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Abstract

Liquid microjet photoelectron spectroscopy is a state-of-the-art experimental tech-

nique that provides avenues for investigating ultrafast charge and energy transfer

processes in liquid water and aqueous solutions. The emphasis of this work is placed

on making contact with recent liquid microjet experiments of hydrated electrons,

e−(aq), in liquid water and at the liquid-vapor interface from a computational per-

spective. Since its discovery nearly 55 years ago, e−(aq) has attracted significant

attention from both experimental and theoretical communities due to its crucial role

in radiation chemistry and its relatively elusive structure in liquid water at ambi-

ent conditions. Historically, the primary observable of hydrated electrons has been

a well-characterized optical absorption spectrum, but with the advent of liquid mi-

croject spectroscopy, this has shifted to measurements of its relative binding energy

below vacuum level. Some experiments utilizing this methodology have been inter-

preted to suggest that e−(aq) at the liquid-vapor interface is energetically dissimilar

than in liquid water, and that, unlike the more strongly bound species in liquid, it

can potentially undergo destructive reactions with solvated DNA molecules.

A variety of computational strategies are employed to demonstrate that the spec-

troscopic properties of hydrated electrons in liquid water are actually quite similar to

the interfacial species. To that end, mixed quantum-classical molecular dynamics sim-

ulations are performed where e−(aq) in liquid water and at the interface is described

ii



by two different one-electron pseudopotentials. These simulations suggest that the

presence of e−(aq) at a liquid-vapor interface is fleeting at ambient conditions, and to

experimentally distinguish it from the bulk species using standard spectroscopic tech-

niques would be challenging. Non-equilibrium polarizable continuum models (PCMs),

in conjunction with MP2 and DFT methods, are then employed to compute vertical

ionization energies in liquid water. However, computing these quantities in anisotropic

environments, such as at an interface, is not possible with traditional PCMs. There-

fore, a novel methodology is presented for computing vertical ionization energies at

a liquid-vapor interface that was developed to incorporate non-equilibrium solvent

polarization effects for molecules immersed in arbitrary dielectric environments. This

method is applied to e−(aq), alkali metal cations, and halide anions in liquid water,

for which vertical ionization energies have been measured, and also to predict these

quantities at the interface where some liquid microjet measurements do not yet exist.
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surface. The size of the wave function has changed little by t = 10 ps,
but its centroid has moved to 1.50 Å below the Gibbs dividing surface,
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VEBE that has fluctuated around the bulk value since t ≈ 8.50 ps. . 61

2.8 Time evolution of (a) the VEBE, (b) the radius of gyration (rg), and
(c) the distance (d) between the centroid of the e−(aq) charge distri-
bution and the Gibbs dividing surface from MD simulations employing
a mean-field polarization potential model at ambient temperatures.
(The time axis is linear for the first 0.5 ps then switches to a loga-
rithmic scale.) For comparison to the simulations utilizing N = 300
and N = 600 water molecules, the data from representative N = 200
trajectories are reproduced from Figure 2.5. . . . . . . . . . . . . . . 62

2.9 Probability distributions for the bulk and interfacial VEBE using (a)
the mean-field polarization model, in an N = 600 water box; and
(b) the explicit polarization model, in an N = 200 water box, with
histogram bin widths of 0.05 eV in each case. Panels (c) and (d)
show Gaussian fits to the data in (a) and (b), respectively. (Fitting
parameters are listed in Table 2.5.) The interfacial distributions are
also shown following a shift in energy equal to the difference in the
mean VEBEs of the bulk and interfacial distributions, as reported in
Tables and 2.4. Differences in the center points of the distributions in
(a) versus (b) are partly the result of the effects of finite box size. . . 64

xiv



2.10 Extrapolation of the average VEBE computed using the mean-field
polarization potential, as a function of the inverse unit cell length,
L−1

x . Error bars reflect a 95% confidence interval in 〈VEBE〉, which is
averaged over trajectories and over time. . . . . . . . . . . . . . . . . 68

2.11 Hypothetical potential energy curves for dissociative electron attach-
ment by an aqueous electron. The molecular anion formed by electron
attachment is stabilized by aqueous solvation, relative to its neutral
parent molecule. The white band on the right illustrates the win-
dow between the vertical electron affinity (VEA) and the adiabatic
electron affinity (AEA) in which electron attachment is energetically
feasible; the left part of the diagram suggests that the equilibrated
species e−(aq) lies too far below vacuum level for this process to occur.
Adapted from Ref. [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1 Panels (a) and (c) show the spin density computed using the MOM-
SCF procedure for the fluoride-water and neutral water systems, re-
spectively, and Panels (b) and (d) show the spin density computed
using the FRAGMO-MOM-SCF procedure for the same systems. In
Panels (a) and (b), the fluorine atom is colored pink. In all Panels,
the opaque and transparent blue color illustrates 50% and 95% of the
spin density, respectively. Panel (a) illustrates the difficulty in separat-
ing the fluoride 2p orbital from the orbitals of the surrounding water
molecules: removal of an electron from the system results in a collective
ionization of both the fluoride and water molecules. In Panel (c), the
MOM-SCF procedure for the neutral water system results in ionization
of a water molecule close to the solute-solvent boundary, where the ef-
fects of hydrogen bonding are neglected. Using the FRAGMO-MOM-
SCF procedure fixes this issue, and the desired orbitals are ionized as
shown in Panels (b) and (d). . . . . . . . . . . . . . . . . . . . . . . . 119

3.2 In Panels (a)–(c), the opaque and transparent blue color illustrates
50% and 95% of the spin density, respectively, while green is employed
for the sodium-water system in Panel (d). In Panel (c), the lithium
atom is colored pink and in Panel (d), the sodium atom is colored blue.
Panel (a) shows the excess spin density of e−(aq) from a bulk liquid
water simulation. Panel (b) illustrates the spin density of the ionized
chlorine-water system using a standard SCF approach. Panels (c) and
(d) show the spin densities of the lithium- and sodium-water systems,
and employing the MOM-SCF approach results in ionization from the
desired 1s and 2p orbitals. . . . . . . . . . . . . . . . . . . . . . . . . 121

xv



3.3 The various molecular cavity surfaces discussed in Section 3.4.3 are
illustrated here. A generic, noncovalently bonded solute molecule is
represented by the grey regions contained within the vdWS, which
is shown in black. The problematic region, where solvent-solvent in-
teractions are double-counted and where solvent dielectric is placed
erroneously, is shown as the purple region between the noncovalently
bonded regions of the solute. A solvent molecule probe, which is used
to generate the SES and SAS cavities, is represented as a green cir-
cle. Where the solvent probe makes contact with the solute molecule
forms the SES, which is the union of the black (vdWS) and red (re-
entract surface between noncovalently bonded regions of the molecule)
surfaces. The SAS shown in blue is effectively a larger vdWS and is
the locus of points formed by tracing the centroid of the solvent probe
as it “rolls” around the solute molecule. . . . . . . . . . . . . . . . . . 124

3.4 A two-dimensional contour plot of Eq. 2.32 applied to bulk e−(aq)
with α = 4.0 Å−1, rQM = 5.5 Å, and rmid = 6.0 Å is illustrated. The
contour plot is reflective of the xz-plane through the Cartesian grid
origin. These parameters are utilized for all systems investigated in
Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.5 A two-dimensional contour plot of Eq. 3.91 applied to bulk e−(aq) with
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Chapter 1: Electronic Structure Theory

1.1 Hartree-Fock Theory

This Chapter presents the historical and theoretical background for the electronic

structure methods that are utilized in this work and are also ubiquitous in other

disciplines of science. By the early part of the 20th century, the constituent compo-

nents of atoms had been discovered: the electron by J. J. Thompson in 1897 and the

nucleus by E. Rutherford in 1910. Shortly thereafter, the “old” quantum theory was

established by N. Bohr and A. Sommerfeld who proposed the existence of orbitals in

which the electrons surround atomic nuclei with discrete energy levels. Though this

concept was useful in elucidating the relationship between positive nuclear charge,

atomic number, and position on the periodic table, extending the notion of electron

orbitals to polyatomic atoms proved difficult until the “new” quantum theory was de-

veloped. In 1926, E. Schrödinger and W. Heisenberg developed complementary wave

and matrix mechanics to describe quantum phenomenom, and the birth of quantum

chemistry was the development of the non-relativistic time-independent Schrödinger

equation expressed as

Ĥ |Ψ〉 = E |Ψ〉 , (1.1)
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which specifies the energy E of a particular quantum state |Ψ〉 using an atomic or

molecular Hamiltonian Ĥ. Eq. 1.1 provided an exact solution for the hydrogen atom,

the analysis of which agreed with Bohr-Sommerfeld concept of discrete electronic

states. Heitler and London applied Eq. 1.1 to diatomic hydrogen in 1927 and provided

the first, albeit inaccurate, calculation of a system with a covalent bond. A couple

years later in 1929, the relativistic version of Eq. 1.1 was discovered by Paul Dirac,

and he famously stated13

The underlying physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these laws leads to

equations much too complicated to be soluble. It therefore becomes desir-

able that approximate practical methods of applying quantum mechanics

should be developed, which can lead to an explanation of the main features

of complex atomic systems without too much computation.

