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3.1 Overview

Following its implementation in molecular quantum chemistry codes in the early 1990s (1–6), density-functional theory
(DFT) quickly emerged as themost popular tool for ground-state electronic structure calculations due to its favorable balance

of relatively low cost with reasonable accuracy for thermochemistry. The first excited-state implementations quickly fol-

lowed (7–12), based on a linear-response (LR) formalism (13–15) that mirrors much earlier work on time-dependent

Hartree-Fock (TDHF) theory (16). The historical development of TDDFT has been summarized elsewhere (17). The LR
formulation is now known almost universally as “time-dependent” (TD-)DFT, despite its frequency-domain formulation

and implementation. In its most pedestrian applications, LR-TDDFT produces vertical excitation energies for closed-shell

molecules at ground-state geometries to within a statistical accuracy of�0.3 eV (18), at a cost that is often only a few times

more than the cost of the ground-state self-consistent field (SCF) calculation and possessing the same formal scaling (19).
This is a useful accuracy for electronic absorption spectra. In viewof its lowcost, LR-TDDFThas become thede factomethod

for computing electronic excitation spectra of finite molecular systems, although some fundamental problems remain in its

application to periodicmaterials (20–22). LR-TDDFT is also becoming increasingly popular for photochemical applications

(23–25), despite some problems with the description of conical intersections (26–28). In part, this popularity is due to a

growing recognition that complete active-space (CAS-)SCF methods cannot be considered quantitative approaches for

excited-state dynamics (29–32), due to a lack of dynamical electron correlation.

This chapter provides an overview of TDDFT and other DFT-based methods for computing excitation spectra, excited-

state properties, and for simulating photochemical reactions, emphasizing theory rather than applications but with some

molecular examples to motivate the discussion. For those unfamiliar with the formal underpinnings of TDDFT, a natural

question to ask is “what does time have to do with excitation energies?” In fact, one knows from basic quantum mechanics

that the time evolution of a nonstationary wave function encodes the system’s excitation energies via the Bohr frequencies,

ojk ¼ ðEj � EkÞ=ħ, therefore the time evolution of a quantum system can be used to extract excitation energies. The exis-

tence of a time-dependent extension of DFT is formally justified by the Runge-Gross theorem (33–39), which provides

something akin to a time-dependent extension of the first Hohenberg-Kohn theorem for the ground state (40), that is, a
density-to-potential mapping. In the time-dependent case, there are important caveats about initial-state dependence

and memory effects (41–43). Those issues have yet to be fully resolved in a computationally feasible way, but this has

not stymied the practical development and application of TDDFT.
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Following a perturbation to the ground state, which creates a superposition of energy eigenstates, the Fourier compo-

nents of the time-dependent dipole moment are precisely the Bohr frequencies. A Fourier transform of the dipole moment

function is itself an absorption spectrum (44),

IðoÞ¼ 1

2p

Z +∞

�∞
hmð0Þ �mðtÞie�iotdt (3.1)

Excitation energies are also encoded in the isotropic frequency-dependent polarizability, a(o), which has a sum-over-states

expression

aðoÞ ¼ e2

me

X
n>0

f 0n
o2
n0 � o2

(3.2)

where me is the electron mass, on0 ¼ ðEn � E0Þ=ħ, and

f 0n ¼
2meon0

3e2ħ

� �
jh0jm̂jnij2 (3.3)

is the dimensionless dipole oscillator strength for the j0i!jni transition (44). The poles of response function a(o) therefore
encode excitation energies, with residues that encode oscillator strengths (19). In the early days of quantum chemistry, Eq.

(3.2) was actually used to compute excitation energies for atoms and atomic ions (45, 46), by computing a(o) as the

response to an applied field, and a version of this approach would eventually reappear in the form of “real-time” TDDFT

(47, 48). The poles of the Kohn-Sham response function also serve this purpose (9, 49, 50), and the LR formalism applied to

the Kohn-Sham ground state turns this idea into a robust computational paradigm, in the form of an eigenvalue-type

problem for the excitation energies (13–15). Although the LR formulation exists strictly in the frequency or energy domain,

the time-dependent origins of the phenomenology are suggested in the name “TDDFT.”

Despite its overwhelming popularity, LR-TDDFT excitation energies do tend to be more sensitive to the details of the

exchange-correlation (XC) functional as compared to ground-state properties computed with DFT. In some sense, the sta-

tistical accuracy of�0.3 eV that is quoted above should therefore be interpreted as representative of the best-case scenario

with state-of-the-art functionals, and assuming that certain systemic pathologies can be avoided. LR-TDDFT may not be

the theory that we want, but it remains the best theory that we have for excited states of large and even medium-sized

molecules. This theory is introduced formally in Section 3.2 and that discussion constitutes the most substantial part of

this chapter, just as LR-TDDFT occupies the most significant place among excited-state DFT methods. It holds that

position because it is easy to use, not significantly more expensive than ground-state DFT, and provides a slew of excited

states in an automated way, starting from a ground-state SCF solution.

While the accuracy of LR-TDDFT is often quite reasonable, certain systematic problems have been identified, and

excited-state Kohn-Sham procedures have been developed to circumvent these. Rather than applying LR to the ground

state, these methods look for an excited-state (non-aufbau) solution to the SCF equations, and for this reason the

excited-state Kohn-Sham approach is often called a “DSCF” method. Although not formally justified by the Runge-Gross

theorem, the DSCF approach has an admirable record of rectifying the deficiencies of LR-TDDFT, again at a cost com-

parable to that of a ground-state DFT calculation. What is lost in the DSCF approach is the ability to compute a whole

spectrum of states at once, making the state-specificDSCF procedure muchmore labor intensive for the user. This approach

is described in Section 3.3.

Finally, it is possible to take the time dependence in TDDFT at face value and to propagate Kohn-Sham molecular

orbitals (MOs) in time, following a perturbation applied to the ground-state density. This is accomplished by solving

the time-dependent Kohn-Sham (TDKS) equation,

iħ
d

dt
cksðr, tÞ ¼ F̂scksðr, tÞ (3.4)

which is a one-electron analog of the time-dependent Schr€odinger equation. (Here, s �{a, b} is a spin index.) The one-

electron effective Hamiltonian in Eq. (3.4) is the Fock operator F̂s that comes from the ground-state Kohn-Sham eigenvalue

problem that determines the MOs:

F̂scksðrÞ ¼ ekcksðrÞ (3.5)

The “real-time” approach to TDDFT (51, 52), which is described in Section 3.4, consists in solving Eq. (3.4) by propagating
the MOs in time following a perturbation to the ground state that creates a time-evolving density,
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rsðr, tÞ ¼
Xocc
k

jcksðr, tÞj2 (3.6)

expressed here for s-spin electrons. (The total charge density is r¼ ra + rb.) This approach can be used to simulate strong-

field electron dynamics (53), a topic of contemporary interest in attosecond molecular science (54–57). It also provides a

route to broadband spectra via Fourier transform of the time-dependent dipole moment function, in a direct realization of

Eq. (3.1).

This chapter assumes a basis familiarity with ground-state DFT, as represented by the SCF eigenvalue problem in Eq.

(3.5), which will serve as our starting point. It should therefore be familiar that the Fock operator takes the form

F̂s ¼�1

2
r̂2 + vext + vH + v̂sxc (3.7)

in atomic units. The quantities vext, vH, and v̂sxc are known as the external, Hartree, and XC potentials, respectively. In the

field-free case, the external potential is simply the interaction of the electrons with the nuclei (58),

vextðrÞ ¼ �
X
A

ZA

k r� RA k (3.8)

More generally, vext(r) might also contain a field-dependent contribution such as �Eðr, tÞ � r in the presence of an electric
field Eðr, tÞ. The Hartree (or Coulomb) potential vH(r) describes self-repulsion of the electrons (58), equivalent to what is

often called “J” in Hartree-Fock theory (40, 59). It is a functional of the density, given by

vH½r�ðrÞ ¼
Z

rðr, r0Þ
k r� r0 k dr

0 (3.9)

The final component of F̂s is v̂sxc ¼ dExc=drs , the XC operator for s-spin electrons. In “pure” Kohn-Sham theory, this

quantity should be a local potential vxc
s (r) rather than an operator, but herein we allow the possibility for mixing some

nonlocal Hartree-Fock exchange (HFX), as is done in the hybrid density functionals that are most useful in molecular

DFT. For hybrid functionals, v̂sxc is a nonlocal operator and this scenario is sometimes called generalized Kohn-Sham theory
(39). Although inconsistent with the original Kohn-Sham paradigm, the use of hybrid functionals can no longer be con-

sidered exotic in contemporary molecular DFT.

The textbook by Koch and Holthausen (40) is a good resource for ground-state DFT (though not for TDDFT), as are

several literature overviews (58, 60). Updated ground-state benchmarks, relative to the rather dated ones in Ref. (40), can be
found elsewhere (61, 62). For TDDFT, the textbook by Ullrich (63), or else overviews by Gross and coworkers (36, 64, 65),
provide the rigorous foundations of the theory, which are mostly omitted here. Several other reviews cover LR-TDDFT in a

pedagogical way (66–68). For overviews of molecular applications of LR-TDDFT, see reviews by Jacquemin and

coworkers (69–73), who have also reviewed accuracy benchmarks (18) and functional selection (74).

3.2 Linear-response (“time-dependent”) DFT

This section describes the formalism and application of LR-TDDFT, commonly known simply as “TDDFT.” The starting

point is the TDKS equation (3.4) that describes how the ground-state MOs cks evolve in time following a perturbation that

is applied at t ¼ 0. If that perturbation is taken to be a time-oscillating field at frequency o,

VðtÞ ¼ 1

2
ðEe�iot + E*e+iotÞ (3.10)

then in the weak-field limit (E ! 0), the response of the ground state can be computed exactly using first-order perturbation

theory (15). Formally, one ought to show that the poles of the frequency-dependent response function can be obtained from

those of the independent-particle (Kohn-Sham) response function (9), but for that exercise the reader is referred to reviews
by Marques and Gross (64, 65). For a derivation of LR-TDDFT based on a variational principle, see Ref. (75).

3.2.1 Theoretical formalism

The derivation from perturbation theory starts from the equivalent Liouville-von Neumann (LvN) form of the TDKS

equation, which is
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iħ
dP̂s

dt
¼ F̂sP̂s � P̂sF̂s (3.11)

where

P̂sðtÞ ¼
Xocc
k

jcksðtÞihcksðtÞj (3.12)

is the time-evolving one-electron density operator for s-spin electrons. Expanding Eq. (3.11) to first order in the perturbed
Fock and density matrices, in the presence of the perturbation V(t), one obtains the unperturbed LvN equation at zeroth

order. This is equivalent to the ground-state Kohn-Sham eigenvalue problem in Eq. (3.5). Working equations for

LR-TDDFT are obtained by equating the first-order terms (11, 15, 66), as elaborated below.

3.2.1.1 Linear-response theory

To consider this in more detail, recognize that the perturbation V(t) in Eq. (3.10) is a one-electron operator whose spatial

part can be expanded in the MO basis, leaving the time dependence to be carried by e�iot. Introducing a set of unknown

coefficients zpqs and z
�
qps, representing real and imaginary parts of the first-order response, the first-order perturbed density

matrix can be expressed as

PpqsðtÞ¼P
ð0Þ
pqs +P

ð1Þ
pqsðtÞ¼P

ð0Þ
pqs +

1

2
ðzpqse�iot + z�qpse

iotÞ (3.13)

where Pð0Þ
pqs is the unperturbed density matrix at t¼ 0. This change in the density matrix is accompanied by a corresponding

change in the Fock matrix. Through first order, the Fock matrix is (11)

FpqsðtÞ ¼ Fð0Þ
pqs + Vpq +

X
rsτ

∂Fpqs

∂Prsτ

� �
Pð1Þ
rsτðtÞ (3.14)

where the unperturbed Fock operator F̂
ð0Þ
s has the form given in Eq. (3.7). The first-order response of the density matrix is

thus coupled to a term of the form (11)

∂Fpqs

∂Prsτ

¼ðpsqsjsτrτÞ+ psqs
d2Exc

drsdrτ

���� ����sτrτ� �
¼ðpqjsrÞ+ ðpsqsjf̂ sτxc jsτrτÞ

(3.15)

The first term, (psqsjsτrτ)¼ (pqjsr), is a Coulomb integral expressed in Mulliken notation (59), while f̂ sτxc ¼ d2Exc=drsdrτ.
The latter quantity is discussed in more detail below.

So far, the MO indices p, q, r, s are arbitrary and could refer either to occupied or virtual orbitals. In fact, the idempo-

tency condition P̂
2

s ¼ P̂s imposes restrictions. Through first order, the idempotency condition isX
r

ðPð0Þ
prsP

ð1Þ
rqs + Pð1Þ

prsP
ð0Þ
rqsÞ ¼ Pð1Þ

pqs (3.16)

since P̂
ð0Þ
s P̂

ð0Þ
s ¼ P̂

ð0Þ
s . As a matrix, Pð0Þ

s contains only occupied-occupied and virtual-virtual blocks because the occupied-

virtual block vanishes as a condition of SCF convergence (76). Using i, j,… to index occupied MOs and a, b,… for virtual

MOs, this means P
ð0Þ
ias ¼ 0 ¼ P

ð0Þ
ais, so the constraint in Eq. (3.16) implies that the only nonvanishing coefficients in Pð1Þ

pqs are

zias and zais (11, 66). Conventional LR-TDDFT notation is obtained by relabeling these coefficients as

xias ¼ zais (3.17a)

yias ¼ zias (3.17b)

Collecting these unknowns into vectors x and y, one may rewrite the first-order terms in the LvN equation in matrix form as

(66–68)

A B

B* A*

� �
xðnÞ

yðnÞ

 !
¼ on

1 0

0 �1

� �
xðnÞ

yðnÞ

 !
(3.18)
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This represents a system of equations for the excitation energies on and the amplitudes x
ðnÞ
ias and y

ðnÞ
ias, and constitutes the

basic working equation of LR-TDDFT. (The index n, which enumerates excited states, will usually be omitted for com-

pactness.) The system in Eq. (3.18) is often called the Casida equation (13, 14), although it is formally identical to the

equations of TDHF theory (16). The matrices A and B are known as orbital Hessians (19), for reasons that are discussed
below, and they originate in the derivative of F̂s with respect to P̂τ in Eq. (3.15). In the canonical MO basis, the matrix

elements of A and B are (19, 66)

Aias, jbτ ¼ðeas� eisÞdijdabdsτ + ðiajjbÞ�ahfxðijjabÞdsτ + ð1�ahfxÞðiajk̂sτ
xcjjbÞ (3.19a)

Bias, jbτ ¼ðiajbjÞ�ahfxðibjajÞdsτ + ð1�ahfxÞðiajk̂sτ
xcjbjÞ (3.19b)

where k̂sτ
xc ¼ f̂ sτxc�ahfxðd2EHFX=drsdrτÞ. The quantity ahfx will be used throughout this chapter to mean the coefficient of

HFX (often called “exact exchange”) contained in the functional Exc[r], with 0 � ahfx � 1. For example, ahfx ¼ 0.2 for

B3LYP, meaning 20%HFX and 80% semilocal exchange.We have chosen to separate the HFX terms in Eq. (3.19), as these

can be expressed in terms of electron repulsion integrals (ijjab) and (ibjaj), leaving k̂sτ
xc as the second functional derivative

of the semilocal contribution Exc � EHFX.

The solution (x, y) of Eq. (3.18) parameterizes the transition density matrix for the excitation in question. In real space,
this quantity is (10, 15, 19)

Tðr,r0Þ ¼
X
ias

½xiascasðrÞc�
isðr0Þ+ yiascisðrÞc�

asðr0Þ� (3.20)

The unknowns x and y satisfy a bi-orthogonal normalization condition (15),X
ias

ðx2ias � y2iasÞ ¼ 1 (3.21)

which is also a feature of the much older TDHF theory (16). For historical reasons, TDHF is also known as the random-
phase approximation (RPA) (77, 78), because it can be derived within an equation-of-motion formalism for the single-

particle excitation operators (68), similar to the historical RPA (77). However, TDHF/RPA can also be considered as a

special case of LR-TDDFT corresponding to the Hartree-Fock functional, that is, ahfx ¼ 1 and k̂sτ
xc≡0.

The number of unknown amplitudes in Eq. (3.18) is 2noccnvir, hence to solve this equation for all of the excitation energies o
would incur sixth-order cost, Oðn3occn3virÞ. Because matrix-vector products such as Ax or By can be computed with only fourth-

order cost, in practice Eq. (3.18) is solved iteratively for just the lowest few (nroots) eigenvalues (7, 10, 79–82). The cost of that
calculation scales as nroots 	Oðn2occn2virÞ (19), which is typically not significantly greater than the cost of the ground-state SCF

calculation if nroots � 10. Therefore, if ground-state DFT is feasible then LR-TDDFT is probably tractable also, at least for the

lowest few excited states. It is worth noting, however, that thememory footprint to solve Eq. (3.18) is nroots 	OðnoccnvirÞ, which is
significantly more than the ground-state memory requirement. This can become a problem for large systems if a large number of

excited states is desired, for example, inmodels of semiconductors, where a band structure is emerging (83). For such applications,
the real-time approach that is described in Section 3.4 offers a low-memory alternative to LR-TDDFT.

