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Abstract This chapter provides an overview of some hybrid forms of symmetry-
adapted perturbation theory (SAPT), developed over the past decade and known
collectively as “extended” (X)SAPT. Two primary innovations are a self-consistent
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Abbreviations

charge embedding scheme to capture many-body polarization (the “XPol” proce-
dure) and the use of low-cost dispersion models as replacements for SAPT’s
perturbative description of dispersion. The latter modification reduces the formal
complexity to OðN3Þ with system size. In conjunction with a many-body dispersion
model (XSAPT+MBD) or empirical dispersion potentials fitted to ab initio data
(XSAPT+aiD), the hybrid procedures achieve sub-kcal/mol accuracy with respect to
high-level benchmarks. XSAPT is equipped with an energy decomposition that
partitions the intermolecular interaction energy into components that include elec-
trostatics, Pauli repulsion, dispersion, and induction, the latter of which can be
further separated into polarization and charge transfer. As compared to energy
decomposition analyses used in density functional theory, separation of the disper-
sion energy in XSAPT is less ambiguous, and the energy partition agrees well with
accurate third-order SAPT benchmarks. Theoretical foundations of XSAPT are
reviewed, and we provide a thorough discussion of its performance in terms of
both accuracy and cost. Exemplary applications are presented that illustrate how
XSAPT can be used to uncover the fundamental molecular physics of intermolecular
interactions.
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ALMO Absolutely localized molecular orbital
BSSE Basis-set superposition error
CBS Complete basis set
CCSD(T) Coupled-cluster theory with single, double, and (perturbative) triple

excitations
CP Counterpoise
CT Charge transfer
DFT Density functional theory
EDA Energy decomposition analysis
HF Hartree–Fock
HOMO Highest occupied molecular orbital
IE Ionization energy
KS Kohn–Sham
LRC Long-range corrected
LUMO Lowest unoccupied molecular orbital
MBD Many-body dispersion
MO Molecular orbital
MP2 Second-order Møller–Plesset perturbation theory
SAPT Symmetry-adapted perturbation theory
SCF Self-consistent field
vdW van der Waals
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XC Exchange-correlation
XSAPT Extended symmetry-adapted perturbation theory

1 Intermolecular Interactions the SAPT Way

With the nowadays widespread deployment of density functional theory (DFT) by
nonexperts, it can easily seem as if ab initio description of the chemical bond is a
solved problem. The treatment of nonbonded interactions, however, was certainly
not a solved problem in the early days of DFT [1]. Since then, DFT’s ability to
describe noncovalent interactions has been improved significantly [1–4], thanks to
the development of both dispersion-corrected and dispersion-inclusive exchange-
correlation (XC) functionals, which we have recently reviewed [1]. The availability
of low-cost methods for noncovalent interactions has spurred more detailed scrutiny
of their role in chemistry and in particular the important role of dispersion interac-
tions in chemical bonding [5–7].

When it comes to analyzing intermolecular interactions, however, it is less
straightforward to decide how DFT interaction energies can be decomposed into
meaningful components, including dispersion (Edisp ) but also electrostatics (Eelst ),
steric repulsion (Esteric), polarization (Epol), and charge transfer (ECT):

ð1Þ 

Here, E is the intermolecular interaction energy computed via the supramolecularΔ int

approach, meaning

ΔEint,AB =EAB -EA -EB ð2Þ 

for a dimer A⋯B. In Eq. (1), we have defined “induction” (Eind) to be the sum of
polarization and charge transfer (CT),

Eind =Epol þ ECT: ð3Þ

This will aid in making contact between the present work (vide infra) and the
partition in Eq. (1) that is often used in DFT-based energy decomposition analysis
(EDA). A method to separate Epol from ECT is described in Sect. 1.3.2.

The decomposition of ΔEint in Eq. (1) is not unique, insofar as there is no
quantum-mechanical operator that represents dispersion (or polarization, etc.). As
a result of this ambiguity, a variety of EDA schemes have been suggested for use
with DFT [8–13], and there are a few EDAs for correlated wavefunction methods as
well [14–16]. However, there is also no shortage of criticism over the fundamentally
ill-defined nature of such analyses [17–20], with some going so far as to suggest that
for “weak” interactions (≲ 5 kcal/mol), one should not even bother [20]. We agree



with the general sentiment that EDAs are often overinterpreted (“how many kJ/mol
can dance on the head of a pin?”) [1], but a 5 kcal/mol threshold for abandoning any
attempt at interpretation feels too conservative to us. After all, the energy of the
single hydrogen bond in (H2O)2 is 3.2 kcal/mol [21], and we should demand that a
useful EDA can discern a hydrogen bond from some other type of intermolecular
interaction.
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The present chapter describes an alternative approach to EDA for intermolecular
interactions that is not based on DFT but rather on many-body theory and aims to
compute the interaction energy directly from first principles (not by energy differ-
ence), with quantitative accuracy. This approach, which is known as symmetry-
adapted perturbation theory (SAPT) [10, 22–28], has a long history in quantum
chemistry that is not reviewed here. Rather, the present work examines a relatively
new family of hybrid methods that are built upon the SAPT framework but substitute
alternative models for dispersion in place of perturbation theory. This is done in the
interest of achieving quantitative accuracy at a cost that is cubic-scaling [OðN3Þ]
with system size, comparable to the cost of DFT. These methods are known
collectively as “extended” (X)SAPT, originally built upon a combination of SAPT
with the “XPol” self-consistent charge embedding procedure [29–31]. XSAPT has
been developed in the Herbert group since 2010 [32–43] with the goal of providing
qualitative insight, via a well-defined EDA that is built atop a method that delivers
quantitative accuracy. Our philosophy is that physical insight should be independent
of the ever-evolving milieu of density-functional approximations.

The remainder of this section outlines the SAPT formalism (Sect. 1.1), including
definitions for its energy components. Modifications that form the basis of XSAPT
are discussed in Sect. 1.2. The presentation is intended to be only moderately
technical, an overview with enough detail so that a potential user can make informed
choices with regard to the particular setup of an XSAPT calculation. Shorter and
even less technical discussions of XSAPT can be found elsewhere [37, 42].

The accuracy and performance of XSAPT are discussed in Sect. 2. Accuracy is
assessed (in Sect. 2.1) by comparing to benchmark ab initio results for standard
noncovalent datasets [44], where interaction energies are available at the
CCSD(T) level extrapolated to the complete basis-set (CBS) limit. Performance
benchmarks for XSAPT (Sect. 2.2) are based on a newly rewritten version of the
code that exists within the Q-Chem software package [45, 46], featuring improved
single-node parallel efficiency that is documented here for the first time. Finally,
illustrative applications are presented in Sect. 3. After making some elementary
remarks about the distinction between electrostatics and Pauli repulsion, and the
failure of multipole ideas at nonbonded close-contact distances (Sect. 3.1), we
demonstrate that (X)SAPT provides a much cleaner definition of dispersion as
compared to DFT-based EDA schemes (Sect. 3.2). We then describe how XSAPT
calculations have been used to upend the conventional understanding of π –π 
interactions (Sect. 3.3) and to reinforce the conventional idea that CT plays an
important role in ion–molecule hydrogen bonding (Sect. 3.4).
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1.1 Symmetry-Adapted Perturbation Theory

Quite apart from DFT-based EDAs, the SAPT framework is older and has its basis in
many-body perturbation theory [22]. It uses isolated-monomer wavefunctions as a
zeroth-order starting point and then computes the intermolecular interaction using a
form of perturbation theory. For a noncovalent dimer A⋯B, this amounts to a
partition of the dimer’s Hamiltonian according to

ð4Þ 

Here, F̂ is a Fock operator for the monomer (X A or B) and Ŵ is theX = X

corresponding Møller–Plesset fluctuation potential. The quantity V̂AB contains the
intermolecular Coulomb operators for both nuclei and electrons. In atomic units
where 4πϵ0 = 1, the latter is

V̂AB =
A∈AB∈B

ZAZA

RAB
-

a∈A B∈B

ZB

RaB
-

A∈A b∈B

ZA

RAb

þ 
a∈A b∈B

1
Rab

:
ð5Þ

Parameters ξ and λ in Eq. (4) serve to count orders in a double perturbation
expansion, with the direct product jψA

0 〉 jψB
0 〉 as a reference state.

A caveat is that jψA
0 〉 jψB

0 〉 is not antisymmetric with respect to exchange of
electrons between A and B, since jψA

0 〉 and jψB
0 〉 were computed in isolation. The

“symmetry adaptation” in SAPT is really an antisymmetry adaptation in which
A $ B exchange is incorporated perturbatively, via an antisymmetrizer ^ AAB

[47]. In practice, this means that the perturbation is V̂ABÂAB, albeit with some
additional simplifications for evaluating matrix elements of ÂAB, most notably the
“single-exchange” (or “S2”) approximation [48–50]. The presence of ÂAB in the
perturbation gives rise to certain exchange terms in this antisymmetrized form of
Rayleigh–Schrödinger perturbation theory, in addition to the usual terms that arise in
the so-called polarization expansion [51]. The latter is the perturbative approxima-
tion to the A⋯B interaction energy that is based on V̂AB alone, disregarding ÂAB.
That expansion is valid for the long-range forces when the isolated monomer
densities ρAðrÞ and ρBðrÞ do not overlap and there is no need to enforce the Pauli
principle for A $ B exchange.

SAPT is a direct perturbative expansion for the A⋯B interaction energy, which
we call Eint;AB (or simply Eint ) in order to distinguish it from the supramolecular
energy-difference approach. Whereas ΔEint in Eq. (2) is computed by difference and
is subject to basis-set superposition error (BSSE), the SAPT intermolecular interac-
tion energy is not. In any EDA scheme that is based on a supramolecular calculation
in a finite basis set, the BSSE is a spurious contribution that must be included



somewhere. Finally, the accuracy of SAPT is not beholden to a particular choice of
density functional and can be systematically improved using higher orders in
perturbation theory.
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Application of symmetrized Rayleigh–Schrödinger perturbation theory to the
perturbations Ŵ and V̂ABÂAB affords an expression for Eint of the form

Eint =
∞ 

n= 1

∞ 

m= 0
EðnmÞ 
pol þ EðnmÞ 

exch , ð6Þ

whose terms are explicated elsewhere [22, 47, 52–54]. Superscripts n and m in
Eq. (6) indicate orders in perturbation theory, for either the intermolecular pertur-
bation (V̂ABÂAB) or for monomer electron correlation (Ŵ), respectively. The terms
EðnmÞ 
pol constitute the polarization expansion (valid at long range) but each is accom-

panied by an exchange contribution EðnmÞ 
exch , arising from the antisymmetrizer.

The simplest form of SAPT sets m= 0 and thus does not include monomer
electron correlation. Further limiting the expansion to n≤ 2 affords the simplest
form of SAPT that includes all of the energy components identified in Eq. (1), albeit
in different guises. Somewhat confusingly, this second-order (in V̂ABÂAB) approach
is often called “SAPT0” [25], because it is zeroth order inŴ . It is akin to a Hartree–
Fock (HF) description of the monomers combined with dispersion resembling that of
second-order Møller–Plesset perturbation theory (MP2). Regrouping the relevant
terms in the polarization expansion, this approximation for Eint is

ð7Þ 

Electrostatics and exchange repulsion appear at first order in V̂ABÂAB [47], as Eð10Þ 
elst

and Eð10Þ 
exch, respectively. The latter is identified with Pauli or steric repulsion [43], for

reasons that are discussed in Sect. 3.1. Induction and dispersion do not appear until
second order, which is why the second-order approximation is the simplest reason-
able form of Eq. (6). As indicated in Eq. (7), we combine the second-order dispersion
and induction terms in the polarization expansion with their exchange analogues to
define the total dispersion and induction energies at second order,

ð2 20 20E Þ 
disp =Eð Þ 

disp þ Eð Þ 
exch-disp ð8aÞ

Eð2Þ 
ind =Eð20Þ 

ind þ Eð20Þ 
exch-ind: ð8bÞ

The exchange components arise from ÂAB and reduce the attractiveness of the
induction or dispersion terms from the polarization expansion, by eliminating



Pauli-forbidden contributions to that expansion. To make contact with the generic
energy decomposition in Eq. (1), recall that the induction energy contains both
polarization and CT (Eq. 3), for reasons that are discussed in Sect. 1.3.2 where we
introduce a technique to separate these two contributions.
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Second-order induction often lacks sufficient accuracy for hydrogen-bonded
systems [55], so some higher-order effects are often packaged with SAPT0. Specif-
ically, we can define “response” (or “relaxed”) versions of second-order induction,

Eð2Þ 
ind,resp =Eð20Þ 

ind,resp þ Eð20Þ 
exch-ind,resp, ð9Þ

obtained by solving coupled-perturbed HF equations [56]. Substituting Eð2Þ 
ind;resp in

place of Eð2Þ 
ind in Eq. (7) affords the best possible treatment of induction at second order

in perturbation theory, but even this may be inadequate to describe the significant
induction effects associated with hydrogen bonding [57, 58]. A supramolecular HF
calculation contains much of that effect as it formally sums induction to infinite order
in perturbation theory, albeit at zeroth order in Ŵ . As such, one may consider a
correction for induction of the form

CP- 20δEHF =ΔE HF
int - ð10Þ ð10Þ ð Þ ð20Þ ðEelst þ Eexch þ Eind,resp þ Eexch-ind,respÞ ð10Þ

where ΔECP-HF
int is the counterpoise (CP) corrected HF interaction energy, computed

using the supramolecular approach (Eq. 2). The quantity defined in Eq. (10) is
known as the “δHF” correction, and it is often added to SAPT0:

ð11Þ 

Note that some authors consider δE to be part of the definition of SAPT0 [28], butHF

others do not [25]; in the present work, we take δEHF to be an additional correction.
Strictly speaking, the model defined in Eq. (11) does not simply add δEHF to the
model in Eq. (7), due to the replacement of the second-order induction amplitudes
with their response analogues. However, it is common to refer to Eq. (11) as
“SAPT0+δHF”, and we shall do so.

For hydrogen-bonded systems, the hybrid SAPT0+δHF approach is sometimes
necessary to obtain high accuracy, even when third-order induction terms (beyond
SAPT0) are included [25, 57, 58]. However, mixing SAPT with an energy-
difference approach has the potential to introduce BSSE into what is otherwise a
BSSE-free formalism. As such, ΔECP-HF

int should always be evaluated using
CP correction, as indicated by the notation. Even for self-consistent field (SCF)
calculations, the CP correction is not negligible unless basis sets of at least quadru-
ple-ζ quality are employed [59].

Substituting Eq. (10) into Eq. (11) affords
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ESAPT0þδHF
int =ΔEHF

int þ Eð2Þ 
disp : ð12Þ

This demonstrates that the SAPT0+δHF combination is nothing more than second-
order dispersion added to the supramolecular HF interaction energy, with its infinite
order but uncorrelated treatment of induction. (This is also a simple way to under-
stand that dispersion is entirely an electron correlation effect, absent at the mean-
field HF level.) For this reason, SAPT0+δHF and similar methods have sometimes
been called “HF plus dispersion” [28, 60–62]. We avoid that terminology for
SAPT0+δHF, however, because it is easily confused with very old approaches that
augment a HF calculation with an empirical dispersion correction (e.g., of the form
-C6=R6) [63–69], analogous to the manner in which contemporary DFT is typically
augmented to obtain dispersion-corrected DFT+D methods [1, 2].

Along those lines, let us pause to discuss terminology. We will sometimes refer to
the conventional, HF-based SAPT0 model as “SAPT0(HF),” in order to distinguish
it from an analogous method that uses Kohn–Sham (KS) DFT for the monomers. We
define SAPT0(KS) as second-order intermolecular perturbation theory based on a
generalized description of the monomer wavefunctions [42, 55], meaning Eq. (7)
with all SAPT terms evaluated using KS orbitals and one-particle energy levels.
(There are important caveats concerning which XC functionals should be used,
which are discussed in Sect. 1.2.2.) Ultimately, we want to eliminate Eð2Þ 

disp in favor

of dispersion models that are both more accurate and less expensive (Sect. 1.2.4).
Since SAPT0 implies second-order dispersion, we will refer to these hybrid models
as “SAPT(KS),” without the zero. Explicitly,

ESAPTðKSÞ 
int =Eð10Þ 

elst þ Eð10Þ 
exch þ Eð20Þ 

ind þ Eð20Þ 
exch-ind: ð13Þ

This is simply Eq. (7) without the dispersion or exchange-dispersion terms, but
where the name suggests that KS-DFT is used to compute the SCF monomer
wavefunctions. The SAPT(KS) model in Eq. (13) needs to be augmented with
some form of dispersion, e.g., to obtain SAPT(KS)+D. It might or might not be
augmented with a δHF correction, which will be indicated explicitly if so. Even for
SAPT(KS), we will always use HF orbitals to evaluate δEHF because a supramolec-
ular KS-DFT calculation mixes different energy components, whereas δHF is
intended as a correction for induction [55]. Thus,

ESAPTðKSÞþδHF
int = Eð10Þ,KS

elst þ Eð10Þ,KS
exch þ Eð20Þ,KS

ind,resp þ Eð20Þ,KS
exch-ind,resp

þδEHF,
ð 14Þ

where the “KS” superscripts indicate that these terms are evaluated using DFT
orbitals and energy levels. This presents a potential mismatch between the KS
response terms in Eq. (14) and their HF analogues that are subtracted in Eq. (10).
We leave it to benchmark calculations to determine the extent to which this is a
problem.
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jun-cc-pVDZ 

jul-cc-pVDZ 

aug-cc-pVDZ 

jun-cc-pVTZ 
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error (kcal/mol) 
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max (with δHF) 

MAE (no δHF) 
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Fig. 1 Error statistics for SAPT0 (with and without the δHF correction) in various basis sets, as
applied to the S66 dataset and compared to CCSD(T)/CBS benchmarks. The “calendar” basis sets
(jun- and jul-cc-pVXZ) include subsets of the diffuse functions from aug-cc-pVXZ. (Data are from
Ref. [77])

Whatever the form of the monomer SCF wavefunctions, SAPT0 or SAPT0
(KS) is MP2-like in its treatment of dispersion. This lends some drawbacks because
MP2 itself is not a benchmark-quality method for noncovalent interactions [26, 27,
38] and dispersion energies can be significantly overestimated [70], especially in
large molecules [38, 71]. MP2 describes dispersion using uncoupled HF polariz-
abilities [72], but it is questionable whether any finite-order MPn method is appro-
priate to describe dispersion in systems whose monomers are large and polarizable
[71], e.g., due to extended conjugation. Exaggeration of dispersion interactions is
exacerbated as the CBS limit is approached, as demonstrated in Fig. 1 using
HF-based SAPT0 applied to the S66 dataset [73]. This is a standard database of
66 small dimers, containing ≤ 10 second-row atoms, for which CCSD(T)/CBS
benchmarks are available for comparison.