This revelation made it clear that an exact solution to Eq. 1.1 for complex molecular

systems is unobtainable, but endeavors for developing approximate methods would

prove useful to the field of chemistry.13

The Hartree-Fock (HF) method is one such approximation, and a discussion of this

technique is the focus of this section. To proceed, consider a molecule comprised of

Nelec electrons and Nnuc nuclei: the form of the non-relativistic molecular Hamiltonian

Ĥ in Eq. 1.1 is specified as

Ĥ = −1

2

Nelec
∑

i=1

∇2
i − 1

2

Nnuc
∑

α=1

∇2
α

mα

−
Nelec
∑

i=1

Nnuc
∑

α=1

Zα

riα

+
Nelec
∑

i=1

Nelec
∑

j>i

1

rij

+
Nnuc
∑

α=1

Nnuc
∑

β>α

ZαZβ

rαβ

, (1.2)

where atomic units have been utilized (~ = me = 4πǫ0 = e = 1). The quantities

riα = |ri − Rα|, rij = |ri − rj|, and rαβ = |Rα − Rβ| are the electron-nucleus, in-

terelectronic, and internuclear distances, respectively. The first two terms on the

right side of Eq. 1.2 are the kinetic energies of the electrons and nuclei, respectively,
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and mα is the mass of nucleus α. The third term on the right side is the contribu-

tion from the attractive Coulomb interaction of an electron and nucleus of charge

Zα, and the last two terms are the repulsive electron-electron and nuclear-nuclear

Coulomb interactions, respectively. Traditional electronic structure methods employ

the Born-Oppenheimer approximation to reduce the complexity of solving Eq. 1.1 for

a Hamiltonian given by Eq. 1.2. Within the Born-Oppenheimer approximation, the

total molecular Hamiltonian is reduced to the electronic components. The approxi-

mation is justified from an argument about the relative masses of electrons and nuclei:

since the electrons are effectively three orders of magnitude lighter than the nuclei,

they can be viewed as moving in a field generated by fixed nuclei. Therefore the

nuclear kinetic energy term is neglected in Eq. 1.2, and the nuclear-nuclear repulsion

energy is an additive constant to the electronic energy. In other words, the Born-

Oppenheimer approximation neglects any contribution to the electronic structure of

a molecule due to nuclear motion. The electronic problem then becomes

Ĥelec |Φelec(r; R)〉 = Eelec(R) |Φelec(r; R)〉 , (1.3)

where the electronic Hamiltonian is

Ĥelec = −1

2

Nelec
∑

i=1

∇2
i −

Nelec
∑

i=1

Nnuc
∑

α=1

Zα

riα

+
Nelec
∑

i=1

Nelec
∑

j>i

1

rij

. (1.4)

The electronic wave function |Φelec(r; R)〉 explicitly depends on the electronic coordi-

nates r and also parametrically on the coordinates of the fixed nuclei R. Furthermore,

the electronic energy Eelec(R) also depends parametrically on R: any change in the

nuclear positions results in alterations of Ĥelec, |Φelec(r; R)〉, and Eelec(R). Finally,

the total molecular energy within the Born-Oppenheimer approximation is computed
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as the sum of the electronic energy and the nuclear repulsion energy Enn.

EHF = Eelec +
Nnuc
∑

α=1

Nnuc
∑

β>α

ZαZβ

rαβ

= Eelec + Enn .

(1.5)

The Hartree-Fock method is couched in terms of a Slater determinant of N molec-

ular orbitals {ψN(r)} to describe the electronic wave function for N electrons, which

is compactly expressed as

|ΦHF〉 ≡ 1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ2(r1) · · · ψN(r1)
ψ1(r2) ψ2(r2) · · · ψN(r2)

...
...

. . .
...

ψ1(rN) ψ2(rN) · · · ψN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≡ |ψ1(r1)ψ2(r2) · · ·ψN(rN)〉 ,

(1.6)

where ψN(rN) denotes electron N occupying molecular orbital N . A Slater determi-

nant naturally captures the inherent antisymmetric property required for fermionic

wave functions: upon permutation of any two electrons in Eq. 1.6, the fermionic wave

function acquires a phase factor of −1. Since the non-relativistic Hamiltonian does

not involve electronic spin, only the spatial component of the molecular orbitals, the

information of which is entirely encoded in the set {ψN(r)}, needs to be considered.

The Hartree-Fock energy shown in Eq. 1.5 is then computed as the expectation value

of the electronic Hamiltonian with the Slater determinant given by Eq. 1.6:14

EHF [ΦHF] = 〈ΦHF|Ĥelec|ΦHF〉 + Enn

=
Nelec
∑

i=1

〈ψi|ĥ|ψi〉 +
1

2

Nelec
∑

i=1

Nelec
∑

j 6=i

〈ψiψj||ψjψi〉 + Enn ,
(1.7)

where a compact expression for the two-electron contributions is introduced as

〈ψiψj||ψjψi〉 ≡ 〈ψiψj|
1

r12

|ψiψj〉 − 〈ψiψj|
1

r12

|ψjψi〉 . (1.8)
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The first term on the right side of Eq. 1.7 is referred to as the one-electron core energy

and contains the kinetic energy and electron-nuclear Coulomb interaction:

〈ψi|ĥ|ψi〉 = −1

2

∫

dr1 ψ
∗
i (r1)∇2

1 ψi(r1) −
Nnuc
∑

α=1

∫

dr1
Zα

r1α

|ψi(r1)|2 . (1.9)

The second term reflects the contribution arising from the electron-electron Coulomb

repulsion energy in a mean-field way. In other words, it expresses the field that an

electron experiences from the other Nelec − 1 electrons in an average manner:

〈ψiψj|
1

r12

|ψiψj〉 ≡ 〈ψi|Ĵj|ψi〉 =
∫

dr1 ψ
∗
i (r1) Ĵj ψi(r1) , (1.10)

where the Ĵj operator is defined as

Ĵj ≡
∫

dr2 ψ
∗
j (r2)

1

r12

ψj(r2) . (1.11)

The final term on the right side of Eq. 1.7 has no classical analog, and manifests from

the antisymmetric property of the Slater determinant wave function. This contribu-

tion to the electronic energy is the exchange energy and is expressed as

〈ψiψj|
1

r12

|ψjψi〉 ≡ 〈ψi|K̂j|ψi〉 =
∫

dr1 ψ
∗
i (r1) K̂j ψi(r1)

=
∫ ∫

dr1 dr2 ψ
∗
i (r1)ψ

∗
j (r2)

1

r12

ψj(r1)ψi(r2) ,
(1.12)

where the action of K̂j on ψi(r1) is defined as

K̂j ψi(r1) ≡
∫

dr2 ψ
∗
j (r2)

P̂12

r12

ψj(r2)ψi(r1)

=
∫

dr2 ψ
∗
j (r2)

1

r12

ψj(r1)ψi(r2) ,

(1.13)

and the permutation operator P̂12 exchanges the electrons in occupied orbitals ψi(r1)

and ψj(r2). Using these definitions, one can piece together an expression for the

orbital energy ǫi in terms of the Fock operator f̂ and occupied molecular orbital
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ψi(ri):

ǫi = 〈ψi|f̂ |ψi〉 ≡ 〈ψi|ĥ+
Nelec
∑

j=1

(

Ĵj − K̂j

)

|ψi〉

= 〈ψi|ĥ|ψi〉 +
Nelec
∑

i=1

〈ψi|V̂HF|ψi〉 ,
(1.14)

where we have introduced the HF operator V̂HF =
∑Nelec

j=1

(

Ĵj − K̂j

)

. Note that the

restriction i 6= j is removed in the definition of V̂HF because the term i = j is

〈ψi|
(

Ĵi − K̂i

)

|ψi〉 = 0. Therefore, within HF theory, each electron will not experience

its own field and is inherently free of self-interaction.