Some alternative forms of the basic LR-TDDFT equation are also worth considering. We first note that the matrices A
and B in Eq. (3.19) can be rewritten as

Aias,jbτ ¼ ðeas � eisÞdijdabdsτ + Kias,jbτ (3.22a)

Bias,jbτ ¼ Kias,bjτ (3.22b)

where K is a coupling matrix (13, 84),

Kias,jbτ ¼
ZZ

cisðrÞcasðrÞ
1

k r� r0 k + f sτxcðr, r0Þ
� �

cjτðr0Þcbτðr0Þdrdr0 (3.23)

with a Hartree-XC kernel (67). In practice, this looks like the energy-transfer coupling (85) between transition densities

rias(r) ¼ cis(r)cas(r) and rbjτ(r0) ¼ cbτ(r
0)cjτ(r

0). One can therefore consider that solution of the LR equations reveals

how the zeroth-order, independent-particle excitations cis ! cas are coupled to obtain excited states of the interacting

system.
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Assuming that the orbitals are real, so that A* ¼ A and B* ¼ B, then Eq. (3.18) is equivalent to a pair of equations

ðA� BÞðx� yÞ ¼ oðx
 yÞ (3.24)

which makes it clear that Eq. (3.18) is not a conventional eigenvalue problem. However, upon introducing new

variables

z� ¼ ffiffiffiffi
o

p ðA
 BÞ�1=2ðx� yÞ (3.25)

which satisfy the more conventional normalization condition z{�z� ¼ 1 (86, 87), the LR-TDDFT equation can be trans-

formed into either of two equivalent, Hermitian eigenvalue problems (81, 86–89). These are

V�z� ¼ o2z� (3.26)

where

V� ¼ ðA
 BÞ1=2ðA� BÞðA
 BÞ1=2 (3.27)

The V+ version of Eq. (3.26) is especially convenient for semilocal functionals (ahfx ¼ 0), because in that case A �B is

diagonal and one obtains a Hermitian eigenvalue problem with half the dimension of the original pseudo-eigenvalue

problem in Eq. (3.18).

For a closed-shell (spin-restricted) ground state, another important transformation is

x�ia ¼ ðxiaa � xiabÞ=
ffiffiffi
2

p
(3.28a)

y�ia ¼ ðyiaa � yiabÞ=
ffiffiffi
2

p
(3.28b)

which affords amplitudes for singlet (+) and triplet (�) spin functions. Making use of the unitary transformation (78)

A + B 0

0 A� B

� �
¼ 1

2

1 1

�1 1

� �
A B

B A

� �
1 �1

1 1

� �
(3.29)

in addition to Eq. (3.28), one obtains singlet and triplet versions of A �B that function as stability matrices (7, 8, 86). In
other words, these are Hessian matrices whose eigenvalues characterize whether the ground state is stable with respect to

orbital rotations. For example, the singlet stability matrix is (86)

ðA+ +B+Þia, jb ¼ðea� eiÞdijdab + 4ðiajjbÞ + 2ðiajðf̂ aaxc + f̂ bbxc ÞjjbÞ (3.30)

A negative eigenvalue in A+ + B+ indicates an instability, which manifests as a negative excitation energy from the stand-

point of LR-TDDFT. This is a consequence of the Thouless theorem (90), which states that orbital rotations (and therefore
orbital relaxation) can always be parameterized as single excitations. Along similar lines, eigenvalues of the triplet insta-
bility matrix (86)

ðA�+B�Þia, jb ¼ðea� eiÞdijdab + 2ðiajðf̂ aaxc � f̂ abxc ÞjjbÞ (3.31)

indicate whether the ground-state solution is stable with respect to spin-symmetry breaking (restricted! unrestricted relax-

ation) (91). In the presence of an unstable reference state, the transformation in Eq. (3.25) may become problematic, which

can lead to failure of certain iterative LR-TDDFT algorithms.

3.2.1.2 Adiabatic approximation

We have not yet discussed the key ingredient in the orbital Hessian matrices that makes LR-TDDFT different from TDHF/

RPA, namely, the exchange-correlation kernel, f̂ sτxc. A more careful application of LR theory would note that the quantities

A(o) and B(o) are themselves functions of the excitation energy o (13–15). In wave function terms, this can be understood

based on the fact that any exact theory of many-electron excitation energies that is formulated as an effective single-particle

theory must ultimately invoke an effective Hamiltonian that is energy dependent, in order to encapsulate the effects

of higher-order excitations (14, 92, 93). (In many-body theory, this energy-dependent contribution is sometimes called

the “self-energy” (94).) Proof-of-concept models for an energy-dependent kernel fxc
sτ(r, r0, o) have been put forward

(42, 43, 93, 95), which have close connections to many-body perturbation theory and the Bethe-Salpeter equation (92,
93). However, there are no production models for molecular Hamiltonians at present.
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To appreciate the nature of the approximation that is made by neglecting the energy dependence of f̂ sτxc, consider that this
quantity arises in Eq. (3.15) as the second functional derivative of the XC energy with respect to the density, or the first

derivative of the XC potential. For a time-evolving density rs(r, t), this means (41)

f sτxcðr, r0, t� t0Þ ¼ dv̂sxc½r�ðr, tÞ
rτðr0, t0Þ

(3.32)

(This expression leaves v̂sxc in the form of an operator, which technically makes this an example of generalized Kohn-Sham

theory (39).) The time dependence in fxc
sτ(r, r0, t � t0) means that this quantity depends on the whole history of the time

evolution of the density (41–43), imparting a frequency dependence upon Fourier transformation: fxc
sτ(r, r0,o). For practical

purposes, it is basically a requirement to invoke the adiabatic approximation (13, 68, 96), which assumes locality in time

and therefore differentiates with respect to the instantaneous density (13):

dv̂sxc½r�ðr, tÞ
rτðr0, t0Þ

� dðt� t0Þ dv̂xc½r�ðrÞ
rτðr0Þ

(3.33)

The “memory” of the kernel is thereby neglected, tantamount to assuming that v̂xc½r�ðr, tÞ can be approximated using a

conventional ground-state energy functional Exc[r], whose functional derivative is evaluated using the time-evolving

density (96):

v̂sxcðr, tÞ ¼
dExc½r�
drsðrÞ

����
rsðrÞ¼rsðr,tÞ

(3.34)

Time dependence is thus carried entirely by the density and not by the functional. The frequency dependence of f̂ sτxc dis-
appears and conventional (ground-state) density functionals are all that is required for LR-TDDFT within the adiabatic

approximation.

One immediate ramification of this approximation is that the LR-TDDFT equation has precisely 2noccnvir solutions for
the excitation energy o, coinciding with the number of unknown amplitudes xias and yias. In wave function language, these
are the “one-particle, one-hole” (1p1h) states, as in conventional configuration interaction with single excitations (CIS).

States with significant double-excitation character (2p2h states) are either absent altogether (95–99), or at best severely
shifted (98). The latter are therefore generally considered to be out of reach within the adiabatic approximation to

LR-TDDFT that is ubiquitous in practical calculations (99).

3.2.1.3 Tamm-Dancoff approximation

Given a ground-state functional Exc[r], all that is required for LR-TDDFT within the adiabatic approximation are second

functional derivatives

f̂ sτxcðr,r0Þ ¼
d2Exc

drsðrÞdrτðr0Þ
(3.35)

from which the matrix elements ofA andB can be evaluated. Upon solution of Eq. (3.18) or one of its equivalent forms, it is

often found that the amplitudes yias are 10
2–103 times smaller than the largest xias. Invoking the approximation yias� 0, one

obtains a conventional Hermitian eigenvalue problem

Ax ¼ ox (3.36)

whose dimension is half that of the original LR-TDDFT pseudo-eigenvalue problem, and where the matrix B does not

appear. The basis for this approximation can be understood from the fact that the matrix elements of A are typically much

larger (at least along the diagonal) as compared to the matrix elements of B, because the leading contribution to A is a

difference in one-particle energy levels (Aias,ias ¼ eas � eis + ⋯ ). For historical reasons that are related to a similar

approximation that is made in nuclear physics (63), neglect of y is known as the Tamm-Dancoff approximation (TDA).

For hybrid functionals, the reduction in dimension leads to a concomitant reduction in cost although for semilocal func-

tionals the same reduction in dimensionality can be achieved using the V+ version of Eq. (3.26).

For the Hartree-Fock functional (ahfx ¼ 1 and no correlation), Eq. (3.36) is equivalent to the CIS eigenvalue equation

(100). Excited-state wave functions in CIS are linear combinations of singly excited Slater determinants jCas
is i,

jCi ¼
Xocc
i

Xvir
a

X
s
xiasjCas

is i (3.37)
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and for this reason we identify the variables xias as excitation amplitudes. The neglected amplitudes yias represent deex-
citation, insofar as TDHF/RPA was originally introduced in the nuclear and many-body physics literature as a means to add

correlation to the ground state (16, 77). In fact, LR-TDDFT in the form of Eq. (3.18) was introduced in molecular quantum

chemistry as the “DFT random-phase approximation” (101, 102). For that reason, solution of Eq. (3.18) or its equivalents,
without invoking the TDA, is sometimes called “RPA.” However, in view of a resurgence of interest in using the RPA

formalism as a means for correlating the ground state (103–110), it is better to refer to Eq. (3.18) as “full”

LR-TDDFT, if there is a need to distinguish it from the TDA version in Eq. (3.36).

Quantitatively, the impact of the TDA on excitation energies is often <0.1 eV (11), though a potentially detrimental

impact is that oscillator strengths within the TDA no longer satisfy the Thomas-Reiche-Kuhn sum rule (44), namely,X
n>0

f 0n ¼ N (3.38)

This constraint is satisfied by the full LR-TDDFT approach, at least in the complete-basis limit (13, 15, 111). Some small-

molecule tests suggest that errors incurred by the TDA are relatively mild (<15%) (112), and perhaps not noticeable in band
shapes once vibrational broadening is taken into account (113).

A more important consequence of the TDA is that it decouples the excitation energy problem from the ground-state

stability problem, whereas for full LR-TDDFT a triplet instability in the ground state manifests as a negative excitation

energy, or as an imaginary root of the Hermitian eigenvalue problem in Eq. (3.26). This may cause problems for eigen-

solvers that implicitly assume o> 0. Note that triplet instabilities are associated with spin-symmetry breaking, that is, with

the emergence of an unrestricted solution that is lower in energy than the restricted solution. Where they appear, these

instabilities cause significant artifacts in potential energy surfaces computed using LR-TDDFT, including the appearance

of spurious cusps (84, 114–117). In contrast, the variational nature of the CIS-type equation, as opposed to the pseudo-

eigenvalue problem that characterizes full LR-TDDFT, prevents this from happening within the TDA (68).
Along similar lines, it has been appreciated for a long time that TDHF specifically is prone to triplet instabilities (90, 91,

118–124). In fact, the appearance of imaginary excitation energies at equilibrium geometries of small molecules led Furche

and Ahlrichs to conclude that this method is “rather useless... for the investigation of excited potential energy surfaces”

(125). In contrast, spin-symmetry breaking near the equilibrium geometry is often significantly mitigated when DFT is

substituted for Hartree-Fock theory (126). Because most molecular LR-TDDFT calculations use hybrid functionals that

include some fraction of HFX, it can be expected that problems with triplet instabilities may increase as that fraction

increases, which is precisely what is found in practice (127–131). Similarly, in calculations using range-separated func-

tionals, which incorporate HFX at long range in the Coulomb potential, these instabilities are sensitive to the length scale

on which that mixing is introduced (132–137). Invoking the TDA thus improves the accuracy of triplet excitation energies

(134–136). For photochemical problems, where exploration of excited-state potential energy surfaces is paramount, Casida

et al. suggest that the TDA is effectively mandatory (138), in order to avoid excitation energies that drop to zero (and then
become imaginary) as the system moves through a Coulson-Fischer point where spin-symmetry breaking occurs. Fur-

thermore, instabilities appear to proliferate as one moves away from the ground-state geometry on an excited potential

surface (138–140). For example, in the photochemical ring-opening reaction of oxirane (C2H4O), 51% of configuration

space is estimated to exhibit an instability with semilocal DFT, as compared to 93% of space with B3LYP (138).

3.2.1.4 Analytic gradients

Photochemical simulations require analytic excited-state gradients. That formalism, which is closely connected to response

theory for optical properties (141), is not discussed here but can be found elsewhere (19, 125, 142–145). Nonadiabatic or
“derivative coupling” vectors between excited states (27, 146), which are needed for nonadiabatic molecular dynamics

simulations (23–27), have also been formulated (147–154). Evaluation of the nonadiabatic couplings has the same formal

complexity as evaluation of the excited-state gradient (25, 147).
The gradient formalism also bears on static properties of the excited state, such as the dipole moment or atomic pop-

ulation analysis. The density matrix for the excited state can be written as

Prlx ¼ Punrlx + Z ¼ P0 + DP + Z (3.39)

which is sometimes called the “relaxed” density matrix, with Punrlx ¼P0 + DP as the "unrelaxed" contribution. Here, P0

represents the ground-state density matrix and the unrelaxed change upon excitation (DP) can be obtained from the ampli-

tudes x and y. The remaining contribution (Z) represents orbital relaxation (19, 144, 145).
The unrelaxed density change DP can be separated into particle (electron) and hole contributions,
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DP ¼ DPelec + DPhole (3.40)

which are given by (125, 145, 155, 156)

DPelec ¼ 1

2
½ðx + yÞ{ðx + yÞ+ðx� yÞ{ðx� yÞ� (3.41a)

DPhole ¼ � 1

2
½ðx + yÞðx + yÞ{ + ðx� yÞðx� yÞ{� (3.41b)

These expressions can be rearranged to afford (155)

ðDPelecÞabs ¼
X
i

ðx⁎iasxibs + y⁎iasyibsÞ (3.42a)

ðDPholeÞijs ¼ �
X
a

ðxiasx⁎jas + yiasy
⁎
jasÞ (3.42b)

Note that DP only contains occupied-occupied (DPhole) and virtual-virtual (DPelec) contributions to the excited-state

density matrix, not occupied-virtual contributions. The latter are contained in Z (19, 125), the evaluation of which

requires solution of so-called Z-vector equations (157). This has the same formal complexity as an excited-state gradient

calculation.

Excited-state properties should be computed using the relaxed density matrix Prlx, because DP and Z make similar

contributions (100, 158, 159). Especially when the change in density is large, as for an excitation with significant

charge-transfer (CT) character, the use of the unrelaxed density matrix may lead to unacceptable errors in excited-state

properties. For example, excited states of p-nitroaniline involving intramolecular CT character exhibit relaxed and

unrelaxed dipole moments (computed using Prlx vs. Punrlx, respectively) that differ by more than 10 D in some cases

(158)!

3.2.2 Performance and practice

As discussed earlier, the formal scaling of LR-TDDFT is nroots 	Oðn4basisÞ for hybrid functionals (19). In practical terms,

where only a few low-lying excited states are desired, this means that LR-TDDFT is generally feasible if the corresponding

ground-state calculation is practical, perhaps up to about 400 atoms for single-point calculations or 150–250 atoms for

excited-state geometry optimization (70, 71), with more severe limitations for excited-state frequency calculations (71,
160). These estimates are appropriate where basis sets of double-z quality are used, which is generally adequate.

Triple-z basis sets may be considered to be converged (67). This section provides an overview of other practical consid-

erations in LR-TDDFT calculations, including selection of an XC functional. Techniques for visualizing and understanding

the excited states are also discussed.

3.2.2.1 Restriction of the excitation manifold

Significant cost reduction in LR-TDDFT calculations for large molecules can be achieved by neglecting some of the ampli-

tudes xias, in addition to neglecting all of the amplitudes yias. Fig. 3.1 shows examples of excitation spectra computed for

C60 and for C119H154ClN21O40, performed by excluding over 70% of the virtual orbitals (based on orbital energies eas),
without adverse effects on the spectral envelope (161).