Mean errors ≲1 kcal/mol can be achieved for the S66 complexes using
SAPT0+δHF in conjunction with basis sets up to jul-cc-pVQZ, but the outliers
grow larger as the basis-set quality improves. These outliers correspond to
dispersion-dominated systems such as the π-stacked uracil dimer and other π–π 
systems including uracil–benzene and uracil–pyridine, whose total interaction ener-
gies are relatively large by the standards of small, dispersion-dominated complexes.
Interestingly, the importance of the δHF correction diminishes in larger basis sets,
and starting with jul-cc-pVTZ, both the MAE and the maximum error are smaller for
SAPT0 (sans δEHF) than for SAPT0+δHF. This behavior has not been recognized in
previous comprehensive tests of wavefunction-based SAPT [26, 27], because in
those studies the δHF correction is always included with SAPT0.

The best accuracy is obtained for SAPT0+δHF/jun-cc-pVDZ, using a basis set
that removes certain diffuse functions from aug-cc-pVDZ [74]. That basis, which is
called aug-cc-pVDZ ′ in some older literature [75, 76], has been previously
recommended for SAPT0 [26, 77]. However, the limited basis set amounts to a



form of error cancellation [1, 70], which works better in small dimers than it does in
complexes with larger monomers [38]. For large-molecule vdW complexes, SAPT0
and other MP2-like methods fail badly [38, 42].
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Terms beyond second order are required to obtain benchmark-quality interaction
energies from the SAPT formalism. To this end, methods known as SAPT2+(3) and
SAPT2+3 have been developed [25, 28], which include a subset of the possible
third-order terms. For small molecules, SAPT2+(3)+δHF achieves sub-kcal/mol
accuracy with respect to CCSD(T) [25–27, 57, 58], but both SAPT2+(3) and
SAPT2+3 exhibit the same OðN7Þ scaling as CCSD(T). As such, these methods
are prohibitively expensive for molecules with more than 10–20 non-hydrogen
atoms. For larger systems, DFT-based EDAs have long been the only means
available to analyze intermolecular interactions. The XSAPT family of methods
was developed as a way around that bottleneck.

1.2 XSAPT Models

The most expensive terms in the SAPT0 energy expression are Eð20Þ 
disp and Eð20Þ 

exch-disp,

which scale as OðN4Þ and OðN5Þ, respectively. Other terms including δEHF scale no
worse than OðN3Þ, which is the same asymptotic scaling as DFT. Thus, what makes
SAPT0 expensive is the same second-order dispersion that precludes it from being a
benchmark-quality method [70–72]. Recognizing this, we have developed hybrid
SAPT-based models in which Eð2Þ 

disp is replaced by a more accurate and less costly

dispersion model [37, 42]. Several such models have been explored, leading to a
family of methods that we call “extended” (X)SAPT [32–42]. In early work, the
same approach was called “XPol + SAPT” [32–35], for reasons that will become
clear in Sect. 1.2.3 when we discuss XPol-based charge embedding.

The formal scaling of XSAPT is OðN3Þwhen evaluated in the atomic orbital basis
[38, 78] and combined with density fitting [78]. Because it requires only monomer-
based SCF calculations, XSAPT can sometimes be faster than supramolecular DFT
[34, 37], although the δHF correction and the many-body EDA do require calcula-
tions in line with the cost of DFT. Relative to SAPT0, however, accuracy is
improved while cost is reduced [42].

1.2.1 Overview

XSAPT is based on a two-body energy decomposition of the form

ð15Þ



10

10
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The superscript “2B” indicates that this is a two-body (dimer) EDA, which will be
generalized to a many-body (cluster) EDA in Sect. 1.3.3. We equate the first three
energy components in Eq. (15) with their SAPT0 analogues:

Eelst =Eð Þ 
elst ð 16aÞ

Eexch =Eð Þ 
exch ð 16bÞ

Eind=

Eð20Þ 
ind þ Eð20Þ 

exch-ind ðsimplestÞ 
Eð20Þ 
ind,resp þ Eð20Þ 

exch-ind,resp ðresponse versionÞ 

Eð20Þ 
ind,resp þ Eð20Þ 

exch-ind,resp þ δEHF ð infinite-order inductionÞ
: ð16cÞ

As suggested in Eq. (16c), induction can be described using various levels of
sophistication; these are listed in order of increasing accuracy and cost. By using
SAPT0 energy components, electron correlation is excluded in the monomer calcu-
lations. This may be undesirable, especially for strong hydrogen bonds where
monomer correlation effects can be significant [76]. Within conventional SAPT
methodology, this requires terms that are first and second order in Ŵ (Eq. 4), an
approach that has been called “SAPT2” and engenders OðN6Þ scaling, similar to
CCSD but noniterative [28]. XSAPT instead uses KS-DFT for the monomers, as a
low-cost means to incorporate monomer electron correlation effects. Importantly,
the XC functional must have correct asymptotic behavior. This is accomplished
using long-range corrected (LRC) density functionals [55, 79], as discussed in
Sect. 1.2.2.

An additional consideration is how to represent the monomer wavefunctions in
systems that contain more than two monomers: A,B,C,…. Our choice is to represent
the SCF wavefunction on A using strictly those atomic orbital basis functions that are
centered on A. Elsewhere, this has been called the “absolutely localized” molecular
orbital (ALMO) basis [80], which is a starting point for a DFT-based EDA of the
same name [13]. This choice is not entirely obvious from the point of view of
conventional (dimer) SAPT calculations, where it is known as a monomer-centered
basis, which is atypical because more accurate results are obtained using a dimer-
centered basis [81]. The latter approach employs the combined basis functions of
A and B to compute both jψA

0 〉 and jψB
0 〉 , which allows for some intermolecular

CT. For systems with more than two monomers, however, the appropriate definition
for a dimer basis becomes ambiguous. For a large collection of monomers, this
approach cannot be generalized without prohibitive cost.

As an alternative, XSAPT uses a monomer basis to compute the SCF
wavefunctions, ensuring that the total SCF cost is OðNÞ with respect to the number
of monomers. As a means to capture some of the intermolecular CT that is lost in the



monomer-centered approach, XSAPT employs a “projected” (pseudocanonicalized)
monomer basis to evaluate the dimer SAPT corrections [32, 33]. For the dimer AB,
this means first obtaining density matrices PA and PB from monomer-centered SCF
calculations and then building monomer Fock matrices FA and FB using the block-
diagonal dimer density matrix PA PB. Each of these Fock matrices is then
transformed into a pseudocanonical basis that diagonalizes the occupied–occupied
and virtual–virtual blocks independently, as this does not alter the monomer densi-
ties that are invariant to such transformations. We omit the first-order (or “non-
Brillouin singles”) correction, which is formally introduced into the perturbation
expansion by this transformation [82]. As compared to a proper dimer basis, the use
of this pseudocanonicalized basis results in acceptable errors in conventional
pairwise SAPT0 calculations, e.g., a 10% error in the total interaction energy for
ðH2OÞ2 [32]. For a system of more than two monomers, the aforementioned
procedure is repeated for all pairs AB, and SAPT calculations are evaluated in a
pairwise-additive manner as described in Sect. 1.3.3.
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As indicated already in Eq. (16), XSAPT is not a single model but rather a family
of methods [37, 42], or a platform for accurate calculation of intermolecular inter-
actions that is also equipped with an energy decomposition scheme. By its nature,
this requires some decisions on the user’s part and makes XSAPT less straightfor-
ward than a typical DFT-based EDA that simply requires the user to select an XC
functional and basis set, push a button, and accept the results at face value. That final
facet cannot be overemphasized, although it is overlooked by most users. XSAPT
allows a user to test the impact of different approximations, with the goal of
obtaining high-quality interaction energies and well-defined energy components,
i.e., answers that are physically understandable. (In principle, the DFT-based
approach could be tested with a variety of functionals, but few users do this, in
our experience.) In our view, the added complexity of XSAPT is a virtue and not a
drawback, and it is one that is shared by the more conventional and systematically
improvable SAPT formalism [26, 27]. With conventional SAPT, however, the useful
levels of approximation subsequent to SAPT0 come with prohibitive OðN7Þ cost that
limits their application to very small dimers. XSAPT can be understood as an
attempt to achieve the accuracy of higher-order SAPT while retaining the OðN3Þ 
complexity that is necessary to tackle large systems.

Our cynical view, honed from experience, is that any quantum chemistry method
that requires physics-based decisions is too sophisticated for the average user.
Nevertheless, we feel there is a need for alternatives to DFT-based EDA schemes.
In our view, the latter are often used to reverse-engineer “explanations” that confirm
preconceived expectations, with users shopping for an XC functional to achieve that
result. This is a lousy approach in any case, but it is supremely dangerous in the
context of EDAs, whose energy components do not correspond to observables and
thus cannot be interrogated directly against experiment. Nevertheless, the well-
defined nature of the XSAPT energy components facilitates comparison with
SAPT2+(3) calculations, whose energy components may not be directly verifiable
but whose total interaction energies are in good agreement with CCSD(T) results



[25–27, 57, 58], for reasons that are grounded in many-body theory [57, 83]. Such
comparisons are discussed in Sect. 1.3.1.
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1.2.2 Monomer SCF Calculations

We next consider how to compute individual monomer wavefunctions. Although
SAPT’s double perturbation formalism is flexible enough to include monomer
correlation from many-body theory, the simplest method that does so is SAPT2
[84], which exhibits OðN6Þ cost but does not afford benchmark-quality results for
dispersion [25, 28]. As such, we restrict XSAPT to SCF wavefunctions for the
monomers. These could be HF wavefunctions, or we could attempt to incorporate
monomer electron correlation effects at low cost using KS-DFT, in which case the
asymptotic behavior of the XC potential (υxc ) must be considered carefully. That
discussion will occupy most of this section.

A SAPT0(KS) formalism, using wavefunction-based perturbation theory expres-
sions for the energy components but orbitals from KS-DFT, was first attempted in
the early 2000s with disappointing results [85–87]. This was ultimately attributed to
incorrect asymptotic behavior in standard XC functionals [87–89]. For an electron
that is well separated from its parent molecule, the asymptotic behavior of the XC
potential ought to be

υxcðrÞ∼ -
1
r
þ Δ∞ ð17Þ

for large r [90, 91], where

Δ∞ = IEþ εHOMO: ð 18Þ

Here, “IE” is the molecule’s first ionization energy, computed using a ΔSCF
approach, and εHOMO < 0 is the energy level of the highest occupied molecular
orbital (HOMO). Proper asymptotic behavior (for exact KS theory) is
υxcðrÞ∼ -1=r, which is recovered from Eq. (17) provided that the IE theorem of
DFT is satisfied [92–95], meaning that

εHOMO = -IE: ð19Þ 

Improper asymptotic behavior has numerous undesirable consequences for
KS-DFT and in the early days of its application to molecular problems, ad hoc
potentials were sometimes grafted onto the potential obtained from the XC energy
functional, to achieve correct asymptotic behavior by construction [91, 96, 97]. For
an energy functional Exc½ρðr , the XC potential is
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υxcðrÞ= δExc½ρðr
δρðrÞ , ð20Þ

but the grafting procedure spoils this relationship between energy and potential,
leading to “stray” potentials that cannot be derived from any energy functional
[98]. Nevertheless, the grafting procedure is still used in the SAPT(DFT) approach
[23, 24, 28], in which frequency-dependent density susceptibilities for the mono-
mers, computed from KS-DFT calculations, are used to replace second-order dis-
persion in the SAPT0 energy formula (Eq. 7).

A simple way to satisfy Eq. (17) is to use LRC functionals [99–101]. These start
from a semilocal exchange functional EGGA

x , obtained within the generalized gradi-
ent approximation (GGA), then replace the Coulomb potential with a shorter-range
attenuated potential. This short-range exchange functional (EGGA;SR

x ) is then com-
bined with long-range HF exchange (EHF;LR

x ) to afford an XC functional

ELRC
xc =Ec þ ð1- αÞEGGA;SR

x þ αEHF;SR
x þ EHF;LR

x : ð21Þ

Here, Ec is a correlation functional and α is any fraction of exact exchange that is
included at short range (EHF;SR

x ). Functionals that employ range separation of this
sort are generally known as range-separated hybrids, but only those that use 100%
exact exchange at long range are designated as LRC functionals [102–104]. Of the
standard GGAs, meta-GGAs, and hybrid functionals in common use, only LRC
functionals afford υxcðrÞ∼ -1=r. For XSAPT calculations, we typically use the
LRC-ωPBE functional [103].

That choice alone does not guarantee that the IE condition in Eq. (19) is satisfied,
and adjusting the range-separation parameter (ω) in order to satisfy that condition
has been suggested as a nonempirical means to obtain a functional with correct
asymptotics [99]. Alternatively, a global density-dependent (GDD) tuning procedure
can be used [55], in which the length scale for range separation (1=ω ) is set by
considering the distance between the outermost electron in a molecule and the region
of localized orbitals [105]. The value of ω that is determined in this way is designed
to be a good approximation to that obtained via “IE tuning,” to satisfy Eq. (19)
[105, 106], yet the GDD procedure is automatable and sidesteps certain issues with
IE tuning in extended systems [55, 106].

The GDD procedure is especially convenient for SAPT(KS) calculations because
ω must be tuned individually for each monomer. The monomer-centric nature of
SAPT means that tuned LRC-DFT maintains size consistency because dimer DFT
calculations are not required. For any DFT-based EDA that requires both monomer
and supramolecular calculations, the “optimal” or IE-tuning procedure generally
violates size consistency [107].

Unfortunately, the admonition to maintain correct asymptotic behavior of υxcðrÞ 
is not always heeded. When orbitals from a semilocal or a global hybrid functional
are inserted into wavefunction-based SAPT0 formulas, the too-small energy denom-
inators (resulting from HOMO/LUMO gaps that are much smaller than those in HF



theory) cause Eð2Þ 
disp to increase unrealistically [55, 79]. This is the reason why SAPT0

(KS) was abandoned soon after the first numerical experiments in the early 2000s; it
was not resuscitated until the use of optimally tuned LRC functionals became
commonplace [79]. Meanwhile the SAPT0(B3LYP) method, meaning Eq. (7) with
B3LYP orbitals, was the lone example of the SAPT formalism to be considered in a
survey of contemporary EDA methods for protein–drug interactions [108]. From
that unfair comparison, the authors concluded that DFT-based EDAs offered a better
balance of properties [108], without considering the fact that SAPT0(B3LYP)
exacerbates the already too-large dispersion energies predicted by SAPT0
(HF) calculations.
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Indeed, direct comparison of SAPT0(KS) methods with different XC functionals
demonstrates that SAPT0(B3LYP) is considerably less accurate than SAPT0(HF),
despite the incorporation of monomer electron correlation [55]. This is illustrated in
Table 1 using the S66 dataset. For the dispersion-bound subset of S66, SAPT0
(B3LYP) exhibits a maximum error of 4.5 kcal/mol versus only 1.5 kcal/mol for
conventional SAPT0(HF), and the B3LYP-based approach is also less accurate for
hydrogen-bonded systems, where monomer correlation is known to be important
[76]. Errors for the SAPT0(BLYP) approach are larger still, as the lack of any exact
exchange whatsoever leads to worse asymptotic behavior as compared to B3LYP
and further exaggeration of dispersion energies as a result. In contrast, the SAPT0
(LRC-ωGDD PBE) approach reduces the maximum error for the dispersion-bound
complexes to 2.0 kcal/mol, although this method remains less accurate than SAPT0
(HF) for each of the standard subsets of S66 [55].

Two sets of XSAPT calculations in Table 1 use electrostatic embedding charges
that are discussed in Sect. 1.2.3 and dispersion models that are discussed in Sect.
1.2.4. Once those aspects of the formalism have been described, we will present a
more complete compendium of accuracy assessments, in Sect. 2.1.

Table 1 Error statistics for SAPT0(KS) methods and XSAPT methods (the latter of which include
charge embedding), as applied to the S66 dataset and two subsetsa

Method Error (kcal/mol)b

H-bonded Disp.-bound All S66

MAEc Maxd MAEc Maxd MAEc Maxd

SAPT0(HF)+δHF 0.4 0.8 0.6 1.5 0.5 1.5

SAPT0(BLYP)+δHF 0.8 1.5 2.6 6.1 1.5 6.1

SAPT0(B3LYP)+δHF 0.6 2.1 1.7 4.5 1.1 4.5

SAPT0(LRC-ωGDDPBE)+δHF 1.0 2.3 1.0 2.0 0.8 2.7

XSAPTe + aiD3+δHF 0.2 0.4 0.4 1.0 0.4 1.0

XSAPTe+MBD+δHF 0.2 0.8 0.5 1.1 0.4 1.1
a Data are from Ref. [55]. Basis set is jun-cc-pVDZ for SAPT0(KS) and def2-TZVPPD for XSAPT
b With respect to CCSD(T)/CBS benchmarks from Ref. [73]
c Mean absolute error
d Maximum absolute error
e LRC-ωGDDPBE and CM5 embedding charges
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1.2.3 XPol: Self-Consistent Charge Embedding

XSAPT was originally intended as a method for molecular clusters and liquids, in
which many-body polarization effects would be treated self-consistently (via the
XPol procedure) while resorting to a pairwise approximation for other energy
components, hence, XPol + SAPT [32, 33]. That design reflects the reality that
nonadditive effects are generally small, except for polarization [109]. For example,
three-body (trimer) dispersion effects contribute no more than 5–6% (and typically
< 2%) of the total interaction energy in small clusters composed of small molecules
[110, 111]. In crystalline benzene, three-body effects contribute 0.8–0.9 kcal/mol to
the lattice energy (about 7%) [112–114], with three-body dispersion as the largest
contribution [114]. In contrast, three-body polarization ranges from - 9 to - 13
kcal/mol in the stable structures of ðH2OÞ6 [115]. In water trimers extracted from a
liquid simulation, the total three-body energies range from - 6 kcal/mol to þ1 kcal/
mol [116].

These polarization effects are not negligible, and to describe them at a cost that
remains tractable for sizable clusters, we use the XPol method of Gao and coworkers
[29–31]. XPol starts from single-monomer SCF calculations, following which a set
of atomic point charges is computed from those SCF wavefunctions and subsequent
monomer SCF calculations are performed in the presence of these embedding
charges. This entire procedure is then iterated to self-consistency, with an outer
loop over monomers and an inner loop consisting of SCF iterations on a given
monomer, in the presence of point charges representing the other N- 1 monomers.