In order to perform an electronic structure calculation, an atom-centered basis set

{gµ(r)} is chosen to construct the atomic orbitals that describe the electrons for each

atom in the desired molecule. The molecular orbitals are then expressed as a linear

combination of these atomic orbitals, and such a superposition is given as

ψi(r) =
Nbasis
∑

µ=1

Cµi gµ(r) , (1.15)

where the Latin letters {i, j, k, ...} denote occupied molecular orbitals, the Greek

letters {µ, ν, σ, ...} denote atomic orbitals, and {Cµi} is the set of coefficients that

constructs molecular orbital ψi(r) from the basis functions gµ(r). After the nuclear

coordinates R, the basis set {gµ(r)}, and an initial guess for the set of molecular

cofficients are specified, a set of trial molecular orbitals and molecular wave function

|Φelec〉 is constructed. In order to determine the unknown molecular orbital coeffi-

cients {Cµi}, the electronic energy is considered a functional of the molecular wave

function as shown in Eq. 1.7, and {Cµi} are treated as variational parameters that

are optimized to provide the best appromixation to the energy and wave function

possible for the desired basis set. The Hartree-Fock equations are then obtained by
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minimizing the energy expression given in Eq. 1.7 with respect to variations of |Φelec〉

while forcing the underlying molecular orbitals to remain orthonormalized:

〈ψi|ψj〉 = δij . (1.16)

After performing the variational analysis, Eq. 1.14 is the optimal set of integro-

differntial equations for the Hartree-Fock method.14

To derive the Hartree-Fock expressions for practical implementations of the method

within electronic structure algorithms, Eq. 1.15 is substituted into Eq. 1.14 resulting

in

f̂
Nbasis
∑

µ=1

Cµi gµ(r) = ǫi

Nbasis
∑

µ=1

Cµi gµ(r) . (1.17)

Multiplying Eq. 1.17 by g∗
ν(r) and integrating over all space transforms Eq. 1.17 into

Nbasis
∑

µ=1

Fνµ Cµi = ǫi

Nbasis
∑

µ=1

Sνµ Cµi , (1.18)

where F and S are the Fock and overlap matrices with matrix elements

Fνµ =
∫

dr g∗
ν(r) f̂ gµ(r) , (1.19)

and

Sνµ =
∫

dr g∗
ν(r) gµ(r) , (1.20)

respectively. The Hartree-Fock equations in matrix form are expressed as

FC = SCǫ , (1.21)

where C is the Nbasis × Nbasis matrix containing the coefficients for each molecular

orbital expressed as

C =













C11 C12 · · · C1Nbasis

C21 C22 · · · C2Nbasis

...
...

. . .
...

CNbasis1 CNbasis2 · · · CNbasisNbasis













, (1.22)
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and ǫ is a diagonal matrix that holds the Nbasis molecular orbital eigenvalues ǫi.

Since Eq. 1.21 is nonlinear, an iterative procedure is required to compute F, C, and

ǫ, and such a self-consistent field (SCF) procedure is outlined in detail in Chapter 3 of

Ref [14]. By following this procedure, the variational solution of Eq. 1.21 is obtained

which yields the molecular orbital eigenvalues as well as the optimal set of molecular

orbital coefficients.

This section concludes by pointing out that the Fock matrix elements in Eq. 1.19

are referred to in Chapter 2, and the solvation corrections that are presented in

Sections 2.2.2 and 2.2.3 are incorporated into the Hartree-Fock calculations through

this matrix. Furthermore, the solvation corrections presented in Sections 3.3.1 and

3.3.2 incorporated into the one-electron matrix, h, the matrix elements of which are

hνµ =
∫

dr g∗
ν(r) ĥ gµ(r)

=
1

2

∫

dr g∗
ν(r) ∇2 gµ(r) −

Nnuc
∑

α=1

∫

dr g∗
ν(r)

Zα

|r − Rα| gµ(r) .
(1.23)

Note that Eq. 1.23 is the atomic orbital representation of Eq. 1.9, and upon contract-

ing h with the one-electron density matrix P, the one-electron energy is obtained.

The density matrix P is constructed using the molecular orbital coefficient matrix:

P = CC† (1.24)

with matrix elements

Pµν =
Nocc
∑

i

CµiC
∗
iν , (1.25)

where the summation includes only Nocc occupied molecular orbitals.
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In Chapters 2 and 3, reference is made to the electronic charge density ρelec(r)

that is expressed as

ρelec(r) =
Nelec
∑

i=1

|ψi(r)|2

=
Nbasis
∑

µ=1

Nbasis
∑

ν=1

Pµν g
∗
ν(r) gµ(r) .

(1.26)

The charge source for the solvation models presented in the coming Chapters arises

from the electronic (Eq. 1.26) and nuclear (treated classically as point charges or with

Gaussian functions) components of the molecule. Furthermore, modifying the Fock

matrix with the solvation correction terms from Chapters 2 and 3 naturally includes

the solvent response into the electronic structure calculations and also results in a

wave function that is properly polarized by the continuum environment.

1.2 Møller-Plesset Second-Order Perturbation Theory

The HF method provided an avenue to more accurately solve the Schrödinger

equation in the early 1930s, but was rarely utilized until the advent of computers in

the 1950s. Though it has been proven to be a successful methodology for obtaining

reasonably accurate energies and molecular orbitals, the HF method is unable to qual-

itatively describe some physical phenomena. For example, it incorrectly orders the

first two ionization potentials of the N2 diatomic molecule relative to experiment.14

More dramatically, the restricted HF method is unable to describe dissociation of

diatomic hydrogen into two open shell hydrogen atoms (H2 → 2 H), and though the

unrestricted HF method describes the dissociation correctly in the asymptotic limit,

it yields inaccurate potential energy curves.14 The lack of accuracy exhibited in some

cases results from the neglect of electron correlation, which can be thought of as the

explicit electron-electron interactions that are ignored when a mean-field approach is
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employed to compute the Coulomb energy. The corresponding electron correlation

energy Ecorr is defined as the difference between the exact energy Eexact of the system

and the HF energy given by Eq. 1.7:

Ecorr = Eexact − EHF . (1.27)

This section focuses on a “post-Hartree-Fock” method developed by C. Møller and

M. Plesset for improving the HF energy by including electron correlation effects, and

is called Møller-Plesset second-order perturbation theory (MP2).

As the name implies, MP2 arises through the application of Rayleigh-Schrödinger

perturbation theory (RSPT) for a HF Hamiltonian. From RSPT, the total perturbed

Hamiltonian Ĥ is the sum of an unperturbed Hamilton Ĥ0 and a perturbation V̂ , the

strength of which is controlled by a parameter λ:

Ĥ = Ĥ0 + λV̂ , (1.28)

Both the molecular wave function and energy corresponding to the solution of Eq. 1.1

that utilizes Eq. 1.28 for the Hamiltonian can be expressed as an infinite power series

in λ:

|Ψ〉 =
∞
∑

m

λm |Ψ(m)〉 , (1.29)

and

E =
∞
∑

m

λmE(m) , (1.30)

respectively, where |Ψ(m)〉 and E(m) denote the mth-order correction terms. Substi-

tuting these expressions into Eq. 1.1, the time-independent Schrödinger equation is

transformed into

Ĥ
∞
∑

m

λm |Ψ(m)〉 =
∞
∑

m

λmE(m)
∞
∑

m

λm |Ψ(m)〉 . (1.31)
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Expanding the expressions in Eq. 1.31 and equating powers of λm yields the appro-

priate correction terms for both the wave function and energy. The general zeroth-,

first-, and second-order RSPT energies are

E
(0)
0 = 〈Ψ0|Ĥ0|Ψ0〉 , (1.32)

E
(1)
0 = 〈Ψ0|V̂ |Ψ0〉 , (1.33)

and

E
(2)
0 =

∑

n6=0

|〈Ψn|V̂ |Ψ0〉|2

E
(0)
0 − E

(0)
n

, (1.34)

respectively.