Similar truncations of the excitation manifold can be used to access core-excited states (162–165). There is significant
interest in core excitations in contemporary quantum chemistry (164–169), driven by the recent availability of tabletop laser
sources with femtosecond time resolution (170–174). However, core-to-valence excitations lie embedded in an ionization

continuum and, at a practical level, lie above all of the valence-excited states, such that the use of iterative eigensolvers is

prohibitively expensive if the spectrum must be computed starting from the lowest excitation energies. By retaining only

those amplitudes xias for which i is a core orbital on the atom of interest, core-excited states emerge as the smallest eigen-

values and can be computed directly. This “frozen-valence occupied” approximation has historically been called core-
valence separation (175–177), and it introduces negligible error for K-edge excitations where cis is a 1s orbital (177).
Another strategy to access core-level excitations is energy windowing (162, 178), in which the amplitudes xias are excluded
unless eas � eis lies within the window of interest.
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3.2.2.2 Exchange-correlation functionals

Before considering the accuracy of LR-TDDFT, it is useful to introduce a paradigm for classifying various density-

functional approximations, for which we use the taxonomy of “Jacob’s ladder” (179–181). At each rung on this meta-

phorical ladder, the functional dependence of Exc grows more intricate, incorporating more sophisticated functionality

depending on the density, its gradients, the Laplacian, etc.: Exc½rs,r̂rs,r̂2rs,τs,fcasg�. In a statistical sense (and only
in a statistical sense), it is true that the best functionals on the higher rungs of the ladder outperform the best functionals on

the lower rungs (61, 182). These rungs map onto various inputs rs,r̂rs,r̂2rs,… as follows.

l Rung 1: Local density approximation (LDA). The baseline LDA functional comes from the uniform electron-gas model

in which Exc is a functional of r(r) only, or of ra(r) and rb(r) if the system is spin-polarized. This approach does not

afford useful accuracy for molecular quantum chemistry, with errors of 60–100 kcal/mol for atomization energies (61,
183) and �20 kcal/mol for barrier heights (61).

l Rung 2: Generalized gradient approximations (GGAs). This class of functionals includes a dependence on the density
gradients r̂rsðrÞ. These are often called “semilocal” approximations, to distinguish them from LDA while acknowl-

edging that in their mathematical form, GGAs remain local in the sense that vxc
s (r) is a multiplicative potential. GGA

functionals significantly improve thermochemistry relative to LDA; typical errors are 10–20 kcal/mol for atomization

energies (61, 183) and 5–15 kcal/mol for barrier heights (61, 182).
l Rung 3: Meta-GGAs (mGGAs). These functionals are also semilocal but incorporate additional derivatives including

r̂2rs and the kinetic energy density,

τsðrÞ ¼
Xocc
i

k r̂cisðrÞk2 (3.43)

The function τs(r) is related to the electron localization function (184), and together with r̂2rs it can be used to express
the noninteracting kinetic energy (185). The best mGGA functionals improve upon GGA thermochemistry, with errors

of 5–10 kcal/mol for atomization energies (61) and 3–6 kcal/mol for barrier heights (61, 182). It is worth noting that

some mGGAs introduce a considerable number of parameters (61), and exhibit basis-set and grid sensitivities sug-

gesting that they may be overfitted (186–189).
l Rung 4: Hyper-GGAs. As originally defined by Perdew et al. (179, 180), this category consists of functionals that incor-

porate “exact exchange and compatible correlation” (179). A few genuine hyper-GGAs have been put forward (190,
191), but it has proven difficult to construct correlation functionals that work well with 100% HFX. As such, the fourth

rung on Jacob’s ladder has effectively been redefined to mean hybrid functionals (181), which incorporate some fraction

of HFX (0 < ahfx < 1), in conjunction with a fraction 1� ahfx of semilocal exchange. These functionals are sometimes

further categorized as either hybrid GGAs or hybrid mGGAs, depending on the nature of the semilocal contribution. The

best hybrid functionals exhibit errors<5 kcal/mol for atomization energies (61) and 2–4 kcal/mol in barrier heights (61,
182). This has made hybrids the de facto choice for molecular quantum chemistry.

l Rung 5: Double-hybrid functionals (192). These incorporate a fraction of the second-order Møller-Plesset (MP2) cor-

relation energy in addition to fractional HFX, which introduces a dependence on the virtual MOs {cas}, whereas func-

tionals on the lower rungs depend only on the occupiedMOs. Although double hybrids exhibit some of the best accuracy
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FIG. 3.1 Electronic absorption spectra of (A) C60 (PBE/6-31G* level) and (B) the antibiotic ramoplanin (271 atoms and 2483 basis functions, CAM-

B3LYP/6-31G* level). Thin curves represent the experimental spectra and thick curves are computed from LR-TDDFT/TDA excitation energies with

0.2 eV Gaussian broadening. Core orbitals and 70% of virtual orbitals are excluded from each calculation. (Adapted from Hanson-Heine, M. W. D.;
George, M.W.; Besley, N. A. Assessment of Time-Dependent Density Functional Theory CalculationsWith the Restricted Space Approximation for Excited

State Calculations of Large Systems. Mol. Phys. 2018, 116, 1452–1459, under a CC BY License.)
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in contemporary DFT, with errors of 1–3 kcal/mol for barrier heights (182, 192), the introduction of MP2 correlation

brings with it the much slower basis-set convergence of wave function methods, as well as a question of whether the

orbital-dependent MP2 term should be self-consistently optimized. (Typically, it is not (192).)

A comprehensive list of functionals can be found in Ref. (61). The aforementioned error statistics pertain to ground-state

thermochemistry, whereas accuracy for vertical excitation energies computed using LR-TDDFT is considered in the fol-

lowing section. For double-hybrid functionals, the formulation of LR-TDDFT (193) begins to look more like CIS with

perturbative double excitations, a method known as CIS(D) (194), which incurs a formal scaling of nroots 	Oðn5basisÞ
and often requires a form of quasidegenerate perturbation theory (195, 196). For these reasons, the application of double

hybrids to excited-state problems is still in its infancy and is not discussed in this chapter.

In the context of LR-TDDFT, there is one further category of functionals that warrant mention, namely, range-
separated hybrid (RSH) functionals. These partition the electron-electron Coulomb interaction (r�1

12 ) into a short-range

(SR) component and a long-range (LR) background, typically using the error function (erf):

1

r12
¼ 1� ½a + b erfðmr12Þ�

r12|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SR

+
a + b erfðmr12Þ

r12|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
LR

(3.44)

This partition introduces parameters a, b, and m. The latter is the range-separation parameter that determines the length

scale (�m�1) of the separation between the SR and LR components of r�1
12 ; see Fig. 3.2. Consider a GGA or hybrid func-

tional of the form

Exc ¼ aEx,HF + ð1� aÞEx,GGA + EGGA
c (3.45)

where Ex, GGA is the semilocal GGA exchange functional and a ≡ ahfx is the coefficient of HFX. The RSH functional cor-

responding to Eq. (3.45) is

ERSH
xc ¼ aESR

x,HF + ða + bÞELR
x,HF + ð1� aÞESR

x,GGA + ð1� a� bÞELR
x,GGA + EGGA

c (3.46)

where

ELR
x,GGA ¼ EGGA

x � ESR
x,GGA (3.47)

Quantities labeled “SR” or “LR” in these equations are evaluated using the corresponding component of r�1
12 . The idea is to

correct the asymptotic behavior of a semilocal potential vxc
s (r) at long range (using HFX), while attempting to have minimal

impact on the SR behavior of the GGA or hybrid GGA in question, since that functional is responsible for the favorable

thermochemical predictions in the ground state. RSH functionals have become popular enough that traditional hybrids such

as PBE0 or B3LYP are often called “global hybrid” (GH) functionals in contemporary parlance, to emphasize that HFX is

added at all length scales in these cases. The definition of Ex,GGA
LR in Eq. (3.47) is consistent with other literature (197–199),

although it is worth noting that this quantity is not truly long ranged. In fact, the reason that RSH functionals were intro-

duced in the first place was to address the fact that semilocal exchange falls off too rapidly with distance (200–202), leading
to an insufficiently attractive interaction potential between a well-separated electron and hole (201–203).

Nomenclature and usage for RSH functionals has become somewhat muddled and the remainder of this section attempts

to clarify it. An RSH functional is any that uses a partition of r�1
12 into SR and LR components, with Eq. (3.44) as the most

common partition although other forms have been explored (204–209), including variants with a three-way partition of r�1
12

 0 2/m1/m

r
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–1

FIG. 3.2 Partition of the electron-electron Coulomb potential r�1
12 into short-range (SR) and long-range (LR) components on a length scale �m�1,

according to Eq. (3.44) with a + b ¼ 1.
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into short-, middle-, and long-range contributions (210–215). For many of these functionals, the range-separation

parameter(s) are optimized or fitted alongside other parameters that define the functional and should not be modified.

Examples include the “oB97” class of functionals (216–220) and range-separated versions of the “Minnesota” functionals

(221–224). These functionals do not always afford correct the asymptotic behavior of the XC potential, however. For the

ansatz in Eq. (3.44), the proper behavior requires a + b ¼ 1 but this constraint is sometimes violated in the interest of

obtaining more accurate excitation energies for localized transitions. (The CAM-B3LYP functional (225) is a popular
example that violates this constraint.)

In contrast to this empirical approach to range separation, long-range corrected (LRC) functionals represent a subset of
RSH functionals that are constrained to include 100%HFX in the limit r12!∞ (200, 226–228). For a given GGA (ahfx¼ 0)

or hybrid GGA (ahfx > 0) functional, the corresponding LRC functional is

ELRC
xc ¼ ahfxE

SR
x,HF + ELR

x,HF + ð1� ahfxÞESR
x,GGA + EGGA

c (3.48)

The parameter m in Eq. (3.44) still controls the length scale on which LR-HFX is activated, but a + b ¼ 1 is satisfied by

construction and therefore vxc
s (r)��r�1 for any m> 0. The LRC strategy is thus to graft correct asymptotic behavior onto

an existing semilocal XC functional, while doing the least possible damage to that functional at short range. Nonempirical

adjustment (or “tuning”) of the parameter m is often employed in this context, especially where CT states are involved. See

Section 3.2.3 for additional discussion of this topic.

LRC functionals require modification of the semilocal GGA exchange functional in order to use an attenuated Coulomb

potential. (HFX integrals can be modified once and for all to separate them into LR and SR contributions (229).) There are
several routes to modify Ex,GGA. The first of these, originally introduced by Hirao and coworkers (200–202), modifies the

exchange inhomogeneity factor that multiplies the electron-gas exchange energy density. The present author has suggested

that these functionals should be denoted as LRC-mGGA (230, 231), where “GGA” indicates the semilocal parent functional,

for example, GGA ¼ BLYP or PBE. Note that “LC” is another common abbreviation for long-range correction so that

functionals such as LC-BLYP (200) might more descriptively be called LRC-mBLYP, in order to emphasize which

SR-GGA exchange function (mBLYP) is being used.

For semilocal exchange functionals such as PBE that are based on a model for the exchange hole (232, 233), an alter-

native strategy is to combine that model with an attenuated Coulomb potential in order to obtain Ex,GGA
SR (228, 233). To

distinguish this from the LRC-mPBE functional constructed using Hirao’s approach, the present author has suggested

the nomenclature LRC-oPBE for the model based on the PBE exchange hole (230, 231), which comports with the notation

for the range-separation parameter (o) that was introduced in Ref. (233). The term LC-oPBE is synonymous with LRC-o
PBE, and LR-oPBEh is sometimes used to indicate a short-range hybrid (ahfx > 0). In contrast, oPBE refers only to the

modified exchange functional, Ex,PBE
SR , and should not be used to mean the LRC functional because Ex,PBE

SR is used in other

capacities. For example, the HSE functional (234), sometimes called HSE06 (235), uses oPBE in conjunction with

SR-HFX to construct a hybrid functional that is efficient for periodic calculations.

3.2.2.3 Accuracy for vertical excitation energies

There have been numerous systematic surveys of the accuracy of various XC functionals for use in LR-TDDFT

(236–246), enough to have spawned a metareview of the benchmark studies themselves (18). Two of these studies

are highlighted here, to provide some sense for how various categories of functionals can be expected to perform.

As usual in DFT (and even more so in LR-TDDFT), for any given molecule it is likely that one could find some XC

functional that outperforms the statistically best approach. As such, it is only by understanding trends among functionals

(and likely trying the same calculation with more than one functional) that results can be taken seriously. Both of the

studies highlighted here compare vertical excitation energies to experimental data, and while that has the advantage of

being a direct comparison against numbers that one might hope to simulate, it has the disadvantage that vertical exci-

tation energies are not strictly measurable quantities and various effects including solvatochromatic shifts and vibra-

tional averaging are folded into the comparison. Other studies have compared LR-TDDFT excitation energies

against correlated wave function benchmarks (236–239), which make for a much more straightforward test of the theory

although unfortunately such comparisons sometimes get little traction outside of quantum chemistry circles, where com-

parison of theory against theory is often viewed with derision. Fortunately, the trends that are highlighted herein are

reasonably similar to those obtained by comparing against ab initio benchmarks. In assessing the performance of various

functionals, we will use the taxonomy of Jacob’s ladder as an organizing principle. The accuracy of the best-performing

LR-TDDFT functionals follows this paradigm reasonably well, with the caveat that existing hybrid mGGA functionals

do not consistently outperform hybrid GGAs (239).
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Afirst set of benchmarks is depicted in Fig. 3.3, for a set of 101 transitions in 14gas-phasemolecules (244). Error statistics
are grouped and color coded by category, including (GH-)GGAs and (GH-)mGGAs but not RSH functionals. Errors are

further separated into singlet excitations, triplet excitations, np*, pp*, and Rydberg excitations. Examining these data, it

quickly becomes apparent that the GH functionals significantly outperform the semilocal ones, across all types of data,

although it is less clear whether GH-mGGA functionals are categorically superior to GH-GGAs. Perhaps surprisingly,

the PBE0 and B3LYP functionals outperform most other functionals, including much newer mGGAs and some

GH-mGGAsof theMinnesota type (247), althoughM06-2Xdoes exhibit slightly smaller errors. TheB3LYP andPBE0 func-

tionals, which for many years have served as the closest there is to a “default” setting inmolecular DFT, continue to outshine

many other functionals for vertical excitation energies. Other benchmarks give a slight advantage to oB97X-D (239).
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FIG. 3.3 Errors in TDDFT/6-311++G(3df,3pd) vertical excitation energies, versus experiment. (A) Molecular data set, including 63 singlets (15 1pp*,
14 1np*, 3 1ns*, 1 1sp*, and 30 Rydberg excitations) and 38 triplets (15 3pp*, 12 3np*, and 11 Rydberg excitations). Error statistics are then plotted for

(B) singlet versus triplet excitation energies, (C) np* versus pp* excitation energies, and (D) Rydberg versus valence excitation energies. Functional names

are grouped according to the taxonomy of Jacob’s ladder: global hybrids, meta-GGAs (mGGAs), and GGAs. The global hybrids are further categorized

according to whether they are based on GGAs (GH-GGAs) or mGGAs (GH-mGGAs).Within a given category, the functionals are ordered according to the

overall MAEs for the entire data set. For ease of comparison, the horizontal scale is the same in each panel. (Adapted with permission from Leang, S. S.;

Zahariev, F.; Gordon, M. S. Benchmarking the Performance of Time-Dependent Density Functional Methods. J. Chem. Phys. 2012, 136, 104101; copy-

right 2012 American Institute of Physics.)
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The best-performing functionals (PBE0, B3LYP, andM06-2X) exhibit mean absolute errors (MAEs) of�0.3 eV for the

entire data set. Unlike other functionals examined in Fig. 3.3, these ones do not seem to be systematically worse for np*
states as compared to pp* states. In contrast, none of the GGA functionals has an MAE below 0.5 eV and the semilocal

mGGAs also have MAEs ≳0.4 eV, with M06-L as the best performer among the latter. All of the semilocal functionals

perform significantly worse for np* excitations than they do for pp* excitations.

The comparison between Rydberg and valence excitations in Fig. 3.3D warrants special attention. With few exceptions,

errors are significantly larger for the Rydberg excitations. Significant errors in Rydberg excitation energies were noted in

the early molecular applications of LR-TDDFT (248), leading to the understanding that these excitation energies are quite
sensitive to the long-range behavior of the XC potential. That behavior is incorrect for almost all of the functionals eval-

uated in Fig. 3.3. Later this analysis was extended to CT excitation energies in general (203), of which Rydberg excitations
can be considered a special case insofar as these states involve excitation into a diffuse orbital, relatively far from the

molecular core. This observation eventually led to the understanding that HFX is the only component of modern functional

construction that exhibits the proper asymptotic behavior for a charge-separated state, whereas semilocal XC potentials fall

off much too rapidly with distance and thus significantly underestimate both Rydberg and CT excitation energies (84, 115,
248–252). It is therefore no accident that the only functionals in Fig. 3.3D for which the valence excitation error is larger

than the Rydberg excitation error are precisely the ones with the largest fractions of HFX: M06-2X (ahfx ¼ 0.54) (253),
M06-HF (ahfx ¼ 1.0) (253), PBE0 (ahfx ¼ 0.25) (254), and BH&HLYP (ahfx ¼ 0.5) (255).

A second statistical survey is presented in Fig. 3.4, taken from one of the largest statistical assessments of LR-TDDFT to

date (240): 614 singlet excitation energies in 483 solution-phase organic molecules. Vertical excitation energies have been

corrected for solvent effects and compared to experimental band maxima. (For a discussion of dielectric continuum sol-

vation models and their application to LR-TDDFT, see Ref. (256).) Functionals are once again grouped by category and this
larger data set makes it clear that the GH functionals generally outperform the semilocal mGGA functionals, which them-

selves outperform the semilocal GGAs. For most of the GH functionals, MAEs are 0.2–0.3 eV as compared to 0.4–0.5 eV

for the semilocal functionals, but the mean signed errors (Fig. 3.4A) are much smaller for the GH functionals. Signed errors

are nearly zero for PBE0 and B3LYP, indicating no systematic error in these cases. In contrast, errors are much larger for

GH functionals containing a large fraction of HFX, including BMK (ahfx ¼ 0.42) (257), M05-2X (ahfx ¼ 0.56) (258), and
BH&HLYP (ahfx ¼ 0.5) (255). These large-ahfx functionals exhibit bias toward overestimation of excitation energies,

whereas semilocal functionals consistently underestimate them.