In more detail, and considering closed-shell fragments for convenience, the XPol
energy is [33]

EXPol =
N

A= 1
2

occ

n
ðcAnÞ{ðhA þ JA - 1

2
KAÞcAn þ EA

nuc þ Eembed, ð22Þ

where the term in square brackets is the Hartree–Fock energy for monomer
A expressed in terms of ALMOs fcAng, meaning MOs that have support only from
Gaussian basis functions centered on monomer A. The quantity Eembed in Eq. (22) is
the sum of electrostatic embedding energies from the wavefunction-derived point
charges.

Self-consistent variation of EXPol is accomplished via monomer Fock matrices FA

whose matrix elements in the atomic orbital basis (μ, ν,…) are

FA
μν = f Aμν -

1
2

B≠A b∈B

qbðΦbÞμν þ 
a∈A

∂Eembed

∂qa

∂qa
∂PA

μν 
: ð23Þ

Here, fA is the Fock matrix for isolated monomer A and
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ðΦbÞμν = μj 1
k r-Rb k jν ð 24Þ

is the electrostatic potential generated by the function pair μν at the point Rb, the
location of nucleus b∈B. The integral that is implicit in Eq. (24) is over the electron
coordinate r. The second term in Eq. (23), involving ðΦbÞμν, comes from the
electrostatic interaction between ρAðrÞ and the embedding charges fqbg on mono-
mers B≠ A [117]. The final term in Eq. (23) includes the response of the embedding
charges to changes in the fragment wavefunctions (∂qa=∂P

A
μν) and ensures that the

converged XPol energy is variational [30].
The embedding potential Eembed is a straightforward sum of interactions between

point charges qa ∈A and monomer densities ρBðrÞ, along with interactions between
the charges and the nuclei, and ∂Eembed=∂qa is easy to evaluate [33]. In contrast, the
derivative ∂qa=P

A
μν depends on how the embedding charges fqag are determined

from the SCF wavefunction for monomer A. Mulliken charges were used in the
original XPol method [29–31], but we find them to be unstable when extended basis
sets are employed, as are Löwdin charges [32].

A physically appealing choice is to use “ChElPG” charges derived from the
molecular electrostatic potential [118]; these are the atomic charges that best repro-
duce the SCF electrostatic potential near the vdW surface of the molecule. The
requisite derivatives ∂qa=P

A
μν are complicated but they have been implemented

[33, 119]. In recent work, however, we have taken the qa from “Charge Model 5”
(CM5) [120], which is an empirical modification of the Hirshfeld scheme [121] that
is designed to reproduce molecular dipole moments. This avoids some significant
computational overhead associated with evaluating ∂qa=P

A
μν for ChElPG charges, as

illustrated by timing data in Fig. 2 for a C60–buckycatcher complex where the time to
compute the derivatives ∂qa=Pμν is reduced from 16.7 h (ChElPG) to 2.0 h (CM5)
[41]. The former value represents about 35% of the total cost of the XSAPT
calculation, whereas the cost to differentiate the CM5 charges is almost negligible,
resembling the cost to evaluate Exc on the DFT quadrature grid.

Regardless of which charges are used, the XPol SCF time greatly exceeds the
time required to evaluate the SAPT corrections. This is predicated on replacing
OðN5Þ dispersion in SAPT0 with a low-cost dispersion model, and those models are
discussed next.

1.2.4 Dispersion Models

Perhaps the most important innovation in XSAPT is its hybrid dispersion model,
replacing Eð2Þ 

disp in Eq. (7). This, too, has several variants that can be selected,

including empirical dispersion potentials [36, 37, 42] and a version of the many-
body dispersion (MBD) model [40–42] that was originally developed for DFT by



Tkatchenko and coworkers [4, 122–124]. Both approaches are described in this
section.
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Fig. 2 Timing data for XSAPT+aiD3/hp-TZVPP calculations on a C60@C60H28 complex that is
shown (4592 total basis functions), running on 28 processors (Dell Intel Xeon E5-2680 v4). The
total time is broken down into three color-coded steps: the XPol dual SCF procedure (in red),
pseudocanonicalization to prepare the dimer basis (in blue), and the SAPT steps (in green). Charge
derivatives ∂qa=P

A
μν are required in all three steps, and the time to evaluate them is indicated in

purple. Improvements in Gram–Schmidt orthogonalization (timings in orange) reflect better
parallelization beginning with Q-Chem v. 6.0. (Reprinted with permission from Ref. [41]; copyright
2019 American Institute of Physics)

Empirical dispersion potentials take the usual atomic pairwise form [42],

EaiD
disp = -

a∈A b∈B

f 6ðRabÞC6,ab

R6
ab

þ f 8ðRabÞC8,ab

R8
ab

, ð25Þ 

written here for a dimer A⋯B. The quantities f 6 and f 8 are damping functions that
are needed to prevent divergence as R→ 0 [125]. Pairwise dispersion coefficients
C6,ab and C8,ab are obtained from the combination rule

Cn,ab = ðCn,aCn,bÞ1=2 ð26Þ 

for n= 6 or 8. In the context of XSAPT, we refer to Eq. (25) as an ab initio
dispersion potential (aiD), because the atomic parameters fC6,ag and fC8,ag were
obtained by fitting to ab initio dispersion energies [34–37], primarily from
SAPT2+(3) calculations.

Notably, Eq. (25) has the same form as the dispersion corrections used in DFT+D
[1, 2]. Several other groups have explored the idea of replacing Eð2Þ 

disp in SAPT0 with



an empirical model [126–128], which has sometimes been called “SAPT0+D”
[127, 128], but we prefer to reserve the term SAPT0 to mean second-order dispersion
and will instead call these models “SAPT(KS)+D”; see the discussion that accom-
panies Eq. (13). In terms of the physics, Grimme’s DFT+D3 and DFT+D4 disper-
sion corrections [129, 130] have been adapted for use with SAPT(HF) by refitting
the damping parameters, leaving the C6 and C8 parameters unmodified
[127, 128]. Unlike earlier dispersion corrections by Grimme [131], beginning with
D3 the atomic dispersion coefficients are computed from DFT polarizabilities and
should resemble genuine dispersion when the monomers are well separated
[129]. However, these corrections do not resemble genuine dispersion at vdW
contact distances, because the damping is significant in that range. As a result, the
energy components in these methods are not reliable even if the total interaction
energies may be accurate [128].
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The same is true of our first-generation aiD1 model [34], whose parameters were
fit to obtain total interaction energies in agreement with CCSD(T)/CBS benchmarks.
It was subsequently discovered that SAPT(KS) + aiD1 benefits significantly from
error cancellation, such that the energy components are not in good agreement with
SAPT2+(3) benchmarks [36], and the same is true for the SAPT(HF)+D3 and SAPT
(HF)+D4 models [127, 128]. These methods yield good interaction energies at the
expense of significant error cancellation between the dispersion and exchange-
repulsion terms [128]. Because energy decomposition is one of the primary moti-
vations to use the SAPT framework, we believe it is crucial to achieve high accuracy
not only for Eint but also for its components. For this reason, we do not recommend
the first-generation aiD1 model

In subsequent generations of the model, parameters were fit so that the model
dispersion energy EaiD

disp reproduces ab initio dispersion energies obtained from third-
order calculations such as SAPT2+(3) [36, 37]. The most recent aiD3 version [37]
uses an improved training set and is the recommend version. Unlike aiD1, these
models offer consistent accuracy for Eint and each of its individual components,
indicating that the total does not benefit from error cancellation so the energy
components ought to be reliable [36, 37]. As shown in Fig. 3 using the S66 dataset,
the accuracy of XSAPT+aiD3 (which includes charge embedding) is competitive
with a variety of post-SCF methods including SAPT2+(3), with a maximum error of
1.1 kcal/mol and a mean absolute error (MAE) less than 0.3 kcal/mol.

Nevertheless, the performance of the atomic pairwise dispersion approximation
in Eq. (25) breaks down for large molecules [38], degrading the performance of
XSAPT+aiD and any similar SAPT+D model when the monomers are large. This
can be seen in benchmark tests on the L7 dataset [132], which consists of larger
complexes with up to 73 second-row atoms (Fig. 4). Errors obtained using XSAPT
+aiD3 are much larger for L7 (up to 5 kcal/mol) as compared to those for the small
S66 dimers, and a variety of dispersion-inclusive and dispersion-corrected DFT
approaches are significantly more accurate. At the other end of the spectrum,
MP2/CBS significantly overestimates dispersion energies for dimers involving
highly conjugated molecules, such as coronene and circumcoronene in L7. The



only MP2-based method with reasonable accuracy for this dataset is “attenuated”
(att-)MP2 [133], which removes the long-range portion of the Coulomb operator
from the post-SCF calculation and whose success for noncovalent interactions likely
rests on error cancellation.
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Fig. 3 Error statistics for total interaction energies in the S66 dataset, as compared to CCSD(T)/
CBS benchmarks, for various post-SCF correlated methods. Colored bars indicate MAEs and gray
bars are maximum absolute errors. The colors themselves suggest the formal scaling with system
size, which is indicated at the right. XSAPT calculations employ ChElPG embedding charges with
LRC-ωIEPBE, meaning a IE-tuned version of LRC-ωPBE, and use the following basis sets: jun-cc-
pVDZ for XSAPT + aiD1, hpTZVPP for XSAPT+aiD2 and +aiD3, and 6-31G(d,2p) for scaled-
dispersion (sd-)XSAPT. The MP2-based methods used augmented Dunning basis sets. (Adapted
from Ref. [37])

The issue for XSAPT+aiD in large complexes is dispersion nonadditivity arising
from the presence of polarizable centers that screen the C6,ab (and higher-order)
dispersion coefficients within a molecule, relative to what would be predicted based
on isolated-atom C6 coefficients using the combination rule in Eq. (26). Dobson has
called this “type-B” dispersion nonadditivity [134] and to account for it, Grimme’s
D3 and D4 corrections incorporate three-body (triatomic) dispersion corrections of
the Axilrod–Teller–Muto (ATM) “triple-dipole” form [3]. This is a different usage
of “many-body” as compared to the discussion in Sect. 1.2.3, where the “bodies”
were monomers. Here they are atoms, reflecting the atom–atom pairwise starting
point in Eq. (25).

The particular version of the ATM correction that is used in Grimme’s models is
[1, 129]

EðGrimmeÞ 
3B-ATM = -

a b> a c> b

gabc C9,abc f 3BðRabcÞ 
R3
abR

3
acR

3
bc

ð 27Þ

where gabc is a geometric factor and f 3BðRabcÞ is a damping function that depends on
the mutual three-body distance, Rabc [38]. The requisite C9 coefficients can be
estimated from the C6 coefficients [129],
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Fig. 4 MAEs (colored bars) and maximum absolute errors (gray bars) for the L7 dataset, assessed
against CCSD(T)/CBS benchmarks. (The L7 complexes are shown in the inset.) Triple-ζ DFT
results are CP-corrected and all XSAPT calculations use the def2-TZVPPD basis set with
LRC-ωGDDPBE. Each method is color-coded according to its formal asymptotic scaling with
system size. Maximum errors for MP2/CBS and SCS(MI)-MP2/CBS are both 10 kcal/mol
[38]. (Adapted with permission from Ref. [42]; copyright 2021 American Chemical Society)

C9,abc = ðC6,ab C6,bc C6,acÞ1=2: ð28Þ 

A version with a modified form of damping has been used by Tkatchenko and
Scheffler [38, 135–137]. When either this form (EðTSÞ 

3B-ATM ) or else EðGrimmeÞ 
3B-ATM in

Eq. (27) is combined with XSAPT+aiD3, results for the L7 complexes are greatly
improved as documented in Fig. 4.

Nevertheless, the significance of nonadditive dispersion for large vdW complexes
prompted a search for a less ad hoc way to describe this phenomenon. To that end,
we have explored the use of XSAPT in conjunction with the MBD model developed
for DFT by Tkatchenko and coworkers [4, 122–124]. It builds upon an earlier
dispersion model developed by Tkatchenko and Scheffler [135], which is sometimes
called “vdW-TS” in the condensed matter DFT literature [138]. The theory behind
both MBD and its predecessor has been reviewed recently [1]. Briefly, the vdW-TS
method determines an in situ (or “effective”) value for C6,a by means of a volume-
scaling relationship,
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Ceff
6,a =

hr3 〉 a

hr3 〉 free
a

Cfree
6,a , ð29Þ 

where Cfree
6,a is the isolated atom C6 coefficient, which can be determined using time-

dependent DFT calculations [139]. The scaling ratio in Eq. (29), which measures
how the volume of atom a is compressed by its molecular environment, is deter-
mined by Hirshfeld partition [1, 140–142]. Pairwise coefficients C6,ab can be
determined using a combination rule, exploiting a volume scaling analogous to
Eq. (29) for the atoms-in-molecules polarizabilties αeffa [1]. It should also be noted
that the relationship in Eq. (29) is simply a model, based on a long-presumed
relationship between polarizability and volume [143]. Recent work suggests that

αTSa =
hr4 〉 a

hr4 〉 free
a

αfreea ð30Þ 

may be the more fundamental relationship, leading to improvements in the vdW-TS
method [144]. Thus, the model may be improvable.

In the MBD extension of the vdW-TS method, imaginary-frequency atom-in-
molecule polarizabilities, consistent with the dispersion coefficients C6,a in Eq. (29),
are determined according to

αTSa ðiωÞ= αfreea

1þ ðω=ωaÞ2
ð31Þ 

where the characteristic excitation frequency ωa can be obtained from C6,a

[1, 135]. These atomic polarizabilities could be used to compute pairwise dispersion
coefficients using the Casimir–Polder relation [3, 28, 145, 146],

C6,ab =
3ħ 
π 

∞ 

0

αaðiωÞ αbðiωÞ dω : ð32Þ

Instead, many-body dispersion effects are introduced via mutual (self-consistent)
dipole screening of the atomic polarizabilities αTSa , which are mapped onto a 3Natoms-
dimensional quantum harmonic oscillator Hamiltonian [122, 123]. Eigenmodes of
that Hamiltonian provide information about collective (multiatom) contributions to
dispersion [147, 148].

This approach was originally developed as an ad hoc, density-dependent disper-
sion correction for DFT [122–124], using range separation to make sure that the
model accounts for long-range dispersion only (and to avoid short-range polarization
catastrophes [149]), while the XC functional is tasked with the description of short-
range correlation effects including dispersion. For this reason, the model described



above has been called “MBD@rsSCS” [4], meaning “range-separated self-
consistent screening,” although we will simply call it MBD.
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For use with SAPT, we require a version of MBD that describes dispersion at all
length scales. This will ultimately be combined with an XC functional like PBE that
is largely free of dispersion (even in the short range) [1], made asymptotically correct
in LRC-ωPBE form. To that end, “effectively screened” C8 coefficients were added
to the original MBD model [40], which is a dipole polarizability ðC6Þ model. This
effectively screened dipole–quadrupole (esDQ) dispersion model augments the
original MBD, and the complete dispersion model to be used with SAPT is [40, 41]

EMBDþesDQ
disp =EMBD

disp - s8
a b> a

f 8ðRabÞC8,ab

R8
ab

: ð33Þ 

Coefficients C8,ab can be obtained from the fC6,ag computed for the MBD
model [40].

The SAPT(KS)+MBD method consists in adding the dispersion model of
Eq. (33) to the nondispersion SAPT(KS) terms in Eq. (13). XSAPT+MBD augments
this with XPol charge embedding and uses LRC-ωGDDPBE to compute the monomer
wavefunctions. Results in Fig. 5 for the S66 dimers demonstrate that the accuracy of
XSAPT+MBD is very similar to that of XSAPT+aiD3, without any three-body
dispersion corrections, since type-B dispersion nonadditivity is insignificant for
these small complexes. (See Table 1 for the corresponding numerical data.) For
the L7 complexes, however, XSAPT+MBD is appreciably more accurate than
XSAPT+aiD3 even when a nonadditive dispersion correction is included in the
latter (Fig. 4). At present, XSAPT+MBD is the most accurate version of XSAPT, at
least for charge-neutral complexes. (Performance for ions is discussed in Sect.
2.1.4.) Additional accuracy benchmarks are provided in Sect. 2.1, but we first
introduce a few more aspects of the XSAPT methodology.

1.3 XSAPT Energy Decomposition

Having established the XSAPT formalism, we next discuss its inherent EDA
scheme, focusing first on the accuracy of the energy components (Sect. 1.3.1).
Then, we describe how the SAPT induction energy can be separated into polariza-
tion and CT contributions (Sect. 1.3.2). Finally, we discuss how many-body effects
manifest in the EDA for systems with more than two monomers (Sect. 1.3.3).

1.3.1 Comparison to High-Level SAPT

Because SAPT2+(3) affords total interaction energies in good agreement with
CCSD(T) benchmarks [25–27, 57, 58], we take its energy components as



benchmarks for other EDAs [1, 77]. Figure 6 plots those benchmarks against SAPT
(HF)+MBD, SAPT(KS)+MBD, and XSAPT+MBD energy components, using the
S22 dataset of small-molecule dimers [150, 151]. These three models allow us to
compare the effects of monomer electron correlation [SAPT(HF) versus SAPT(KS)]
and charge embedding [SAPT(KS) versus XSAPT]. Results are partitioned into
three standard subsets defined by the ratio of Eelst to Edisp [152], as indicated in
Fig. 6. Electrostatics-dominated complexes, defined as cases where jEelstj≥ 2jEdispj,
correspond to hydrogen bonding in this dataset.
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Fig. 5 Performance of XSAPT/def2-TZVPPD versus CCSD(T)/CBS benchmarks for the S66
dataset, using CM5 embedding charges. Results with and without the δHF correction are shown
separately. Colored bars indicate mean absolute errors and gray bars indicate maximum errors.
(Data are from Ref. [55] and the figure is reprinted with permission from Ref. [42]; copyright 2021
American Chemical Society)

Broadly speaking, there is reasonable agreement among these methods (and with
the benchmarks) for Eelst and Eexch, although the SAPT(HF) method slightly
exaggerates electrostatic interactions for two of the hydrogen-bonded complexes
where those interactions are largest, yet still affords sub-kcal/mol accuracy (MAE =
0.7 kcal/mol). However, that method significantly underestimates exchange repul-
sion in many of the hydrogen-bonded dimers, and the MAE is 3.6 kcal/mol for that
component with a maximum error of 6.1 kcal/mol [77]. The two methods that use
LRC-ωGDDPBE wavefunctions for the monomers are much more accurate for these
two energy components.

