled potential energy surfaces representing

different electronic states [1, 71, 125]. For the special case of

two coupled electronic states, the CX is really a “conical seam” of

dimension Nint −2 where Nint is the number of internal (vibrational)

degrees of freedom. Within this (Nint − 2)-dimensional subspace

the two states in question are degenerate, and when plotted in two

dimensions this seam collapses to a point and the topology is that

of a double cone, hence “CX.” For points within the seam space,

even an infinitesimal displacement outside of this space will lift the

degeneracy, and this two-dimensional “branching space” is spanned
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by a pair of nonorthogonal vectors that are usually labeled g and h.

For a two-state intersection between Born–Oppenheimer electronic

potential energy surfaces E J (R) and E K (R), these branching-plane

vectors consist of the gradient-difference vector,

g J K (R) = ∇̂R
[

E J (R) − E K (R)
]

, (10.1)

which is simply the difference in slopes between the two surfaces,

and the nonadiabatic coupling vector,

h J K (R) = 〈
� J (R)

∣∣∇̂R Ĥ (R)
∣∣�K (R)

〉
. (10.2)

In both equations, R represents the nuclear coordinates that define

the potential energy surface and ∇̂R indicates the vector-valued

operator consisting of derivatives with respect to these coordinates.

The quantities |� J (R)〉 and |�K (R)〉 are the Born–Oppenheimer

electronic wavefunctions for electronic states J and K , defined by

Ĥ |�K 〉 = E K |�K 〉 (10.3)

but written as |�K (R)〉 in Eq. (10.2) to remind the reader that the

Born–Oppenheimer wavefunctions depend upon the geometry R at

which Eq. (10.3) is solved.

As a simple example, two different CXs for the ethylene

molecule are plotted in Fig. 10.1. As indicated by the molecular

structures, these photochemical funnels are often associated with

bond breaking and access very different geometries as compared

to those sampled in ground-state dynamics. To access the “twisted-

pyramidalized” CX in Fig. 10.1a, π → π∗ excitation from the

ground state leads to dissolution of the C==C double bond followed

by rotation around the intact σ bond. In the “ethylidene” CX of

Fig. 10.1b, a hydrogen atom has transferred from one carbon atom

to the other.

The dimension of the branching-plane vectors g J K and h J K is that

of R. For a single nuclear coordinate x , a simplified notation is

g[x]
J K = ∂ E J (R)

∂x
− ∂ E K (R)

∂x
(10.4a)

h[x]
J K = 〈

� J (R)
∣∣(∂ Ĥ /∂x)

∣∣�K (R)
〉

. (10.4b)

The nonadiabatic coupling vector h J K is related to the (first-order)

derivative coupling vector, defined as

d J K (R) = 〈
� J (R)

∣∣∇̂R�K (R)
〉

, (10.5)
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Figure 10.1 Minimum-energy crossing points (MECPs) along two different

S0/S1 conical seams for the ethylene molecule, plotted as a function of

orthogonalized g and h coordinates. These calculations were performed

using SF-TDDFT and the resulting potential surfaces exhibit the correct

double-cone topology of a CX. The intersection in (a) is strongly peaked

whereas the one in (b) is more sloped. Energy is measured relative to the

minimum-energy S0 geometry. Reprinted from Ref. [37]; copyright 2016

American Chemical Society.

and the relationship is

d J K (R) = h J K (R)

E K (R) − E J (R)
. (10.6)

The derivative coupling describes the fact that the Born–

Oppenheimer potential surfaces E J (R) and E K (R) are coupled due

to nuclear motion, represented by the operator ∇̂R. The general

solution to the coupled nuclear–electronic problem involves a
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vibronic Schrödinger equation [11], rather than the purely electronic

one in Eq. (10.3), the latter of which describes the uncoupled Born–

Oppenheimer approximation. Unless ∂ Ĥ /∂x happens to vanish by

symmetry along a particular coordinate x , then electronic states J
and K will be strongly coupled in regions where the energy gap

|E J (R) − E K (R)| is small.

The topography around a given CX (peaked versus sloped,

and symmetrical versus ellipsoidal) can be characterized using

parameters related to g J K , h J K , and a seam coordinate

s J K = 1

2
∇̂R

[
E J (R) + E K (R)

]
. (10.7)

Omitting the subscript J K in cases where there is no ambiguity, and

denoting g = ‖g‖ and h = ‖h‖, Yarkony [125] defines parameters

sx = (s · g)/g2 (10.8a)

s y = (s · h)/h2 (10.8b)

that describe the “tilt” of the CX. When sx and s y are small, the

CX is strongly peaked or hourglass-shaped, as in Fig. 10.1a. Larger

values of either sx or s y correspond to a more sloped CX in either

the g or the h direction, respectively, as in Fig. 10.1b. Peaked CXs

are generally understood to be better funnels [1], leading to more

efficient nonadiabatic transitions. Note also that it is common to

minimize the energy along the seam coordinate s J K , maintaining

the degeneracy E J (R) = E K (R). This affords the minimum-energy
crossing point (MECP) along the conical seam, which is sometimes

characterized as “the” CX. Both of the intersection points that are

plotted in Fig. 10.1 are MECPs along a particular conical seam.

10.1.2 Time-Dependent DFT

CXs can be appropriately described using a variety of (mostly

multireference) electronic structure methods [73], but the present

chapter focuses on their description using time-dependent density

functional theory (TDDFT) [19, 32, 33] in its linear-response (LR)

formulation [8, 18, 23]. The frequency-domain formulation of LR-

TDDFT involves an eigenvalue problem for the excitation energies

and no explicit time dependence, nevertheless that method is
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nowadays largely synonymous with simply “TDDFT.” Explicitly time-

dependent approaches do exist and their use is increasing [61], but

these are not discussed in the present chapter. LR-TDDFT represents

something of a “sweet spot” in terms of its price-to-performance

ratio, with an accuracy of ∼0.3 eV for many classes of vertical

excitation energies [52, 91, 103], and a cost that scales as nstates ×
O(n4

basis), i.e., fourth-order scaling with a prefactor that reflects the

number of desired states [24]. For many photochemical problems,

only a few low-lying electronic states are required and the cost is not

significantly greater than that of the ground-state DFT calculation.

That is the good news, and it has made LR-TDDFT absolutely

ubiquitous for the calculation of vertical excitation spectra. The

bad news, from the standpoint of photochemical investigations,

is that the topology of any CX that involves the ground state is

fundamentally flawed in LR-TDDFT, with seams that are (Nint −
1)-dimensional rather that (Nint − 2)-dimensional [37, 60]. This

can be seen clearly from the LR-TDDFT potential energy surfaces

for ethylene that are plotted in Fig. 10.2, around the same two

geometries used to generate the plots in Fig. 10.1. Using LR-TDDFT,

no intersection with the correct topology can be found. Numerical

values of the tilt parameters in Eq. (10.8) also fail to correlate with

the observed potential energy landscape [37].