Also included in Fig. 3.4 are error statistics for a set of RSH functionals. MAEs for these functionals span a wide range

from 0.2 to 0.5 eV and in that sense are not better than the GH functionals. Furthermore, whereas semilocal functionals
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FIG. 3.4 (A) Mean errors and (B) mean absolute errors for 614 singlet excitation energies of 483 molecules, comparing LR-TDDFT/6-311+G(2d,p)

vertical excitation energies (with solvent corrections) to experimental absorption maxima, using data from Ref. (240). (Adapted with permission from

Laurent, A. D.; Jacquemin, D. TD-DFT Benchmarks: A Review. Int. J. Quantum Chem. 2013, 113, 2019–2039; copyright 2013 John Wiley & Sons.)
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systematically underestimate excitation energies, GH functionals are largely free of that bias except when ahfx > 0.4.

Finally, RSH functionals systematically overestimate excitation energies, which has also been observed in more recent

benchmarks for biochromophores (236). Putting these observations together, it seems that some HFX is optimal, perhaps

ahfx� 0.20–0.25, with excitation energies that are too low for smaller values and too high for larger ones. Included the latter

category are many LRC functionals that use ahfx ¼ 1 in the asymptotic limit. With that in mind, it is interesting to compare

error statistics for LC-oPBE and LC-oPBE(20) in Fig. 3.4. The former uses a range-separation parameter o ¼ 0.4 bohr�1

that was optimized for ground-state properties (259), whereas in LC-oPBE(20) that parameter is set to o ¼ 0.2 bohr�1,

leading to significant reduction in the errors. Attempts to fit o using both ground-state properties as well as excitation

energies typically lead to values in the range o ¼ 0.2–0.3 bohr�1, depending on whether short-range HFX is present or

not (226, 228, 260). This is consistent with the revised choice in LC-oPBE(20).

3.2.2.4 Visualization

Having computed an excitation energy, there are a variety of tools available to visualize the excited state in question. One

could simply examine each pair of occupied and virtual MOs for which the amplitude xias is large, but this is often tedious
due to significant configuration mixing, especially in the virtual space. At the CIS level, it is easy to understand why the

canonical MOs are not a good basis for visualization purposes, since Koopmans’ theorem implies that the virtual MOs are

reasonable orbitals for electron attachment, not excitation (59). The Hartree-Fock virtual MOs feel the full repulsive

potential of the N-electron charge density, whereas the occupied MOs feel only N� 1 electrons, and this makes the virtual

MOs significantly more diffuse than the occupied MOs. Often, the Hartree-Fock virtual MOs are simply unbound and

therefore represent discretized continuum states (261), whose shapes are sensitive to small changes in basis set (262). Sig-
nificant configuration mixing is therefore necessary in order to obtain a localized valence excitation.

In principle, exact Kohn-Sham MOs are a much better basis for excitations (262–264), since both occupied and virtual
MOs are subject to the same N-electron potential, and in practice it is often the case that the first few Kohn-Sham virtual

orbitals are bound (eas < 0). Hybrid functionals, however, push the virtual orbitals and their eigenvalues back toward the

Hartree-Fock picture and even 20%–25% HFX can be enough to engender significant configuration mixing due simply to

the diffuseness of the virtual MOs.

This type of configuration mixing is artificial, in the sense that it can be removed via orbital rotation and therefore does

not represent true multiconfigurational character in the excited state. The relevant transformation of the canonical occupied

MOs is a unitary matrix Uo that diagonalizes DP
elec in Eq. (3.42a):

UoðDPelecÞU{
o ¼ L2 ¼

l21 0 0 ⋯
0 l22 0 ⋯

⋱ 0

0 ⋯ 0 l2nocc

0BBBB@
1CCCCA (3.49)

The nocc 	 nocc diagonal matrix L2 contains the eigenvalues, which are strictly nonnegative and are normalized such thatP
il

2
i ¼ 1. The corresponding transformation of the canonical virtual MOs is

UvðDPholeÞU{
v ¼

�L2 0

0 0

 !
(3.50)

These two transformations define the natural transition orbitals (NTOs) (265–268), which are the natural orbitals (eigen-

functions) of the excited-state density matrix (268). They can equivalently be defined based on a singular value decom-

position of the nocc 	 nvir matrix of amplitudes, x + y (266, 267):

Uoðx + yÞU{
v ¼

L 0

0 0

� �
(3.51)

This form demonstrates that no more than nocc of the singular values {li} are nonzero. These eigenvalues appear in pairs

(�l2i ) when DP
elec and DPhole are diagonalized, because the natural occupation numbers of the excited-state density matrix

are (268)
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nr ¼
1� l2r , 1 � r � nocc
l2r , nocc < r � 2nocc
0, r > 2nocc

8><>: (3.52)

The matricesUo andUv transform the canonical occupied and virtualMOs, respectively, into a set of “hole” orbitals fchole
i g

along with corresponding “particle” (or “electron”) orbitals, fcelec
i g. These are the NTOs, and their diminishing importance

for describing the excitation in question is quantified by the values l21 > l22 > l23 > ⋯ .

NTOs provide a much more compact description of the wave function as compared to the canonical MOs, yet one that

preserves the phase and nodal structure that can be helpful in qualitatively characterizing the nature of the excitation. This is

illustrated in Fig. 3.5 for the S0!S2 excitation of a five-unit polyfluorene molecule in which a carbonyl defect in one of the

terminal fluorene monomers serves to localize the excitation. That localization, however, is not obvious from the canonical

MOs, which are delocalized across the length of the molecule, but arises from a coherent superposition of four different

occupied MOs. Upon transformation to the NTO basis, there is only one significant singular value, with l21 ¼ 0:96. The
principle NTO pair, chole

1 ! celec
1 in Fig. 3.5B, thus paints a picture that is 96% complete.

There is an unfortunate tendency in the literature to refer to chole
1 as the “highest-occupied NTO” (HONTO), with celec

1

then deemed the “lowest-unoccupied NTO” (LUNTO). This terminology is incorrect insofar as “highest” and “lowest” (as

in HOMO and LUMO) refer to orbital energies, which are not well defined for the NTOs because the Fock matrix is not

diagonal in that representation. The HONTO/LUNTO terminology should therefore be avoided so as not to conflate visual

depictions of NTOs with qualitative arguments that might be based on one-electron energy levels, which are only well

defined in the canonical MO basis. The term principle transition orbitals (or perhaps principle NTOs) is suggested instead,
to refer to the pair of orbitals corresponding to the largest li. One might therefore describe a sequence of principle NTOs

(pNTOs): pNTO, pNTO � 1, pNTO� 2,… for l21 > l22 > l23 > ⋯ .

Another common tool to visualize an excitation is the density difference as compared to the ground state. The unrelaxed

density difference

DrðrÞ ¼ DrelecðrÞ+DrholeðrÞ (3.53)

has particle and hole components that are the real-space analogs of the density matrices DPelec and DPhole in Eq. (3.41).

Using the NTOs, the particle and hole densities may be expressed as

(a) canonical molecular orbitals

20%

HOMO–4

HOMO–3

HOMO–2

HOMO–1

LUMO

26%

21%

20%

(b) natural transition orbitals

96%

FIG. 3.5 (A) Canonical MO representation (with weights x2ia expressed as percentages) and (B) principle NTO pair (with weight l2i ) for S0!S2 excitation

of a five-unit, fluorenone-terminated polyfluorene molecule in which the leftmost monomer contains a carbonyl defect that localizes the excitation.

LR-TDDFT calculations were performed at the CAM-B3LYP/3-21G* level within the TDA and the unrelaxed density is analyzed.
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DrelecðrÞ ¼
Xnocc
i¼1

l2i jcelec
i ðrÞj2 (3.54a)

DrholeðrÞ ¼ �
Xnocc
i¼1

l2i jchole
i ðrÞj2 (3.54b)

Note that Drelec(r) is positive definite and Drhole(r) is negative definite, consistent with Eq. (3.41). Because the NTOs are
defined by a singular value decomposition, which distills the nocc 	 nvir matrix x + y into the fewest number of nonzero

parameters, the densities in Eq. (3.54) are often dominated by the principle NTO pair. Although it is not widely recognized,

the quantities Drelec(r) and Drhole(r) are precisely the attachment density and the detachment density, respectively, which
have long been used to visualize excited states (269–271). (These were originally introduced in a different way (269), based
on eigenvectors of DP that afford positive or negative eigenvalues, respectively.) In the author’s view, NTOs are still the

preferable description since phase information is lost upon squaring the orbitals in Eq. (3.54).

Fig. 3.6 illustrates these densities for the same S0!S2 excitation of polyfluorene that was examined in Fig. 3.5. Because

l21 � 1, the particle and hole (or attachment and detachment) densities have the same information content as the principle

NTO pair in Fig. 3.5B. Also shown in Fig. 3.6 is the transition density T(r) ≡ T(r, r), where T(r, r0) is defined in Eq. (3.20).
For an excitation jC0i!jCi, the general definition of this quantity is (272)

Tðr, r0Þ ¼ N

Z
C*

0ðr0, r2,…, rNÞCðr, r2,…, rNÞdr2…drN (3.55)

and for LR-TDDFT in the NTO representation it is

Tðr, r0Þ ¼
X
i

lic
elec
i ðrÞ½chole

i ðr0Þ�* (3.56)

Thus, the NTOs distill the content of the transition density into the smallest possible number of particle-hole pairs. In that

well-defined sense, the NTOs are the best orbitals for visualization purposes, and detection of more than one significant

singular value li indicates unresolvable multideterminant character in the excited state. For the excitation depicted in

Fig. 3.6, there is little such character, and T(r) � c1
elec(r)c1

hole(r) is well described by the principle NTO pair. The nature

of this product accounts for the somewhat more complicated nodal structure as compared to Drelec(r) �jc1
elec(r)j2 or

Drhole(r) �jc1
hole(r)j2.

hole (detachment) density

particle (attachment) density

transition density

difference density

FIG. 3.6 Visualization of the S0 !S2 excitation of the fluorenone-terminated polyfluorene whose orbital depiction is given in Fig. 3.5, represented here

in terms of difference densities. These include the particle density (or attachment density) Drelec(r), the hole density (or detachment density) Drhole(r), the
unrelaxed difference density Dr(r) ¼ Drelec(r) + Drhole(r), and the transition density T(r). Each isosurface encompasses 95%–97% of the density in

question.
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3.2.3 Systemic problems

The utility of LR-TDDFT lies in its combination of low cost, which facilitates calculations on systems such as

C119H154ClN21O40 (Fig. 3.1B) or conjugated polymers (Figs. 3.5 and 3.6), along with an accuracy of�0.3 eV for localized

valence excitations. That level of accuracy requires a treatment of dynamical correlation effects, as seen from the CIS errors

in Fig. 3.4 that exceed 0.8 eV, comparable to the�1 eV of correlation energy for a pair of electrons. That is the good news.

In this section, we discuss some of the bad news, namely, systematic errors that make certain types of problems extremely

challenging for LR-TDDFT. Of these, the most widely discussed is severe underestimation of excitation energies for states

with substantial CT character, ultimately manifesting as an explosion of spurious CT states in a sufficiently large system.

A second problem concerns the topology of conical intersections that involve the ground state, which presents a problem for

ab initio photochemical simulations of internal conversion following photoexcitation.

3.2.3.1 Description of charge transfer

Problems with the description of long-range CT excitations manifests in small, gas-phase molecules as Rydberg excitation

energies that are systematically too low (248), even when reasonable accuracy is obtained for valence excitations. This was
noticed in the early studies of LR-TDDFT and was quickly diagnosed as a symptom of incorrect asymptotic decay of the

XC potential in GGA functionals that existed up to that point (249–252). The same problem was quickly recognized to

affect CT excitation energies (84, 115). Both CT and Rydberg excitations are sensitive to the long-range behavior of

the potential, which should be vxc
s (r) ��r�1 for a charge-neutral molecule (273–277). This asymptotic behavior ought

to be borne by the exchange potential because correlation dies off more quickly (274, 278), but in practice so does semilocal

exchange.

Consider the form of the LR-TDDFT pseudo-eigenvalue problem for an excitation between MOs cis and cas that are

well separated in space, such that cis(r)cas(r) � 0 everywhere. A semilocal expression for vxc
s (r) affords a semilocal XC

kernel, such that the matrix elements (iajkxcsτjjb) inA and B vanish in such a situation, for all j and b. Ignoring spin by setting
s ¼ τ in Eq. (3.19), this leaves

Aia,jb � ðea � eiÞdijdab � ahfxðijjabÞ (3.57)

Only the integral (ijjab), which comes from the HFX term, survives to provide distance dependence for the i! a excitation.
A pictorial illustration is provided in Fig. 3.7, which plots the distance dependence of the lowest CT excitation energy (oCT)

in the ðC2H4Þ⋯ðC2F4Þdimer as a function of intermolecular separation (203). Only Hartree-Fock theory affords the correct
distance dependence for oCT(R), which varies according to the Mulliken formula (66, 279, 280),

oCTðRÞ ¼ IEdonor + EAacceptor �
1

R
(3.58)
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FIG. 3.7 Distance dependence for the lowest intermolecular CT excitation in ðC2H4Þ⋯ðC2F4Þ computed using functionals with various fractions of

HFX, as indicated. The curves are shifted to a common origin at R ¼ 4 Å in order to emphasize the distance dependence of oCT(R), which varies asymp-

totical as �ahfx/R. (Adapted with permission from Dreuw, A.; Weisman, J. L.; Head-Gordon, M. Long-Range Charge-Transfer Excited States in Time-

Dependent Density Functional Theory Require Non-Local Exchange. J. Chem. Phys. 2003, 119, 2943–2946; copyright 2003 American Institute of
Physics.)
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in atomic units. For hybrid functionals, the last term becomes �ahfx/R rather than �1/R, leading to a too-small penalty for

long-range CT. For semilocal functionals where ahfx¼ 0, the CT excitation energy has no distance dependence whatsoever

once the donor and acceptor moieties are sufficiently far apart such that their orbitals do not overlap. This is reflected in the

flat oCT(R) profile for the LDA functional in Fig. 3.7. As a result, long-range CT excitation energies are almost invariably

too small in LR-TDDFT unless the functional contains 100% HFX, which it usually does not because fully nonlocal

exchange is somewhat unbalanced given the local nature of existing correlation functionals. The M06-HF functional is

an example that does use 100% HFX, leading to reasonable performance for Rydberg states but larger errors for valence

excitations (Fig. 3.3D).

Where small-molecule benchmarks are available, errors in CT excitation energies can exceed 3 eV (228), but the
problem gets worse in larger molecules so that value is likely limited only by the size of the benchmark systems for which

reliable ab initio results are available. A consequence of this severe underestimation of CT excitation energies is the

appearance of completely spurious CT excited states in large systems, especially solvated chromophores (281–288) but
also large molecules (159, 289, 290). When the system size is sufficiently large, there are inevitably well separated

occupied and virtual MOs such that the orbital energy gap ea � ei is small. For ahfx � 0, the electron-hole interaction van-

ishes and the diagonally dominant A matrix consists of weakly coupled blocks corresponding to these spurious CT tran-

sitions. The kernel fxc
ss(r, r0) lacks the long-range exchange (or a derivative discontinuity (63, 68, 280), or frequency

dependence (291)) that is needed to provide an energetic penalty for CT, and an upshift to oCT � ea � ei as in Eq. (3.57).

A physical example is shown in Fig. 3.8 for a model of aqueously solvated uracil (287). Whereas this system ought to

have only a 1np* and a 1pp* state below 6 eV (227), a hybrid LR-TDDFT calculation using the PBE0 functional results in

numerous low-energy solvent-to-chromophore CT states, including 27 states below 6 eV for the (uracil)(H2O)25 cluster that

is shown in Fig. 3.8 and additional states as the size of the water cluster grows (227, 287). Many of these states are acci-

dentally near degenerate with the optically bright 1pp* state and as a result these nominally dark CT states can acquire

intensity from the bright state, which diminishes the intensity of the latter because total oscillator strength is conserved

by the Thomas-Reiche-Kuhn sum rule, Eq. (3.38). The state o9 in Fig. 3.8 exhibits the largest degree of pp* character

(287), yet due to spurious intensity borrowing it does not exhibit the largest oscillator strength and itself contains some

contribution from solvent-to-chromophore CT. Fortunately, the same sum rule can be used to argue that the overall spectral

envelope may still be valid upon ensemble averaging and broadening, even if some fraction of the oscillator strength has

been ported onto spurious CT excitations.

7 = 5.05 eV
f7 = 0.064

9 = 5.08 eV
f9 = 0.019

8 = 5.05 eV
f8 = 0.032

10 = 5.16 eV
f10 = 0.018

11 = 5.20 eV
f11 = 0.015

FIG. 3.8 Selected detachment (hole) and attachment (particle) densities, for excited states of (uracil)(H2O)25 computed using LR-TDDFT at the PBE0/6-

31+G* level. These states exhibit spurious solvent-to-chromophore CT in the spectral vicinity of the 1pp* state at o� 5.1 eV. Excitation energies on and

oscillator strengths f0n are shown, illustrating intensity borrowing by the spurious CT states. (Reprinted with permission from Lange, A.; Herbert, J. M.

SimpleMethods to Reduce Charge-Transfer Contamination in Time-Dependent Density-Functional Calculations of Clusters and Liquids. J. Chem. Theory

Comput. 2007, 3, 1680–1690; copyright 2007 American Chemical Society.)