To apply this to the HF method, we consider the following perturbed Hamiltonian

Ĥ = ĤHF + V̂

=
Nelec
∑

i=1

[

ĥ(i) + V̂HF(i)
]

+
Nelec
∑

i=1

Nelec
∑

j>i

1

rij

−
Nelec
∑

i=1

V̂HF(i) ,
(1.35)

where the perturbation V̂ is defined as the difference between the exact electron-

electron Coulomb interaction and the approximate interaction given by the HF po-

tential energy operator V̂HF. The unperturbed molecular wave function |Ψ0〉 is taken

to be |ΦHF〉, and the zeroth-order energy is evaluated using Ĥ0 = ĤHF in Eq. 1.32

as14

E
(0)
0 =

Nelec
∑

i=1

ǫi =
Nelec
∑

i=1



〈ψi|ĥ|ψi〉
Nelec
∑

j=1

〈ψiψj||ψiψj〉


 , (1.36)

where ǫi is the molecular orbital energy corresponding to ψi(r). The first-order energy

correction is evaluated using Eq. 1.32 to be14

E
(1)
0 = 〈Ψ0|

Nelec
∑

j>i

1

rij

−
Nelec
∑

i=1

V̂HF(i)|Ψ0〉

= −1

2

Nelec
∑

i=1

Nelec
∑

j=1

〈ψiψj||ψiψj〉
(1.37)
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Note that E
(0)
0 from Eq. 1.36 is not equivalent to the HF energy given in Eq. 1.7: the

contribution from the two-electron integrals 〈ψiψj||ψjψi〉 is double counted. Therefore

the HF energy is the sum of the zeroth- and first-order energy corrections along with

the nuclear-nuclear repulsion energy:

EHF = E
(0)
0 + E

(1)
0 + Enn . (1.38)

To evaluate the second-order energy corrections given by Eq. 1.34, all wave functions

|Ψn〉 representing excitations from the ground state wave function must be considered.

However, it is shown in Ref [14] that the two-particle nature of the perturbation will

couple at most the singly- (|Ψ1〉) and doubly-excited (|Ψ2〉) states to the ground

state. Furthermore, it is also shown in Ref [14] that the coupling between the ground

state and singly-excited wave function vanishes
(

〈Ψ1|V̂ |Ψ0〉 = 0
)

, and the only non-

vanishing term of the type 〈Ψn|V̂ |Ψ0〉 results from the doubly-excited wave function.

The second-order energy correction is evaluated as14

E
(2)
0 = −1

4

Nocc
∑

i,j=1

Nvirt
∑

a,b=1

|〈ψaψb||ψjψi〉|2
ǫa + ǫb − ǫi − ǫj

, (1.39)

where the Latin letters a and b are restricted to Nvirt virtual molecular orbitals ψa(r)

and ψb(r), and the Latin letters i and j are restricted to Nocc occupied molecular

orbitals ψi(r) and ψj(r). The total number of molecular orbitals is equal to the

number of atomic orbitals determined by the desired basis set, and therefore Nbasis =

Nocc +Nvirt.

We conclude this section by mentioning that the investigations in Chapters 2 and

3 employ the HF method to compute the molecular wave function and corresponding

energy, and then the second-order energy correction is computed using Eq. 1.39 and

augmented to the HF energy upon convergence of the SCF procedure. The total MP2
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energy is evaluated as

EMP2 = EHF − 1

4

Nocc
∑

i,j=1

Nvirt
∑

a,b=1

|〈ψaψb||ψjψi〉|2
ǫa + ǫb − ǫi − ǫj

. (1.40)

Obtaining the MP2 energy through Eq. 1.40 does not require a modification of the

SCF procedure since it is computed as a “one-shot” correction to the HF energy using

the optimal set of occupied and virtual molecular orbitals.

1.3 Density Functional Theory

As an alternative to the HF and MP2 methods, which utilize the molecular wave

function and are aptly named “wave function methods”, density functional theory

(DFT) provides a different route for solving Schrödinger’s equation using the elec-

tronic density ρelec(r). Density functional methods appeared contemporaneously with

wave function methods, and their origin can be traced to the Thomas-Fermi model,

which provides a semiclassical description of many-body systems, and is formulated

in terms of functionals that employ an electronic density. The Thomas-Fermi model

relies on the assumption that within a small volume of space, the electronic den-

sity is uniform, but may vary between different volumes since electrons are nonuni-

formly distributed in real molecular systems. However, it was not until P. Hohenberg

and W. Kohn laid a solid theoretical foundation (the two H-K theorems) that DFT

would become the powerful technology it is currently. The first of these theorems

demonstrates that the ground state properties of a quantum mechanical system are

determined uniquely by the electron density that is a function of only three spatial

coordinates, and the second theorem redefines a variational energy functional, such

as the one used in the HF method, in terms of the electron density of the many-body

quantum system.

13



DFT is formulated within the Born-Oppenheimer approximation in the same man-

ner as HF theory, and utilizes the electronic Hamiltonian given by Eq. 1.4. The ground

state wave function is constructed as a Slater determinant of molecular orbitals as

described by Eq. 1.6, and the corresponding Nelec electron density is defined as

ρelec(r) = Nelec

∫

dr2 · · ·
∫

drN Φ∗
DFT(r, r2, · · · rN) ΦDFT(r, r2, · · · rN) . (1.41)

A consequence of the H-K theorems is that Eq. 1.41 is reversible: given a variational

ground state density ρelec(r), it is possible to compute ΦDFT[ρelec], which implies that

the ground state wave function is a unique functional of the electron density. The

ground state energy functional corresponding to ρelec(r) is expressed as

EDFT [ρelec] = Teff [ρelec] + Een [ρelec] + Eee [ρelec] + Exc [ρelec] , (1.42)

where Teff [ρelec] is the Kohn-Sham kinetic energy functional expressed as

Teff [ρelec] = −1

2

Nelec
∑

i=1

〈ψi(r)|∇2|ψi(r)〉 , (1.43)

the attractive electron-nuclear interaction energy Een [ρelec] is

Een [ρelec] = −
Nnuc
∑

α=1

Zα

∫

dr
ρelec(r)

|r − Rα| , (1.44)

Eee [ρelec] is the repulsive electron-electron interaction energy, which is qualitatively

the same physical quantity as in the HF method, and is evaluated as

Eee [ρelec] =
1

2

∫

dr
∫

dr′ ρelec(r) ρelec(r
′)

|r − r′| , (1.45)

and Exc [ρelec] accounts for the exchange and correlation energies. Minimizing the

energy functional given by Eq. 1.42 with respect to the set of orbitals used to create
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ρelec(r) results in the Kohn-Sham eigenvalue equation for the orbital ψi(r) and its

energy ǫi:

[

−1

2
∇2 −

Nnuc
∑

α=1

Zα

|r − Rα| +
∫

dr′ ρelec(r
′)

|r − r′| +
δExc [ρelec]

δρelec(r)

]

ψi(r) = ǫiψi(r) . (1.46)

Because of the non-interacting nature of the electrons occupying the Kohn-Sham

orbitals ψi(r), ρelec(r) is constructed using Eq. 1.26 as in the HF method, and this

quantity is utilized in the solvation models described in Chapter 2 to obtain the

solvent polarization energy as well as in Eqs 1.42-1.46 to compute the ground state

energy of the quantum-mechanical solute.

In principle, the DFT energy specified by Eq. 1.42 is exact given the exact

exchange-correlation functional, but its form remains elusive, and significant effort is

devoted to developing accurate approximations for Exc[ρelec]. Although HF and DFT

methods treat the electronic Coulomb interactions in a qualitatively similar manner,

they differ in the description of exchange and correlation effects. For HF, the elec-

tron exchange energy arises naturally from the Slater determinant wave function, and

as was discussed in Section 1.2, post-HF methods are necessary to incorporate elec-

tron correlation effects. Within the DFT methodology, the exchange and correlation

effects are captured by Exc [ρelec], the form and accuracy of which depends on the

chosen functional. A consequence of this for DFT is that the Coulomb interaction of

an electron with its own field is not exactly negated by the exchange interaction as

in HF, and therefore DFT methods suffer from self-interaction error which tends to

elongate chemical bonds or result in poor descriptions of the ground state energy and

the manifold of excited or charge-transfer states. As a way of correcting this, “hy-

brid” or “range-separated” DFT functionals have been developed to include exact HF

exchange at long range while using a local or semi-local density functional to describe
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the exchange at short range. Such a functional is employed in the investigations of

Chapter 2, and the details of its form and performance can be found in Section 2.3.1.
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Chapter 2: The Solvated Electron

2.1 Liquid Microjet Experiments

The molecular structure of the vacuum/water interface, including the nature of

the dissolved ions that reside there, has attracted attention and controversy for some

time.15–19 An ion that might exist at the interface is the hydrated or aqueous electron,

e−(aq), a species long known in the radiation chemistry of water.20,21 The energetics

of e−(aq) have attracted considerable attention in the context of DNA radiation

damage, where it is known that strand breaks are considerably more common in “wet”

than in “dry” DNA,22–24 suggesting that most DNA damage by ionizing radiation is

secondary, with the majority of the energy deposited into water rather than absorbed

directly by DNA. This raises the question of whether e−(aq) might be an intermediate

responsible for such damage, but calculations presented here suggest that e−(aq),

whether at the vacuum/water interface or in bulk water, lies too far below vacuum

level to induce DNA strand breaks directly.