This incorrect behavior originates in a lack of proper coupling

between the ground (reference) state and the response (excited)

states. At some level, this is a problem with response theory rather

than with TDDFT per se, and from a different point of view the

issue is that LR-TDDFT affords an unbalanced treatment of ground

versus excited states. The ground state is variationally optimized

via solution of the Kohn–Sham equations but then the excited states

are obtained from a separate eigenvalue problem, and therefore do

not satisfy a variational principle with respect to the ground state.

(The excited states are, however, variational with respect to one

another. As a result, CXs between two excited states are free of the

aforementioned topology problems.) The predicament is brought to

the forefront by Jahn–Teller problems involving symmetry-required

degeneracy of the ground state, and the simplest such example is the

H3 radical in its D3h geometry. As a result of the unbalanced manner

in which ground and excited states are described, conventional LR-
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Figure 10.2 Potential surfaces for the S0 and S1 states of C2H4, computed

around the same two geometries that are depicted in Fig. 10.1 but this

time using conventional LR-TDDFT. Nowhere in the vicinity of the known

MECP structures does a CX (i.e., a zero-dimensional point of intersection)

manifest, because LR-TDDFT exhibits fundamentally incorrect topology for

any CX that involves the reference state, which is S0 for these calculations.

Reprinted from Ref. [37]; copyright 2016 American Chemical Society.

TDDFT struggles to describe the degeneracy [130], as can be seen

clearly in Fig. 10.3b. To emphasize that this is not a DFT problem

per se, Fig. 10.3a shows that the configuration interaction singles

(CIS) method [18] also struggles, even in a restricted open-shell

formulation.

Despite these drawbacks, LR-TDDFT has been formulated for

use with nonadiabatic molecular dynamics methods [3, 16, 46,

108–110, 113]. It is sometimes found that the electronic structure

calculation is difficult to converge in regions of the potential surface

where the ground state is quasi-degenerate with the first excited
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Figure 10.3 Potential energy surfaces for the lowest two doublet electronic

states of H3 radical, centered at the D3h geometry with displacements

along one bond-length coordinate (b) and one bond-angle coordinate (θ),

as defined in the center diagram, which reduce the symmetry to C2v . The

methods considered are: (a) restricted open-shell (RO-)CIS, (b) unrestricted

LR-B3LYP within the Tamm–Dancoff approximation (TDA), (c) SF-CIS,

and (d) SF-BH&HLYP. Energies are in Hartree. Adapted from Ref. [130];

copyright 2014 American Institute of Physics.

state [128, 130], which is not altogether surprising given the warped

topography of the potential surfaces for H3 that is documented in

Fig. 10.3a and Fig. 10.3b. A practical workaround is to halt any

excited-state dynamics simulation before it can reach a ground-

state CX [88, 134], using LR-TDDFT only to simulate excited-state

dynamics and nonadiabatic transitions between excited states. That

procedure, however, is at odds with the desire to perform first-

principles simulations of the crucial excited-state deactivation step,

leading to the onset of vibrational cooling on the ground state.

The present chapter describes a solution to these dilemmas

based on the “spin-flip” (SF) approach to TDDFT [7, 37, 100]. The

formalism of SF-TDDFT is described in Section 10.2 but the essential
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idea is rather simple: we recognize that the shortcomings described

above are limited to CXs that involve the reference state that is used

in LR theory, which is typically the ground state but it need not

be. SF-TDDFT uses a sacrificial reference state with a different spin

multiplicity as compared to the target states of interest, e.g., a triplet

reference is used to simulate singlet photochemistry or a quartet

reference for the doublet H3 radical. The change in multiplicity is

accomplished via single excitations in conjunction with a single α →
β spin flip, so that states having the target multiplicity (including the

ground state) appear in the excitation manifold and are described

in a variational manner with respect to one another. This cures

the topology problem [130]. (In fact, the double cones in Fig. 10.1

were generated using SF-TDDFT calculations.) In Fig. 10.3c, the SF-

CIS approach repairs the incorrect RO-CIS description of the conical

intersection in H3. Adding dynamical correlation, SF-TDDFT recovers

a double cone as well; see Fig. 10.3d.

The SF approach is not a panacea and some problems do remain,

most notably that it exacerbates spin contamination, which can

make it difficult to identify the multiplicities of interest. These

problems are described in Section 10.2 and some recently emergent

solutions, based on augmented SF-type approaches, are discussed in

Section 10.3.

10.2 Spin-Flip TDDFT Approach

10.2.1 Theory

We first provide a conceptual overview of SF-TDDFT (Section

10.2.1.1) before briefly reviewing the formalism of LR-TDDFT as a

means to introduce the SF version in more detail (Section 10.2.1.2).

A discussion of LR- and SF-TDDFT derivative couplings appears in

Section 10.2.1.3.

10.2.1.1 Conceptual overview

As with other SF approaches [7], the basic idea behind SF-TDDFT is

to use a high-spin (MS = S) reference state whose total spin S is one
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unit larger than the states of interest, whose spin quantum number

is S − 1. A simple example for a (4e,4o) model is shown in Fig. 10.4.

There, a triplet (S = 1) reference configuration is used to generate

a singlet (S = 0) excitation manifold. For the proper qualitative

description of a S0/S1 intersection, the minimal excitation space

is labeled “o-o” in Fig. 10.4 and consists of excitations within

the half-filled orbitals of the reference configuration, including de-

excitations. (Notably, if the molecule in question has a singlet

ground state then the lowest SF-TDDFT excitation energy starting

from a triplet reference is negative.) The o-o space contains a

closed-shell configuration that resembles S0. It also contains two

open-shell determinants with MS = 0, linear combinations of

which will generate either an open-shell singlet (S1) or else the

MS = 0 component of the triplet state, depending on whether these

determinants are added (triplet) or subtracted (singlet). Lastly,

the o-o space contains a determinant that is doubly excited with

respect to S0, which provides coupling between S0 and S1. The four

determinants in the o-o space thus constitute a minimalist model

that can describe the S0/S1 intersection correctly [60]. Notably,

the doubly excited determinant that is required is not contained

in the usual LR-TDDFT excitation manifold starting from a closed-

shell S0 reference state, because that excitation manifold consists of

single excitations only. From another point of view, SF-TDDFT thus

represents a cost-effective way to augment the LR-TDDFT excitation

manifold with a certain subset of doubly excited determinants.

The SF-TDDFT excitation manifold also consists of determinants

involving the virtual orbitals (“o-v” and “c-v” subspaces in Fig. 10.4),

along with the “c-o” space of excitations between doubly occupied

and singly occupied orbitals. Unlike the o-o space, none these other

subspaces is spin-complete [133], meaning that they are missing one

or more determinants needed to construct Ŝ2 eigenstates but which

cannot be generated from the reference state via a single excitation

combined with a single spin-flip. These are the subspaces that are

responsible for spin contamination. We will return to this point later

in this chapter.