Density-functional theory for electronic excited states Chapter 3 87



In large chromophores, such as conjugated polymers, spurious low-energy CT excitations can manifest as artificial

delocalization of the excitation across the length of the chromophore (159, 292, 293), whereas the CIS method predicts

that exciton size eventually saturates even as conjugation length increases (293). As such, there is a need to develop a metric

for whether a particular excited state has too much CT character for its excitation energy to be trusted. The first such CT

metric to see widespread use was the quantity L defined by (294)

L ¼

X
ias

ðxias + yiasÞ2OiasX
jbτ

ðxjbτ + yjbτÞ2
(3.59)

where

Oias ¼
Z

jcisðrÞj � jcasðrÞjdr (3.60)

measures the overlap of jcis(r)j and jcas(r)j. (Absolute values are required since the occupied and virtual MOs are

orthogonal.) This overlap is then weighted by the LR-TDDFT amplitudes and normalized such that 0 � L � 1. For cal-

culations that do not invoke the TDA, however, the denominator in Eq. (3.59) is an odd choice, given the normalization

condition in Eq. (3.21), and this inconsistency has propagated into other CT metrics used in LR-TDDFT (295, 296).
Regarding the metric in Eq. (3.59), an early benchmark study concluded that 0.45 � L � 0.89 for localized valence exci-

tations, making values in this range “safe” for LR-TDDFT, whereas 0.08 � L � 0.27 for Rydberg excitations, which are

unsafe (294). It was suggested that excitation energies for which L≲0:3�0:4 (depending on the functional) should not be

trusted. Various LR-TDDFT errors have been rationalized by appeal to L or similar metrics (135, 244, 297, 298).
The point at which CT character becomes a problem is dependent on the manner in which it is quantified (299), and

several alternative CT metrics have been suggested (294–296, 300–306). Ciofini and coworkers introduced a widely used

“DCT metric” (300), originally defined in a rather complicated way but which ultimately measures the distance between the

centroids of Drelec(r) and Drhole(r). The centroid of Drelec(r) is

hreleci ¼
Z

rDrelecðrÞdr (3.61)

with an analogous definition for Drhole(r). If one defines

d�elec=hole ¼k hreleci � hrholei k (3.62)

then the distance between centroids of the electron and the hole is d�elec=hole, whereas d
+
elec=hole is the average position of the

center of mass of the exciton. The quantity d�elec=hole is equivalent to the DCT metric but is more directly connected to the

physics of the excitation. Other similar descriptors can be envisaged (307, 308). For example, by defining the root-mean-

square size of the electron and the hole,

selec ¼ ðhrelec � releci � hreleci � hreleciÞ1=2 (3.63a)

shole ¼ ðhrhole � rholei � hrholei � hrholeiÞ1=2 (3.63b)

one may define a charge-displacement distance,

dCD ¼ d�elec=hole �
1

2
ðselec + sholeÞ (3.64)

The quantity dCD connects directly to the properties of the exciton and is a more physically motivated version of the

“electron displacement” metric introduced by Adamo and coworkers (296), and one that avoids the incorrect normalization

in Eq. (3.59) and is thus rigorously invariant to orbital rotations even when the TDA is not invoked. To the best of our

knowledge, dCD is introduced here for the first time but we suggest that d�elec=hole and dCD should replace alternative CT

metrics that serve essentially the same purpose.

To combat the long-range CT problem without going beyond the adiabatic approximation, LRC functionals are used to

provide an XC potential with correct asymptotic behavior for an electron-hole pair. The LRC modification was introduced

in Eq. (3.48) and contains an additional parameter that controls the separation between semilocal GGA exchange at short

range and nonlocal HFX at long range. Fig. 3.9 shows an example of how these functionals can be used to mitigate the
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growth in spurious CT states around a chromophore in aqueous solution (288). Whereas the number of CT states increases

extremely rapidly as water molecules are added around the system, and hybrid functionals such as B3LYP only partially

forestall this increase, the functionals LRC-oPBE (228) and LRC-oPBEh (260) control this growth completely. The LRC-

oPBEh functional is a short-range hybrid with ahfx ¼ 0.2, whereas LRC-oPBE is semilocal at short range (ahfx ¼ 0), but

both functionals employ 100% HFX in the long-range limit. This should be contrasted with functionals such as CAM-

B3LYP (225), which use range separation but sacrifice proper asymptotic behavior in an effort to obtain more accurate

excitation energies for localized valence transitions. Although RSH functionals such as CAM-B3LYP and oB97X-D
are good choices in many respects for valence excitations, neither improves the accuracy of LR-TDDFT for CT excitations

(309). Standard double-hybrid functionals contain only a fraction of HFX and thus do not improve the situation for CT

states either (310), unless the LRC scheme employed (311).
In the early development of LRC functionals, the range-separation parameter was often fit to minimize error in some

benchmark thermochemical or excitation energy data (200, 202, 226, 228, 259). However, excitation energies were found
to be quite sensitive to this parameter (226, 227, 260), especially for states with CT character (227, 260). More recently, the

community has increasingly turned to a more theoretically well-grounded “optimal tuning” strategy (231, 312–315), based
on the ionization energy (IE) theorem of exact DFT (316, 317). That theorem simply states that IE¼�eHOMO for the exact

Kohn-Sham functional, consistent with the fact that the IE is set by the asymptotic decay of the wave function (261). This
condition is violated badly by common GGA and even hybrid functionals, often by several electron volts (318, 319). The
optimal tuning (or “IE tuning”) procedure consists in enforcing this condition for an approximate XC functional, by

adjusting the range-separation parameter m such that

�eHOMOðN,mÞ ¼ EðN � 1, mÞ � EðN, mÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IEðN,mÞ

(3.65)

Here, IE(N, m) represents the DSCF value of the IE for the N-electron molecule, computed using an LRC functional with

range-separation parameter m. Alternatively, one might try to find the value of m that comes closest to satisfying Eq. (3.65)

for both the N-electron molecule and its (N + 1)-electron anion, representing donor and acceptor for electron transfer. That

procedure has been shown to reproduce not only CT excitation energies but also to afford Kohn-Sham gaps (eLUMO �
eHOMO) in good agreement with fundamental gaps (IE � EA) (197). The optimally tuned value of m does exhibit a strong

dependence on system size, however (320–323). Strategies to mitigate this dependence have been suggested (323–325).
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FIG. 3.9 (A) The chromophore trans-thiophenyl-p-coumarate (pCT�), along with (B) a plot of the lowest TDDFT/6-31G excitation energy for pCT�(aq)
as a function of the number of water molecules included in the calculation, and (C) the number of TDDFT states below 3 eV in this calculation. (Adapted
with permission from Isborn, C. M.; Mar, B. D.; Curchod, B. F. E.; Tavernelli, I.; Martı́nez, T. J. The Charge Transfer Problem in Density Functional

Theory Calculations of Aqueously Solvated Molecules. J. Phys. Chem. B 2013, 117, 12189–12201; copyright 2013 American Chemical Society.)
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3.2.3.2 Conical intersections

A different systemic problem with LR-TDDFT, which is relevant in the context of computational photochemistry, is that it

predicts the wrong topology around any conical intersection that involves the ground state (146, 326). The TDHF method

suffers from the same deficiency, which is not a DFT artifact per se but rather a linear response artifact, arising from an

unbalanced description of the ground (reference) state and the excited (response) states (27). The result is that the branching
space around a conical seam that involves the two lowest electronic states is necessarily one-dimensional rather than two-

dimensional. (For examples, see Ref. (146) or (326).) Even the CIS method can exhibit erratic behavior when the ground

state becomes quasidegenerate with the first excited state (26, 147), because in the absence of double excitations the

ground- and excited-state eigenvalue problems are decoupled (according to Brillouin’s theorem) (59), leading to an unbal-
anced description (27, 326). This is not a problem for conical intersections between two excited states because those states

are coupled by the matrix A, in both CIS and LR-TDDFT.

An example of a conical intersection involving the ground state is Jahn-Teller symmetry lowering fromD3h toC2v, which

is illustrated for the H3 radical in Fig. 3.10 (147). In the vicinity of the D3h conical intersection, the upper-state potential

surface exhibits erratic behavior at both CIS and LR-TDDFT levels of theory. This warping of the potential surface around

a conical intersection has consequences in nonadiabatic molecular dynamics simulations, including SCF convergence dif-

ficulties (327) and incorrect internal conversion timescales (26). As a result, nonadiabatic trajectory surface-hopping calcu-
lations based on LR-TDDFT should probably be terminated prior to internal conversion to the ground state (26).
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FIG. 3.10 Potential energy surfaces for the lowest two doublet states of H3 radical along a bond-length coordinate b and a bond-angle coordinate y,
illustrating Jahn-Teller symmetry lowering D3h ! C2v. The methods are (A) CIS based on a restricted open-shell (RO) reference state,

(B) LR-TDDFT/TDA using unrestricted B3LYP, (C) SF-CIS, and (D) SF-TDDFT using BH&HLYP. (Reprinted with permission from Zhang, X.;

Herbert, J. M. Analytic Derivative Couplings for Spin-Flip Configuration Interaction Singles and Spin-Flip Time-Dependent Density Functional Theory.
J. Chem. Phys. 2014, 141, 064104; copyright 2014 American Institute of Physics.)
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The “spin-flip” (SF) variant of LR-TDDFT (328) has been suggested as a way to overcome this problem, as discussed in

detail in Ref. (27). Briefly, SF-TDDFT uses a sacrificial reference state that is not the ground state of interest, but rather a

statewith higher spinmultiplicity S+ 1, for target stateswith total spin S. By combining single excitationswith a single a!b
spin flip, SF-TDDFTgenerates both ground and excited states ofmultiplicity 2S+1as spin-flipping excitations,meaning that

both are obtained as solutions to a common eigenvalue problem. This eliminates the imbalance and restores correct topology

to conical intersections involving the ground state, as seen for H3 in Fig. 3.10C and D. Functionals with�50%HFX perform

well in the context of SF-TDDFT (27, 329), and the Becke “half-and-half” functional BH&HLYP (with ahfx ¼ 0.5) has

become the de facto standard for SF-TDDFT (27).
An unfortunate side effect of SF-TDDFT is that it tends to exacerbate spin contamination (27, 330), especially as one

moves away from the Franck-Condon point on the potential surface and starts to enter regions of photochemical interest.

This necessitates the use of state-tracking algorithms to maintain a consistent spin multiplicity (330, 331). There have been
various attempts to find a more theoretically appealing solution to this conundrum by adding additional determinants to the

excitation space in order to restore Ŝ
2
symmetry (27). Methods developed along these lines include a fully spin complete

version of SF-TDDFT (330), which adds the minimal number of additional determinants needed to obtain Ŝ
2
eigenstates

(based on an equation-of-motion formalism) (77), and also a “mixed-reference” spin-flip (MRSF) approach, which uses a

combination of high-spin and low-spin S + 1 reference states to generate target states with spin S (332–337). Although the
MRSF-TDDFT excitation manifold is not formally spin-complete, in practice the spin contamination is very small (332).
The analytic gradient (335) and nonadiabatic derivative couplings (336) for MRSF-TDDFT have recently been formulated,

facilitating nonadiabatic molecular dynamics simulations.

3.3 Excited-state Kohn-Sham theory: The DSCF approach

For periodic DFT calculations, LR-TDDFT is theoretically ill-posed if semilocal functionals are used within the adiabatic

approximation (20–22). Specifically, the too-rapid asymptotic decay of vxc
s (r) causes the lowest LR-TDDFT excitation

energy to collapse to the Kohn-Sham gap, ħo ¼ eLUMO � eHOMO (20, 21). Semilocal LR-TDDFT also does not produce

bound excitons in periodic systems (22), and in large (but finite) conjugated polymers, the exciton delocalization length

typically extends to the length of the entire molecule (293, 338). This observation can be conceptualized as incomplete

cancellation of self-interaction that grows worse with system size, and infinitely worse under periodic boundary conditions

(20). Equivalently, it is a manifestation of the systematic underestimation of CT energies that were discussed in

Section 3.2.3.

In recognition of these and other systemic problems exhibited by LR-TDDFT, there has been growing interest in

“DSCF” approaches that attempt to determine excited-state solutions to the Kohn-Sham SCF equation (339, 340). Having
found such a solution, the excitation energy is computed simply as the difference relative to the ground-state energy, hence

“DSCF.” In contrast to the well-automated machinery of LR-TDDFT, these methods are less “black box,” involving more

effort and finesse on the part of the user, because each excited state requires a separate calculation. On the other hand, the

DSCF approach can exploit ground-state gradient technology for geometry optimizations and vibrational frequency

calculations (341). For this reason, the DSCF procedure has sometimes been called excited-state Kohn-Sham theory

(339, 341).
In cases where LR-TDDFT exhibits known deficiencies, the DSCF approach may be more accurate and more reliable

even if the formal justification (based on the Hohenberg-Kohn theorems (40, 58)) is absent because the system is not in its

ground state. The method therefore rests upon the assumption that the description of short-range dynamical correlation

depends upon the local environment of an electron and can be ported to a “non-aufbau” solution of the SCF equations,

in which an electron has been promoted into a virtual MO. Such a state does not formally satisfy the noninteracting

v-representability requirement of ground-state DFT (17, 58, 68, 342).
Excited-state SCF solutions do contain full orbital relaxation, yet these solutions are inherently unstable because

they are saddle points rather than local minima in the space of orbital rotations. Attempts to locate these non-aufbau
solutions, each characterized by a virtual (empty) level that is lower in energy than the HOMO level, may suffer

“variational collapse” to the ground state or to a lower-lying SCF solution. It is up to the user to determine that

the SCF solution corresponds to the state of interest; if not, then the search must begin anew, using a different

SCF convergence algorithm or a different initial guess. Several modified SCF algorithms have been developed to

try to locate non-aufbau solutions, based on overlaps with a set of user-specified MOs (343–346) or else based on

direct search (347–349). These algorithms are described in Section 3.3.1. Examples of the DSCF methodology in

action are presented in Section 3.3.2.
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3.3.1 Theory

3.3.1.1 General considerations

A flowchart for the SCF procedure is illustrated in Fig. 3.11. At each iteration, the occupiedMOs {cis} are used to construct

the Fock matrix Fs, which is then diagonalized to obtain new MOs. Notably, diagonalization results in nbasis ¼ nocc + nvir
MOs and one must decide how to choose the occupied set. Ordinarily, the lowest eigenvalues ers are selected (aufbau prin-
ciple), resulting in the ground-state determinant upon SCF convergence. To locate an excited-state SCF solution instead,

one seeds the procedure with initial-guess MOs from a ground-state calculation but with non-aufbau occupancies, pro-

moting an electron from HOMO to LUMO, for example. This makes the LUMO into an occupied level and the HOMO

into a virtual level, resulting in a “hole,” or in other words a virtual level whose energy lies below that of the highest-

occupied level. When the Fockmatrix is constructed from this new set of occupiedMOs and then diagonalized, the question

becomes which of the new MOs should be the occupied ones, since energy levels may have shifted. The SCF procedure

therefore deviates from the usual one only when it comes to selecting the occupied subset from among the nbasis MOs.

Several different options have been explored, as discussed below.

Before reviewing algorithms for locating non-aufbau SCF solutions, however, it is important to note some properties of

those solutions that are different from ground-state properties. First, because the effective Hamiltonian F̂s½fcisg� depends
on the MOs themselves, the ground- and excited-state Slater determinants are eigenfunctions of different Hamiltonians and

are therefore not orthogonal. One consequence is that the formula for oscillator strengths in terms of transition dipole matrix

elements (Eq. 3.3) is not strictly valid (350), as that formula is derived using the assumption that the eigenfunctions of the

Hamiltonian form a complete orthonormal set (44). In small-molecule tests, however, overlap integrals between ground-

and excited-state determinants are found to be ≲0.1 (343).
Another general concern is that excited states are always open-shell species, even if the ground state is closed-shell, so

any single-determinant approximation is certain to be spin contaminated, perhaps badly so. Indeed, single-determinant

approximations for open-shell singlet states are often characterized by hŜ2i� 1 (in atomic units of ħ2), which is equal

to the average of pure-state singlet and triplet values. A similar phenomenon occurs, for similar reasons, in the case of

the spin-unrestricted Hartree-Fock wave function in the separated-atom limit (59), because a spin-pure state with two

half-filled orbitals can be described using a minimum of two Slater determinants. The same two determinants (with dif-

ferent relative signs) are needed to describe both singlet spin-coupling (total S ¼ 0) as well as the MS ¼ 0 component of

triplet spin-coupling (S ¼ 1).