Induction energies are rather small except for the hydrogen-bonded dimers. Here,
XSAPT’s use of charge embedding clearly leads to better accuracy as compared to
the SAPT(KS)+MBD method that includes monomer correlation but not self-
consistent embedding (Fig. 6c). Considering only the hydrogen-bonded dimers,
the MAE for XSAPT+MBD is 0.2 kcal/mol with respect to SAPT2+(3) benchmarks
versus 1.5 kcal/mol for SAPT(KS)+MBD and 2.0 kcal/mol for SAPT(HF)+MBD.
This is notable, given that all three methods include the δHF correction, yet there is
still value in self-consistent embedding.
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Fig. 6 Comparison of energy components for the S22 dimers: (a) Eelst, (b) Eexch, (c) Eind, and (d)
Edisp. SAPT(HF)+MBD, SAPT(KS)+MBD, and XSAPT+MBD calculations were performed using
the aug-cc-pVQZ basis set and include the δHF correction, with LRC-ωGDDPBE used for the latter
two methods and CM5 charge embedding for XSAPT. The SAPT(KS)+MBD and XSAPT+MBD
results are indistinguishable (and thus plotted together), except for Eind in (c). Alternating shaded
regions delineate the three standard subsets of S22: hydrogen-bonded dimers on the left, dispersion-
bound dimers in the middle, and dimers with mixed influence interactions on the right. (Reproduced
with permission from Ref. [77]; copyright 2022 American Chemical Society)

Finally, MBD dispersion energies are in very good agreement with the bench-
marks regardless of which orbitals are used for the monomer wavefunctions
(Fig. 6d). All together, this means that XSAPT+MBD reproduces all of the energy
component accurately. Notably, results in Fig. 6 are converged with respect to basis
set (aug-cc-pVQZ), so this accuracy does not rest on error cancellation as is the case
for a method like SAPT0(HF). Basis-set convergence is systematic, as shown for Eint

and several components in Fig. 7 using Karlsruhe basis sets. Other energy compo-
nents exhibit similar or better convergence behavior, and the minimally augmented
def2-ma-TZVP basis set affords converged results for all components [77]. This
basis set, which was introduced in Ref. 77 as a proper subset of def2-TZVPD, differs
from other minimally augmented extensions of def2-TZVP [153].

1.3.2 Separating Polarization and Charge Transfer

For chemists, the “induction energy” in the XSAPT-EDA of Eq. (15) may be
unfamiliar; missing are the more familiar contributions from polarization and



intermolecular CT. The latter has proven challenging to define uniquely [154–157],
a debate that has played out recently in the context of halogen bonding [157–
165]. Some authors, citing the Hellman–Feynman theorem [166], insist that all
intermolecular forces—including polarization, CT, and even dispersion—are funda-
mentally electrostatic in origin [166–170]. This is not precisely wrong, insofar as
they are all governed by a Coulombic Hamiltonian, but it ignores the idea of
emergent complexity in many-body systems [171].
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Within SAPT-based methods, both polarization and CT are contained within the
induction energy as indicated in Eq. (3). Figure 8 illustrates the inherent difficulty in
separating the two. Fundamentally, polarization is orbital relaxation in response to a
perturbing influence, from a nearby nonbonded partner in this case. Mathematically,
orbital relaxation can be cast as a unitary transformation from the isolated monomer
MOs to the relaxed orbitals obtained in the presence of the partner, and such a
transformation can always be written in terms of singly substituted Slater determi-
nants expressed in the original, unrelaxed basis [172]. In a compact basis set, where
the atomic orbital basis functions centered on monomer A have little overlap with
those centered on B, one can readily identify the A-centered excitations that relax A’s
MOs in the presence of B, distinguishing them from A→B excitations. That
dichotomy could provide a basis for separating Epol from ECT. In larger basis sets,
however, functions centered on one monomer extend significantly over the other
monomer, and the distinction between orbital relaxation and CT is obscured.

As a result, orbital-based definitions of CT are notoriously unstable with respect
to expansion of the atom-centered Gaussian basis set [173–175]. Within SAPT, it
has been suggested to define ECT as the difference between Eð2Þ 

ind computed in the
monomer- and dimer-centered basis sets [176]; this has been called the second-order
CT energy, Eð2Þ 

CT:
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Fig. 8 Cartoon depiction of single excitations that contribute to induction. For compact atom-
centered basis sets, these can be easily grouped into excitations that contribute to either (a)
polarization (in this case, orbital relaxation of monomer A due to the presence of B) or else (b)
CT (in this case, A→B). For larger basis sets, however, the distinction is muddied, as in (c).
(Adapted with permission from Ref. [173]; copyright 2016 American Chemical Society)

Eð2Þ 
CT =Eð2Þ 

ind½dimer basis -Eð2Þ 
ind½monomer basis : ð34Þ

However, Eð2Þ 
CT → 0 in the CBS limit, where monomer and dimer basis sets should

afford the same wavefunctions. A numerical demonstration is provided in Fig. 9
using the prototypical Lewis acid/base system H3N⋯BH3 (borazane) and extending
previously reported data [173] to basis sets up to aug-cc-pV7Z. Alternatively, one
may isolate ECT via a regularization procedure that removes the Coulomb driving
force that attracts electrons on A to monomer B [174].

A simpler procedure is based on constrained (c)DFT [159, 173, 175], a general
technique in which the KS equation is solved in the presence of a constraint that
forces a stipulated group of atoms to integrate to a user-specified number of electrons
[177]. (There is some variability in how the constraint is implemented and our
approach is documented elsewhere [178, 179].) Using cDFT, one can define a
CT-free reference state in which the A⋯B complex is assembled in space at the
geometry of the dimer, and its KS-DFT energy is computed under the constraint that
both monomers contain an integer number of electrons. Thus, orbitals are polarized
but cannot transfer any (net) charge. Relaxing this constraint defines ECT (as the
cDFT → DFT relaxation energy), which is subtracted from a SAPT-based calcu-
lation of Eind to define Epol [159, 173, 175]. For H3N⋯BH3, Fig. 9 shows that this
definition is exquisitely stable with respect to basis set, with a very minor change in
ECT between double- and triple-ζ basis sets but no change thereafter. This is
consistent with the fact that DFT densities tend to be almost converged in double-
ζ basis sets and well converged in triple-ζ basis sets.

It is worth noting that ECT as defined by the second-generation ALMO-EDA2
method [13] does appear to have a well-defined CBS limit, as a result of a new
definition of ECT as compared to the first-generation ALMO-EDA1 [180]. Even for
the second-generation EDA, however, convergence is slow and not complete until



aug-cc-pV6Z, with an 11 kcal/mol difference between double- and sextuple-ζ. That
is less variability, however, as compared to ALMO-EDA1, where aug-cc-pV6Z
results for the same borazane complex do not appear to have converged [173]. The
SAPT-cDFT value of ECT is considerably smaller than the ALMO-EDA2 value,
which has been observed previously and attributed to a failure by cDFT to fully
inhibit CT [156]. An alternative explanation is that the decision to use a
pseudocanonicalized dimer basis for SAPT (Sect. 1.2.1) puts some intermolecular
CT effects into the monomer wavefunctions [32], classified as electrostatics. In
contrast, ALMO-EDA uses the eponymous, fragment-localized ALMO basis, lead-
ing to larger CT energies. This hypothesis is at least consistent with the fact that
Eq. (34) affords smaller CT energies as compared to ALMO-EDA2, even in double-
ζ basis sets where jEð2Þ 

CTj is largest.
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Fig. 9 Various definitions of the CT energy applied to H3N⋯BH3 using aug-cc-pVXZ basis sets.
(Angular momentum functions beyond g were removed from aug-cc-pV5Z and larger basis sets.)

The quantity Eð2Þ 
CT is defined in Eq. (34) and might be evaluated with or without the δHF correction

The SAPT-cDFT definition of ECT affords what we believe to be a correct
periodic trend for complexes Mþ⋯ ðC6 H6Þ involving alkali cations (Fig. 10a).
Specifically, we expect the magnitude of ECT to decrease rapidly with ion–molecule
distance, due to exponential decay of the monomer wavefunctions. For the
optimized geometries that are used in Fig. 10a, that distance is largest for K+

and smallest for Li+, and the SAPT-cDFT scheme predicts that
jECTðLiþÞj> jECTðNaþÞj> jECTðKþÞj. The same cannot be said of several other
EDA schemes. For this reason, we judge the cDFT-based approach to be reliable.
For Mþ⋯ðH2OÞ complexes, the same periodic trend is not observed (using either
SAPT-cDFT or the ALMO-EDA2 scheme), as jECTðKþÞj is slightly larger than
jECTðNaþÞj, although jECTðLiþÞj remains larger than both. However, the magnitude
of the CT energies is smaller than it is for Mþ⋯ðC6H6Þ so something close to the
anticipated group trend is still observed.
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Fig. 10 CT energies for complexes of alkali cations with (a) C6H6 and (b) H2O, computed
according to various schemes. Geometries were optimized at the MP2/def2-SVPD level, and the
ion–molecule distance increases in the order Liþ <Naþ <Kþ. EDA calculations were performed
using aug-cc-pVTZ for Mþ(C6H6) and aug-cc-pVQZ for Mþ(H2O)

1.3.3 Many-Body Systems

The XSAPT methodology was originally envisaged as “XPol + SAPT” [32–34],
using a combination of XPol to describe many-body polarization in a cluster or
molecular liquid and pairwise-additive SAPT0 for the remaining components of the
intermolecular interaction energy [32]. Alternative dispersion models quickly
became the focus [34], and there have been many applications to dimer systems.
The methodology is efficient enough that a relatively large ion–water cluster,
X-ðH2OÞn, can be handled by treating ðH2OÞn as a single monomer [77, 179],
and results up to X-ðH2OÞ70 are used in Sect. 2.2.2 to establish how the cost scales
with system size. Nevertheless, the methodology is formulated for many-body
systems and that formalism is described next.

By definition, the XSAPT energy for a collection of N monomers is given by a
pairwise sum [33, 36, 37],

EXSAPT;MB
int =

N

A

N

B>A
EXSAPT;2B
int,AB ðA,B,…,NÞ, ð35Þ 

where EXSAPT;2B
int,AB ðA,B,…,NÞ is the two-body XSAPT-EDA in Eq. (15), applied to

the dimer AB. The additional notation suggests that this quantity is a function of all
N monomers, because the dimer SAPT calculations employ XPol monomer
wavefunctions that are computed in the presence of embedding charges for the



remaining N- 2 monomers. As such, even the pairwise energies are many-body
properties.
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It is useful to rearrange Eq. (35) into the form of an EDA. This will contain some
pairwise-additive parts but also a many-body contribution. To identify and isolate
the latter, we need to define pairwise SAPT energy components. Unlike XSAPT
components, these are based on isolated monomer wavefunctions with no embed-
ding charges, so the total SAPT energy components are strictly pairwise-additive.
Let us define these to be

N N

ESAPT
elst = ESAPT

elst,AB, ð36aÞ
A B>A

N N

ESAPT
exch = ESAPT

exch,AB, ð36bÞ 
A B>A

etc., with analogous definitions for ESAPT
ind and ESAPT

disp . For the latter, we might still use
a hybrid dispersion model; the “SAPT” superscripts in Eq. (36) only signify that
there is no charge embedding. Lastly, let us define

δEtotal
HF =

N

A

N

B>A
δEHF,AB: ð37Þ 

For generality, the following EDA expressions will include the dimer corrections
δEHF,AB but these might be omitted for nonpolar systems, in the interest of cost, or
evaluated using a smaller basis set as compared to the monomer wavefunctions and
SAPT corrections [77].

Using the notation introduced above, a many-body generalization of the
two-body XSAPT-EDA in Eq. (15) can be expressed as [36, 37]

EXSAPT;MB
int =ESAPT

elst þ ESAPT
exch þ ESAPT

disp þ ESAPT
ind þ δEtotal

HF þ ΔEpairwise
ind þ EMB

int ð38Þ

where

ΔEpairwise
ind =

N

A

N

B>A
EXSAPT
int,AB ðABÞ-ESAPT

int,AB ð39Þ 

is a pairwise induction correction. Equation (38) is a trivial reformulation of Eq. (35),
since the terms -ESAPT

int,AB within the summation in Eq. (39) exactly cancel
ESAPT
elst þ ESAPT

exch þ ESAPT
disp þ ESAPT

ind . The many-body contribution in Eq. (38) can be
expressed explicitly as



Extended Symmetry-Adapted Perturbation Theory (XSAPT): A Cubic-Scaling… 167

EMB
int =

N

A

N

B>A
½EXSAPT;2B

int,AB ðAB⋯NÞ-EXSAPT;2B
int,AB ðABÞ : ð40Þ

The first term in this summand represents the AB energy computed using embedding
charges for the full N-body system, whereas the second term is a self-consistently
polarized dimer computed using only charges on the dimer AB. In other words,
EXSAPT;2B
int,AB ðABÞ is a dimer XSAPT calculation that uses charge embedding, to be

contrasted with a dimer SAPT calculation ESAPT
int,AB, which does not. Energy compo-

nents of the latter are what appear in Eq. (36).
In practical terms, the energy decomposition in Eq. (38) requires three calcula-

tions per dimer if the δHF correction is included. One is δEHF,AB in Eq. (37), while
the other two are XSAPT(KS) with embedding charges and a SAPT(KS) calculation
without them. It can be argued that there is some double-counting of induction
effects if the pairwise δEHF,AB corrections are included, as some higher-order
induction is partially (though approximately) captured by the self-consistent XPol
procedure [36, 37]. In the formalism developed here, the δHF corrections are held
apart as a separate term, and accuracy benchmarks both with and without this
correction are presented in Sect. 2.1. Note that the δEHF,AB corrections are decoupled
from the (X)SAPT-SCF equations, so there is no difficulty in using different basis
sets to evaluate them. Previous work has shown that def2-SVPD affords similar
accuracy to def2-QZVPD for the δHF correction, at a small fraction of the cost [77].

Rewriting Eq. (38) using Eqs. (36) and (39), we obtain

EXSAPT;MB
int =

N

A

N

B>A
ESAPT
elst,AB þ ESAPT

exch,AB þ ESAPT
disp,AB þ ESAPT

ind,AB þ δEHF,AB

þΔEpairwise
ind þ EMB

int :

ð41Þ

Assuming that we use HF wavefunctions for the monomers, the definition of δEHF

(Eq. 10) greatly simplifies the term in parentheses in Eq. (41), leaving

ð42Þ 

Here, EHF is the HF interaction energy for the dimer AB computed in theΔ int,AB

supramolecular way. Equation (42) reveals that the many-body XSAPT
(HF) interaction energy can be interpreted as a form of pairwise HF+D plus
additional induction, both pairwise and nonadditive.

In the case of XSAPT(KS), intramonomer correlation changes how the mono-
mers polarize. We can write an expression similar to Eq. (42) by considering KS
orbitals in Eq. (41), expressing the result as
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EXSAPTðKSÞ;MB
int =

N

A

N

B>A
ΔEdlKS

int,AB þ ESAPT
disp,AB þ ΔEpairwise

ind þ EMB
int ð 43Þ

where

ð44Þ 

The term E that is defined in Eq. (44) represents the difference brought about inΔ KS

the HF interaction energy by including electron correlation in the zeroth-order
wavefunctions used for subsequent intermolecular energy corrections. This implies
that the quantity ΔEdlKS

int defined in Eq. (44) can be interpreted as a “dispersionless”
KS interaction energy, which is added to SAPT(KS) dispersion and XPol polariza-
tion in Eq. (43).

The many-body EDA in Eq. (38) has been discussed in prior work [36, 37] and
was used in a recent benchmark study of small-molecule trimers [181], where
nonadditive dispersion and induction effects computed using XSAPT+MBD were
compared against those obtained from CCSD(T) calculations and from SAPT(DFT)
augmented with three-body corrections taken from wavefunction theory. Consistent
with the discussion in Sect. 1.2.3, these nonadditive dispersion effects are quite
small, as shown in Fig. 11a. Even so, they are better described by XSAPT+MBD
than by SAPT(DFT), based on comparison to CCSD(T) benchmarks.

As a final note, we observe that second-order perturbation theory is sufficient to
connect three monomers. Three-body induction couplings for XPol + SAPT0 have
been derived and implemented [33] but only tested in a few cases [33, 37,
181]. Recent three-body benchmarks suggest that the XPol treatment affords an
accurate treatment of nonadditive polarization for small-molecule trimers, which is
degraded by the inclusion of the three-body induction couplings [181]. This is
demonstrated in Fig. 11b, where XSAPT nonadditive induction energies computed
without the three-body induction couplings are in reasonable agreement with SAPT
(DFT) results whose three-body corrections are taken from wavefunction-based
SAPT [181]. In contrast, XSAPT induction energies that include the three-body
induction couplings are much larger. It is suggested that this overestimation likely
results from neglect of the complementary nonadditive exchange-repulsion interac-
tions [181], which have not been implemented. As such, these three-body induction
couplings are not considered further, and they were not included in the many-body
EDA scheme described above. See Ref. [37] for a version of the XSAPT-EDA that
does include those couplings.
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Fig. 11 Three-body results for a small-molecule dataset of trimers (“3BHET”), including (a)
dispersion energies and (b) induction energies. XSAPT+MBD and SAPT(DFT) calculations
employ the aug-cc-pVTZ basis set, whereas CCSD(T) and MP2 results are extrapolated to the
CBS limit. The dataset consists of trimers of molecules ranging in size up to phenol and
bromobenzene, along with some ions (NHþ 

4 and Cl-). (Adapted with permission from
Ref. [181]; copyright 2023 the PCCP Owner Societies)

2 Performance Benchmarks

Throughout Sect. 1.2, we introduced data documenting the accuracy of various
approximations, as a way to motivate the historical development of XSAPT. With
the complete formalism now assembled, additional accuracy benchmarks are pro-
vided in Sect. 2.1. In Sect. 2.2, we document the cost and effective computational
scaling with system size.