Operationally, a SF-TDDFT calculation consists of a configuration-

interaction (CI) calculation within the extended manifold of deter-

minants generated by single excitations combined with α → β
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Figure 10.4 Illustration of the SF-TDDFT excitation space for a (4e,4o)

model (i.e., four electrons in four orbitals), starting from a high-spin triplet

reference at left. Single excitations combined with a single α → β spin flip

generate the determinants that are shown. The “o-o” set of determinants is

spin-complete and represents a minimalist model of S0 and S1 along with the

doubly excited determinant that couples them. Subspaces labeled c-o, o-v,

and c-v are each missing some of the determinants needed to form spin-pure

Ŝ2 eigenstates. Adapted from Ref. [133]; copyright 2015 American Institute

of Physics.

spin flip. Unlike the SF-CIS method [49], however, the use of Kohn–

Sham orbitals captures some dynamical correlation effects. Because

the double excitations are limited, this CI problem does not incur

the full O(N6) cost of a singles-doubles (CISD) calculation, but

rather is only a few times more expensive than conventional LR-

TDDFT. The number of determinants in the excitation space remains

O(Nocc Nvirt) [98], and does not grow in a way that increases with

system size any faster than that of LR-TDDFT.

Crucially, this extension of the excitation manifold cures the

topology problem around conical intersections involving any of the

states of the target multiplicity, because the appropriate double

excitation to couple them is included in the excitation manifold.

Problems with symmetry-required (Jahn–Teller) degeneracy are

mitigated, and the warped topography around such intersections

is avoided (see Fig. 10.3), because both of the quasi-degenerate

electronic states are treated on the same footing and emerge as
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solutions to a common eigenvalue problem [130, 134]. Convergence

problems around such regions of near-degeneracy are mitigated as

well.

10.2.1.2 Formalism

To proceed let us recapitulate the form of the ground-state (Kohn–

Sham DFT) and excited-state (LR-TDDFT) eigenvalue problems. The

former is

F̂ ψpσ (r) = εpσ ψpσ (r) , (10.9)

which defines the molecular orbitals (MOs) {ψpσ }, where σ is a spin

index. The excited-state eigenvalue problem is [18, 23](
A B
B∗ A∗

)(
x
y

)
= ω

(
1 0
0 −1

)(
x
y

)
(10.10)

where the matrices A and B involve derivatives of the ground-state

Fock matrix F with respect to the ground-state density matrix P [18]:

Aiaσ, jbσ ′ = (εaσ − εiσ )δi j δabδσσ ′ + ∂ Fiaσ

∂ P jbσ ′
(10.11a)

Biaσ, jbσ ′ = ∂ Faiσ

∂ P jbσ ′
. (10.11b)

The term ∂ Fiaσ /∂ P jbσ ′ in A, along with the entirety of B, has the form

of a coupling matrix that modifies the zeroth-order (independent-

particle) excitation energies, εaσ − εiσ .

The solution of Eq. (10.10), for the I th excited state, consists of

an excitation energy (eigenvalue) ωI = E I − E0, along with vectors

xI and yI consisting of excitation amplitudes and de-excitation

amplitudes, respectively. We will use indices i, j, . . . to denote

occupied MOs and a, b, . . . for virtual MOs, and p, q, . . . for arbitrary

MOs, as in the p that appears in Eq. (10.9). The solution vector (x, y)

to Eq. (10.10) parameterizes the transition density ρ0I (r, r′) of the

excited state in question [23, 24, 105]:

ρ0I (r, r′) =
∑
iaσ

[
xiaσ ψaσ (r) ψ∗

iσ (r′) + yiaσ ψiσ (r) ψ∗
aσ (r′)

]
.

(10.12)

The de-excitation amplitudes yia , which appear in the random

phase approximation as a correlation contribution to the ground
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state [75, 92], and are typically ∼100× smaller than the excitation

amplitudes xia . Neglecting the {yia}, affords the so-called Tamm–

Dancoff approximation (TDA) to Eq. (10.10) [18, 38]:

Ax = ωx . (10.13)

Equation (10.13) has the same form as the CIS eigenvalue equation

except that the matrix elements contain a contribution from the

exchange-correlation kernel, fxc = δ2 Exc/δρ
2. In the LR-TDDFT case,

the matrix elements are [18]

Aiaσ, jbσ ′ = (εa − εi )δiaδ jbδσσ ′ + (ia| jb) − CHFX(i j |ab)δσσ ′

+ (1 − CHFX)(iaσ | fxc| jbσ ′) .
(10.14)

The quantity CHFX is the fraction of Hartree–Fock exchange (HFX), in

the case that the functional is a hybrid.

The TDA is generally a very good approximation, but for

photochemical applications its utility goes deeper than that. To

understand why, consider that the full LR-TDDFT eigenvalue

problem in Eq. (10.10) can be rewritten as

(A − B)(A + B)(x + y) = ω2(x + y) , (10.15)

where the matrices A ± B are orbital Hessians, i.e., stability

matrices [123]. Solution of this equation for excitation energies ω

will fail if the triplet instability matrix A + B exhibits any negative

eigenvalues. Such instabilities are found to be widespread once one

an excited-state trajectory moves away from the Franck–Condon

excitation point and begins to explore bond-breaking regions of the

potential energy surface [14], leading to the suggestion that the TDA

is effectively mandatory for photochemical applications.

The preceding discussion describes the conventional LR-TDDFT

formalism, in which xiaσ has a single spin index because the ψiσ →
ψaσ excitation is spin-conserving. For a spin-flipping transition,

and under the usual assumption that fxc comes from a semilocal

exchange-correlation functional, the coupling matrix ∂ Fiaσ /∂ P jbσ ′ in

Eq. (10.11a) vanishes except for the HFX contribution [100], because

only HFX can couple σ = α to σ ′ = β . As noted later [43], the

fact that the SF-TDDFT coupling matrix involves only the HFX term

(and not the Coulomb term or the semilocal kernel fxc) explains

the observation, made already in the very first SF-TDDFT study of
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singlet–triplet gaps [100], that a hybrid functional with 50% HFX

significantly outperforms B3LYP with its 20% HFX. This observation

was later confirmed in application of SF-TDDFT to excitation

energies [64]. As a result, the “Becke half-and-half” functional

BH&HLYP, consisting of 50% HFX and 50% semilocal B88 [5]

exchange (“BH&H”), in conjunction with LYP correlation [53], has

become the standard choice for SF-TDDFT calculations.