In practice, DSCF excitation energies for open-shell singlet excited states are often surprisingly accurate despite sig-

nificant spin contamination (343, 345, 351), although there are exceptions. One such exception is the 1B1u state of ethylene,

whose underestimation by almost 2 eV is attributed to severe spin contamination (343). Yamaguchi and coworkers have

developed spin-projection techniques that can be used to recover spin-pure states in such cases (352–355), and approximate

spin purification is often used as a practical workaround in “broken-symmetry” DFT calculations of transition metal com-

plexes (354–356). For an open-shell singlet, the most common approach is to approximate the singlet energy as

Esinglet � 2Emix � Etriplet (3.66)

construct F 
from the MOs

guess 
MOs

diagonalize F
to get new MOs

converged?  
([F,P] = 0?) done

yesno

SCF 
procedure

select occupancies
for new MOs

FIG. 3.11 Flowchart illustration of the SCF algorithm. In the usual approach, occupancy selection is done according to the aufbau criterion, with the

lowest-energy MOs chosen as the occupied set. For DSCF calculations, a different choice is required.
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Here, Emix is the energy of the contaminated (mixed-spin or broken-symmetry) state that is obtained in searching for a

singlet solution, whereas Etriplet is the triplet energy for the same system, for which spin contamination is typically less

severe. This procedure has a long history (356, 357), and Eq. (3.66) can be viewed as an approximate form of spin pro-

jection, generalizable to cases where the target state has spin S > 0 (353). The formula in Eq. (3.66) is sometimes imple-

mented in a self-consistent way, that is, using Eq. (3.66) as the ansatz and minimizing with respect to orbital rotations. That

method is known as restricted open-shell Kohn-Sham (ROKS) theory (358–360), and it affords a common set of orbitals for

both multiplicites. More often, however, Eq. (3.66) is used as an a posteriori correction scheme (341, 361–367). Even then,
Eq. (3.66) can easily be used in geometry optimizations (at the cost of two energy and gradient evaluations per step) and in

vibrational frequency calculations (341). For the aforementioned 1B1u state of C2H4, application of Eq. (3.66) reduces the

DSCF error (as compared to experiment) from 1.8 to 0.3 eV (343).

3.3.1.2 Orbital-optimized non-aufbau SCF solutions

The simplest means to construct a non-aufbau occupied set is known as the maximum overlap method (MOM) (343–346).
Starting from an initial guess corresponding to non-aufbau occupation of the ground-state MOs, this approach uses an

overlap criterion to identify the new occupied MOs at each subsequent SCF iteration. To do this, one must compute

the projections prs of the MOs cðnÞ
rs at the nth iteration onto a reference set of MOs. The reference set might be the

MOs at the previous iteration, in which case

prs ¼
Xocc
i

hcðn�1Þ
is jcðnÞ

rs i
2

 !1=2

(3.67)

or else it could be the initial set of ground-state MOs, fcð0Þ
is g:

prs ¼
Xocc
i

hcð0Þ
is jcðnÞ

rs i
2

 !1=2

(3.68)

The first choice (Eq. 3.67) represents the original version of the algorithm (343), whereas Eq. (3.68) has been called the

“initial MOM” (IMOM) algorithm and tends to have better success at converging orbital-relaxed non-aufbau states (345).
The signature of success is a “hole below the Fermi level,” that is, a virtual MO whose energy is lower than the HOMO

energy.

The MOM and IMOM algorithms consist simply in replacing the aufbau selection of occupied MOs with a selection

based on the nocc largest values of the overlaps prs. All other aspects of the SCF algorithm remain the same. This approach

exhibits the same cost per SCF iteration as ground-state DFT and when it succeeds, the rate of convergence (measured by

the number of SCF cycles) is typically on par with a conventional ground-state calculation. There are certainly cases where

MOM and IMOM fail (348, 349), however, typically resulting in variational collapse to the ground-state SCF solution. In

such cases, more robust SCF convergence algorithms are required.

One such approach is the “s-SCF” method (347), which is based on minimizing the functional

s2o½C� ¼ hCjðo� F̂Þ2jCi (3.69)

for a specified energy, o. This idea stems from recognizing that eigenstates F̂jCi ¼ ojCi satisfy the zero-variance con-

dition hF̂2i ¼ hF̂i2. The s-SCF approach avoids variational collapse by solving a proper minimization problem, but the

appearance of F̂
2
means that four-particle operators are required and the requisite transformations endow this method with

Oðn5basisÞ scaling (347). This makes the s-SCF approach much more expensive than conventional SCF theory.

An alternative approach with the same formal scaling as the ground-state SCF problem is squared-gradient minimi-

zation (SGM) (348). Here, the idea is to convert an inherently unstable saddle-point optimization into a search for a local

minimum by optimizing an objective function equal to the squared gradient of the energy with respect to orbital rotations.

A local minimum can always be converged (if slowly), whereas a saddle point can be missed, and this makes SGM more

robust as compared toMOMor IMOM.While the cost remainsOðn3basisÞ, it is 2–3 times more expensive per SCF iteration as

compared to a conventional SCF calculation, due to the cost of constructing the objective function (348). It is also known

that the squared gradient k r̂VðxÞk2 of a function V(x) may contain minima that do not correspond to stationary points of

the original function (368–371). From the standpoint of trying to locate an orbital-relaxed excited-state Slater determinant,

these are spurious solutions.
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A middle way between MOM and SGM is state-targeted energy projection (STEP) (349), which does not increase the

cost per SCF iteration yet shows much more robust convergence behavior as compared to MOM or IMOM. The STEP

approach constructs a projection operator onto the virtual space,

Q̂s ¼
Xvir
a

jcasihcasj (3.70)

where the summation runs over some or all of the virtual MOs. The matrix representation of Q̂s is Qs ¼ CsC
{
s, where Cs

consists of column vectors corresponding to whichever MOs are included in Eq. (3.70). The Fock matrix is then modified

according to

F0
s ¼ Fs + �SQsS (3.71)

where S is the atomic orbital (AO) overlap matrix. The effect of the additional term is to shift all of the orbitals that are

included in Eq. (3.70) by an energy �. By preselecting a virtual MO from the ground-state calculation that will be occupied

in the first iteration of STEP, one can modify the Fock matrix to shift other virtual orbitals (including a lower-energy one

that was occupied in the ground state but whose electron was promoted) to energies above the non-aufbau orbital. For

example, upon HOMO ! LUMO promotion, the original HOMO is unoccupied and should be included in Eq. (3.70),

whereas the LUMO becomes occupied and should be excluded from Q̂s. The STEP algorithm is a form of level shifting

that tends to ensure that the SCF algorithm converges to the “closest” stationary point in the space of MO coefficients,

which therefore resemble the initial guess (349). Like MOM and IMOM, STEP can be used in conjunction with

ground-state gradient technology to perform geometry optimizations and vibrational frequency calculations.

3.3.1.3 Transition potential methods

The DSCF methods described so far each involve state-specific orbital optimization, meaning that the SCF procedure must

be iterated to convergence separately for each excited state of interest. This has the advantage of including full orbital

relaxation effects (beyond linear response), but the disadvantage that there is no guarantee that an excited state resembling

the one of interest can actually be found. A simpler (if cruder) approach was devised long ago by Slater (372, 373), and
forms the basis of several popular techniques for estimating X-ray excitation energies from Kohn-Sham eigenvalues

(374–380).
To understand Slater’s method, imagine that E({ni}) is the energy of a single-determinant wave function with orbital

occupation numbers {ni}, some of which might be fractional. Expanding the energy as a Taylor series around a reference

energy E0 ¼ Eðfn0i gÞ, keeping the orbitals fixed, one obtains

E ¼ E0 +
X
i

ðni � n0i Þ
∂E

∂ni
+

1

2

X
i, j

ðni � n0i Þðnj � n0j Þ
∂
2E

∂ni∂nj
+ ⋯ (3.72)

According to the Slater-Janak theorem (381), the first derivative is an orbital eigenvalue: ei ¼ ∂E/∂ni. Now consider pro-

motion of one electron from an occupied MO to a virtual MO. It suffices to deal with just a pair of occupancies (ni, na), in
terms of which the transition in question can be abbreviated as (1, 0)! (0, 1). If a fractional-occupancy state with ni ¼ 1/2

¼ na is used for the reference state fn0i g, then using Eq. (3.72) to compute the excitation energyDE¼ E(0, 1)� E(1, 0) leads
to an estimate

DESTM � ea
1

2
,
1

2

� �
� ei

1

2
,
1

2

� �
(3.73)

where the approximation neglects terms of order ðnj � n0j Þ3 (375). This forms the basis of the Slater transition method
(STM), wherein an SCF calculation is carried out for the fractional-occupancy state (ni¼ 1/2, na¼ 1/2) and then the energy

difference DE ¼ ea � ei affords an estimate of the excitation energy.

Variants of STM have historically been popular for X-ray spectroscopy (374–380), particularly in the context of

periodic DFT calculations for which LR-TDDFT with semilocal functionals is problematic (21). In principle, this method

requires a separate SCF calculation for each excitation of interest, and while it is generally easy to converge the X-ray

“edge” in this way (i.e., a core ! LUMO transition), higher-lying states will require a convergence algorithm that can

avoid variational collapse. Moreover, this state-by-state approach leads to nonorthogonal MOs and therefore exhibits

the same ambiguities regarding oscillator strengths as the DSCF method (350). For these reasons, it is common to omit

the 1/2 electron in the virtual space (with only pragmatic justification), leaving ni¼ 1/2 in the core-excitedMO. This variant
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of the procedure has been called the transition potential (TP) method (378, 380,382–385). By neglecting to occupy any

core-excited virtual states at all, this approach sidesteps the issue of nonorthogonality, at least for a given choice of ni.
Oscillator strengths can be computed in a straightforward way from matrix elements jhC0jm̂jCa

i ij2 constructed from

the orbitals obtained from the fractional-occupancy SCF calculation.

Modifications to the formula in Eq. (3.73) have also been proposed (378, 386–388), sometimes involving more than one

SCF calculation with differing fractional occupancies, or by combining eigenvalues of both the neutral molecule and its

cation or anion (389, 390). These modifications represent attempts to eliminate higher-order errors in Eq. (3.72). An

example is the “generalized STM” (gSTM) method (378, 380,386), which replaces Eq. (3.73) with

DEgSTM ¼ 1

4
½eað1, 0Þ � eið1, 0Þ�+

3

4
ea

1

3
,
2

3

� �
� ei

1

3
,
2

3

� �� �
(3.74)

This is based on an alternative approximation for the integral

DE ¼
Z 0

1

dEðni ¼ x, na ¼ 1� xÞ
dx

dx

¼
Z 0

1

½eiðni ¼ x, na ¼ 1� xÞ � eaðni ¼ x, na ¼ 1� xÞ�dx
(3.75)

The original STM in Eq. (3.73) corresponds to a midpoint approximation for this integral (378, 379,386). The gSTM

approach requires two separate SCF calculations, one with (ni ¼ 1, na ¼ 0) and the other with (ni ¼ 1/3, na ¼ 2/3).

Variants that set ni ¼ 0 (removing the entirety of the core electron) have also been suggested and are sometimes called

full core hole (FCH) methods (374–378). The TP approach is then a half core hole (HCH) method. Although the FCH

approach deviates significantly from Slater’s original idea, it can be conceptualized as an attempt to restore charge

balance, once the 1/2 electron in the virtual space has been abandoned for reasons of convenience. The excited core hole
(XCH) approach (391) is yet another variant that creates a charge-neutral state (which is important for periodic DFT

calculations) by placing the excited electron in the LUMO and using the full virtual spectrum from that calculation

(378, 380,391):

DEXCH ¼ eaðni ¼ 0, nLUMO ¼ 1Þ � eiðni ¼ 0, nLUMO ¼ 1Þ (3.76)

Together, these STM- and TP-type procedures are known as occupancy-constrained DSCF methods. In that context, there

has been some discussion of “many-electron” effects on oscillator strengths for X-ray transitions (392, 393). What “many-

electron” means in this context is multideterminant character in the final state, which is of course included automatically in

a LR-TDDFT calculation.

3.3.2 Examples

The primary purpose of this chapter is to survey methods rather than applications but we will highlight a few recent

applications of the DSCF approach in order demonstrate that it can be an elegant and low-cost alternative in cases

where LR-TDDFT performs poorly, such as for CT states (339, 394). Whereas LR-TDDFT systematically (and

sometimes dramatically) underestimates CT excitation energies, the same excitation energies are systematically

overestimated by the uncorrelated CIS method (395). At the CIS level, a long-range excitation uses up the one

occupied ! virtual excitation that is included in the ansatz and leaves no excitations to facilitate orbital relaxation

around either the electron or the hole, hence the overestimation. LR-TDDFT and CIS may therefore bracket the

correct answer for a CT state but these upper and lower bounds can be several electron volts apart (260)! The DSCF
approach includes full orbital relaxation and is also less sensitive to the asymptotic behavior of the XC potential.

There has also been some preliminary work on the description of conical intersections and nonadiabatic dynamics

using DSCF methods (340, 396).
States with double-excitation character represent another categorical failure of LR-TDDFTwithin the adiabatic approx-

imation (99), with the most famous example being the optically dark S1(2
1A�

g ) state in carotenoids (397–399), or the anal-
ogous 21A�

g state in butadiene and other conjugated polyenes (400–404). Doubly excited states can be captured accurately
using DSCF methods (339, 348, 349), as shown for a few examples in Fig. 3.12. For these challenging cases, taken from a

benchmark data set of double excitations (405), several mGGA and hybrid functionals prove to be significantly more

accurate than the CC3 method, which includes triple excitations and is generally close to CCSD(T) in quality (406), with
similar scaling (407). For the full data set from Ref. (405), the hybrid GGA functional oB97X-V achieves a mean absolute

Density-functional theory for electronic excited states Chapter 3 95



error (MAE) of 0.6 eV and a maximum error of 1.1 eV, whereas for CC3 the MAE is 1.0 eV and the maximum error is

1.8 eV (349). The mGGA functional B97M-V does even better, with an MAE of 0.15 eV and a maximum error of 0.46 eV

(349).
The DSCF methodology can also be used to compute an electronic absorption spectrum, although this must be done one

state at a time by converging a sequence of non-aufbau determinants representing individual excited states, and there is no

guarantee that some states are not accidentally omitted. A successful example is shown in Fig. 3.13, reproducing the

absorption spectrum of the chlorophyll a molecule that was only recently measured in the gas phase (408, 409). Using
a STEP-based DSCF procedure, the major peaks in that spectrum can be identified with transitions among the frontier

MOs (349), confirming the basic picture of Gouterman’s four-orbital model (410). LR-TDDFT calculations of the same

molecule require twice as many states in order to resolve the spectrum up to 300 nm. Many of these states have near-zero

oscillator strengths (408), suggesting possible contamination by spurious CT states.

Core-valence excitation energies are fertile ground for DSCF techniques. These states appear at photon energies

ħo > 200 eV and therefore it is not feasible to reach them by iterative solution of an eigenvalue problem starting from

the lowest excitation energies. The frozen-valence approximation is one way to reach these states in LR-TDDFT, which

is very accurate for K-edge transitions (177) but may be questionable for L- or M-edge excitations. Fortunately, core-to-

LUMO excitations are relatively easy to locate usingMOM (344). Table 3.1 shows some error statistics for a benchmark set

FIG. 3.12 Errors in doubly excited states at theDSCF/aug-cc-pVTZ level vs. benchmarks fromRef. (405). CC3 values are also provided, for comparison.

(Reprinted with permission from Hait, D.; Head-Gordon, M. Orbital Optimized Density Functional Theory for Electronic Excited States. J. Phys. Chem.

Lett. 2021, 12, 4517–4529; copyright 2021 American Chemical Society.)
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FIG. 3.13 (A) Absorption spectrum of chlorophyll a computed via STEP-based DSCF calculations at the B97M-V/def2-TZVP level, spin-purified

according to Eq. (3.66) and superimposed on a gas-phase experimental spectrum from Ref. (408). (B) Pictorial representation of Gouterman’s four-orbital

model. (Reprinted with permission from Carter-Fenk, K.; Herbert, J.M. State-Targeted Energy Projection: A Simple and Robust Approach to Orbital

Relaxation of Non-Aufbau Self-Consistent Field Solutions. J. Chem. Theory Comput. 2020, 16, 5067–5082; copyright 2020 American Chemical Society.)
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of K- and L-edge transitions (411). Except for the LDA functional, all of the errors are <2 eV and several functionals

achieve errors<0.5 eV, in excitation energies that are hundreds of electron volts. Notably, some of these same functionals

also afford accurate L-edge transition energies, if spin-orbit interactions are included in order to describe the splitting of the

2p subshell into 2p1/2 and 2p3/2 states (164). This splitting can be quite large, for example, �13 eV for Fe(II) (412, 413).
Errors of <0.5 eV are also possible for heavier elements using ROKS with relativistic corrections (414).

This excellent performance is perhaps somewhat surprising due to the substantially different self-interaction errors in

core versus valence orbitals (415, 416). “Optimal tuning” of LRC functionals (Section 3.2.3), in which the range-separation

parameter is adjusted to set eHOMO ¼ �IE, can be understood as an attempt to cancel the self-interaction error associated

with the HOMO, but that is likely to leave residual self-interaction in the muchmore compact core orbitals. These errors are

exposed in DSCF calculations of core-level electron binding energies (for X-ray photoelectron spectroscopy), where many

functionals afford errors ≳10 eV for transition metals (417). Even the SCAN functional, which performs well for core-

excited states of second-row atoms (Table 3.1), affords errors of �1 eV for core-level binding energies (418). In several

cases, Hartree-Fock theory proves to be more accurate than standard functionals that include correlation, even upon

accounting for relativistic corrections (417, 419). This is consistent with other results indicating that the restricted

open-shell (RO-)CIS method is a reasonable level of theory for M- and L-edge spectra of solid-state transition metal oxides,

despite its lack of correlation effects, provided that spin-orbit corrections are included (420). Resolution of this apparent

paradox remains an open question.