Motivated by a controversy regarding surface versus cavity electron-binding mo-

tifs in gas-phase (H2O)−
N clusters,8,25–29 along with the recent development of high-

pressure liquid microjet photoelectron spectroscopy,30,31 several groups have reported

photoelectron spectra for liquid-phase e−(aq).9,32–38 These studies concur that the
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vertical electron binding energy (VEBE) of e−(aq) in bulk water lies in the range

3.3–3.7 eV, with most values around 3.3–3.4 eV,38 consistent with extrapolations of

gas-phase (H2O)−
N cluster photoelectron spectra39 and detailed theoretical calcula-

tions.40

In one particular microjet experiment, however, a feature at 1.6 eV is observed,

with a lifetime & 100 ps, and is attributed to e−(aq) bound at the water/vacuum

interface.9 Attempts by others to replicate this result have found only a transient fea-

ture with a lifetime of ∼ 100 fs,34,36 even in low kinetic energy experiments that ought

to be relatively more sensitive to species solvated near the interface.36 Nevertheless,

there has since arisen much speculation that the putative “interfacial electron” at

1.6 eV might play a role in the radiation chemistry of DNA. Specifically, it is sug-

gested that the much lower VEBE at the interface might provide the proper energetics

for dissociative electron attachment to DNA, resulting in single strand breaks.9,17,41–43

Although a role in DNA damage for the “pre-solvated electron”, a hot precursor

to e−(aq), has been proposed based on other experiments,21,44 the liquid microjet

experiment in Ref. [9] forms the basis of the first claims that the equilibrated species

e−(aq), as opposed to an excited state, could play a role in radiation damage to DNA.

This hypothesis requires that the interfacial species possess an energy ≤ 2.5 eV below

vacuum level,41,42 in contrast to the consensus value of ≥ 3.3 eV for the binding

energy of thermalized e−(aq) in bulk water.9,32–40 Here, we investigate the interfacial

hydrated electron with detailed theoretical calculations.
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2.2 Modeling e−(aq) in Liquid and at an Interface

This section is comprised of three parts that demonstrate the techniques used to

model e−(aq) in bulk liquid water and also at a liquid-vapor interface. Section 2.2.1

discusses the one-electron pseudopotential models that were employed to capture the

electron-water interactions. Additionally, Section 2.2.1 explains the techniques for

performing the classical neat liquid water molecular dynamics simulations as well

as the mixed quantum-classical simulations. A methodology that was designed for

computing equilibrium solvation free energies for arbitrary dielectric environments

is presented in Section 2.2.2, and the non-equilibrium version of this method for

computing VIPs is given in Section 2.2.3.

2.2.1 Mixed Quantum-Classical Simulations

This section describes the ground state mixed quantum-classical simulations em-

ploying e−(aq) pseudopotentials that were used to generate the data presented in

Section 2.4. The simulations of an excess electron in bulk liquid water and at the liq-

uid water/vapor interface employed two different one-electron pseudopotential mod-

els. One of these, which we call the “mean-field polarization model”, was developed

by Turi and Borgis45 and is based upon the non-polarizable SPC water model,46

but includes a mean-field polarization potential ∝ r−4, where r is the electron–

water distance. The other model, developed by Jacobson and Herbert,40 is built

upon the polarizable AMOEBA water model47 and includes electron–water polariza-

tion explicitly and self-consistently. (Polarization is handled in AMOEBA by means

of atom-centered inducible dipoles, and the induced dipoles in turn interact with
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the wave function. Schrödinger’s equation for the wave function is iterated to self-

consistency alongside the equations for the induced dipoles.40,48) These models have

been used in myriad previous hydrated electron simulations.7,8,26,40,45,49–59 Both afford

accurate optical spectra for e−(aq) in bulk water,40,45 and in addition the explicit po-

larization model performs well in reproducing MP2/6-31(1+,3+)G* benchmarks for

(H2O)−
N clusters (N = 2–33),40 including both relative isomer energies and vertical

electron binding energies (VEBEs). In the latter case, the mean deviation between

the VEBE predicted by the one-electron model and the MP2 benchmark is 0.041 eV

for 95 unique cluster structures.40 With this level of accuracy, the explicit polariza-

tion model successfully accounts for trends observed in the gas-phase photoelectron

spectra of (H2O)−
N clusters.8

Initial structures for the liquid water and liquid-vapor e−(aq) simulations were

extracted from equilibrated neat liquid water simulations utilizing either the SPC

or the AMOEBA water model, as appropriate. These simulations were performed

with N = 200 water molecules in a periodic unit cell at T = 300 K, where the

unit cell size was set such that the density is ρ = 0.997 g cm−3. For a cubic cell,

this would correspond to 18.1617 Å on a side, but to simulate the water/vacuum

interface we set Lx = Ly = 18.1617 Å in the x and y directions, but Lz = 5Lx

in the z direction, thus creating a periodic “slab” of water that is ≈ 18 Å thick in

the z direction and surrounded by vacuum out to Lz = 90.8085 Å. Standard three-

dimensional Ewald summation is employed to sum the electrostatic interactions, so

that the slab is actually periodically replicated in the z direction. If the slab of

water has a non-zero dipole moment (which, in general, one should expect) then the

potential energy must be corrected for the spurious electric fields that are produced

20



from the dipolar interactions between periodically-replicated slabs. The appropriate

correction is derived in Ref. [60] for the case of an infinitely thin slab, and it is noted

in Ref. [61] that higher-order terms are required for a slab having finite thickness,

unless the spacing between periodic images is three to five times larger than the slab

thickness. For this reason we set Lx = 5Lz and incorporate only the first-order dipolar

correction to the Ewald sum.

The neat liquid water simulations described above were equilibrated for 100 ps,

and starting structures for the e−(aq) simulations were randomly chosen from the final

10 ps of the equilibration run. At t = 0, an electron is introduced into the system by

turning on electron–water interactions using the appropriate pseudopotential. The

electronic wave function is represented on a rectangular grid that spans the unit cell

in the x and y directions and extends into vacuum in the z direction to a distance

equal to the thickness of the slab (i.e., the total span of the grid in the z direction

equals twice the thickness of the slab). The grid spacing is ∆x = ∆y = ∆z = 0.95 Å

in all directions, as in previous work.40

For consistency, both the bulk and the interfacial hydrated electron simulations

use slab boundary conditions. We do this for two reasons: first, we wish to allow the

possibility that an electron in bulk water might spontaneously migrate to the interface;

and second, so that even for e−(aq) in bulk water we can measure the distance d

between the centroid of the electron’s wave function and the Gibbs dividing surface

(GDS), defined as the locus of points in the z direction where the solvent density

has fallen to half its value in bulk solution. This surface is computed on-the-fly at

each point (x, y) and at each time step, and is used to demarcate the liquid/vacuum

interface for the purpose of computing d. Our coordinate system sets z = 0 at the
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GDS; this is the coordinate labeled d in the text, so for a slab whose thickness is

≈ 18 Å, the center of the slab corresponds to d ≈ −9 Å. [This explains the locus of

points near d = −9 Å in Fig 2.6(b).] Whereas trajectories for e−(aq) at the water/

vacuum interface are initialized from equilibrated neutral water, for which the electron

naturally attaches at the interface, all of these trajectories eventually internalize and

these equilibrated, internalized trajectories are then used as initial conditions for

e−(aq) in bulk water.