The formulation of SF-TDDFT that is outlined above is some-

times called the “collinear” approach. This was later generalized

to an alternative “noncollinear” method, which does bring the

semilocal part of the functional into the coupling matrix [119,

120]. (See Refs. [43] and [89] for additional discussion of the

noncollinear approach. The name comes from generalized Hartree–

Fock theory [104], where a noncollinear formalism is one that

allows α and β spin to mix, as used for example in relativistic

DFT [25, 26, 118].) The noncollinear version of SF-TDDFT is found

to improve the performance for some problematic diradicals [6,

120], and is more accurate for excitation energies when functionals

with a low percentage of HFX are used [45, 124]. A significant

drawback, however, is that the noncollinear exchange-correlation

kernel involves a numerically problematic factor of spin density

(ρα − ρβ) in the denominator [6, 89]. Likely for this reason, the

noncollinear formulation is less widely used and is not discussed

further in this chapter.

10.2.1.3 Nonadiabatic (derivative) couplings

To fully explore nonadiabatic photochemistry with TDDFT (or any

other electronic structure method) it is necessary to possess not

only an analytic gradient but also nonadiabatic coupling vectors

h J K [Eq. (10.2)]. As compared to the gradient, the couplings are

more complicated to derive and implement, and as a result they

are available only in selected quantum chemistry programs and only

for a limited number of electronic structure models, which includes

TDDFT. A survey of implementations can be found in Ref. [3],

although it omits the implementation in the Q-Chem program [50].

The latter is the joint product of the Herbert group [130, 132] and
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the Subotnik group [21, 46, 84]. Semi-empirical implementations

have also been reported recently [68, 81].

Out of a variety of formalisms for computing nonadiabatic

couplings within TDDFT [12, 99, 112, 130, 132], the one that

is conceptually and computationally simplest is the “pseudo-

wavefunction” approach [21, 84, 130]. Working within the TDA, both

for conceptual simplicity and for the practical reasons discussed

above, one might write the wavefunction for the Kth excited state

as a linear combination of singly excited Slater determinants, as in

the CIS method:

|�K 〉 =
∑
iaσ

x K
iaσ |�iaσ 〉 . (10.16)

Here, |�iaσ 〉 is obtained from the ground state configuration by

ψiσ → ψaσ excitation. Strictly speaking, LR-TDDFT affords only

the transition density ρ0K (r, r′) [Eq. (10.12)], not the excited-state

wavefunction per se, but analogies along the lines of Eq. (10.16)

have been used since the earliest days of the theory [8–10, 96]. In

condensed-matter physics, it is also common to identify the product

functions ψa(relec) ψ∗
i (rhole) as a quasiparticle basis for electron–

hole pairs (“excitons”), and to consider ρ0K (relec, rhole) to be an

“exciton wavefunction” [90, 101]. This is despite the fact that the

Green’s function methods that are often used in that context afford

transition densities rather than proper wavefunctions, just like LR-

TDDFT.

Taking Eq. (10.16) as an ansatz for the excited-state wave-

function, analytic expressions can then be derived for h J K using

standard analytic gradient theory, which essentially means careful

application of the chain rule [21, 84, 130]. The relevant expressions

will not be repeated here; see Zhang and Herbert for a concise

derivation [130] and for a generalization beyond the TDA [132]. The

results are in good agreement with derivative couplings computed

via quadratic response theory [132], which is the formally correct

way to obtain h J K within TDDFT [83, 86], at least when quadratic

response is well-behaved. That method, however, is vulnerable to

spurious divergences [67, 83, 86, 132], a fact that was actually noted

long ago in the context of time-dependent Hartree–Fock theory [17].

As explained later by Furche and co-workers [87], these are artifacts

of approximate response theory in general, not limited to TDDFT,
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and they complicate the application of quadratic response to the

point that the pseudo-wavefunction approach is the much more

widely used method. Similarly, the topology problem around a CX is

not unique to LR-TDDFT and is also an artifact of response theory,

and in particular the unbalanced (and nonvariational) manner in

which it treats the reference and response states. Correlated Green’s

functions methods also afford wrong topology at any CX involving

the reference state, whereas SF versions of those methods restore

the correct topology [58].

Derivative couplings computed within the pseudo-wavefunction

formalism show good agreement with exact (full CI) results for

small molecules [132], good agreement with LR theory for derivative

couplings d0K that involve the ground state [83], and (for couplings

between two excited states) good agreement with quadratic

response theory [83, 132], provided that the latter is well-behaved.

Some exemplary data are shown in Fig. 10.5, where derivative

couplings d J K computed within the pseudo-wavefunction approach

are compared to results from quadratic response theory for a set

of small molecules, and also to exact (full CI) results for linear H3

as a function of internuclear distance. Derivative couplings based

on the pseudo-wavefunction formalism also correctly reproduce

the branching plane and the Berry phase around a CX [82], for

which the orbital response contributions to d J K prove to be crucial.

Results presented below demonstrate that MECPs located with the

aid of pseudo-wavefunction h J K vectors afford good agreement

with benchmark results from multireference electronic structure

methods. Within the TDA, the pseudo-wavefunction formalism also

affords the same result for d J K as does the equation-of-motion

formalism developed by Li and Liu [65]. All of these features argue

in favor of using the pseudo-wavefunction approach, to the exclusion

of quadratic response theory.

A subtle aspect of the derivative couplings is that of trans-

lational invariance. As noted by Fatehi et al. [21], expressions

for h J K obtained from straightforward application of the pseudo-

wavefunction approach are not translationally invariant, which is

problematic for nonadiabatic molecular dynamics simulations [22],

and certain “electronic translation factors” were introduced to

restore translational invariance [21]. It was noted that the terms
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Figure 10.5 (a) Differences between d J K computed using the pseudo-

wavefunction (PW) approach versus quadratic response (QR) theory,

expressed both in terms of magnitude ‖dPW
J K − dQR

J K ‖ and also direction

(cos θ , where θ is the angle between dPW
J K and dQR

J K ). Results correspond

to S1/S2 and S1/S3 couplings for formaldehyde, ethene, benzene, adenine,

thymine, uracil, cytosine, and azulene. The energy gap axis consists of the

individual gaps for this set of molecules and states. (b) Derivative coupling

between the lowest 2�+
g states of linear H3 radical (D∞h symmetry) as a

function of internuclear distance. Reproduced from Ref. [132]; copyright

2015 American Institute of Physics.

violating translational invariance arise from a kind of “Pulay

force” [36], meaning derivatives of the overlap matrix in an atom-

centered Gaussian basis set. It was later demonstrated by Zhang and

Herbert [130] that the electronic translation factors introduced in

Ref. [21] precisely annihilate the non-Hellmann–Feynman parts of

h J K . The translationally invariant Hellmann–Feynman expression is
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easy to state, at least in schematic form [130]. Within the TDA, it is

h[x]
J K =

∑
iajb

∑
σ,σ ′

x J
iaσ A[x]

iaσ, jbσ ′ x K
jbσ ′ , (10.17)

where the superscript [x] indicates a derivative with respect to

the nuclear coordinate x , as in Eq. (10.4b). The quantity A[x]
iaσ, jbσ ′

involves derivatives of the integrals in Eq. (10.14).