For second-row atoms, errors in both core-level IEs (344, 419, 421) and also core-level excitation energies (344, 349,
411) are comparatively small when using the DSCF approach, although even for these elements Hartree-Fock theory is

competitive with DFT (421), suggesting that orbital relaxation is much more important than correlation. These rather small

errors should be contrasted with much larger ones encountered when LR-TDDFT is applied to the same states using the

frozen-valence approximation. Table 3.2 shows results for two different molecules (HF and CH4) using two different func-

tionals (SCAN and oB97X-V) that both perform well in DSCF benchmarks. In contrast to the sub-eV errors obtained using

theDSCF approach, LR-TDDFT calculations exhibit errors in excess of 10 eV for the carbon K-edge transition and�20 eV

for the fluorine K-edge transition. For K-edge transitions of Mn(II) at ħo � 6540 eV, LR-TDDFT errors of �32 eV are

obtained using B3LYP, and errors using the GGA functional BP86 are �62 eV (422). Errors are even larger for heavier

elements (423). Notably, the sign of the errors in Table 3.2 points to underestimation of the excitation energy, consistent

with too-soft asymptotic decay of the potential for a transition with CT character from a very compact 1s orbital to a radially

diffuse LUMO. LRC functionals perform much better in this capacity (424, 425).
That said, the precision of core excitation energies computed using LR-TDDFT is rather good even if the accuracy is not

(425), meaning that chemical shifts can be obtained even if absolute excitation energies must be shifted to match exper-

iment. It is the magnitude of the required shifts that is somewhat unnerving. This inspired work on RSH functionals that

partition r�1
12 into short-, middle-, and long-range components (211–214), with the intention to use a larger fraction of exact

exchange (ahfx � 0.87) at a length scale m�1 � 0.24 Å (426). These “short-range corrected” (SRC) functionals work rather
well for X-ray calculations using LR-TDDFT (213), although they are empirically parameterized specifically for that

TABLE 3.1 Error statistics (in eV) for ROKS calculations of core-level excitation energies,

including relativistic corrections.

K edgea L2,3 edges
b

Functional Mean RMSE Mean RMSE

LDA �4.3 4.4

PBE �0.9 0.9

B97M-V 1.8 1.8

SCAN 0.1 0.2 0.1 0.2

PBE0 �0.6 0.6

oB97X-V 0.3 0.4 �0.2 0.4

Data from Ref. (411), using the SGM algorithm and aug-cc-pCVTZ basis set.
aData set includes 40 transitions for C, N,O, and F atoms. Error is defined with respect to experiment, with atom-specific
scalar relativistic effects included in the calculation.
bIncluding spin-orbit effects.
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purpose and may not be good functionals for other applications such as ground-state thermochemistry or valence excitation

energies. Furthermore, the SRC functionals are not LRC functionals in the sense of Eq. (3.48), because they do not go to a

limit of 100% HFX as r12 !∞. Alternatively, proper LRC functionals have been developed to describe core-level exci-

tations (211).
As illustrated by the porphyrin spectrum in Fig. 3.13 and other examples (339), accurate electronic absorption spectra

can be computed via DSCF calculations that are carried out in a state-by-state manner. However, this does present some-

thing of a nuisance as compared to automatic generation of numerous excitation energies in a LR-TDDFT calculation.

Some of the TP and occupancy-constrained DSCF approaches that were described in Section 3.3.1 bypass this annoyance

by using orbital eigenvalues from one or two fractional-occupancy SCF calculations to obtain the entire spectrum of exci-

tation energies. These methods are assessed (vs. experiment) in Fig. 3.14, for a data set of K-edge transitions (378). Fol-
lowing the notation of Ref. (378), these methods are characterized as either “explicit” or “implicit,” with explicit methods

involving occupancy constraints that are applied state by state, as suggested by the original Slater method, whereas the

implicit methods place no electron at all into the virtual space, which makes for a very simple computational scheme.

The “neutral implicit” methods follow the paradigm of the XCH approach (391), placing an electron (or a fraction of an

electron) into the LUMO only; it is often possible to optimize a core-to-LUMO SCF solution without specialized algorithms.

Finally, the “ground state” results in Fig. 3.14 represent a control experiment in which the ground-state eigenvalue difference

TABLE 3.2 K-edge excitation energies (in eV) computed in various ways.

Molecule Errorb

Method Functional HF CH4 HF CH4

LR-TDDFT SCAN 666.1 273.8 �21.3 �14.2

DSCF +ASPa SCAN 687.1 287.9 �0.3 �0.1

ROKS SCAN 687.0 288.0 �0.4 0.0

LR-TDDFT oB97X-V 668.7 276.5 �18.7 �11.5

DSCF +ASPa oB97X-V 687.2 288.5 �0.2 0.5

ROKS oB97X-V 687.1 288.5 �0.3 0.5

Experiment 687.4 288.0 – –

Data are from Ref. (411), aug-cc-pCVTZ basis set.
aUsing approximate spin projection (ASP), Eq. (3.66).
bWith respect to experiment.

FIG. 3.14 (A) Pictorial view of TP-type methods based on Kohn-Sham eigenvalues, classified into “explicit” methods that require a separate SCF cal-

culation for each excited state versus “implicit” methods that do not. (B) Percent error for each method (vs. experiment), applying the PBE functional to a

data set of K-edge excitation energies. Box plots extend from the 25th to the 75th error percentile with the median value indicated, while the whiskers show

the largest outliers. (Adapted with permission from Michelitsch, G. S.; Reuter, K. Efficient Simulation of Near-Edge X-Ray Absorption Fine Structure

(NEXAFS) in Density-Functional Theory: Comparison of Core-Level Constraining Approaches. J. Chem. Phys. 2019, 150, 074104; copyright 2019

American Institute of Physics.)
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eLUMO � e1s is used to approximate the K-edge transition energy. That method fares surprisingly well, or perhaps the other

approaches should be said to fare surprisingly poorly. If the user desires to avoid state-by-state optimization of an occupancy-

constrained determinant, then the XCH approach would seem to be the best option.

3.4 Time-dependent Kohn-Sham theory: “Real-time” TDDFT

The cost of the DSCF approaches described in Section 3.3 is typically no more than a few times the cost of ground-state

DFT, depending somewhat on the algorithm that is used to converge the non-aufbau SCF solution.With the exception of the

s-SCF method, the algorithms described in that section each possess the same Oðn3basisÞ scaling as the ground-state calcu-

lation. However, these methods must be applied in a state-by-state manner, constructing a different initial guess for each

state of interest. This limits their applicability to problems where only a small number of states is desired or required,

whereas using LR-TDDFT it is possible to obtain a large number of states in an automated fashion, at least for

medium-sized molecules. Systems with a dense manifold of excited states (e.g., semiconductors) can create significant

storage bottlenecks for the trial vectors that are required by the iterative eigensolver in LR-TDDFT and the appearance

of spurious CT states in condensed-phase applications of LR-TDDFT exacerbates its cost, even if the effect of these states

on the overall spectral envelope is close to nil (287, 427). In situations such as these, where proliferation of states (whether
real or spurious) makes the iterative diagonalization cost-prohibitive, the TDKS approach may be advantageous. Using this

method, a broadband spectrum can be computed from the oscillating dipole moment function obtained from time-

dependent electron dynamics.

3.4.1 Theory

The TDKS approach is also known as “real-time” (RT-)TDDFT (51, 52), to distinguish it from LR-TDDFT. Starting from

the ground-state Kohn-Sham determinant, an external electric field Eðr, tÞ is turned on at t¼ 0, either as an impulse or as a

continuous wave, and the resulting perturbation creates a time-evolving superposition state whose Fourier components

encode the excitation energies. This is analogous to propagation of a nonstationary wave packet according to the time-

dependent Schr€odinger equation. Similar to that situation, the time-dependent MOs cks(r, t) are complex-valued for t
> 0. Unlike the many-electron time-dependent Schr€odinger equation, the effective Hamiltonian F̂ in Kohn-Sham theory

depends on its own time-evolving eigenfunctions, and F̂ðtÞ does not commute with F̂ðt0Þ for t6¼t0. Therefore, the time evo-

lution operator

Ûðt2, t1Þ ¼ exp
�iðt2 � t1Þ

ħ
Ĥ

� �
(3.77)

for time-independent Hamiltonian Ĥ must be generalized to

Ûðt2, t1Þ ¼ T̂ exp �i

Z t2

t1

F̂ðtÞdt
" #

(3.78)

for TDKS calculations, where T̂ is a time-ordering operator. This leads to the so-called Magnus expansion that generalizes

the time-independent Baker-Campbell-Hausdorff expansion (428–430).
A variety of time-propagation algorithms have been developed for TDKS simulations (52, 430–434), the simplest of

which is a “modified-midpoint” algorithm (432). This is a type of explicit Euler integration scheme that requires only one

Fock matrix construction per time step. Denoting the Fock and density matrices in the orthonormal MO basis as F and P,
respectively, the Fock matrix F is first propagated forward in time by a half step, (Dt)/2. At each subsequent instant in time,

tn ¼ nDt, the matrix representation of the propagator is constructed according to

Un ¼ exp½�iðDtÞFn+1=2� (3.79)

again in the MO basis (430). The MO density matrix is then propagated from tn�1/2 to tn+1/2 according to

Pn+1=2 ¼ UnPn�1=2U
{
n (3.80)

(Spin indices are omitted as these equations are valid for either spin.) Construction of Un requires diagonalization of the

Fock matrix, which is not a problem in Gaussian basis sets but is not feasible in plane-wave basis sets or on a grid; see Ref.

(431) for a discussion of alternatives when F is too large to diagonalize. For Gaussian basis calculations, self-consistent
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propagators based on predictor-corrector algorithms have also been developed (430, 435). These may require more than one

Fock build per time step but allow for the use of somewhat larger time steps as well as for automatic detection of time steps

that are too long, which is not always obvious from the usual criterion of checking to make sure that fluctuations in the total

energy are bounded (430).
For the modified-midpoint algorithm that is encapsulated by Eqs. (3.79) and (3.80), the cost of a single time step is

comparable to the cost of a single SCF cycle of the ground-state calculation. The storage requirement is also modest,

amounting to a few complex-valued matrices of dimension nbasis 	 nbasis. This should be contrasted with the storage

requirement for iterative solution of the LR-TDDFT pseudo-eigenvalue problem, which isOðnrootsnoccnvirÞwith a prefactor
that reflects the number of iterations and therefore the size of the iterative subspace. The modified-midpoint approach

works well provided that the time step Dt is sufficiently small and values ranging from 0.01 to 0.50 a.u. are typical, where

1a.u.� 2.42	 10�17s¼ 24.2 attoseconds. (The time for one orbit in the Bohr model of the hydrogen atom is 2p times this

value, which establishes a timescale for electronic motion.) The maximum acceptable value of Dt is limited not only by

stability of the time integration but also by the excitation energies that one desires to access, as discussed below.

Unlike LR-TDDFT, which operates by definition in the limit of a vanishingly weak external field, the TDKS

approach is nonperturbative and in principle can be used to simulate electron dynamics in strong laser fields, for

example, to simulate nonlinear optical properties of materials (436), or to make contact with emerging attosecond spec-

troscopies (57) that create electronic wave packets that are out of equilibrium with the nuclei and thus outside of the

Born-Oppenheimer approximation (53–56). In practice, there are various issues related to the use of the adiabatic

approximation (291, 437, 438), meaning the use of ground-state functionals with no memory, such that the time depen-

dence is carried solely by the time-evolving density, Exc[r(r,t)]. On the other hand, within the adiabatic approximation

the initial-state dependence vanishes since the XC kernel is fully specified in terms of the instantaneous time-evolving

density (439). The topic of strong-field electron dynamics and how it can be described using TDKS calculations is not

considered here, except to note that there have been successful TDKS simulations of strong-field photoionization

(440–451), and also of high harmonic generation (452–460), both in Gaussian-orbital representations of the density.

Unlike the grid-based treatments that are common in atomic physics, Gaussian-based methods are scalable to molecules.

However, self-interaction error is known to significantly suppress strong-field ionization rates (461). Much of the afore-

mentioned work has thus been performed at the TD-CIS level, where self-interaction is not a concern and the exchange

potential has the correct asymptotic form.

This section focuses on the use of TDKS simulations to obtain broadband spectra. Within the electric dipole approx-

imation, which is also invoked in LR-TDDFT insofar as oscillator strengths are proportional to transition dipole matrix

elements, the absorption spectrum corresponds to the dipole strength function (163, 462)

SðoÞ ¼ 4po
3c

� �
Im½axxðoÞ+ayyðoÞ+azzðoÞ� (3.81)

where for example

axyðoÞ ¼
∂mxðoÞ
∂EyðoÞ

(3.82)

is an element of the dynamic polarizability tensor, a(o). The quantities mx(o) and EyðoÞ are the Fourier transforms of the

time-dependent dipole moment and the external electric field, respectively, although for an impulsive d-function pulse the
denominator in Eq. (3.82) can be replaced by the field amplitude while the numerator is replaced by

mðoÞ¼
Z ∞

0

wðtÞmðtÞe�iotdt (3.83)

Here,w(t) is a windowing or padding function, as in standard signal processing (52). To obtain a linear absorption spectrum,

the external field «ðr, tÞ should be weak, impulsive, and off-resonant, and should contain components in all three Cartesian

directions in order to excite states of all symmetries, effectively averaging over molecular orientations. With an appropri-

ately chosen integration time step, this procedure reproduces the same spectrum that is obtained using LR-TDDFT, if all of
the LR-TDDFT excitations within the energy window of interest are included (430, 462). The TDKS approach affords the

entire broadband spectrum from a single Fourier transform (Eq. 3.83) following sufficient time propagation, but it is not

straightforward to assign the features in the TDKS spectrum to transitions between specific MOs. Techniques to do so have

been developed, based on identifying individual Fourier modes in the dipole moment matrix (expressed in the MO basis) at

a specific transition frequency (463–467). This does require some postprocessing and some insight regarding the important

MOs. Time-dependent generalization of the NTO basis has also been proposed (468).
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The cost of the time steps needed to propagate the Kohn-ShamMOs in time, and thus to obtain the time-evolving density

and dipole moment function, is comparable to the cost of a single ground-state SCF cycle but many time steps are required.

A typical simulation time might be 30 fs to obtain a fully converged spectrum (430), but with Dt ¼ 0.1a.u. ¼ 2.4 as (1as¼
10�18 s), this represents >105 time steps. Recently, Pad�e approximant techniques have been introduced in order to obtain

m(o) based on a short time series of input data m(t) (52, 465). Using this approach, spectra that are well converged (with

respect to LR-TDDFT results) can be obtained in<10 fs of time propagation and rough spectra can be obtained with as little

as 3–5 fs (163). The time step Dt dictates the spectral window that can be accessed, via the usual time-energy uncertainty

relationship ðDEÞðDtÞ ≳ ħthat comes from the Fourier transform. In practice, the spectrum is only reliably converged up the

Nyquist frequency fNy¼ p/(Dt), and perhaps only up to a fraction of that value (163, 430). This implies that especially small

time steps are required for X-ray applications. A time step Dt ¼ 0.1 a.u., for example, corresponds to a Nyquist frequency

ħfNy ¼ 854 eV, which is well above the K edge for second-row elements (C, N, O, etc.) but not for third-row elements. The

K edge for elements Al–Cl lies above 1500 eV.

3.4.2 Examples

As an example of a broadband spectrum of interest in materials science, Fig. 3.15 presents X-ray spectra at the L2, 3 edge of

a-quartz, computed using several different TDDFT methods (469). Starting from the lowest valence excitations, a

LR-TDDFT calculation with nroots ¼ 300 reproduces the first two features in the experimental spectrum (labeled “A”

and “B”) but is unable to resolve the higher-energy features. (The calculations do not include spin-orbit coupling and thus

FIG. 3.15 Experimental X-ray absorption spectra of a-quartz at the L2, 3 edge (470), along with LR- and RT-TDDFT calculations using a cluster model

Si5O16H12 of the bulk material (as shown), with modified hydrogen charges to enforce charge neutrality (469). The spectrum labeled “RT-TDDFT + iG”
includes phenomenological lifetime parameters for the virtual orbitals. All calculations were performed with an optimally tuned version of LRC-oPBEh.
The dashed line labeled E0 is the experimental ionization energy of Si(2p). (Reprinted with permission from Fernando, R. G.; Balhoff, M. C.; Lopata, K.

X-Ray Absorption in InsulatorsWith Non-Hermitian Real-Time Time-Dependent Density Functional Theory. J. Chem. Theory Comput. 2015, 11, 646–654;
copyright 2015 American Chemical Society.)
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do not reproduce the doublet for peak A, which arises due to the 0.6 eV splitting of the 2p3/2 and 2p1/2 levels (470).) Although
the most intense feature (peak B) is evident in the RT-TDDFT spectrum, at a peak position that precisely matches the corre-

sponding LR-TDDFT spectrum, the RT-TDDFT spectrum is quite noisy and other features in it are obscured by this noise.