For each one-electron model, twenty independent trajectories for the interfacial

species e−(aq) were propagated at T = 300 K using a home-built simulation code,

Furry, that is described in detail in Ref. [48], and has been used extensively for this

purpose in other work.7,8,40,48,55 Ewald summation is used for the e−(aq) simulations

in the same way that is described above for neutral liquid water, and a Nosé-Hoover

thermostat is used to provide temperature control. The interfacial e−(aq) simulations

were propagated for 80 ps for the mean-field polarization model and for 40 ps in the

case of the explicit polarization model in order to obtain statistics. The electron was

determined to be internalized when the centroid of its wave function stabilizes around

the center of the water slab (d ≈ −9 Å), which occurs on a time scale no longer than

25–35 ps. (Snapshots from one such trajectory are shown in Figure 2.4.) Following

internalization, each trajectory was propagated for an additional 50 ps to examine

whether the electron might return to the surface, but in no case was this observed and

the internalized electron fluctuates no farther than 1.0–1.5 Å from the center of the

water slab. Following this additional 50 ps of equilibration time, these trajectories

were taken to be the initial (t = 0) conditions for the simulation of e−(aq) in bulk

water.
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2.2.2 Equilibrium Solvation

Two dielectric continuum models are employed to capture the long range electro-

static effects of the solvent, and are designed for use with an all-electron QM treatment

of some number of explicit water molecules. The first is the “polarizable continuum

model” (PCM)62,63 that is designed to approximate isotropic (bulk) solvation effects

and is discussed in significant detail in Section 3.2.1. The second model is a direct

“Poisson equation solver”10,64,65 (PEQS) which provides a numerical solution to Pois-

son’s equation, and allows for an anisotropic description of the dielectric environments

that is necessary at a liquid-vapor interface. In each case, we use a “non-equilibrium”

version of the continuum solvation model,66,67 as appropriate for describing vertical

(rather than an adiabatic) ionization processes. The state-specific non-equilibrium

formalism is provided in Sections 3.2.2 and 3.3.2 within the PCM and PEQS frame-

works, respectively. This section presents the formal details of the PEQS model for

equilibrium solvation and the methodology for incorporating non-equilibrium solva-

tion effects through a perturbative approach. Additionally, two algorithms are are

outlined for implementing the equilibrium and non-equilibrium PEQS models within

an electronic structure code.

The PCMs employed in this work are appropriate for describing e−(aq) in isotropic

bulk solution, but not at the anisotropic liquid-vapor interface. At the interface, we

resort to solving Poisson’s equation,

∇̂ ·

[

ǫ(r)∇̂ϕtot(r)
]

= −4πρsol(r) , (2.1)

for the total solute electrostatic potential ϕtot(r). The quantity ρsol(r) is the solute

charge density, comprised of both the electronic and nuclear components. This density
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is embedded in a dielectric medium described by a spatially-inhomogeneous dielectric

function, ǫ(r). Solution of Eq. 2.1 affords an electrostatic interaction energy Eelst

expressed as

Eelst =
1

8π

∫

dr ǫ(r) |∇̂ϕtot(r)|2

=
1

2

∫

dr ϕtot(r) ρsol(r)

=
1

2

∫

dr ϕsol(r) ρsol(r) +
1

2

∫

dr ϕpol(r) ρsol(r) .

(2.2)

The first term in the third equality of Eq. 2.2 is the internal self-energy of the solute

given by

Eint =
1

2

∫

dr ϕsol(r) ρsol(r) , (2.3)

and is equivalent to the explicit inter-particle Coulomb interactions that are already

handled by the QM description of the solute. The second term in the third equality

of Eq. 2.2 is the electrostatic contribution of the solvation free energy expressed as

Gel =
1

2

∫

dr ϕpol(r) ρsol(r) , (2.4)

which is equivalent to the PCM solvation energy, up to discretization errors that

can be made quite small,63,68 and neglecting “volume polarization” arising from the

tails of the QM wave function that penetrate beyond the solute cavity.63,69,70 Volume

polarization effects can be significant for anions but are mitigated here by the use of

a large number of QM water molecules, such that the diffuse e−(aq) wave function

has likely decayed to zero well before reaching the QM/continuum interface.

We developed a QM/Poisson approach to non-equilibrium solvation, based on

the non-equilibrium polarization formalism described in Refs. [66] and [67]. The

difference in the present work is that whereas Refs. [66] and [67] (along with other

works on non-equilibrium solvation71–74) are couched in terms of a so-called apparent
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surface charge (ASC) PCM,62,63 in which only the two-dimensional solute/continuum

interface (solute cavity surface) must be discretized, here we describe the polarization

response to vertical detachment of the excess electron in terms of three-dimensional

charge densities. This modification is necessary in order to describe the anisotropic

case. The resulting QM/Poisson approach has been implemented in a locally-modified

version of the Q-Chem electronic structure program,75 following the algorithm in

Ref. [10], and is described in more detail below.

Following Ref. [10], the total density on the grid is separated into two parts: the

contributions from the solute (electrons and nuclei) and the polarization charges that

are induced by the solute-solvent interaction. In detail,

ρtot(r) = ρelec(r) + ρnuc(r) + ρpol(r)

= ρsol(r) + ρpol(r) ,
(2.5)

where

ρsol(r) = ρelec(r) + ρnuc(r) (2.6)

is the charge density of the solute within the solvent-excluded region. Below we

provide the details for computing the solute charge density: the electronic part is

taken to be postive, whereas the nuclear part is negative (opposite to the usual

convention). The electronic part is expressed as

ρelec(r) =
Nbasis
∑

µν

Pµν gµ(r) gν(r) , (2.7)

where P is the one-electron density matrix, gµ(r) is an atom-centered Gaussian basis

function, and Nbasis is the number of such functions determined by the choice of basis

set. The solute nuclei are treated as classical point chages with strength −Zα on

nucleus α. Such a description of the nuclei can lead to singularities in grid-based
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solutions of Poisson’s equation, and therefore the procedure used in Ref. [76] for clas-

sical atom-centered point charges is followed: we add the nuclear charge −Zα to the

nearest Cartesian grid point but with a value −Zα/(∆V ) that reflects the smearing of

this charge over one voxel of the Cartesian grid. Here we take ∆V =
∏

β∈{x,y,z} ∆β to

be the volume element on the rectangular Cartesian grid with spacings ∆β for the re-

spective coordinates. Formally, this means that we represent the nuclear contribution

to the charge density as

ρnuc(r) = −
Natoms
∑

α

Zα δ (r − Rα) , (2.8)

where Rα is the position vector of the Cartesian grid point nearest to nucleus α, and

the volume element ∆V is contained within the delta function which has dimensions

of inverse volume.

After forming ρsol(r) using Eqs. 2.6–2.8, we solve Eq. 2.1 for ϕtot(r) in the presence

of a spatially-varying dielectric. To accomplish this we adapted the procedure outlined

for plane-wave electronic structure codes in Refs. [64] and [10] for use in Gaussian

basis set codes. The left side of Eq. 2.1 is rewritten to appear as Poisson’s equation

for a solute in vacuum:

∇2ϕtot(r) = −4π
[

ρsol(r) + ρpol(r)
]

, (2.9)

where the induced polarization charge density, ρpol(r), has folded within it the effects

of the inhomogenous dielectric medium, and takes the form

ρpol(r) = ρiter(r) +

[

1 − ǫ(r)

ǫ(r)

]

ρsol(r) . (2.10)

The polarization charge density is separated into two components: an iterative charge

density, ρiter(r), and the solute charge density scaled by the factor 1−ǫ(r)
ǫ(r)

. [Note that
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ρpol(r) = ρiter(r) at any point r for which ǫ(r) = 1.] The iterative charge density is

induced by the inhomogeniety of the dielectric function, and acts as an additional

source term to the total charge density for Poisson’s equation.10,64 In detail, the

iterative charge density is expressed as

ρ
(i)
iter(r) =

1

4π

[

∇̂ ln ǫ(r)
]

·

[

∇̂ϕ
(i)
tot(r)

]

, (2.11)

which explicitly shows the nonlinearity of Eq. 2.9, the solution of which requires

an iterative procedure. The details of the conjugate gradient and finite difference

methods employed to solve Eq. 2.9 are deferred until Chapter 4.

We now outline a general algorithm for iteratively solving Eq. 2.9 in order to

obtain three important quantities necessary for incorporating equilibrium solvation

effects into a QM calculation: ϕtot(r), ϕpol(r), and ρpol(r). Eq. 2.9 is solved for the

solute electrostatic potential, ϕsol(r), which is equivalent to setting ρpol(r) = 0 during

the entire iterative procedure. Once ϕsol(r) is obtained, the iterative, polarization,

and total charge densities are updated according to Eqs. 2.11 and 2.10 and 2.5, respec-

tively. For the first iteration of the solver routines after obtaining ϕsol(r) in vacuum,

corresponding to i = 0 in Eq. 2.11, ϕtot(r) = ϕsol(r). Subsequently, Eq. 2.9 is solved

for the total electrostatic potential using the total charge density at the current it-

eration, and this in turn is used to update the iterative charge density via Eq. 2.11.