As will be discussed below, analytic derivative coupling vectors

are useful for nonadiabatic molecular dynamics simulations. The

h J K vectors are also very useful for locating MECPs, because

they facilitate the use of more efficient branching-plane updating

methods [4, 102], in which the branching space (spanned by g J K

and h J K ) is projected out of the gradient so that optimization

proceeds entirely within the seam space. As compared to MECP-

optimization algorithms that do not require h J K vectors, such as

penalty-function methods [59, 78] or approximate branching-plane

updating [70, 131], the use of an exact branching-plane updating

method requires far fewer optimization steps [48, 130, 131]. When

programmed efficiently, evaluation of h J K requires only modest

overhead on top of the TDDFT gradient calculation that is already

required to compute ∇̂R E J and ∇̂R E K , because solution of coupled-

perturbed equations is required in either case. Timing data confirm

that the overhead for computing h J K amounts to no more than 10–

20% on top of the cost of TDDFT analytic gradients [99, 130].

10.2.2 Photochemical Applications

Although it can be tempting to jump right into nonadiabatic

molecular dynamics simulations (which are discussed in Section

10.2.2.2), those simulations can be quite expensive because energy

conservation typically requires time steps �t = 0.5–1.0 fs, and

accurate integration of the couplings (which vary rapidly in regions

where energy gaps are small) may require even smaller time steps.

Moreover, the results of such simulations are generally meaningful

only in the aggregate, i.e., when averaged over an ensemble of

trajectories. It may therefore be useful to first locate critical points

on the potential energy surface, such as excited-state local minima

and MECPs between electronic states, the latter of which not only
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Figure 10.6 Comparison of optimized MECP structures obtained using SF-

BH&HLYP to benchmark results from multireference electronic structure

methods. (a) Comparison against MR-CIS for five different MECPs of

adenine. (b) Comparison against CASSCF results for two MECPs of a

truncated model of the rhodopsin chromophore, corresponding to trans →
cis isomerization around either C11=C12 or C13=C14. Panel (a) is adapted from

Ref. [131]; copyright 2014 American Chemical Society. Panel (b) is adapted

from Ref. [37]; copyright 2016 American Chemical Society.

indicate where the photochemical funnels are found in coordinate

space, but also which vibrational modes provide the strongest

coupling between the electronic states in question. Examples of

MECP optimization are presented in Section 10.2.2.1.

10.2.2.1 Exploring excited-state potential surfaces

Figure 10.6 presents some examples of MECPs optimized using SF-

TDDFT (with the BH&HLYP functional) in comparison to results

from multireference electronic structure methods. In each case, the

MECP obtained using SF-TDDFT is nearly indistinguishable from

the benchmark multireference result. The test set includes five

MECPs for adenine and two MECPs for a truncated model of the

retinal protonated Schiff base that functions as the chromophore

in the rhodopsin photoreceptor protein [20]. In retinal, trans →
cis photoisomerization occurs around a different double bond in

solution [117] (C13=C14) than it does in the protein environment
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(C11=C12) [20], and the structures in Fig. 10.6b include MECPs for

both isomerization reactions. Additional comparisons in Ref. [44]

also indicate that SF-TDDFT accurately predicts MECP geometries.

Although applications of SF-TDDFT have been somewhat limited

to date, the method has been used to map out potential energy

surfaces and/or locate critical points for a variety of small molecules,

including both uracil [131] and thymine [77], where the goal in both

cases was to rationalize observed differences between the excited-

state lifetime in the gas phase versus that in aqueous solution.

Detailed photoisomerization pathways have also been mapped out

for cis → trans photoisomerization in stilbene [78], and for the

photochemical ring-opening of cyclohexadiene [95]. The method has

been combined with exhaustive search algorithms in an attempt to

elucidate all of the critical points (minima, transition states, and

MECPs) for the S0 and S1 states of ethylene, 1,3-butadiene, thymine,

and a coumarin dye [35, 69].

10.2.2.2 Trajectory surface hopping

Excited-state, nonadiabatic molecular dynamics simulations are

mostly based on trajectory surface hopping (TSH) methods [2, 3, 47,

80, 106, 121, 122], most of which derive from Tully’s seminal “fewest

switches” algorithm [114], although modern variants incorporate

some level of decoherence effects that are absent in Tully’s original

method [106, 121]. A notable exception (not based on Tully’s

algorithm) is the “multiple spawning” approach of Martı́nez and co-

workers [15], which is an approximation to quantum wavepacket

dynamics. The discussion below regarding the need for derivative

coupling vectors is relevant to all of these methods. An example of a

nonadiabatic dynamics algorithm that does not require derivative

couplings is Zhu’s “global switching” algorithm [126, 129], which

derives from Landau-Zener theory. It is worth recalling (as discussed

above) that properly coded TDDFT derivative couplings require only

10–20% additional computational overhead on top of a TDDFT

analytic gradient calculation [99, 130]. Furche and co-workers

report that TDDFT-based TSH simulations of the photodynamics

of thymine, including the lowest three electronic states, require
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only 5× the cost of ground-state Born–Oppenheimer molecular

dynamics, even with explicit calculation of derivative couplings [88].

As such, the discussion here focuses on the more popular TSH-based

approaches and it is assumed that vectors d J K are available for all

pairs J K of energetically accessible states.

In one way or another, TSH methods derive from the time-

dependent Schrödinger equation of motion for the coefficients C K of

the electronic states in a superposition |�(t)〉 = ∑
K C K (t)|�K 〉. In

the adiabatic basis {|�K 〉} of Born–Oppenheimer electronic states,

the foundational equation of motion is usually [114, 121]

i�
dC J

dt
= E J (R)C J − i�

∑
K 	= J

C K Ṙ · d J K (10.18)

where Ṙ is the nuclear velocity vector. Clearly, it is the derivative

coupling d J K that is responsible for stimulating transitions between

electronic states. See Ref. [27] for a discussion regarding the absence

of second-order derivative couplings in Eq. (10.18).

Derivative couplings are defined as

d[x]
J K = 〈� J |(∂/∂x)|�K 〉 (10.19)

and these are only available in a limited number of quantum

chemistry programs and only at selected levels of theory. More

generally, the term that includes d J K in Eq. (10.18) can be recast as

Ṙ · d J K =
〈

� J

∣∣∣∣d�K

dt

〉
≈ 〈� J (t)|�K (t + �t)〉

�t
, (10.20)

where the first equality is exact but the second represents a

finite-difference approximation that allows the coupling term in

Eq. (10.18) to be evaluated by determining the overlap (in time)

of the adiabatic basis functions [94]. While the approximation

in Eq. (10.20) is numerically advantageous as compared to ap-

proximating Eq. (10.19) via finite differences involving coordinate

displacements, even the more efficient finite-difference in time is

less desirable as compared to analytic evaluation of d J K .

There have so far been only a few TSH studies using SF-TDDFT.