2.1 Accuracy

To provide a realistic overview of a family of XSAPT methods, we divide this
discussion into several parts. Sect. 2.1.1 compares different XC functionals used in
SAPT0(KS) and SAPT(KS) methods. This choice has important consequences for
accuracy, and some poor choices that should not be emulated can nevertheless be
found in the literature. Basis-set demands are discussed in Sect. 2.1.2, and because
they are relatively forgiving (by ab initio standards), calculations can be performed
in systems composed of large monomers. This capability is illustrated with examples
in Sect. 2.1.3. Finally, Sect. 2.1.4 provides an overview of XSAPT for ions, which is
one place where there is certainly room for future improvement.
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2.1.1 Flavors of (X)SAPT

We first compare different versions of SAPT0(KS), meaning second-order pertur-
bation theory with various SCF methods to generate the monomer wavefunctions.
We use error statistics versus CCSD(T)/CBS interaction energies, for the S66 dataset
[73], as a means to evaluate different approaches. Figure 12 summarizes results for
four different SCF functionals and two basis sets.

Results in Fig. 12a use the jun-cc-pVDZ basis set that is found to be a good
compromise for SAPT0(HF) [26, 27, 77]. This basis is a proper subset of aug-cc-
pVDZ, eliminating diffuse functions on hydrogen along with the highest angular
momentum set of diffuse functions on other atoms [74]. Its success for SAPT0
(HF) calculations (and for MP2) rests on error cancellation [27, 75], as is evident
from the fact that both the MAEs and the maximum errors increase when aug-cc-
pVTZ is used instead (Fig. 12b). Nevertheless, MAEs are no larger than 1.1 kcal/mol
for each of the traditional subsets of S66 including hydrogen-bonded dimers,
dispersion-dominated complexes, and dimers with mixed influence interactions.
Interestingly, opposite basis-set behavior is obtained with and without the δHF
correction. At the SAPT0(HF)/jun-cc-pVDZ level, the errors for hydrogen-bonded

Fig. 12 Performance of second-order perturbation theory for interaction energies in the S66 dataset
and its subsets, using either (a) the jun-cc-pVDZ basis set or (b) the aug-cc-pVTZ basis set. SAPT0
(KS) results are compared using various SCF methods, as indicated, either with or without the δHF
correction. Colored bars indicate MAEs with respect to CCSD(T)/CBS benchmarks and gray bars
are maximum absolute errors. (Data are from Ref. [55])



dimers are unacceptably large (up to 6 kcal/mol) when this correction is omitted, yet
for SAPT0(HF)/aug-cc-pVTZ calculations, the δHF correction has little statistical
effect. This is a curious result that went unnoticed in comprehensive benchmarking
of various levels of SAPT approximations [26, 27], because the δHF correction was
always included at the SAPT0 level. This observation points to an additional source
of error cancelation.
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Interestingly, error statistics for S66 are not improved, and are actually slightly
worsened, by the use of LRC-ωGDD PBE for the monomers. The δHF correction
remains essential, and results using jun-cc-pVDZ are reasonable when it is included.
Differences with respect of HF-based SAPT0 may lie in the imbalance between Eð2Þ 

ind
based on KS orbitals and the infinite-order induction correction that is contained in
δEHF, which subtracts out second-order corrections based on HF theory (Eq. 10).
This is done to avoid contaminating Eind with other energy components that are
present in a supramolecular KS-DFT calculation [55].

While SAPT0(LRC-ωGDDPBE )/jun-cc-pVDZ errors are perhaps acceptable,
dispersion-dominated outliers are larger when the aug-cc-pVTZ basis set is used;
see Fig. 12b. For second-order SAPT0 calculations, there seems to be no reason to
recommend using a SCF method other than HF theory. That is especially true when
XC functionals lacking correct asymptotic behavior are inserted into the SAPT0
formalism, as demonstrated by results using BLYP and B3LYP in Fig. 12.

In a review of different EDAs targeted at drug discovery [108], the SAPT0
(B3LYP) method was included as the sole representative of the entire SAPT
formalism. The present comparison demonstrates that this approach is a poor
substitute even for conventional HF-based SAPT0, even if the δHF correction
were included. In the larger aug-cc-pVTZ basis set, the reason is obvious: significant
overestimation of dispersion-dominated interaction energies. This is the net result of
a second-order perturbation theory formalism that overestimates dispersion, com-
bined with a functional that lacks correct asymptotic behavior and affords smaller
HOMO/LUMO gap as compared to HF theory [182]. Within a perturbative formu-
lation of Edisp, smaller gaps manifest as dispersion energies that are too attractive.
GGA functionals narrow the gaps even further as compared to global hybrids like
B3LYP, with correspondingly worse results for SAPT0(KS) calculations, as
documented in Fig. 12. Functionals that lack correct asymptotic behavior should
not be used in SAPT0(KS) calculations.

These problems are alleviated through the use of MBD. Figure 13 juxtaposes
SAPT0(HF) and SAPT0(LRC-ωGDDPBE) results from Fig. 12b with the
corresponding results when MBD replaces Eð2Þ 

disp. The SAPT(LRC-ωGDD PBE)

+MBD method affords very good results in a high-quality basis set (aug-cc-
pVTZ), demonstrating that its favorable accuracy does not rely on a limited basis
set for error cancellation. That said, note that SAPT(HF)+MBD results are somewhat
worse than SAPT0(HF) when the δHF correction is included in both. The damping
function that defines the MBD + esDQ model in Eq. (33) was only fitted for use with
LRC-ωPBE, which may result in slightly degraded performance for HF monomers.
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disp (Eq. 8a), whereas the two SAPT(KS)+MBD methods on the right use the MBD model

(Eq. 33). (All calculations use the aug-cc-pVTZ basis set and the data are from Ref. [77])

2.1.2 Basis Sets

One advantage of introducing dispersion models in place of perturbation theory is a
reduction in basis-set demands, as aiD models are entirely independent of the basis
set and MBD exhibits mild basis-set dependence [77]. Extensive benchmarking of
the XSAPT+MBD energy components has been reported recently [77], and Fig. 14
summarizes how the choice of basis set impacts the accuracy of total interaction
energies computed using SAPT(LRC-ωGDDPBE)+δHF+MBD.

Errors incurred using double-ζ basis sets are unacceptably large except for jun-cc-
pVDZ or aug-cc-pVDZ. This likely results from an imbalance in the convergence
behavior of EMBD

disp as compared to other energy components; indeed, these errors are
reduced dramatically in triple-ζ basis sets. The minimally augmented def2-ma-
TZVP basis set [77], which is a proper subset of def2-TZVPD [183], is essentially
converged with respect to its parent basis set but considerably more efficient, as
documented below. Comparing def2-ma-TZVP and def2-QZVPD results in
Fig. 14a, we see that differences in the MAEs are well within the intrinsic accuracy
of the method itself, although there is some reduction in the outliers when the larger
basis set is used. The same can be said for the comparison between jun-cc-pVTZ and
aug-cc-pVQZ results in Fig. 14b. This suggests using minimally augmented triple-ζ 
basis sets for XSAPT+MBD calculations.

Of these, def2-ma-TZVP is by far the least expensive, adding only modest
overhead upon def2-TZVP as documented in Fig. 15. In contrast, the upgrade
from def2-ma-TZVP to def2-TZVPD improves the MAE for the S66 dimers by
≤ 0:1 kcal/mol but nearly doubles the cost for the π-stacked uracil dimer that is used



for timing benchmarks. The def2-QZVPD basis set improves the MAE by < 0:1
kcal/mol with respect to def2-TZVPD, although it does reduce some of the outliers,
but increases the cost by nearly 5 × . These disparities are exacerbated in Dunning
basis sets, where the full complement of diffuse functions in aug-cc-pVTZ reduces
the MAE by < 0:1 kcal/mol, as compared to jun-cc-pVTZ results, at 1.4× the cost.
Quadruple-ζ basis sets provide very limited improvements over aug-cc-pVTZ at
prohibitive cost. We recommend def2-ma-TZVP unless one is pushing for absolute
convergence to the CBS limit, in which case Dunning basis sets provide slightly
more consistent results.
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Fig. 14 Errors across the S66 dataset, for SAPT(LRC-ωGDDPBE)+δHF+MBD calculations using
(a) Karlsruhe and (b) Dunning basis sets. Colored bars represent MAEs and gray bars are maximum
absolute errors, with respect to CCSD(T)/CBS benchmarks. (Data are from Ref. [77])

Convergence data for energy components were discussed above (see Fig. 7).
With the exception of dispersion, all energy components exhibit similar convergence
behavior and have nearly reached the CBS limit using def2-ma-TZVP [77]. The
dispersion energy EMBD

disp converges even faster because MBD depends on the density
but not directly on the wavefunction. This should be contrasted with the slow
convergence of SAPT0 (Fig. 1), to an undesirable answer. Relatively uniform
convergence of the energy components means that the XSAPT EDA does not benefit
significantly from error cancellation, provided that basis sets of triple-ζ quality
are used.
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Fig. 15 Total CPU times for a SAPT(LRC-ωGDD PBE) calculation on uracil dimer using (a)
Karlsruhe basis sets or (b) Dunning basis sets. All calculations were performed using 12 processors
of a Dual Intel Xeon 8268 node with 64 Gb of memory. Note the change in vertical scale beginning
at 8000 s, in both panels

2.1.3 Large Supramolecular Complexes

Accuracy benchmarks in Sects. 2.1.1 and 2.1.2 employ the S66 dataset of small
dimers in order to have decent statistics and good throughput on numerous variants.
Where XSAPT+MBD truly shines, however, is in applications to large complexes.
This was previewed in Fig. 4, demonstrating a MAE below 1 kcal/mol for the L7
dataset, which is comparable to the best available DFT methods for noncovalent
interactions, while affording an EDA that is less ambiguous as discussed in Sect. 3.2.

Here, we consider some additional large-system benchmarks starting with
another set of calculations for the L7 complexes, the results of which are shown in
Fig. 16. Data for MP2 and SAPT0(HF) emphasize the failure of second-order
perturbation theory for systems involving large, conjugated monomers. In contrast,
XSAPT+aiD3 and (especially) XSAPT+MBD perform extremely well for these
systems. This is true even in comparison to state-of-the-art semiempirical methods
designed for noncovalent interactions, exemplified in Fig. 16 by the HF-3c [184] and
PBEh-3c [185] methods. These are designed for geometry optimization of large
molecules, and they complement XSAPT by providing an affordable means to
obtain geometries. Reliable interaction energies can then be computed using
XSAPT-based methods.

Figure 17 presents Eint benchmarks for a set of large host–guest complexes
common to the S12L and S30L datasets [186, 187]. Unlike other benchmarks
discussed in this chapter, which come primarily from CCSD(T)/CBS calculations,
these are obtained from experimental association energies (ΔG∘ ), back-corrected to
gas-phase interaction energies using theoretical estimates of the vibrational entropy
and the change in solvation energy upon complexation. These benchmarks come
with estimated uncertainties of ± 3 kcal/mol, with the solvation correction as the
largest source of error [186, 187].
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Fig. 16 (a) Dimers in the L7 dataset and (b) error statistics for L7 versus CCSD(T)/CBS
benchmarks. XSAPT+aiD3/def2-TZVPP and XSAPT+MBD/def2-TZVPPD calculations use
LRC-ωGDD PBE and ChElPG embedding charges. None of these calculations employs the δHF
correction. (Data are from Ref. [38])

MP2-based methods are effectively useless for these systems and even B97M-V,
which is usually an outstanding semilocal functional for noncovalent interactions
[188], exhibits a MAE of 6 kcal/mol and a maximum error of 11 kcal/mol. Notably,
these are CP-corrected B97M-V/aug-cc-pVTZ calculations that should lie near the
CBS limit [59]. In complexes of this size, BSSE effects can reach 50 kcal/mol or
more in double-ζ basis sets [1, 59].

As with the large-monomer L7 complexes, the XSAPT+aiD3 method requires
three-body (triatomic) dispersion corrections to achieve reasonable accuracy for this
S12L\S30L dataset, whereas those effects are inherent in XSAPT+MBD. The latter
method exhibits accuracy comparable to B97M-V(CP)/aug-cc-pVTZ, in a more
modest triple-ζ basis set and without the need for CP correction.

2.1.4 Performance for Ions

Early versions of XSAPT used ChElPG embedding charges for the XPol procedure
[32, 33]. These are designed to approximate the molecular electrostatic potential and
seem fit to purpose but engender significant computational overhead (Fig. 2). In
contrast, CM5 charges [120] are designed only to reproduce the molecular dipole
moment but can be evaluated much more efficiently using DFT quadrature grids
[41]. Although implemented for reasons of efficiency, CM5 embedding charges also
turn out to improve the accuracy, especially for complexes involving ions and ion



pairs, for which ChElPG embedding charges afford errors up to 15 kcal/mol that are
reduced to < 4 kcal/mol using CM5 charges [41].
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Fig. 17 (a) The S12L\S30L dataset of host–guest complexes. (b) Mean absolute errors (colored
bars) and maximum absolute errors (gray bars) for various methods, compared to back-corrected
experimental benchmarks with estimated uncertainties of ± 3 kcal/mol. XSAPT+δHF calculations
use ChElPG embedding charges and the def2-TZVPPD basis set. (Adapted with permission from
Ref. [42]; copyright 2021 American Chemical Society)

Table 2 provides an accuracy assessment for XSAPT+δHF+aiD3 and XSAPT
+δHF+MBD calculations on ion–molecule complexes, using the AHB21 and CHB6
datasets [189] that consist of anions and cations, respectively. For AHB21, the
benchmarks range up to jEintj= 66 kcal/mol, and ten of the 21 dimers have absolute
interaction energies larger than 20 kcal/mol. (For comparison, jEintj< 20 kcal/mol
for all of the S66 dimers.) For CHB6, the benchmarks range from - 20 kcal/mol to
- 39 kcal/mol. As such, these are more challenging tests and errors are correspond-
ingly larger than what we have seen for neutral complexes.

For the anion–molecule dataset, MAEs with respect to CCSD(T)/CBS bench-
marks are ≲ 3 kcal/mol when the def2-ma-TZVP basis set is used, although
maximum errors are about 8.5 kcal/mol. Independent of basis set, the largest error
is incurred for the very challenging Cl-(HCl) complex consisting of a proton that is
shared equally between two Cl- ions yet must be assigned to one monomer or the
other for the purpose of (X)SAPT calculations. For the XSAPT+δHF+MBD calcu-
lations, this outlier is noticeably reduced by additional diffuse functions so in that
case there is a reason to prefer def2-ha-TZVP over def2-ma-TZVP, which is not
surprising for a calculation involving an anion.

The CHB6 dataset consists of Mþ (C6H6) and Mþ (H2O) complexes for alkali
metal cations: M = Li, Na, and K. As compared to the anions, XSAPT+δHF+aiD3
calculations result in smaller errors for these cationic complexes, with MAEs below
2 kcal/mol and maximum errors < 4 kcal/mol. However, the MBD model affords
excessively large dispersion energies for the two complexes involving Kþ, e.g.,
EMBDþesDQ
disp = - 84 kcal/mol for Kþ(C6H6), as compared to EaiD3

disp = -4 kcal/mol for

the same complex. These very large MBD dispersion energies manifest as significant



overbinding of the Kþ complexes by XSAPT+δHF+MBD, with errors of 23 kcal/
mol for Kþ (H2O) and 80 kcal/mol for Kþ (C6H6), using def2-ma-TZVP. As such,
these two complexes have been removed from the error statistics in Table 2 in order
to provide a more representative perspective or the other cation–molecule dimers.
Even so, errors remain considerably larger than they are for XSAPT+δHF+aiD3
applied to the CHB6 dataset.
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Table 2 Error statistics for the AHB21 and CHB6 datasets of ionic complexes using XSAPT with
CM5 embedding charges

Basis set Error (kcal/mol)a

XSAPT+δHF+aiD3b XSAPT+δHF+MBD

AHB21 CHB6 AHB21 CHB6

MAE Max MAE Max MAE Max MAEc Maxc

def2-ma-SVP 3.7 11.9 1.8 3.4 3.2 8.3 10.6 19.0

def2-ha-SVP 2.9 8.4 1.2 2.6 2.4 6.1 11.8 21.0

def2-SVPD 2.5 8.1 1.5 2.9 2.8 12.1 12.4 22.0

def2-ma-TZVP 2.6 8.6 1.7 3.9 3.2 8.5 11.6 23.0

def2-ha-TZVP 2.7 8.2 1.3 3.7 1.8 5.0 10.9 23.0

def2-TZVPD 2.5 8.4 1.3 3.6 1.7 4.8 10.9 23.0
a With respect to CCSD(T)/CBS benchmarks from Ref. [189]
b Data from Ref. [55]
c Kþ(H2O) and Kþ(C6H6) removed from the dataset

The source of these errors remains a topic for future work and development, but
we can speculate. It has been demonstrated that MBD is sometimes vulnerable to
polarization catastrophes for short-range interactions [149], as one might anticipate
in strong interactions with ions, although the reason why cations are more problem-
atic is unclear. Especially for ions [190], the model is sensitive to the input polar-
izabilities [149], which are controlled by the oscillator frequency ωa in Eq. (31).
Alternative models for obtaining these polarizabilities have been suggested [191],
which are available in the libMBD library that is interfaced to Q-Chem [192], but
these have not yet been adapted for use with XSAPT. At a minimum, iterative
determination of Hirshfeld volumes [193–195], to assign excess charge to appropri-
ate atoms in a molecular density, is probably necessary to make MBD generally
applicable to ions [190, 194, 196] and the ordinary Hirshfeld partition is known to
produce unrealistically large polarizabilities for cations [196]. However, it is unclear
that this should improve the description of complexes involving monatomic ions,
such as those in the CHB6 dataset. A more rigorous treatment of dipole–quadrupole
(and higher-order) polarizability contributions to MBD, as compared to the MBD +
esDQ model in Eq. (33), might improve the results for strong, short-range interac-
tions. Clearly, there remains room for improvement to the performance of XSAPT-
based methods for ions.
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2.2 Cost

In this section, we document the cost for XSAPT calculations and how it scales with
system size. All calculations were performed using the Q-Chem program, which
remains the only platform in which XSAPT is implemented [45, 46]. Timing bench-
marks were performed using a pre-release copy of Q-Chem v. 6.3, in order to
document improved multithreading for conventional SAPT0 calculations. The
resolution-of-identity (RI) technique leads to considerable reduction in the cost of
this OðN5Þ method [76, 78, 197, 198] and the SAPT0 timings reported in Sect. 2.2.1
use this technique. Additional parallelization improvements were made in Q-Chem
v. 6.0, as documented in Fig. 2, so that multithreaded performance should be
significantly improved as compared to Q-Chem v. 5.4. Further improvements in
parallel efficiency since that release are documented in Sect. 2.2.1.