Following the procedure outlined in Refs. [10] and [64], a damping procedure is ap-

plied to stabilize the updates ρiter(r) in Eq. 2.11. This consists of a linear combination

of the densities at iterations i and i+ 1:

ρ
(i+1)
iter (r) =

η

4π

[

∇̂ ln ǫ(r)
]

·

[

∇̂ϕ
(i)
tot(r)

]

+ (1 − η) ρ
(i)
iter(r)

= ηρ
(i+1)
iter + (1 − η) ρ

(i)
iter(r) .

(2.12)
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Both ϕtot(r) and ρiter(r) are considered converged when the Euclidean norm of a resid-

ual vector between the current and previous iterations are below a certain threshold.

The solvent polarization free energy engendered by the QM solute charge density

interaction with the dielectric medium is then evaluated by the expression in Eq. 2.4.

We end this section by discussing the procedure for properly incorporating solvent

polarization effects into the QM calculations. Since ϕtot(r) and ρtot(r) are computed

self-consistently at each SCF iteration, ϕpol(r) must be added as a correction to the

Fock matrix. This correction, ∆F in matrix form, is equal to the functional derivative

of the polarization free energy with respect to the one-electron density matrix P, and

the matrix elements are given by

∂Gel

Pµν

= ∆Fµν

=
∫

dr ϕpol(r) gµ(r) gν(r) ,

(2.13)

and the SCF energy is augmented with the quantity Eel expressed as

Eel =
∫

dr ϕpol(r) ρsol(r) (2.14)

that corresponds to the total solute-solvent interaction without accounting for the

work to polarize the dielectric medium. The PEQS method procedure for equilibrium

solvation is summarized as Algorithm 1 on Page 29.

2.2.3 Non-equilibrium Solvent Effects

To incorporate the solvent polarization response arising from the vertical ioniza-

tion of an electron, we follow the non-equilibrium solvation formalism presented in

Refs. [66] and [67], adapting it from the two-dimensional surface approach that is ap-

propriate for apparent surface charge PCMs to the three-dimensional approach that is

required here. Although originally presented in the context of polarizable continuum
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Algorithm 1: PEQS algorithm for equilibrium solvation

Data: If feasible, precompute the value of all basis functions gµ(r) on the
Cartesian grid.

/* This requires Ngrid ×Nbasis storage, and if this is not feasible

then the basis function values can instead be computed

on-the-fly at each SCF iteration. */

1 begin SCF procedure
2 Initialize ∆F ≡ 0.
3 repeat n = 1, 2, . . . SCF iterations
4 Diagonalize the Fock matrix F = F0 + ∆F to obtain the density matrix

P(n), where F0 is the gas-phase Fock matrix and ∆F is the equilibrium
solvation correction.

5 Compute ρsol(r), ρelec(r), and ρnuc(r) on the Cartesian grid via
Eqs. 2.6–2.8.

6 Compute ϕsol(r) via Eq. 2.9 with ǫ(r) = 1.
7 Form ǫ(r) with ǫsolv.
8 // The form of the dielectric function is discussed in

Sections 2.3.4 and 3.4.4.

9 Set ρtot(r) = ρsol(r) and ϕtot(r) = ϕsol(r).

10 Compute ρ
(i=1)
iter (r) via Eq. 2.11 with ϕtot(r) and ǫ(r).

11 repeat i = 1, 2, . . . PEQS iterations
12 begin PEQS routines

13 Compute ϕ
(i)
tot(r) via Eq. 2.9.

14 Update ρ
(i+1)
iter (r) via Eq. 2.12 with ǫ(r), ϕ

(i)
tot(r), and ρ

(i)
iter(r).

15 Update ρpol(r) and ρtot(r) via Eqs. 2.10 and 2.5.

16 until ||ρ(i+1)
iter (r) − ρ

(i)
iter(r)|| < Tsolver

17 Compute ϕpol(r) = ϕtot(r) − ϕsol(r).

18 Generate ∆F via Eq. 2.13 with ϕpol(r).

19 Compute Eel via Eq. 2.14 and add it to the SCF energy.

20 until DIIS error < TSCF

21 Compute the equilibrium solvation free energy Gel via Eq. 2.4.
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solvation effects on vertical excitation energies, it is noted in Refs. [66] and [67] that

the formalism is equally valid for vertical ionization. The non-equilibrium effects for

the vertical ionization potentials (VIPs) reported in Chapter 2 are computed through

a perturbative approach, whereas the VIPs in Chapter 3 employ a more rigorous state-

specific technique. An in-depth discussion of the origin of non-equilibrium effects for

vertical excitation and ionization processes as well as the state-specific methodology

within the context of PCMs and the PEQS method is reserved for Sections 3.2.2 and

3.3.2. Here we present the theoretical details for the perturbative approach that was

adjusted to work within the PEQS method described in Section 2.2.2.

Within the perturbative scheme, the effective Hamiltonian for either the equilib-

rium reference state (i = 0) or the non-equilibrium ionized state (i = 1) is given

by66

Ĥi = Ĥvac
i + V̂0 + λ

(

V̂ fast
i − V̂ fast

0

)

, (2.15)

where Ĥvac
i is the gas-phase Hamiltonian for state i (either the Fock operator for HF

or Kohn-Sham operator for DFT), V̂i is the reaction field operator that generates

ϕpol,i(r) for state i. The “fast” superscript designates that only the fast components

of the solvent response are considered; see discussions in Section 3.2.2. The quantity

λ is the usual perturbation parameter. For the reference state, in which i = 0, the

effective Hamiltonian becomes

Ĥ0 = Ĥvac
0 + V̂0 , (2.16)

and the total free energy of the reference state, now denoted as Gel
0 , is computed

following the equilibrium solvation methodology described in Section 2.2.2. For the
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case i = 1 corresponding to the ionized state, the effective Hamiltonian becomes

Ĥ1 = Ĥvac
0 + V̂0 + λ

(

V̂ fast
1 − V̂ fast

0

)

, (2.17)

and the difference between the fast components of the ionized and reference state

polarization responses is treated as a perturbation. It is important to note that the

reference state reaction field operator, V̂0, appears in the effective Hamiltonian for the

ionized state, and therefore two separate SCF calculations must be performed: one

for the reference state following Algorithm 1 to generate and store in core memory

Gel
0 and ϕpol,0(r), and a second one to compute Gel

1 for the ionized state, the details

of which are described below.

After the performing the SCF calculation for the reference state, the second cal-

culation begins for the ionized state. Algorithm 1 outlined in Section 2.2.2 requires

a few adjustments for the non-equilibrium case, the first of which is a modification

of Eq. 2.9 to compute the fast components of the solvent polarization response. The

Marcus partitioning (MP) scheme67,77–80 is employed to separate the polarization re-

sponse into fast and slow components, and a more detailed discussion this procedure

is provided in Sections 3.2.2 and 3.3.2. The following equations describe the MP

scheme for the reference state, which splits the total polarization charge density into

slow and fast components:

ρpol,0(r) = ρslow
pol,0(r) + ρfast

pol,0(r) (2.18)

ρslow
pol,0(r) =

(

ǫsolv − ǫopt

ǫsolv − 1

)

ρpol,0(r) , (2.19)

where ǫsolv and ǫopt are the equilibrium and optical solvent dielectric constants, re-

spectively. The optical solvent dielectric is generally computed as ǫopt = n2, where

n is the solvent index of refraction. The requisite fast and slow components of the
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reference state polarization potentials are found using Eqs. 2.18 and 2.19, and then

by exploiting the canonical definition of the electrostatic potential,

ϕ
slow/fast
pol,0 (r) =

∫

dr′ ρ
slow/fast
pol,0 (r′)

|r − r′| , (2.20)

the fast and slow components of the solvent response are obtained.