Yue et al. [127] used this approach to make a first-principles investi-

gation of the mechanism of firefly bioluminescence, specifically, the
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photoinitiated decomposition reaction to form the anionic emitter

species, oxyluciferin. Nakai and co-workers recently implemented

SF-TDDFT at the level of semi-empirical density-functional tight-

binding (“DFTB”) [115, 116], and have used the method to perform

TSH simulations of the archetypal azobenzene photoisomerization,

in explicit solvent [116]. Lastly, Minezawa and Nakajima have

simulated S1 lifetimes for several small molecules [79], demon-

strating good agreement with previous TSH simulations employing

multireference electronic structure methods. That study recognizes

that because LR-TDDFT may skew the topology of CXs that involve

the ground state, TSH simulations that employ LR-TDDFT ought to

be terminated prior to the final internal conversion step that returns

the molecule to its ground state. If this paradigm is followed then

S1 lifetimes are inaccessible to LR-TDDFT simulations, whereas SF-

TDDFT suffers no such limitation.

Along these lines, two recent TSH studies have made a side-by-

side comparison of S1 lifetimes predicted by LR- versus SF-TDDFT.

Zhu and co-workers [128] examined cis → trans photoisomerization

of azobenzene and found little difference between either the

predicted S1 lifetime or the branching ratio between cis and trans
photoproducts, at odds with the notion that topology of the S0/S1 CX

should lead to differences in measurable observables. It is certainly

true that most nonadiabatic transitions happen near rather than

at a CX, if only because the volume of configuration space is much

larger if one admits quasi-degenerate geometries. It is therefore

possible that in some cases the topological details may have no

observable impact on the outcome of a particular photochemical

reaction. A contrasting example, however, comes from a recent TSH

study of the trans → cis photoisomerization of the protonated

Schiff base C5H6NH+
2 , for which LR- and SF-TDDFT methods predict

significantly different S1 lifetimes [134]. The lifetime predicted

using SF-TDDFT agrees with that obtained in CASPT2-based TSH

simulations, whereas the LR-TDDFT lifetime is much longer. The

reason is that topological problems in LR-TDDFT warp the S1

potential surface in the vicinity of the photochemically relevant

S0/S1 intersection, leading to the presence of a barrier that is not

present in either the SF-TDDFT calculations or the multireference

benchmarks [134]. LR-TDDFT’s topology problem thus manifests as
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a topography problem, and trapping behind an artificial barrier leads

to slower dynamics. Such problems appear to manifest in some but

not all cases, e.g., LR-TDDFT potential energy surfaces for CH2NH+
2

are reported to be in good agreement with multireference results in

the region of an S0/S1 intersection [111]. Results for C5H6NH+
2 as

well as theoretical considerations, however, demonstrate that there

is a potential for serious problems.

It is also notable that in the azobenzene simulations reported

in Ref. [128], a significant fraction of the LR-TDDFT trajectories

had to be terminated and discarded due to convergence failure

in the region of quasi-degeneracy, whereas none of the SF-TDDFT

trajectories suffered this problem. This is likely a direct result of

the more balanced treatment of the two states in the SF approach.

Furthermore, the time-dependent energy gap E1 − E0 is observed

to be much more oscillatory in the LR-TDDFT simulations, leading to

much more frequent hopping events and concomitant oscillations in

the populations of the two electronic states [128]. At the SF-TDDFT

level, the energy gap is less oscillatory, the population dynamics are

smoother, and hopping events are relatively infrequent [128].

10.2.2.3 Spin contamination and state tracking

While SF-TDDFT rigorously cures the topology problem around CXs,

it tends to significantly worsen the spin contamination as compared

to LR-TDDFT, because some double excitations are admitted into

the excitation space but not in a manner that introduces all of

the complementary determinants needed to form spin-pure Ŝ2

eigenstates. In the (4e,4o) example of Fig. 10.4, the o-o subspace in

spin-complete and contains a minimalist description of the S0/S1

intersection, however the remaining subspaces lack some of the

determinants needed to form Ŝ2 eigenstates. Any excited state that

contains significant contributions from outside the o-o subspace

is likely to exhibit significant spin contamination. It is possible to

minimally augment the excitation space to restore spin symmetry,

and this approach has been used to construct a spin-complete

version of SF-CIS [98]. Notably, this can be done without increasing

the formal complexity of the method; the number of determinants
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remains O(Nocc Nvirt), albeit with a somewhat larger prefactor as

compared to conventional CIS. More automated versions of this

approach are discussed in Section 10.3, including methods that

incorporate a DFT treatment of dynamical correlation.

For practical application of the standard SF-TDDFT approach,

especially for TSH simulations, it is necessary to use some kind of

“state tracking” procedure that attempts to identify the best ap-

proximate multiplicity in regions of heavy spin contamination. Spin

contamination tends to be relatively small near the ground-state

geometry (Franck–Condon excitation point), whereas it becomes

severe in bond-breaking regions of the potential surface where

singlet and triplet states may be quasi-degenerate and therefore

extensively mixed, in the absence of proper spin symmetry. A

practical workaround is to categorize states based on their similarity

to the wavefunctions computed in the previous time step, with the

idea that spin multiplicities are identifiable at t = 0 so that the

multiplicity of |�K (t + �t)〉 can be assigned based on its overlap

with the states {|� J (t)〉}. Several methods along these lines have

been suggested [13, 34, 133]. The use of such algorithms is not

guaranteed to lead to an unambiguous identification of the states

in question, but it has been used successfully in TSH simulations

[34].

10.3 Augmented Spin-Flip Methods

In the final section of this chapter, we introduce some methods

that go beyond the simple SF ansatz in an attempt to correct some

of its problems, most notably spin contamination. One of these

is a spin-complete version of SF-TDDDFT [133], which minimally

augments that method’s excitation space in order to obtain a

set of determinants from which spin-pure Ŝ2 eigenfunctions can

be constructed. This is accomplished in an automated way using

a tensor equation-of-motion (TEOM) formalism, as described in

Section 10.3.1. An alternative approach is the “mixed reference spin-

flip” (MRSF) procedure developed recently by Filatov, Choi, and co-

workers [54], which is discussed in Section 10.3.2.
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10.3.1 Spin-Adapted Spin-Flip Approach

10.3.1.1 Formalism

Originally developed from a wavefunction point of view [98], spin-

complete SF-CIS lacks dynamical correlation but that shortcoming

can be overcome using a TEOM framework to re-derive this method

within the framework of TDDFT [133]. The TEOM formalism itself

was originally developed in nuclear physics [93], but later extended

to molecular systems by Li and Liu [62, 63, 66]. As applied to

TDDFT, the result is a “spin-adapted” (SA-)SF-TDDFT method that

maintains SF-TDDFT’s correct treatment of the topology around CXs

but restores spin multiplicity as a good quantum number.

In SA-SF-TDDFT, excitation operators in the TEOM formalism

are truncated at the single excitation level. The single-excitation

operators can be grouped into two categories: those with zero

rank (singlet coupling) and those with rank one (triplet coupling).