These timing benchmarks use an SCF convergence threshold of 10-5 Eh in the
electronic energy gradient kFP-PFk [199] and a screening threshold of 10-12 a.u.
(The latter is appropriate for medium-size systems with diffuse basis functions
[200].) Timing benchmarks are run on dedicated nodes.

2.2.1 Parallel Performance

Figure 18 documents the parallel efficiency of the new RI-SAPT0 code, running on a
single compute node using OpenMP parallelization. Even for the smallest basis set
that we consider (cc-pVDZ), the scaling across an entire 48-processor node is
reasonably good. The parallel efficiency exceeds 70% in most cases (Fig. 18b) and
is considerably improved relative to the old code. Memory usage is also improved,
enabling cc-pVQZ calculations (1345 basis functions) that were not previously fea-
sible on our hardware.

We next examine parallel efficiencies for XSAPT+aiD3, which has a much
different cost profile. For these tests, we have extended upon data for Cl- (H2O)n
clusters that were published elsewhere [77], adding new basis sets and updated
timings. These Cl- ðH2OÞn clusters were extracted from a molecular dynamics
simulation of Cl-ðaqÞ [201], with hn 〉 = 28:4± 2:4 water molecules per snapshot,
and the data presented in Table 3 are averages across 51 snapshots, treating (H2O)n
as a single monomer. For Pople basis sets, parallel efficiencies approach or exceed
80% on 26 processors, although they are lower (46–67%) for Karlsruhe basis sets.
The difference likely lies in the use of compound (“sp”) shells for Pople basis sets,
which Q-Chem’s integrals code handles efficiently [200].

Although Pople basis sets have fallen out of favor for modern electronic structure
calculations (for good reason in certain cases [202–205]), they can yield high-quality
results for DFT calculations if sufficient polarization functions are included, beyond
the usual 6-31G(d) or 6-311G(d,p) [200]. In the present context, Pople basis sets can
reproduce induction energies obtained in much larger Karlsruhe or Dunning basis
sets, to an acceptable degree, if additional polarization functions are included



– –

[77]. For example, XSAPT+δHF+MBD induction energies computed using the
6-311++G(3df,2pd) basis set exhibit slightly smaller errors, as compared to
SAPT2+(3)/aug-cc-pVTZ benchmarks [151], than when the def2-QZVPD basis
set is used [77]. Errors are small in both cases, but the Pople basis set is dramatically
more efficient.
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Fig. 18 Strong-scaling data for multithreaded RI-SAPT0 calculations on a guanine–cytosine base
pair, (C5H5N5O)⋯ (C4H5N3O), using either the original SAPT0 code (Q-Chem versions up to
v. 6.2) or the new code (pre-release Q-Chem v. 6.3). (a) Speedup measured by the ratio of CPU time
to wall time (tCPU ∕ twall ). (b) Parallel efficiency, defined as tCPU ∕ twall ∕ nthreads and expressed as a
percentage. All calculations were run on a single Dual Intel Xeon 8268 node with 48 processors and
192 Gb memory

Table 3 Error statistics and timing data for XSAPT+aiD3 calculations on Cl- (H2O)
a
n

Basis set Eint Error (kcal/mol)b Time (sec)c

Parallel efficiencyeMAEd Max CPU Wall

6-31+G(d) 1:9± 0:8 3.8 1226 57 82%

6-311+G(d,p) 1:3± 0:5 2.4 2834 140 78%

6-311+G(2df,2p) 0:1± 0:1 0.4 7813 355 85%

6-311+G(3df,2pd) 0:3± 0:1 0.6 16,564 761 84%

def2-ma-SVP 3:1± 0:7 4.4 2678 154 67%

def2-SVPD 1:2± 0:2 1.5 11,063 928 46%

def2-ma-TZVP 1:3± 0:3 1.9 9982 586 66%

def2-TZVPD 34,812 2371 56%
a Data represent averages over 51 snapshots with hn 〉 = 28:4± 2:4. The (H2O)n cluster is treated as
a single monomer
b With respect to the def2-TZVPD value
c Using 26 processors (Dell Intel CPU Max 9470 HBM)
d Uncertainty represents one standard deviation
e PE= tCPU ∕ twall ∕ nproc

This is a rather general observation [77, 200]. To see this, we take XSAPT+MBD/
def2-TZVPD results as converged and examine interaction energies for Cl-(H2O)n



computed in other basis sets (Table 3). The data indicate that 6-311+G(2df,2p)
affords negligible differences as compared to def2-TZVPD but is 4.5× less expen-
sive, when measured in aggregate CPU time, and 6.7× faster in wall time. For rough
estimates of ∼ 1kcal/mol accuracy, even 6-311+G(d,p) can be used and is more than
an order of magnitude faster than def2-TZVPD.
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2.2.2 Scaling with System Size

To ascertain the effective scaling of cost versus system size, we will present timing
data for homologous systems starting with Cl- (H2O)n clusters of increasing size,
treating (H2O)n as a single monomer. Figure 19 presents timing data for XSAPT
+MBD calculations. The quantity that is plotted is the total CPU time aggregated
across all 20 processors that were used, not the time to completion. The latter is much
shorter, as may be inferred from the reasonably good parallel efficiencies that are
documented in Table 3, but it is total CPU time that captures the true cost of the
calculation [206]. Fits of the total time t to the function t= αnβ reveal that the scaling
is effectively cubic, for both the XPol-SCF procedure (which contributes 80% of the
total cost, for the largest systems examined) and for the post-SCF SAPT and MBD
corrections (comprising the remaining 20% of the cost).

For completeness, we also present timings for RI-SAPT0(HF)/jun-cc-pVDZ
calculations on (guanine)n stacks extracted from an idealized structure of B-DNA.
Timing data are presented in Fig. 20, for calculations in which ðguanineÞn-1 is
treated as a single monomer. For the post-SCF steps, we obtain an effective scaling
of OðN4:2Þ that is better than the theoretical result. However, the SCF time constitutes
a significant fraction of the overall time for the system sizes considered (up to n= 6),
resulting in an effective scaling of OðN3:1Þ for the entire calculation. For the same
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Fig. 19 Timing data for XSAPT+MBD/def2-ma-TZVP calculations on Cl- (H2O)n clusters of
increasing size, treating (H2O)n as a single monomer and examining (a) the total compute time and
(b) the post-SCF time. Fits to the function t= αnβ are indicated. Calculations were performed on
20 processors of a single Dual Intel Xeon 8268 node and the δHF correction is not included



systems and basis set, XSAPT+MBD calculations afford effective scaling of OðN2:6Þ 
for both the overall time and the post-SCF time, demonstrating that this approach
does actually reduce the effective scaling, relatively to RI-SAPT0, even when super-
theoretical scaling is obtained. Moreover, the memory footprint of XSAPT+MBD is
much smaller.
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Fig. 20 Timing data for RI-SAPT0/jun-cc-pVDZ calculations on (guanine)n, including (a) the
overall time, aggregated across all processors, and (b) the post-SCF time. The system is treated as a
dimer of guanine and (guanine)n- 1. Calculations were performed using 40 processors of a single
Dual Intel Xeon 8268 node

3 Illustrative Applications

This section explores the use of XSAPT+MBD as a tool for understanding the
physics of intermolecular interactions, taking advantage of the dimer EDA in
Eq. (1) and relying on the sub-kcal/mol accuracy that was established in Sect. 2.1
and elsewhere. We first establish some basics about short-range repulsion, which
originates in the Pauli principle and not with Coulomb interactions, as discussed in
Sect. 3.1. Then, the MBD dispersion model is compared directly to dispersion
energies obtained from a popular DFT-based EDA scheme [13], in Sect. 3.2. That
discussion highlights the fact that EMBDþesDQ

disp in Eq. (33) agrees very well with

SAPT2+(3) dispersion energies, even though it was not parameterized using these
data (unlike the aiD models). That discussion also highlights ambiguities in the
definition of Edisp in the DFT-based EDA. Having established the veracity of the
XSAPT+MBD energy decomposition, we apply it to analyze π–π interactions in
Sect. 3.3. Finally, hydrogen bonding in F-(H2O) is examined in Sect. 3.4, using the
SAPT-cDFT decomposition to isolate ECT and thereby elucidate the role of CT in the
anion–water hydrogen bond.
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3.1 Basic Intermolecular Physics

Chemistry textbooks are replete with half-truths and outright falsehoods regarding
the role of multipolar interactions in short-range molecular physics, some of which
are addressed here. Additional examples can be found in Ref. [43].

3.1.1 Electrostatics Beyond Multipoles

In the interest of pedagogy, let us introduce the electrostatic (or Coulomb) potential

φ ∼ ðRÞ= ρ
∼ ðrÞ 

kr-Rk 
dr ð45Þ

for a continuous charge distribution ~ρðrÞ. We use ~ρðrÞ to indicate a molecular charge
distribution that includes both nuclei and electrons. If ρðrÞ is the charge distribution
for the electrons only, which is positive-valued by convention, then

~ρðrÞ= -ρðrÞ þ  
nuclei

a
Za δðr-RaÞ: ð46Þ

Given charge densities ~ρAðrÞ and ~ρBðrÞ for isolated molecules A and B, along with
the corresponding electrostatic potentials ~φAðrÞ and ~φBðrÞ, the total electrostatic
interaction in the SAPT scheme (Eq. 16a) is equivalent to

Eelst = ~φAðRÞ ~ρBðRÞ dR= ~φBðRÞ ~ρAðRÞ dR: ð47Þ

For interpretative purposes, we might approximate one or both of the electrostatic
potentials using a multipole expansion. For example,

φ∼ 
AðRÞ=

QA

R
þ μA⋅R

R3 þ R
{ΘAR

R5 þ ⋯ ð48Þ

where QA, μA, and ΘA are the total charge, the dipole moment vector, and the
quadrupole moment tensor of molecule A, respectively. One could make a multipole
expansion for the density ~ρBðRÞ and then recast Eq. (47) into a form involving
multipole–multipole interactions [207]. In doing so, it is important to remember that
Eq. (48) is an asymptotic expansion that is valid only for a test charge that is located
at a distance R that is large compared to the details of the molecular charge
distribution, ~ρAðrÞ. In fact, the multipole expansion is divergent as R→ 0
[22, 208–210]. More importantly, it is readily demonstrable that nonbonded close-
contact distances (including typical equilibrium geometries of vdW complexes) are



not usually in the asymptotic regime where the electrostatic potential is well
described (or even qualitatively described) by leading-order multipoles. An example
is shown in Fig. 21 for different geometries of the benzene dimer.
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Exact electrostatic interactions, computed using Eq. (47) without any multipole
approximation, are attractive in the typical range of intermolecular π-stacking
separations (3.4–3.8 Å), and they are attractive in the edge-to-face (C–H⋯π )
configuration also [211–213]. This has implications for understanding π-stacking
[42, 148, 214–217], as discussed in Sect. 3.3. For now, we simply note that an atom-
centered multipole approximation to Eelst (Fig. 21a), which should converge faster
than the single-center expansion in Eq. (48), nevertheless does not agree with exact
calculations for the cofacial arrangement until the face-to-face separation R is much
larger than typical π-stacking distances. A leading-order approximation, using only
the molecular quadrupole moments of the two benzene monomers, does not agree
with exact electrostatics until even larger face-to-face separations (Fig. 21b). At
typical π-stacking separations, such as R= 3:35Å for graphite [218] or R= 3:4Å for
the parallel-displaced benzene dimer [212], exact electrostatics is attractive but
quadrupolar approximations are repulsive [148, 211, 213, 215].

This breakdown in multipolar approximations is sometimes ascribed to charge
penetration effects, meaning that multipole approximations no longer describe Eelst

when ρAðrÞ and ρBðrÞ interpenetrate. Another interesting example of this effect can
be found in the corannulene dimer, (C20H10)2. The corannulene monomer consists of
six hexagonal rings surrounding a central pentagonal ring, the latter of which lends
curvature to the structure, which has been called a “buckybowl” [219–221]. This and

el
st

 (
kc

al
/m

ol
) 

separation (Å) 

5 

0 

–5 

–10 

–15 

–20 

–25 

–30 

3.0 3.5 4.0 4.5 5.0 

SAPT 
32-pole 

el
st

 (
kc

al
/m

ol
) 

10.0 

7.5 

5.0 

2.5 

0.0 

–2.5 

–5.0 

–7.5 

–10.0 

separation (Å) 
2.5 3.0 3.5 4.0 4.5 5.0 5.5 

sandwich (exact) 
sandwich (quadrup.) 
T-shaped (exact) 
T-shaped (quadrup.) 

Fig. 21 (a) Electrostatic interaction energies for the cofacial (solid blue symbols) and T-shaped
(solid red symbols) geometries of (C6H6)2, computed at the HF/jun-cc-pVDZ level as a function of
intermolecular separation. (For the T-shaped structure, the distance coordinate is the H-to-face
separation.) Open symbols with crosses correspond to an atom-centered distributed multipole
calculation at the HF/6-311G(d,p) level, including interactions up to octupole–quadrupole. Arrows
indicate the minimum-energy intermolecular separations for the three structures that are shown.
(Adapted with permission from Ref. [211]; copyright 2016 American Chemical Society.) (b) Exact
versus quadrupolar electrostatics for (C6H6)2, computed at the LRC-ωGDDPBE/def2-TZVPD level
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other concave hydrocarbons form concentric stacks in the solid state [221–
224]. (A five-member ring is not required to induce curvature [225].) The π-electron
density at the bottom of these buckybowls must be compensated by electropositive
terminal C–H bonds, as it is in benzene as well but the buckybowls break planar
symmetry and may develop dipole moments. These range from μ= 2:07 D in
C20H10, based on a gas-phase measurement [226], to μ> 10D in larger buckybowls,
based on calculations [227, 228]. As a result, this phenomenon has been called
“flexo-electric” π-stacking [228], with the implication that the driving force for this
solid-state stacking phenomenon is to align the dipole moments of the monomers. In
view of exact electrostatic calculations for ðC6H6Þ2, however, this hypothesis should
be regarded with suspicion.
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To investigate this in detail, we used XSAPT+MBD calculations to examine
intermolecular interactions in ðC20H10Þ2 in a sequence of calculations in which we
gradually flatten each monomer at fixed intermolecular separation, starting at the
equilibrium dimer structure (with concave monomers) and ending at a structure in
which both monomers are planar (so μ= 0) [148]. Results of the energy decompo-
sition along this coordinate are plotted in Fig. 22. Monomer densities ρAðrÞ and
ρBðrÞ are also shown, using an isocontour value (ρ= 0:001 a.u.) that is typical for
exhibiting molecular size [146]. These plots demonstrate that the monomer densities
significantly interpenetrate at the equilibrium stacking distance.

Despite diminishing (and ultimately vanishing) monomer dipole moments along
the planarization coordinate, electrostatic interactions remain significant. What is
plotted in Fig. 22 is actually polarized electrostatics (Eelst þ Eind ), but this sum is
dominated by Eelst at all geometries. Even when the monomers are planar and
μ= 0, Eelst þ Eind remains within 1 kcal/mol of its value in the equilibrium geometry.
In fact, the total interaction energy (Eint ) is slightly more stabilizing when the
monomers are planar. Note that Eint does not include the penalty to deform the
monomers and is simply the interaction energy for moving the rigid monomers to
infinite separation. Thus, it is the deformation penalty rather than any intermolecular
driving force that explains why ðC20H10Þ2 adopts a structure with curved monomers.
This cannot be explained based on the dipole moment induced by the curvature.

3.1.2 Steric Repulsion Is Pauli Repulsion

In the benzene dimer, Eelst becomes increasingly attractive at smaller values of R, as
depicted in Fig. 21, whereas many textbooks would argue that short-range electro-
statics should be repulsive due to interpenetration of the electron clouds on the two
monomers. To debunk this myth, we consider an even simpler system: Ar2. Energy
components for Ar2 are plotted as a function of R in Fig. 23a [43]. Note that
EelstðRÞ< 0 at all values of R, indicating a strictly attractive electrostatic interaction,
even for values of R that are much smaller than the equilibrium separation.

The balance of forces that enters EelstðRÞ is rather subtle. To appreciate how much
so, it is necessary to decompose the total electrostatic interaction,
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Eelst =Eee
elst þ Enn

elst þ Een
elst ð 49Þ

into electron–electron repulsion (Eee
elst > 0), nuclei–nuclei repulsion (Enn

elst > 0), and
electron–nuclei attraction (Een

elst < 0). Written in atomic units, the expressions for
these terms are

Enn
elst =

a∈A b∈B

ZaZb

Rab
ð50Þ 

for atomic numbers Za and Zb,

Eee
elst =

ρAðr1Þ ρBðr2Þ 
kr1 - r2k dr1 dr2 ð51Þ

for the electron–electron repulsion, and

Een
elst = -

a∈A

ZaρBðrÞ 
kr-Rak dr-

b∈B

ZbρAðrÞ 
kr-Rbk dr ð52Þ

for the attractive contribution. Signs in Eq. (52) reflect the convention that electron
densities are output from electronic structure programs as strictly positive quantities,
representing probability densities of negatively charged electrons [43]. Although



Enn
elst and Eee

elst become increasingly repulsive at shorter intermolecular separation,
Een
elst becomes more attractive as the separation is reduced and the electrons in ρAðrÞ 

gain better access to the nuclei on B and vice versa.
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For Ar2 at R= 3:76 Å, which is close to the equilibrium separation, Fig. 23b
quantifies the three terms in Eq. (49). The attractive and repulsive contributions are
each ∼ 90 Eh in magnitude yet sum to a mere - 0:000164 Eh = - 35:9 cm-1,
which is the total value of Eelst [43]. In this particular case, the increased attraction
of Een

elst at short range wins out over increased repulsion of Eee
elst þ Enn

elst, although the
effect is very small. It may be larger in other systems, as in ðC6H6Þ2 (see Fig. 21),
although the sign is not guaranteed one way or the other and examples can be found
where Eelst > 0 at short range [213].

Thus, Coulomb repulsion does not account for steric repulsion. Instead, short-
range repulsion originates with the exchange energy (Eexch ), as seen for Ar2 in
Fig. 23a. This is Pauli repulsion, originating from the antisymmetry requirement.
Within the SAPT formalism, that requirement is not built into the direct-product
wavefunction jψA

0 〉 jψB
0 〉 . This is more than a semantic or a model-dependent

distinction, however. Results above demonstrate that interpenetration of two charge
densities ~ρAðrÞ and ~ρBðrÞ need not lead to a repulsive interaction, when the electron–
nuclear interactions are considered. Thus, a distinct physical phenomenon is needed
to explain steric repulsion.