That noise is actually a basis-set artifact arising from the absence of proper continuum states (or the inability to describe

ionization within a finite-basis approximation), which has the effect of artificially trapping metastable excitations that

lie above the ionization threshold (469, 471). A solution to this problem is to incorporate phenomenological lifetimes

for the unbound MOs, meaning those with eps > 0. This procedure is described in Ref. (471) and corresponds to a mod-

ification eps! eps + iG in the MO basis, where G�1 is a phenomenological lifetime that is modeled as a function of energy,

decreasing exponentially above the vacuum level. As seen in Fig. 3.15, this “iG” modification removes the noise from the

RT-TDDFT spectrum, such that most of the experimental features become evident even at energies far above what can

feasibly be reached with LR-TDDFT. This does require some phenomenological modeling, however.

When computing K-edge X-ray spectra using high-quality basis sets, similar artifacts can manifest as spurious preedge

features that are not seen in compact basis sets where the density of levels eps is more sparse. In a molecule that contains

both nitrogen and oxygen, for example, excitations from N(1s) core orbitals to the highest-energy virtual MOs can manifest

as spurious preedge features at the oxygen K-edge (163, 472), as shown in Fig. 3.16. These artifacts appear despite the fact
that the nitrogen K-edge lies >100 eV below the oxygen K-edge! These intruder peaks could potentially be mitigated via

heuristic lifetime models for the unbound states, as described earlier, although a simpler fix is to modify the time-dependent

dipole moment matrix in the MO basis. That matrix is

Djks,xðtÞ ¼ �ehcjsðtÞjx̂jcksðtÞi (3.84)

for the x component. The time-dependent dipole moment function that is needed in Eq. (3.83) is then

mxðtÞ ¼ trðPaDa,x + PbDb,xÞ (3.85)

By eliminating the rows and columns of Ds,x that correspond to occupied MOs other than the ones of interest, prior to

computing the Fourier transform in Eq. (3.83), the undesired resonances can be removed from the spectrum (472). For
the oxygen K edge, this means retaining only those rows and columns where either j or k refers to a O(1s) orbital. This

is precisely analogous to the frozen-valence truncation of the LR-TDDFT excitation manifold that is used to obtain

core-level spectra (Section 3.2.2), and may have similar limitations for L- and M-edge spectra. For the oxygen K edge,

Fig. 3.16 shows that this procedure affords a spectrum in good agreement with LR-TDDFT, free of contamination by
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FIG. 3.16 Absorption spectrum of 4-aminophenol at the oxygen K edge (PBE0/def2-TZVP level), illustrating the appearance of preedge intruder peaks

in the RT-TDDFT spectrum without filtering that are not present in the LR-TDDFT spectrum, which is shaded. These intruders can be suppressed in the

RT-TDDFT spectrum by filtering the dipole moment function. (Reproduced with permission from Yang, M.; Sissay, A.; Chen, M.; Lopata, K. Intruder

Peak-Free Transient Inner-Shell Spectra Using Real-Time Simulations. J. Chem. Theory Comput. 2022, 18, 992–1002; copyright 2022 American

Chemical Society.)
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N(1s) excitations. This filtering procedure does require the user to decide in advance which edges are of interest, although

all of the edges can be filtered (without significant overhead) in a single TDKS calculation.

The TDKS approach has been extended to compute excited-state absorption spectra (439, 473), using an excited-state

density prepared via LR-TDDFT for the initial density at t ¼ 0. Because the initial state is nonstationary, this requires that

the “field-on” simulation be referenced to a time-evolving “field-off” simulation (439). This approach has recently been

applied to simulate emerging transient X-ray experiments (474–477), carried out at free-electron laser facilities using X-ray
pulses with femtosecond time resolution. As an example, it is possible to follow metal-to-metal CT dynamics in the mixed-

valence [(CN)5Fe
IICNRuIII(NH3)5]

� compound, which occur on a �60 fs timescale following excitation at 800 nm, using

time-resolved X-ray emission spectroscopy at the iron K edge (2p3/2 ! 1s transition at 7114 eV) (477).
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421. Bellafont, N. P.; Saiz, G. A.; Viñes, F.; Illas, F. Performance of Minnesota Functionals on Predicting Core-Level Binding Energies of Molecules

Containing Main-Group Elements. Theor. Chem. Acc. 2016, 135, 35.

422. Roemelt, M.; Beckwith, M. A.; Duboc, C.; Collomb, M. N.; Neese, F.; DeBeer, S. Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of

Metal-Ligand Interactions in Coordination Compounds. Inorg. Chem. 2012, 51, 680–687.

423. Chantzis, A.; Kowalska, J. K.; Maganas, D.; DeBeer, S.; Neese, F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the

Efficient Calculation of X-Ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J. Chem. Theory Comput. 2018, 14,

3686–3702.

424. do Couto, P. C.; Hollas, D.; Slavı́�cek, P. On the Performance of Optimally Tuned Range-Separated Hybrid Functionals for X-Ray Absorption

Modeling. J. Chem. Theory Comput. 2015, 11, 3234–3244.

425. Fransson, T.; Brumboiu, I. E.; Vidal, M. L.; Norman, P.; Coriani, S.; Dreuw, A. XABOOM: An X-Ray Absorption Benchmark of Organic Molecules

Based on Carbon, Nitrogen, and Oxygen 1s ! p* Transitions. J. Chem. Theory Comput. 2021, 17, 1618–1637.

426. Capano, G.; Penfold, T. J.; Besley, N. A.; Milne, C. J.; Reinhard, M.; Rittmann-Frank, H.; Glatzel, P.; Abela, R.; Rothlisberger, U.; Chergui, M.;

Tavernelli, I. The Role of Hartree-Fock Exchange in the Simulation of X-Ray Absorption Spectra: A Study of Photoexcited [Fe(bpy)3]
2+. Chem.

Phys. Lett. 2013, 580, 179–184.

427. Carter-Fenk, K.; Mundy, C. J.; Herbert, J. M. Natural Charge-Transfer Analysis: Eliminating Spurious Charge-Transfer States in Time-Dependent

Density Functional Theory Via Diabatization, With Application to Projection-Based Embedding. J. Chem. Theory Comput. 2021, 17, 4195–4210.

428. Casas, F.; Iserles, A. Explicit Magnus Expansions for Nonlinear Equations. J. Phys. A: Math. Gen. 2006, 39, 5445.

429. Blanes, S.; Casas, F.; Oteo, J. A.; Ros, J. The Magnus Expansion and Some of Its Applications. Phys. Rep. 2009, 470, 151–238.

430. Zhu, Y.; Herbert, J. M. Self-Consistent Predictor/Corrector Algorithms for Stable and Efficient Integration of the Time-Dependent Kohn-Sham

Equation. J. Chem. Phys. 2018, 148, 044117.

431. Castro, A.; Marques, M. A. L.; Rubio, A. Propagators for the Time-Dependent Kohn-Sham Equations. J. Chem. Phys. 2004, 121, 3425–3433.

432. Li, X.; Smith, S. M.; Markevitch, A. N.; Romanov, D. A.; Levis, R. J.; Schlegel, H. B. A Time-Dependent Hartree-Fock Approach for Studying the

Electronic Optical Response of Molecules in Intense Fields. Phys. Chem. Chem. Phys. 2005, 7, 233–239.

433. Williams-Young, D.; Goings, J. J.; Li, X. Accelerating Real-Time Time-Dependent Density Functional Theory With a Nonrecursive Chebyshev

Expansion of the Quantum Propagator. J. Chem. Theory Comput. 2016, 12, 5333–5338.

434. Pueyo, A. G.; Marques, M. A. L.; Rubio, A.; Castro, A. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Expo-

nential Runge-Kutta, and Commutator Free Magnus Method. J. Chem. Theory Comput. 2018, 14, 3040–3052.

435. Ye, L.; Wang, H.; Zhang, Y.; Liu, W. Self-Adaptive Real-Time Time-Dependent Density Functional Theory for Core Excitations. J. Chem. Phys.

2022, 157, 074106.

436. Yabana, K.; Sugiyama, T.; Shinohara, Y.; Otobe, T.; Bertsch, G. F. Time-Dependent Density Functional Theory for Strong Electromagnetic Fields in

Crystalline Solids. Phys. Rev. B 2012, 85, 045134.

116 PART II Methods

http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2015
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2015
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2020
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2020
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2025
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2030
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2030
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2035
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2040
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2045
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2045
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2050
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2055
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2055
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2055
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2060
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2060
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2065
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2070
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2070
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2070
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2070
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2075
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2075
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2075
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2080
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2080
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2080
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2085
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2085
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2090
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2090
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2095
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2095
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2100
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2100
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2105
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2105
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2105
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2110
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2110
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2110
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2115
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2115
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2115
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2115
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2120
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2120
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2120
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2120
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2120
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2125
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2125
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2130
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2135
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2140
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2140
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2145
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2150
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2150
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2155
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2155
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2160
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2160
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2165
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2165
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2170
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2170


437. Fuks, J. I.; Elliott, P.; Rubio, A.; Maitra, N. T. Dynamics of Charge-Transfer Processes With Time-Dependent Density Functional Theory. J. Phys.

Chem. Lett. 2013, 4, 735–739.

438. Luo, K.; Fuks, J. I.; Maitra, N. T. Studies of Spuriously Shifting Resonances in Time-Dependent Density Functional Theory. J. Chem. Phys. 2016,

145, 044101.

439. Fischer, S. A.; Cramer, C. J.; Govind, N. Excited State Absorption From Real-Time Time-Dependent Density Functional Theory. J. Chem. Theory

Comput. 2015, 11, 4294–4303.

440. Klinkusch, S.; Saalfrank, P.; Klamroth, T. Laser-Induced Electron Dynamics Including Photoionization: A Heuristic ModelWithin Time-Dependent

Configuration Interaction Theory. J. Chem. Phys. 2009, 131, 114304.

441. Karamatskou, A.; Pabst, S.; Chen, Y. J.; Santra, R. Calculation of Photoelectron Spectra Within the Time-Dependent Configuration-Interaction

Singles Scheme. Phys. Rev. A 2014, 89, 033415.

442. Krause, P.; Schlegel, H. B. Strong Field Ionization Rates of Linear Polyenes Simulated With Time-Dependent Configuration Interaction and an

Absorbing Potential. J. Chem. Phys. 2014, 141, 174104.

443. Krause, P.; Sonk, J. A.; Schlegel, H. B. Strong Field Ionization Rates Simulated With Time-Dependent Configuration Interaction and an Absorbing

Potential. J. Chem. Phys. 2014, 140, 174113.

444. Krause, P.; Schlegel, H. B. Angle-Dependent Ionization of Small Molecules by Time-Dependent Configuration Interaction and an Absorbing

Potential. J. Phys. Chem. Lett. 2015, 6, 2140–2146.

445. Krause, P.; Schlegel, H. B. Angle-Dependent Ionization of Hydrides AHn Calculated by Time-Dependent Configuration Interaction With an

Absorbing Potential. J. Phys. Chem. A 2015, 119, 10212–10220.

446. Hoerner, P.; Schlegel, H. B. Angular Dependence of Strong Field Ionization of CH3X (X ¼ F, Cl, Br, or I) Using Time-Dependent Configuration

Interaction With an Absorbing Potential. J. Phys. Chem. A 2017, 121, 5940–5946.

447. Hoerner, P.; Schlegel, H. B. Angular Dependence of Ionization by Circularly Polarized Light CalculatedWith Time-Dependent Configuration Inter-

action With an Absorbing Potential. J. Phys. Chem. A 2017, 121, 1336–1343.

448. Hoerner, P.; Schlegel, H. B. Angular Dependence of Strong Field Ionization of Haloacetylenes HCCX (X ¼ F, Cl, Br, I) Using Time-Dependent

Configuration Interaction With an Absorbing Potential. J. Phys. Chem. C 2018, 122, 13751–13757.

449. Hoerner, P.; Li, W.; Schlegel, H. B. Angular Dependence of Strong Field Ionization of 2-Phenylethyl-n,n-Dimethylamine (PENNA) Using Time-

Dependent Configuration Interaction With an Absorbing Potential. J. Phys. Chem. A 2020, 124, 4777–4781.

450. Lee, M. K.; Hoerner, P.; Li, W.; Schlegel, H. B. Effect of Spin-Orbit Coupling on Strong Field Ionization Simulated With Time-Dependent Con-

figuration Interaction. J. Chem. Phys. 2020, 153, 244109.

451. Hoerner, P.; Li, W.; Schlegel, H. B. Sequential Double Ionization of Molecules by Strong Laser Fields Simulated With Time-Dependent Config-

uration Interaction. J. Chem. Phys. 2021, 155, 114103.

452. Luppi, E.; Head-Gordon, M. The Role of Rydberg and Continuum Levels in Computing High Harmonic Generation Spectra of the Hydrogen Atom

Using Time-Dependent Configuration Interaction. J. Chem. Phys. 2013, 139, 164121.

453. White, A. F.; Heide, C. J.; Saalfrank, P.; Head-Gordon, M.; Luppi, E. Computation of High-Harmonic Generation Spectra of the HydrogenMolecule

Using Time-Dependent Configuration-Interaction. Mol. Phys. 2016, 114, 947–956.

454. Coccia, E.; Mussard, B.; Labeye, M.; Caillat, J.; Taı̈eb, R.; Toulouse, J.; Luppi, E. Gaussian Continuum Basis Functions for Calculating High-

Harmonic Generation Spectra. Int. J. Quantum Chem. 2016, 116, 1120–1131.

455. Labeye, M.; Zapata, F.; Coccia, E.; V�eniard, V.; Toulouse, J.; Caillat, J.; Taı̈eb, R.; Luppi, E. Optimal Basis Set for Electron Dynamics in Strong

Laser Fields: The Case of Molecular Ion H+
2 . J. Chem. Theory Comput. 2018, 14, 5846–5858.

456. Coccia, E.; Luppi, E. Detecting the Minimum in Argon High-Harmonic Generation Using Gaussian Basis Sets. Theor. Chem. Acc. 2019, 138, 96.

457. Pauletti, C. F.; Coccia, E.; Luppi, E. Role of Exchange and Correlation in High-Harmonic Generation Spectra of H2, N2, and CO2: Real-Time Time-

Dependent Electronic Structure Approaches. J. Chem. Phys. 2021, 154, 014101.

458. Witzorky, C.; Paramonov, G.; Bouakline, F.; Jaquet, R.; Saalfrank, P.; Klamroth, T. Gaussian-Type Orbital Calculations for High Harmonic Gen-

eration in Vibrating Molecules: Benchmarks for H+
2 . J. Chem. Theory Comput. 2021, 17, 7353–7365.

459. Coccia, E.; Luppi, E. Time-Dependent Ab Initio Approaches for High-Harmonic Generation Spectroscopy. J. Phys. Condens. Matt. 2022, 34,

073001.

460. Zhu, Y.; Herbert, J. M. High Harmonic Spectra Computed Using Time-Dependent Kohn-Sham Theory With Gaussian Orbitals and a Complex

Absorbing Potential. J. Chem. Phys. 2022, 156, 204123.

461. Kawashita, Y.; Nakatsukasa, T.; Yabana, K. Time-Dependent Density-Functional Theory Simulation for Electron-Ion Dynamics inMolecules Under

Intense Laser Pulses. J. Phys. Condens. Matt. 2009, 21, 064222.

462. Tussupbayev, S.; Govind, N.; Lopata, K.; Cramer, C. J. Comparison of Real-Time and Linear-Response Time-Dependent Density Functional The-

ories for Molecular Chromophores Ranging From Sparse to High Densities of States. J. Chem. Theory Comput. 2015, 11, 1102–1109.

463. Repisky, M.; Konecny, L.; Kadek, M.; Komorovsky, S.; Malkin, O. L.; Malkin, V. G.; Ruud, K. Excitation Energies From Real-Time Propagation of

the Four-Component Dirac-Kohn-Sham Equation. J. Chem. Theory Comput. 2015, 11, 980–991.

464. Kaduk, M.; Konecny, L.; Gao, B.; et al. X-Ray Absorption Resonances Near L2,3-Edges From Real-Time Propagation of the Dirac-Kohn-Sham

Density Matrix. Phys. Chem. Chem. Phys. 2015, 17, 22566–22570.

465. Bruner, A.; LaMaster, D.; Lopata, K. Accelerated Broadband Spectra Using Transition Dipole Decomposition and Pad�e Approximants. J. Chem.

Theory Comput. 2016, 12, 3741–3750.

Density-functional theory for electronic excited states Chapter 3 117

http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2175
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2175
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2180
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2180
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2185
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2185
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2190
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2190
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2195
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2195
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2200
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2200
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2205
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2205
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2210
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2210
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2215
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2215
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2215
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2220
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2220
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2220
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2220
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2225
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2225
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2230
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2230
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2230
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2235
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2235
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2240
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2240
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2245
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2245
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2250
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2250
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2255
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2255
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2260
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2260
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2265
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2265
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2265
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2265
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2270
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2275
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2275
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2275
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2275
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2275
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2280
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2280
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2280
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2285
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2285
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2290
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2290
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2295
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2295
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2300
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2300
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2305
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2305
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2310
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2310
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2310
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2315
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2315
http://refhub.elsevier.com/B978-0-323-91738-4.00005-1/rf2315


466. Rossi, T. P.; Kuisma, M.; Puska, M. J.; Nieminen, R. M.; Erhart, P. Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional

Theory: An Efficient Tool for Analyzing Plasmonic Excitations. J. Chem. Theory Comput. 2017, 13, 4779–4790.
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