Because SF methods use a target state of lower spin angular

momentum as compared to the reference state, only the triplet-

coupled excitation operators are useful in this case. These can be

represented in the MO basis as

Ô†
pq(1, 1) = −â†

pâq̄ (10.21a)

Ô†
pq(1, 0) = (â†

pâq − â†
p̄âq̄)/

√
2 (10.21b)

Ô†
pq(1, −1) = â†

p̄âq (10.21c)

where â†
p creates an α-spin electron in orbital ψp and âq̄ annihilates

a β-spin electron in orbital ψq . Previous work by Li and Liu [62]

uses a different working equation as a TEOM as compared to that

used in SA-SF-CIS and SA-SF-DFT [133], and that equation generates

spurious solutions due to the presence of redundant terms in the

excitation space. The working equation used by Zhang and Herbert

for SA-SF-TDDFT avoids this problem. The overall tensor operator

can be written as

Ô†(1) =
∑

ia

Ô†
ia(1)xcv

ia +
∑

iu

Ô†
iu(1)xco

iu +
∑

ua

Ô†
ua(1)xov

ua

+
∑

tu

Ô†
tu(1)xoo

tu +
∑

ai

Ô†
ai (1)ycv

ia

+
∑

ui

Ô†
ui (1)yco

iu +
∑

au

Ô†
au(1)yov

ua . (10.22)
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As in conventional TDDFT, xia and yia are excitation and de-

excitation amplitudes, respectively, with superscripts corresponding

to the various subspaces in Fig. 10.4. For example, xcv
ia is a coefficient

from doubly occupied MO ψi to empty (virtual) MO ψa . Indices t and

u in Eq. (10.22) are used to indicate singly occupied MOs.

The above SA-SF formalism can be used to generate a spin-

complete version of SF-CIS. To extend this to DFT in a formally exact

manner, it would be necessary to introduce a Hamiltonian Ĥ DFT that

generates the exact ground-state energy as the expectation value

of the single-determinant reference state. No such Hamiltonian

is known in analytical form, so dynamical correlation is instead

introduced as an ad hoc DFT correction to the SA-SF-CIS matrix

elements, in a manner that is reminiscent of the ad hoc correction

introduced in the DFT/MRCI method [31, 72]. The final matrix

elements for SA-SF-DFT have the form

〈�pq |Ĥ DFT − E DFT
0 |�rs〉 = δqs F pr − δpr Fqs + 〈pq||qp〉

+ (1 − CHFX)〈pq|pq〉 .
(10.23)

This ends up being precisely the same matrix element as that used in

collinear SF-TDDFT [130], which rationalizes the good performance

of the method. In conjunction with Kohn–Sham orbitals determined

via ground-state DFT, the extra determinants that are introduced to

make the excitation manifold spin-complete do incur some double-

counting of electron correlation effects, although one may argue this

is likely to be small because the number of additional determinants

is rather limited. In fact, the same issue arises in DFT/MRCI, where

the overcounting is potentially more severe, and in that approach an

empirical damping factor is introduced for the off-diagonal matrix

elements in order to limit the scope of the double counting. A similar

modification may help the SA-SF-DFT method, but has not yet been

tested.

10.3.1.2 Applications

Eliminating the need for failure-prone state-tracking algorithms is

crucial in order to make SF-TDDFT into a robust, black-box engine

for TSH simulations, but elimination of spin contamination has

practical consequences for excited-state optimizations and MECP
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Figure 10.7 Optimization trajectories for a S0/S1 MECP of C2H4, starting

from the ground-state geometry and using either SF-TDDFT or SA-SF-

TDDFT with the BH&HLYP functional. In the SF-TDDFT case, flags at

steps 3, 4, 6, 7, . . . indicate geometries at which the assignment of spin

multiplicities becomes ambiguous due to spin contamination. Data are

taken from Ref. [133].

searches. An example of the latter, for an S0/S1 MECP of ethylene,

is presented in Fig. 10.7 in the form of an “optimization trajectory,”

i.e., a plot of energy (for both S0 and S1) versus optimization

steps. Using conventional SF-TDDFT, singlet and triplet states quickly

become mixed so that already by the third optimization step it

is difficult to assign spin multiplicities based on the value of 〈Ŝ2〉
alone. At the third step, the two lowest-energy states have 〈Ŝ2〉
= 1.14 and 〈Ŝ2〉 = 0.90 (in units of �

2), indicating nearly equal

mixing of singlet and triplet [133]. Flags on steps 3, 4, 6, 7, 8, . . .

in Fig. 10.7 indicate points at which the state assignment is

ambiguous. Energies of the two selected adiabats are strongly

oscillatory, suggesting that the algorithm may be switching between

states with differing amounts of singlet character, confounding the

optimization algorithm. In contrast, the SA-SF-TDDFT optimization

proceeds relatively smoothly and converges in far fewer steps. It

is worth noting, however, that no analytic gradient has yet been

reported for SA-SF-TDDFT, so MECP optimizations at that level of

theory are proof-of-concept exercises based on finite-difference

gradients [133].
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Figure 10.8 Potential energy curves along the C–C twisting coordinate for

the lowest three singlet states of ethylene: N for the “normal” ground state or

(π)2 configuration, V for “valence” (π)1(π∗)1 state, and Z for “zwitterionic”

(π∗)2 state. (The notation is historical [76].) Reprinted from Ref. [133];

copyright 2015 American Institute of Physics.

As a second example of SA-SF-TDDFT, we consider the classic

strong correlation problem of twisting C2H4 about its C–C axis.

The (π)2 and (π∗)2 electron configurations become degenerate at

a twist angle of 90◦, causing single-reference methods based on

spin-restricted orbitals to exhibit an unphysical cusp [51, 100].

Potential energy surfaces for the lowest three singlet states are

plotted in Fig. 10.8, computed using several different SF methods

and compared to a multireference benchmark. Both the simple SF-

TDDFT method as well as SA-SF-TDDFT afford reasonably good

agreement with the benchmarks for all three of the lowest singlet

states, with no unphysical cusps. SA-SF-CIS results are also free of

cusps although the absence of dynamical correlation causes the S1

and S2 surfaces to deviate significantly from the benchmarks.

10.3.2 Mixed-Reference Spin-Flip Approach

The MRSF approach to TDDFT has emerged recently as an

alternative way to eliminate spin contamination in SF-TDDFT [54],

if not rigorously and exactly (as in SA-SF-TDDFT) then at least

to good numerical accuracy, without significantly increasing the
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complexity with respect to the original method SF-TDDFT method.

In Section 10.3.2.1, we briefly explain how MRSF-TDDFT works in

the case where states of singlet multiplicity are targeted starting

from a triplet reference state, and then a few exemplary applications

are discussed in Section 10.3.2.2.