One may conceptualize Pauli repulsion in the following way. If the isolated
monomer wavefunctions ψX

0 (for X = A or B) are computed by means of a
variational principle, as in any SCF calculation, then ψX

0 will adopt whatever
shape minimizes its energy in isolation. Introduction of another molecule brings
with it an antisymmetry constraint, so that the energy of the constrained system must
be higher than that of the unconstrained system, for any finite intermolecular

Fig. 23 (a) Total interaction potential EintðRÞ for Ar2 (in black) and its SAPT decomposition
(in color), computed at the SAPT0/aug-cc-pVTZ level. (Adapted with permission from Ref. [43];
copyright 2021 American Chemical Society.) (b) Isocontours ρ= 0:001 a.u. of the HF electron
density and components of Eelst, computed for R= 3:76 Å



separation. In other words, the antisymmetry constraint forces a deformation of the
wavefunction away from the minimum-energy form that it adopted in isolation and
that deformation is associated with an energy penalty (steric or Pauli repulsion). An
alternative but equivalent view is that steric repulsion represents an orthogonaliza-
tion penalty [229]. Since the MOs for molecules A and B are computed in isolation,
they will not be mutually orthogonal and must be deformed (orthogonalized) in order
to construct a common Slater determinant that satisfies the Pauli principle
(antisymmetry requirement) for the composite AB system.
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It is worth noting that some EDA schemes choose to orthogonalize the MOs and
construct an antisymmetric Slater determinant jψA

0 ψ
B
0 〉 prior to computing electro-

static interactions [9]. This differs from the direct-product jψA
0 〉 jψB

0 〉 that is used in
SAPT. Where electrostatic interactions are computed using an antisymmetrized
reference state, the antisymmetrized electrostatics should be compared to Eelst þ 
Eexch from SAPT. For Ar2, Fig. 23a shows that this sum is also repulsive, as the Pauli
repulsion (Eexch) more than compensates for the attractiveness of Eelst.

3.1.3 Dispersion Is Size Extensive

There is a tendency to describe dispersion as a weak interaction. (Sometimes, the
phrase “van der Waals interactions” is used to mean dispersion, but we avoid that
terminology.) Dismissing dispersion as a weak effect is prevalent in the literature on
drug discovery and noncovalent enzyme inhibition, where “vdW interactions” are
sometimes described as a sub-kcal/mol phenomenon [230]. This is true for the rare-
gas dimers that are often used to introduce London dispersion, as evident from the
Ar2 data in Fig. 23. However, the magnitude of Edisp scales with system size and
need not be small in large molecular systems, even as compared to covalent bond
energies of ∼ 100 kcal/mol. Assuming typical values for atomic C6 coefficients, a
rough estimate suggests that two 100-atom organic molecules at 5 Å separation
might exhibit a mutual dispersion interaction Edisp ∼ - 60 kcal/mol [5]. Entropic
effects tend to reduce interaction energies through entropy/enthalpy compensation,
such that jΔG∘ 

bindj< 20 kcal/mol even for ∼ 100-atom host–guest complexes for
which jΔU∘ 

bindj exceeds 100 kcal/mol [186].
Nevertheless, in order to understand the balance of intermolecular forces it is

important to get the interaction energies right. Qualitative effects of dispersion on
organic reactivity have been discussed [6], aided by in silico computational model-
ing in which dispersion interactions can be turned off in order to isolate their effects.
This has led to the fascinating idea of “steric attraction” [6, 7, 231–235], in which a
bulky substituent also contributes substantially to the polarizability, enhancing Edisp

to the point that it may outcompete Eexch and the larger substituent becomes the less
repulsive one. This phenomenon is only possible because dispersion is size
extensive.

To illustrate how the magnitude of the dispersion interaction generally increases
with molecular size, Fig. 24 shows two examples relevant to drug discovery, namely,



a DNA intercalation ligand (the antitumor agent ellipticine) and also the protease
inhibitor indinavir in a model of the HIV protease binding site. These two systems
have become standard benchmarks for noncovalent quantum chemistry
[236, 237]. In both cases, the XSAPT+MBD interaction energy lies rather close to
a benchmark CCSD(T)/CBS value [236]. The interesting observation in the present
context is the magnitude of the dispersion energy. For the DNA intercalation
complex, which is an obvious example of π-stacking where dispersion might be
expected to play a prominent role, the XSAPT+MBD dispersion energy is - 71
kcal/mol [41]. Meanwhile, the HIV–indinavir system has no obvious π–π interac-
tions, yet the dispersion contribution is nearly twice as large, at - 135 kcal/mol
[42]. The model system for HIV–indinavir contains 323 atoms as compared to
157 atoms for the DNA–ellipticine model, and the dispersion energy is more
attractive in the larger model system.
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3.2 Comparison of Dispersion Models

Having established that SAPT calculations can reveal fundamental physics regard-
ing the origins of intermolecular forces, and that the magnitude of dispersion
increases with system size, we next want to consider the dispersion interactions

Fig. 24 Interaction energies and XSAPT+MBD decompositions for two pharmacologically rele-
vant complexes: (a) ellipticine intercalated into DNA (157 atoms) and (b) indinavir in the binding
pocket of HIV-2 protease (323 atoms), with the inhibitor (indinavir) shown using opaque atoms. In
(a), CP-corrected DFT/def2-TZVPPD results are provided for two different functionals, whereas
XSAPT+MBD calculations use the def2-hpTZVPP basis set for both systems; these calculations are
from Ref. [41]. Semiempirical HF-3c and PBEh-3c results are from Ref. [42]. (Adapted with
permission from Ref. [42] but updated to reflect new CCSD(T0Þ /CBS benchmarks from Ref.
[236]; copyright 2021 American Chemical Society)
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more carefully. The second-order expression obtained by London is [43, 145, 238,
239]
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Eð2Þ 
disp,AB = -

m> 0 n> 0

∣ hψA
mψ

B
n ∣ ðĤAB - ĤA - ĤBÞjψA

0ψ
B
0 ij

2

ðεAm - εA0 ÞðεBn - εB0 Þ
: ð53Þ

This corresponds to the dispersion energy in SAPT0 (Eq. 8a). As discussed previ-
ously, it is typically much too attractive, e.g., by 80–100% for π -stacked benzene
dimer [75, 240]. For larger systems, errors in second-order perturbation theory are
even more egregious [38, 71].

For that reason, we substitute a dispersion model in XSAPT+MBD, which
performs extremely well as compared to dispersion energies obtained from
SAPT2+(3) calculations, as discussed previously in the context of Fig. 6. W
consider that SAPT2+(3) constitutes a benchmark level of theory for the energy
components because total interaction energies computed at that level agree with
CCSD(T) results to sub-kcal/mol accuracy [25–27, 57, 58]. Good agreement
between XSAPT+MBD and SAPT2+(3) energy components thus lends credence
to the idea that the former does not benefit significantly from error cancellation, so
that individual energy components within the SAPT formalism can be swapped out
for better models, e.g., substituting the non-perturbative MBD model for dispersion.

It is interesting to compare these benchmark-quality dispersion energies to those
obtained from the popular ALMO-EDA2 scheme [13], which is DFT-based. We
select the PBE0+D3 functional for this assessment, as it performs well for total
interaction energies on a variety of noncovalent datasets [1]. ALMO-EDA2 provides
a means to separate induction from the total (CP-corrected) interaction energy [82],
and the remaining energy components are grouped together as the “frozen density”
part of ΔEint, which is

ΔEFRZ =Eelst þ Eexch þ Edisp : ð 54Þ

To isolate the dispersion energy, it is recommended [13] to compute ΔEFRZ using
both the target functional (PBE0+D3 in this case) and also with a “dispersionless”
functional that is assumed to describe dispersion poorly or not at all (e.g., HF
theory). The difference between ΔEFRZ computed with either functional defines
the ALMO-EDA2 dispersion energy [13]:

EALMO-EDA2
disp =ΔEtarget

FRZ -ΔEdisp’less
FRZ : ð55Þ 

If the target functional is a hybrid then HF theory is suggested for computing
ΔEdisp’less

FRZ [13].
Application of this procedure to the S22 dataset, however, leads to ALMO-EDA2

dispersion energies that are systematically less attractive than SAPT2+(3) values, as
documented in Fig. 25. These sizable discrepancies may arise because the recipe in



Eq. (55) assumes that every correlation effect is dispersion, when the
“dispersionless” functional is selected to be HF exchange (only). Correlation cor-
rections to electrostatics or Pauli repulsion might reduce the attractiveness of what is
counted as dispersion. To investigate this, we experimented with using HF exchange
plus PBE correlation (the HF-PBE functional) as the “dispersionless” functional in
Eq. (55) [1]. This affords dispersion energies that are even farther from SAPT2+(3)-
values, as shown also in Fig. 25.
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Figure 26 provides an alternative presentation of these data, plotting EMBD
disp and

EALMO-EDA2
disp versus ESAPT2þð3Þ 

disp . A linear fit of the MBD data affords a slope of ≈ 1:0

with an intercept of - 0:4 kcal/mol, which we regard as good agreement with the
benchmarks. ALMO-EDA2 dispersion energies also correlate reasonably well with
SAPT2+(3) benchmarks, although less so when HF-PBE is used as the
“dispersionless” functional. Given that removing the semilocal correlation effects
from ALMO-EDA2 dispersion seems to worsen agreement with benchmark disper-
sion energies, it is unclear whether ALMO-EDA2 energy components can be
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Fig. 25 (a) Dispersion energies for the S22 dataset computed using various methods. (b) Differ-
ences between the SAPT(KS)+MBD or ALMO-EDA2 dispersion energies and SAPT2+(3)/aug-cc-
pVTZ benchmarks from Ref. [151]. ALMO-EDA2 dispersion energies are computed using Eq. (55)
with PBE0+D3 as the target functional and either HF or HF-PBE as the dispersionless functional.
(Adapted with permission from Ref. [1]; copyright 2024 Elsevier)



compared directly to SAPT values. Consult Ref. [1] for some additional comparisons
between dispersion models.
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3.3 Arene Stacking Interactions

In a series of publications, we have used XSAPT+MBD calculations to explore the
fundamental nature of π–π interactions [42, 148, 215–217], which have also been
investigated using conventional SAPT [212–214, 241–243]. Although the benzene
dimer has long been the archetypal model system for studying such interactions, it is
not a good model for larger polycyclic aromatic hydrocarbon (PAH) dimers [148],
for reasons discussed in Sect. 3.3.2. Nevertheless, understanding substituent effects
on stacking energies in dimers of benzene and small heterocycles remains an
important guide for synthetic chemistry [244–250]. Below, we use XSAPT+MBD
to explore the origins of parallel-displaced π-stacking (Sect. 3.3.1) and then address
an old question of whether π–π interactions are a unique type of interaction that is
distinct from “ordinary” dispersion (Sect. 3.3.3).
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3.3.1 Offset π-Stacking

Three canonical configurations of ðC6H6Þ2 are depicted in Fig. 27a–c. These three
geometries lie within ≈ 1 kcal/mol of one another [251], with the parallel-displaced
structure being slightly lower in energy than the cofacial “sandwich” structure,
which is itself a saddle point between symmetry-equivalent parallel-displaced geom-
etries [212, 240]. The T-shaped geometry is essentially iso-energetic with the
parallel-displaced π-stacked structure, and may be a saddle point between tilted
T-shaped structures (not shown), albeit with a negligibly small energy barrier of
∼ 0:2 kcal/mol [212, 215, 252]

The conventional point of view in the organic chemistry literature is that π–π 
interactions are controlled by quadrupole–quadrupole interactions between the arene
rings [253–255], recognizing that the benzene monomer has a rather large quadru-
pole moment for a small molecule [256]. This results from the π-electron density on
its faces that leads to electropositive C–H bonds, as depicted in Fig. 27. The offset-
stacking phenomenon, whereby two proximal arenes are much more likely to be
found in a parallel-displaced arrangement than in a face-to-face-configuration
[257, 258], is also typically explained in terms of quadrupolar electrostatics
[253, 254]. The argument is that quadrupole–quadrupole interactions are repulsive
in the face-to-face configuration but attractive in the edge-to-face arrangement,
which is certainly true according to multipolar electrostatic calculations (Fig. 21)
but misrepresents exact electrostatics.

This quadrupolar electrostatic viewpoint on π-stacking exemplifies how electro-
static considerations dominate the thinking in organic chemistry and how leading-
order multipolar interactions are often used as surrogates for electrostatics. Not only
does the multipolar picture disagree with exact electrostatics at π-stacking distances
(predicting even the wrong sign for Eelst at R= 3:4 Å separation), it also cannot
explain the origin of parallel-displaced π -stacking in the (C6H6)⋯(C6F6).
heteromolecular dimer, which is predicted by CCSD(T) calculations [259–261]
and illustrated in Fig. 27. For a symmetric top molecule, the quadrupole moment

Fig. 27 Three canonical configurations of (C6H6)2 and (C6F6 )⋯(C6H6 ): (a) eclipsed-
cofacial (“sandwich”) isomer of (C6H6)2, (b) slip-stacked isomer of (C6H6)2, (c) T-shaped isomer of
(C6H6)2, (d) cofacial isomer of (C6H6)⋯(C6F6), and (e) offset-stacked isomer of (C6H6)⋯(C6F6).
Cartoon charge distributions are shown for the benzene dimer structures. CCSD(T)/CBS interaction
energies are from Ref. [251] for (C6H6)2 and from Ref. [260] for (C6H6)⋯(C6F6)



tensor has only one independent component (call itΘzz) [207, 262], which is opposite
in sign but nearly equal in magnitude in C6F6 and C6H6: ΘzzðC6F6Þ= þ 9:50± 0:51
B versus ΘzzðC6H6Þ= - 8:69± 0:51 B [256]. As a result, the quadrupole–quadru-
pole interaction is attractive in face-to-face orientations of ðC6H6Þ⋯ðC6F6Þ [215].
Nevertheless, accurate calculations suggest that ðC6H6Þ⋯ðC6 F6Þ also exhibits
offset π-stacking [215, 259–261].
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We pause here for an aside on nomenclature and attribution. In the supramolec-
ular organic chemistry literature, the quadrupolar electrostatic idea described above
is often used synonymously with the term “Hunter–Sanders model” [217]. Although
widely repeated, this misrepresents force-field models developed to explain the
configurational preferences of (C6H6)2 and other systems [257, 263–265]. Even
so, Hunter himself would eventually come to describe π –π interactions in
quadrupolar terms [253]. The idea that π -stacking has a quadrupolar electrostatic
basis remains widespread in the synthetic chemistry literature, as discussed else-
where [217] and evidenced by recent reviews [254, 255]. In view of this continuing
misconception, we have argued that cartoon charge distributions such as those as in
Fig. 27a–c are misleading because they do not adequately capture the change in
quadrupolar interactions for ðC6H6Þ⋯ðC6F6Þ [217].

While it may be ubiquitous, the quadrupolar picture of π-stacking is also irre-
deemably incorrect. Charge penetration leads to a qualitative breakdown in the
multipole approximation at typical vdW contact distances, including typical face-
to-face π -stacking separations (3.4–3.8 Å) as seen in Fig. 21. Not only is the
multipole expansion divergent as R→ 0 [22, 208–210], but leading-order molecular
multipole approximations and even distributed (atom-centered) multipole expan-
sions may afford the wrong sign for Eelst at these intermolecular distances.

To make this explicit, Fig. 28 juxtaposes two-dimensional contour plots of exact
and quadrupolar electrostatics for ðC6H6Þ2 [217]. One of the coordinates in these
plots is the intermolecular distance R, representing the face-to-face separation for
parallel arrangements of the dimer and face-to-center distance for perpendicular
orientations. The other coordinate is a lateral displacement that generates slip
stacking in the cofacial arrangement, while in perpendicular orientations it moves
the dimer between T-shaped and L-shaped geometries. The exact Eelst calculation in
Fig. 28 uses SAPT electrostatics, computed at the LRC-ωGDDPBE/def2-TZVPD
level in order to be consistent with XSAPT+MBD calculations to follow, while the
quadrupolar calculation uses the quadrupole tensor Θ for C6H6 that is obtained at
the same level of theory.

Consistent with organic chemistry lore, quadrupole–quadrupole repulsion in the
face-to-face orientation would push the system away from the sandwich geometry
and into an offset-stacked arrangement (Fig. 28a), while quadrupolar attraction in the
perpendicular orientation favors a T-shaped geometry over an L-shaped one
(Fig. 28d). However, these results are inconsistent with exact electrostatic calcula-
tions. For the face-to-face arrangement, contours of (exact) Eelst are relatively flat
along the lateral displacement coordinate (Fig. 28b), at least for typical π-stacking
distances, indicating that electrostatics is largely ambivalent toward offset-stacking.
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This is emphasized in Fig. 28c, which plots one-dimensional slices at the minimum-
energy stacking distance, R= 3:4 Å. If anything, exact electrostatics favors the
sandwich configuration rather than the offset-stacked geometry, albeit very weakly.
Meanwhile in the edge-to-face geometry, exact electrostatics favors an L-shaped
geometry with a 1 Å offset, which is seldom observed [257], rather than a T-shaped
geometry with no offset.
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Fig. 28 Electrostatic interaction profiles for (C6H6)2. Top row: parallel orientation, plotting (a) the
quadrupole–quadrupole interaction along the face-to-face distance (R) and lateral displacement
(slip-stacking) coordinates; (b) exact electrostatics along the same two coordinates, computed using
full charge densities; and (c) one-dimensional slices through (a) and (b) at R= 3:4Å, corresponding
to the parallel-displaced minimum-energy geometry. Bottom row: perpendicular (edge-to-face)
configuration, plotting (d) quadrupolar electrostatics along the center-to-face distance R and lateral
displacement coordinates; (e) exact electrostatics; and (f) one-dimensional slices through (a) and (b)
at R= 5:0Å, corresponding to the T-shaped saddle point. Contours are drawn in intervals of (a) 0.5
kcal/mol, (b) 0.1 kcal/mol, (d) 0.1 kcal/mol, and (e) 1.0 kcal/mol. (Most data are from Ref. [217],
replotted here with some additional calculations)

The quadrupolar electrostatic explanation is clearly deficient, and we turn to
XSAPT+MBD to explain the physical origins of slip stacking. In Fig. 29, w
examine lateral displacement potentials for the parallel and perpendicular arrange-
ments of ðC6H6Þ2. The total interaction potential exhibits a T-shaped minimum for
the edge-to-face benzene dimer (Fig. 29a) and symmetric parallel-displaced minima
in the face-to-face arrangement (Fig. 29b). The same critical points are exhibited by
the vdW potential,
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Fig. 29 Total interaction potentials versus vdW potentials (EvdW =Eexch þ Edisp) for sliding one
benzene monomer past another in either (a) an edge-to-face orientation or (b) a face-to-
face configuration. Arrows at the bottom of each panel indicate the position coordinate of the
structures that are shown. Intermolecular distances are consistent with either (a) the T-shaped
structure of (C6H6)2, with a 5.0 Å face-to-center distance, or (b) the parallel-displaced minimum
of (C6H6 )2, with a 3.4 Å face-to-face stacking distance. All calculations were performed using
XSAPT+δHF+MBD/def2-TZVPPD. (Adapted from Ref. [215] under a CC BY 3.0 license)

EvdW =Eexch þ Edisp : ð56Þ

This terminology recognizes that van der Waals’ modifications to the ideal gas
equation contained the effects of both attractive interactions (Edisp ) and finite
molecular size (Eexch). The data in Fig. 29 suggest that EvdW is qualitatively sufficient
to explain the origin of offset π -stacking in ðC6H6Þ2. It arises from a competition
between Pauli repulsion, which favors an offset in order to reduce density overlap,
and dispersion that favors spatially proximal atoms. Electrostatic interactions are not
required for this geometric preference to emerge.

That is not to say that there is no role for electrostatics in π-stacking or that the
vdW potential alone sets the stacking parameters. Although the attractive electro-
static contours for cofacial benzene dimer (Fig. 28b) have little influence on whether
slip stacking occurs or not, they are essential for obtaining the correct face-to-face
separation because they provide a stabilizing interaction at short range. Absent Eelst,
one would obtain a stacking distance Rmin ≈ 3:9 Å for the parallel-displaced config-
uration [217], significantly larger than the correct value Rmin = 3:4 Å.

To examine this in a system where electrostatics plays an even more important
role, energy profile contours were computed for the nitrobenzene dimer and plotted
in Fig. 30. By itself, the vdW potential affords a minimum-energy separation of
Rmin ≈ 3:8Å, whereas the correct value (considering all energy components) is about
3.4 Å. This difference is directly attributable to electrostatic interactions that are
attractive at these distances, contrary to the quadrupolar electrostatic picture. In the
case of (C6H5NO2)2, short-range electrostatics is attractive regardless of whether the



monomer dipole moments are aligned parallel or antiparallel; see Fig. 30c for the
parallel configuration and Fig. 30f for the antiparallel arrangement.
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Although the slip-stacking phenomenon arises strictly from EvdW, electrostatics-
driven reduction in the minimum-energy separation has general implications for π–π 
interactions that are explored in Sect. 3.3.3. Those implications depend critically on
the fact that electrostatics is attractive at π-stacking distances, a phenomenon that is
not captured—even qualitatively—by low-order multipole expansions. This is dem-
onstrated for (C6H5NO2)2 in Fig. 31, which presents the results of an approximate
electrostatic calculation that uses only the dipole and quadrupole moments of the two
monomers. These multipolar electrostatic surfaces are qualitatively different from
the exact ones. In the parallel-dipole arrangement, the multipolar approximation
predicts strong electrostatic repulsion, in geometries consistent with π -stacking
(Fig. 31a), whereas short-range electrostatics is always attractive when it is com-
puted using full monomer charge densities (Fig. 30c). For the antiparallel-dipole
arrangement, the multipolar approximation changes sign near zero displacement
(Fig. 31b), which is also completely inconsistent with an exact calculation where
there is no repulsive region at all (Fig. 30f).

A recent survey of protein crystal structures confirms this viewpoint [258]. It
updates an early census of neighboring phenylalanines by Hunter et al. [257] but
demonstrates that the “vdW picture” of π-stacking (driven by EvdW) better explains
the prevalence of parallel-displaced cofacial stacking. As we speculated earlier
[215], the vdW picture provides a much more satisfactory explanation for why
offset stacking is so pervasive in protein crystal structures, across disparate
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electrostatic environments. The reason is that EvdW consists of only short-range
intermolecular forces, which are omnipresent for arene–arene interactions regardless
of the electrostatic environment. In contrast, it is more difficult to rationalize how an
explanation based on longer-range electrostatic interactions could persist across the
myriad electrostatic environments that are encountered within different proteins.
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Fig. 31 Multipolar electrostatic potentials for cofacial (C6 H5 NO2 )2 in orientations where the
monomer dipole moments are either (a) parallel or (b) antiparallel, as in Fig. 30. In either case, the
electrostatic potential is approximated using monomer dipole and quadrupole moments computed at
a level of theory that is consistent with XSAPT+MBD electrostatics. The corresponding exact
results, using full charge densities, can be found in Fig. 30c for the parallel configuration and in
Fig. 30f for the antiparallel arrangement. (Adapted with permission from Ref. [217]; copyright 2025
American Chemical Society)

3.3.2 π–π Interactions in Larger Systems

Examples considered in Sect. 3.3.1 exploit XSAPT’s energy decomposition but
don’t require its reduced scaling. A larger example along the same lines is benzene
atop a C94H24 graphene nanoflake, for which XSAPT+MBD results are shown in
Fig. 32 [42]. Here, eclipsed-cofacial stacking (analogous to the sandwich structure of
benzene dimer) represents a saddle point between symmetry-equivalent slip-stacked
minima, where an offset of approximately 1.4 Å lowers the energy by about 1 kcal/
mol.

The vdW explanation for offset stacking persists in more exotic systems as well.
For example, we have examined slip stacking in models of the covalent organic
framework (COF) known as “COF1” [266], models for which are illustrated in
Fig. 33a [216]. COFs are layered materials with potential applications in catalysis,
but those applications require that the pore structure be open. Although the structures
are likely amorphous or polycrystalline, characterized by microdomains, there has
been much discussion regarding whether solvent molecules can occlude the pores
[267–269] or whether even the solvent-free structure might be characterized by
slippage between the layers that could block the pores [270, 271]. Using the
nomenclature of graphene [272, 273], the question is whether these materials exhibit



“AA stacking” (perfectly cofacial, with pores open) or “AB stacking” (with alter-
nating offset layers that will occlude the pores) [267–269, 274–280].
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Fig. 32 Total interaction energy (Eint ) for lateral displacement of C6H6 atop a C94H24 graphene
nanoflake, in a cofacial orientation, computed at the XSAPT+MBD/def2-TZVPPD level. Critical
points are labeled using the AA/AB nomenclature for graphene, as illustrated on the right. (Data are
from Ref. [148])

Fig. 33 (a) Three-unit dimer model of COF1, showing a slip-stacked version of AA-stacking
(upper structure) as well as an AB-stacked structure in which the pores are occluded. (b) XSAPT
+MBD/def2-ma-TZVP interaction potential and energy components, for lateral displacement of a
one-unit dimer model at a fixed separation of 3.28 Å, corresponding to the parallel-displaced value
of Rmin:

These possibilities are illustrated in Fig. 33a and can be investigated with XSAPT
+MBD, whose low cost is crucial because the smallest monomer unit of COF1 is a
12-member ring composed of six-membered rings, containing 102 atoms. The
XSAPT+MBD/def2-ma-TZVP calculations presented in Fig. 33b, for the dimer of
that fundamental unit, are updates from previous calculations using def2-SVPD
[216], taking advantage of improved memory management in the new code to



improve the basis-set quality. These energy profiles indicate a small lateral offset of
≲ 1.5 Å, much smaller than the pore size. This is more consistent with benzene
dimer and other small π-stacked systems than it is with true AB-stacking. As seen in
Fig. 33b, the slight offset in the (COF1)2 model originates mostly from EvdW,
although Eelst makes a nontrivial contribution to the well depth.
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3.3.3 Are π–π Interactions Unique?

We next use XSAPT+MBD to consider a question that has been asked repeatedly in
the literature [281–283], namely, do π–π interactions constitute a unique form of
dispersion, different from that encountered in other molecules? CCSD(T) calcula-
tions on the coronene dimer (C24H12)2 and perhydrocoronene dimer (C24H36)2, as
models of graphene and graphane, respectively, suggest that Eint is more than 30%
larger per carbon atom in the [24]graphene model as compared to [24]graphane
[284]. This effect is not captured in B97+D/6-31G(d,p) calculations, which predict
similar interaction energies per carbon atom for much larger [n]graphene and [n]
graphane models [285].

Close examination of stacking energies for acene dimers and their saturated
perhydroacene analogues suggests an explanation for enhanced stacking energies
in [n]graphenes [148]. Figure 34 compares stacking energies for the acene and
perhydroacene dimers, where the former are considered in both cofacial (parallel-
displaced) and perpendicular (T-shaped) geometries. For n≥ 2 rings, the π-stacked
acene is systematically more stable than either the C–H⋯π (T-shaped) acene dimer
or the stacked perhydroacene dimer, by an amount that increases with the number of
rings. In contrast, all three structures have very similar interaction energies for n= 1
rings (i.e., the benzene and cyclohexane dimers), demonstrating that results for
benzene dimer are not representative of larger PAHs. These differences are con-
firmed in calculations of C6H6 atop C96H24, which exhibit a clear preference for
cofacial π-stacking over perpendicular C–H⋯π structures [148].

Remarkably, stacking energies for the perhydroacene dimers with one to five
cyclohexane rings are a nearly identical match to data for T-shaped acene dimers
with the same number of carbon atoms [148]. This suggests that there is something
special about cofacial π–π interactions specifically. To understand what it might be,
we consider isosurfaces of the reduced density gradient (RDG) [286],

RDGðrÞ= 1

2ð3π2Þ1=3
k ∇̂ρðrÞ k  
ρðrÞ4=3

, ð 57Þ

which has been used extensively as an indicator of noncovalent interactions [286–
291]. This works because noncovalent interactions are characterized by relatively
large oscillations in the density (manifesting as large values of k ̂∇ρðrÞk) in regions
where the density itself is small, due to disturbances in the tails of the monomer
electron densities originating in the presence of the other monomer.
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Fig. 34 (a) Interaction energies computed using XSAPT+δHF+MBD/def2-TZVPPD for
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copyright 2021 American Chemical Society)

Isosurfaces of RDG(r ) for the acene and perhydroacene dimers with n= 1 or
2 rings are plotted in Fig. 34b [148]. We observe that the RDG isosurface is
corrugated for both the T-shaped acene dimer and the perhydroacene dimer, with
stronger interactions when the C–H bonds of one monomer point into the middle of
the ring of its partner. In contrast, the RDG isosurfaces for the cofacial acene dimers
are relatively flat, meaning that strong interactions persist upon lateral displacement.

From this analysis, we conclude that π-stacking is unique among other dispersion-
driven interactions, specifically due to the planarity of the arene moiety that facili-
tates exceptionally strong interactions when two arenes are arranged in a cofacial
geometry but considerably weaker interactions (at least for PAHs) in the T-shaped
geometry. The difference is that the cofacial arrangement allows for closer approach
of the two arenes, which can then access short-range electrostatic interactions that
are attractive in the cofacial geometry. Thus, the fact that exact electrostatics differs
in sign from quadrupolar electrostatics for cofacial arenes is a crucial aspect of what
makes π-stacking special, different from an ordinary dispersion interaction. Two
arenes in a T-shaped geometry still interact via dispersion forces but are kept farther
apart due to Pauli repulsion of the C–H⋯π arrangement and do not access the
attractive short-range electrostatic interaction, leading to systematically weaker
interaction energies as compared to those in cofacial geometries. Interactions in [n]
graphane models are weaker for the same reason.

Note that this explanation for what is special about π-stacking invokes planarity
but not aromaticity. For arenes, the former obviously derives from the latter, yet our



analysis suggests that exceptionally strong stacking interactions should be available
to systems that are planar but not aromatic. In fact, this has been observed [255, 292–
295]. Our mental image is that the dispersion interactions associated with the π-
electron density (or the electron density in some otherwise planar moiety) are served
up on a two-dimensional platter, resembling a pizza peel, which can be rotated into
an optimal coplanar configuration but whose shape cannot be deformed. If it can be,
as in the perhydroacenes, then the stronger stacking interactions are lost. We refer to
this as the “pizza-π” model of stacking interactions [148]. Strong π–π interactions
turn out to be more about the pizza (molecular planarity) than they are about the π 
(aromaticity).
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3.4 Charge Transfer in Anion–Water Hydrogen Bonds

Partial covalency of hydrogen bonds has long been a topic of debate [154]. For
anion–water hydrogen bonds, that debate is settled (in our view) by the observation
of strong redshifts in gas-phase vibrational spectra of hydrated anion clusters [296–
298]. These are the signature of n→ σOH charge donation from the anion into
antibonding MOs of the hydrogen-bonded O–H moiety [299, 300], which is then
considerably redshifted, whereas the “free” or non-hydrogen-bonded O–H vibration
is not [296–298]. Quantitative values for the fraction of an electron that is transferred
vary greatly depending on the theoretical method that is used but are on the order of a
few milli-electrons in the neutral water dimer [154], up to perhaps ≈ 0:2 electrons
for F-(H2O) [300].

Here, we examine the role of CT in the F-(H2O) hydrogen bond using
SAPT0+δHF in conjunction with the cDFT-based procedure for separating polari-
zation and CT that was introduced in Sect. 1.3.2 [178]. Figure 35b plots various
energy components as the ion is swept radially around the H2O molecule. Note that
the C2v geometry of F-(H2O), in which the ion sits at the positive end of water’s
dipole moment vector, is actually a saddle point between two symmetry-equivalent
minima corresponding to quasi-linear hydrogen bonds. Halide–water coordination is
monodentate rather than bidentate, consistent with the interpretation of cluster ion
vibrational spectroscopy [296–298], solution-phase neutron diffraction [301], and
x-ray absorption experiments [302].

In contrast to the dipolar picture of anion–water interactions that remains com-
mon in textbooks [303], electrostatics alone actually favors the hydrogen-bonded
structure over the C2v geometry. That said, Eexch is maximally repulsive in the
hydrogen-bonded configuration because the ion–water distance is smaller as com-
pared to that in the C2v geometry. (Note that the plots in Fig. 35 represent relaxed
scans, meaning that the geometry of the complex is optimized at each fixed angle
that is used to generate the one-dimensional energy profile. The small cusps that can
be seen at the C2v geometry are artifacts of these relaxed scans that disappear if the
H2O deformation energy is included, as explained in Ref. [178].) A plot of



Eint -ECT is nearly flat for angular displacements to either side of the C2v geometry
(Fig. 35b), indicating that energy components other than CT are ambivalent toward
the position of the ion, so long as it resides within the angle subtended by the two O–
H bonds. In contrast, ECT turns on sharply for quasi-linear F-⋯H–O geometries,
implying that CT is primarily responsible for stabilizing the hydrogen-bonded
configuration relative to the ion–dipole arrangement. Quasi-linearity is a defining
feature of the hydrogen bond [304, 305] and arises from the strong angle dependence
of ECT, which can certainly be rationalized in terms of overlap between the MOs
n(F) and σ (O–H), but emerges here without explicit MO considerations. The same
conclusions are valid for complexes X-(H2O) with larger halide ions [178].
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Fig. 35 (a) Energy components for F-(H2O) computed at the SAPT0+δHF/jun-cc-pVDZ level,
along a relaxed scan in which the F–O–H angle is varied while the other degrees of freedom are
relaxed at the MP2/aug-cc-pVTZ level. Three representative geometries are depicted,
corresponding to right and left hydrogen bonds with a C2v-symmetric saddle point between them.
(b) A closer look at some energy component profiles. (Reproduced with permission from Ref.
[178]; copyright 2021 American Chemical Society)

Encouraged by this successful description, we turned to SAPT(HF)+MBD cal-
culations to analyze anion–water interactions for inorganic anions in aqueous solu-
tion [179]. This originates in an attempt to determine whether the solvation
environment of simple anions (including halides, ClO-

x , NO-
x , and cyanates) is

different in bulk water versus the liquid/vapor interface, and a provocative sugges-
tion that it might not be [201]. Figure 36 shows results in the form of box-and-
whisker plots representing ensemble averages of SAPT(HF)+MBD interaction ener-
gies and energy components for anion–water clusters extracted from a simulation
[179]. (Each cluster contains approximately two solvation shells of water molecules
that are treated as a single monomer.) For a variety of surface-active monovalent
anions [306–311], we find little difference in Eint between the bulk and interfacial
environments (Fig. 36a) [179]. Interestingly, the CT energies are also quite similar
(Fig. 36b), with the possible exception of I-, ClO-, and SCN-, although differences
are modest even in those cases. Since Eint and ECT are similar, it follows that
polarization energies are not very different between bulk and interfacial
environments [179].
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Fig. 36 Box-and-whisker plots showing mean values, standard deviations, and extremal values of
(a) total interaction energies and (b) CT energies for ion–water clusters extracted from a molecular
dynamics simulation. Electronic structure calculations were performed at the SAPT(HF)+MBD/
6-311+G(d,p) level, and each snapshot from the simulation was binned according to whether the ion
was in a bulk solvation environment or else was present at the air/water interface. (Adapted from
Ref. [179] under a CC BY 4.0 license)

4 Summary

The SAPT formalism, and XSAPT with it, has quite a few moving parts that can
make it intimidating to beginners, and setting up the calculations requires a variety of
decisions on the user’s part. In this lengthy overview of XSAPT, we have taken the
time to explain carefully how those various parts work and what decisions need to be
made. Philosophically, we suggest that the need for choices is a feature rather than a
bug. Compared to DFT-based EDAs, which are subject to the vagaries of XC
functional choice and an ambiguous definition of dispersion, (X)SAPT-based energy
decomposition is well defined and improvable, in principle. Clean separability
between energy components means that it is possible to test the effect that specific
decisions have on individual energy components and thereby gauge the reliability of
one’s conclusions based on their sensitivity to this menu of choices.

That said, our preferred choice for complexes not involving ions is XSAPT
+MBD/def2-ma-TZVP, with monomer wavefunctions obtained using the
LRC-ωGDDPBE functional, tuned in a monomer-specific way, and with CM5
embedding charges. The latter perform well for ions, and we recommend XSAPT
+aiD3 as a starting point for ionic complexes. These methods are available in the
Q-Chem code [46], with improved multithreading capabilities in recent releases.

Exemplary applications discussed herein demonstrate how the XSAPT formalism
can be brought to bear on important problems in physical (and physical organic)
chemistry, exposing certain fallacies regarding intermolecular interactions that per-
sist in textbooks and in research literature. We hope that XSAPT-based calculations
can start to change conventional thinking by furnishing qualitative insight based on
quantitative calculations.
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