10.3.2.1 Formalism

MRSF-TDDFT is based on a mixed-reference (MR) state whose

density matrix is a linear combination of the MS = 1 and MS = −1

components of a triplet reference state:

ρMR
0 (r, r′) = 1

2

[
ρ

MS=+1
0 (r, r′) + ρ

MS=−1
0 (r, r′)

]
. (10.24)

The two components of this density matrix are subjected to separate

spin-flipping operations, α → β for the MS = 1 component (as

in the basic SF-TDDFT method discussed above) and β → α for

the MS = −1 component. This is shown schematically in Fig. 10.9

for the same (4e,4o) model that was used to introduce the basic

method, using the same notation is used for the various subspaces

of Slater determinants. Comparing Fig. 10.4 to Fig. 10.9, it is evident

that MRSF-TDDFT introduces many more electronic configurations

as compared to SF-TDDFT. Operationally, this removes the majority

of the spin contamination even thought the excitation space is

not formally spin-complete because some of the necessary o-v

determinants (shown in gray in Fig. 10.9) cannot be generated by

this procedure. However, these are higher-energy configurations

and thus play little role in low-lying excited states, so that 〈Ŝ2〉 is

close to its spin-pure value in practice [54].

Derivation of MRSF-TDDFT is based on the density matrix

formulation of the time-dependent Kohn–Sham methodology [32,

33], which means that the density matrix needs to be idempotent.

This can be demonstrated for the density matrix in Eq. (10.24)

based on a complex rotation of the spin functions [54]. Separation

of the MS = 1 and MS = −1 triplet density matrices leads to two

independent eigenvalue equations,

Atxt = ωtxt (10.25a)

Asxs = ωsxs . (10.25b)
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Figure 10.9 Schematic illustration of MRSF-TDDFT for a (4e,4o) model.

The excitation space for singlet states is generated starting from both high-

and low-spin triplet configurations, via single excitations combined with

either α → β spin flip (for MS = 1) or β → α spin flip (for MS = −1).

The four determinants shown in gray in the o-v subspace are missing from

the excitation manifold because they cannot be generated in this manner.

Adapted from Ref. [41]; copyright 2021 American Chemical Society.

However, it is necessary to incorporate coupling matrix elements

between determinants from the MS = 1 and MS = −1 parts

of the calculation on an ad hoc basis [54]. This amounts to new

contributions to the orbital Hessian A, along the lines of [56]

A′
pq,rs = CHFX

〈
�

MS=+1
pαqβ

∣∣Ĥ
∣∣�MS=−1

rβsα

〉
. (10.26)

The orbital Hessian that is used in practice is then Ak + A′, for k = t

or s in Eq. (10.25).

10.3.2.2 Applications

MRSF-TDDFT has several advantages over SF-TDDFT, the most

significant being that spin contamination is drastically reduced,

simplifying the identification of relevant states. This is important for

excited-state geometry optimization, reaction-path following, and
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TSH simulations. (Notably, the analytic gradient has been formu-

lated for MRSF-TDDFT [56], along with approximate nonadiabatic

couplings [55], whereas no analytic gradient for SA-SF-TDDFT is yet

available.)

MECP geometries are found to be in good agreement with

multireference benchmarks but also in good agreement with the

simple SF-TDDFT method [57], whereas vertical excitation energies

are comparable in accuracy or slightly better with MRSF [39]. Both

of these comparisons are based on the BH&HLYP functional, which

is also used in nearly all of the SF-TDDFT results quoted in this

chapter. Interestingly, when the fraction of exact exchange (CHFX) is

optimized in order to minimize errors in vertical excitation energies

of polyenes, the MRSF-TDDFT approach lands on CHFX = 0.5 as the

optimal value, corresponding precisely to the BH&HLYP functional.

The same optimization procedure applied to LR-TDDFT lands on

CHFX = 0.2 as the optimal value, corresponding to B3LYP [40]. This

observation further corroborates the idea that 50% HFX is close to

optimal for collinear spin-flip methods.

TSH simulations of thymine photodynamics have been reported

using MRSF-TDDFT [85], which support trapping on S1 as the

explanation for a long-lived (∼5 ps) decay component time-resolved

experiments. This is consistent with multireference results that

include dynamical electron correlation [107], but it is at odds

with CASSCF predictions that indicate trapping on S2 [42]. The

discrepancy appears to originate in an excited-state barrier that

is too high in the absence of dynamical electron correlation,

supporting other results indicating that CASSCF is not a quantitative

method for excited-state dynamics [28–30].

10.4 Summary and Outlook

This chapter has surveyed systemic problems with the description of

ground-state CXs in conventional LR-TDDFT. Although the focus here

has been on singlet photochemistry (S0/S1 intersections), similar

problems can be expected for any CX that involves the ground

state of the molecule, when that state is used as the reference

state for LR-TDDFT. Numerous (apparently successful) applications
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of conventional LR-TDDFT to nonadiabatic molecular dynamics can

be found in the literature, yet there are reasons to worry about

that method’s ability to describe the final internal conversion step

that returns the molecule to its ground state. Therefore we must

conclude that, at present, the situation remains unclear as to how

pervasive these problem are, and the extent to which they effect real

observables. There are undeniably cases where LR-TDDFT warps

the topography around a S0/S1 intersection seam to such an extent

that it has a significant effect on the simulated S1 lifetime and thus

the internal conversion timescale [134]. The unbalanced treatment

of a quasi-degenerate ground and first excited state in LR-TDDFT

can also lead to convergence problems that stymie attempts to

use this method as a black-box engine for nonadiabatic molecular

dynamics.

A “spin-flip” modification rectifies these problems, within a

tractable computational formalism for which nonadiabatic (deriva-

tive) coupling vectors have been formulated and implemented based

on analytic gradient theory [130, 132]. SF-TDDFT can be used in

surface hopping calculations, as well as simply to locate MECPs

with correct topology, including those that involve the ground

state. For reasons discussed herein, SF-TDDFT calculations are

typically performed using the BH&HLYP functional, and MECPs

computed in this way show excellent agreement with multireference

benchmarks.

A drawback of the simple SF-TDDFT approach is that it often

leads to significant spin contamination in bond-breaking regions

of the potential surface. For singlet photochemistry, the practical

upshot is that it can be difficult to distinguish singlets from triplets in

the photochemically relevant regions of the surface. State-tracking

algorithms (based on wavefunction overlap) are used in practice

to overcome this problem [13, 34, 133], although this feels to us

like a stopgap solution. A “spin-adapted” version of the theory (SA-

SF-TDDFT) has been reported [133], which solves this problem in

an elegant way by introducing the minimal number of additional

determinants necessary to obtain spin-pure Ŝ2 eigenstates, however

at present its analytic gradient is not available. This method can

be used to spot-check the state assignments of the simple SF-

TDDFT approach. Alternatively, a “mixed reference” version of SF-
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TDDFT has also been developed [54], which eliminates the spin

contamination to a useful degree for low-lying singlet states, even

if it does not rigorously afford spin eigenstates.
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