In order to obtain the fast components of the solvent response for the ionized

state, Poisson’s equation is modified according to

∇2ϕtot,1(r) = −4π
[

ρsol,1(r) + ρslow
pol,0(r) + ρfast

pol,1(r)
]

, (2.21)

where ϕtot,1(r), ρsol,1(r), and ρfast
pol,1(r) are the total electrostatic potential, solute charge

density, and fast component polarization charge density of the ionized state, and

ρslow
pol,0(r) is the slow component polarization charge density of the reference state;

see discussions in Sections 3.2.2 and 3.3.2 for the origin of Eq. 2.21. In a similar

manner as ρsol(r) served as the source of the reference state solvent polarization

response in Eq. 2.9, the source for the ionized state solvent polarization response is

ρsol,1(r) + ρslow
pol,0(r), where ρfast

pol,1(r) takes the form

ρfast
pol,1(r) = ρiter,1(r) +

[

1 − ǫ(r)

ǫ(r)

]

[

ρsol,1(r) + ρslow
pol,0(r)

]

, (2.22)

and ρiter,1(r) is computed and updated by Eqs. 2.11 and 2.12. [Note: the function

ǫ(r) must employ the optical solvent dielectic when using Eqs. 2.11 and 2.12 for the

ionized state.] The total charge density for the ionized state is then computed as

ρtot,1(r) = ρsol,1(r) + ρslow
pol,0(r) + ρfast

pol,1(r) . (2.23)

After converging ϕtot,1(r) and ρfast
pol,1(r), the fast component of the solvent polarization

response is computed as

ϕfast
pol,1(r) = ϕtot,1(r) − ϕsol,1(r) − ϕslow

pol,0(r) (2.24)
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The non-equilibrium solvation free energy for the ionized state is

Gel
1 = Eint

1 +W0 +W
(1)
1 +W0,1 , (2.25)

where Eint
1 is the self-energy of the ionized state and W0, W

(1)
1 , and W0,1 are the free

energy contributions from the reference state reaction field, the first-order perturba-

tion correction, and a correction for the Coulomb interaction between the slow and

fast polarization charges that arises due to the MP scheme, respectively. In detail,

the latter three contributions are given by the following expressions:

W0 =
1

2

∫

dr ϕpol,0(r) ρsol,0(r) , (2.26)

W
(1)
1 =

1

2

∫

dr ϕsol,1(r)
[

ρfast
pol,1(r) − ρfast

pol,0(r)
]

, (2.27)

and

W0,1 =
1

2

∫

dr ϕslow
pol,0(r)

[

ρfast
pol,1(r) − ρfast

pol,0(r)
]

. (2.28)

Eq. 2.28 describes a physical situation in which the “earlier” slow component of the

reference state solvent response affects the “current” fast response for the ionized

state;67,72,77,81 see discussion in Section 3.2.2 for details regarding the concept of fic-

ticious polarization time. Finally, the Fock matrix correction for the ionized state

is identical to Eq. 2.13 because the reference state reaction field is used in Eq. 2.17.

The perturbative correction terms W
(1)
1 and W0,1 only contribute to the ionized state

solvation free energy through Eq. 2.25 and do not appear as a correction to the Fock

matrix. An outline of the non-equilibrium PEQS procedure is presented as Algo-

rithm 2 on Page 34.
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Algorithm 2: Non-equilibrium PEQS procedure using the MP scheme

1 begin Reference state procedure
2 Proceed with Algorithm 1 to compute the relevant energies, electrostatic

potentials, and charge densities and save to disk.

Input: Gel
0 , ϕpol,0(r), ρpol,0(r), and ρsol,0(r).

3 begin Ionized state procedure
4 Initialize ∆F ≡ 0.
5 repeat n = 1, 2, . . . SCF iterations
6 Diagonalize the Fock matrix F = F0 + ∆F to obtain the density matrix

P(n), where F0 is the gas-phase Fock matrix and ∆F is the
non-equilibrium solvation correction.

7 Compute ρsol,1(r), ρelec,1(r), and ρnuc,1(r) via Eqs. 2.6–2.8.

8 Compute ϕsol,1(r) via Eq. 2.9 with ǫ(r) = 1.

9 Form ǫ(r) with ǫopt.
10 Compute ρslow

pol,0(r) and ϕslow
pol,0(r) via Eqs. 2.18 and 2.20.

11 Set ρtot,1(r) = ρsol,1(r) + ρslow
pol,0(r) and ϕtot,1(r) = ϕsol,1(r) + ϕslow

pol,0(r).

12 Compute ρ
(i=1)
iter,1 (r) via Eq. 2.11 with ǫopt(r) and ϕtot,1(r).

13 repeat i = 1, 2, . . . PEQS iterations
14 begin PEQS routines

15 Compute ϕ
(i)
tot,1(r) via Eq. 2.21.

16 Update ρ
(i+1)
iter,1 (r) via Eq. 2.12 with ǫopt(r), ϕ

(i)
tot,1, and ρ

(i)
iter,1(r).

17 Update ρfast
pol,1(r) and ρtot,1(r) via Eqs. 2.22 and 2.23.

18 until ||ρ(i+1)
iter,1 (r) − ρ

(i)
iter,1(r)|| < Tsolver

19 Generate ∆F via Eq. 2.13 with ϕpol,0(r).

20 Compute ϕfast
pol,1(r) via Eq. 2.24.

21 Compute Eel and add it to the SCF energy.

22 until DIIS error < TSCF

23 Compute the non-equilibrium polarization free energy Gel
1 via Eq. 2.25.

24 Compute VEBE = Gel
1 −Gel

0
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2.3 Electronic Structure Methods

In Section 2.2.1 from above, the procedure for performing molecular dynamics

simulations of e−(aq) utilizing the one-electron pseudopotentials was explained. A

discussion of the computational methods required for performing the ab initio calcu-

lations is provided here. Long-range-corrected DFT (LRC-DFT) and RI-MP2 meth-

ods are used for the QM description of e−(aq), and the process of obtaining the

optimal range-separation parameter for the LRC-DFT functional is the subject of

Section 2.3.1. Convergence tests of the LRC-DFT and RI-MP2 results are performed

with respect to the choice basis set in Section 2.3.2. Finally, Sections 2.3.3 and 2.3.4

conclude this section with a discussion of the relevant details for the non-equilibrium

solvation calculations.

2.3.1 DFT and MP2 Methods

DFT calculations reported in this work use a long-range-corrected (LRC) ver-

sion of the “BOP” density functional. The BOP functional is comprised of Becke’s

generalized-gradient exchange functional (B88),82 along with the “one-parameter pro-

gressive” (OP) correlation functional,83 which is similar to the more familiar Lee-

Yang-Parr (LYP) correlation functional.84 The resulting exchange-correlation func-

tional is

ELRC-µBOP
xc = EOP

c + EµB88,SR
x + EHF,LR

x , (2.29)

where “SR” and “LR” express that only the short-range or long-range parts of the

Coulomb operator are employed when evaluating these components of the energy.

The functional in Eq. 2.29 has been implemented85,86 in the Q-Chem electronic

structure program,75 where it is called LRC-µBOP.87 This functional has been shown
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to afford accurate VEBEs for (H2O)−
N clusters as compared to correlated wave function

benchmarks.6,48

The range-separation parameter, µ, dictates the partition between what is con-

sidered short-range versus long-range in the Coulomb operator. (Roughly speaking,

this partition occurs on a length scale ∼ µ−1.) Baer and co-workers88 suggest a

non-empirical “tuning” procedure to determine µ, according to the criterion

IE∆SCF(µ) = −ǫSOMO(µ) . (2.30)

Here, ǫSOMO represents the self-consistent field (SCF) orbital energy for the singly-

occupied molecular orbital (SOMO) and IE∆SCF is the ionization energy determined

from a “∆SCF” approach, i.e.,

IE∆SCF(µ) = Eneutral(µ) − Eanion(µ) . (2.31)

(The neutral and anion energies are computed at the geometry of the anion.) The

condition in Eq. 2.30 is a rigorous one for the exact Kohn-Sham functional, and

because the ionization energy (IE) controls the long-range decay of the SCF wave

function, this tuning procedure ensures an exchange-correlation potential with proper

long-range behavior.89

Unfortunately, the optimally-tuned value of µ is known to exhibit a strong depen-

dence on system size,5,87,90,91 even for chemically homologous systems. In previous

QM/MM calculations of the bulk and interfacial hydrated electron, we have shown

that µ should be tuned separately for each distinct size of the QM region.5 This leads

to an electronic absorption spectrum for e−(aq) in bulk water that is in excellent

agreement with the experimental spectrum, whereas values of µ that are tuned for
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small clusters afford a significantly shifted spectrum, as do global hybrid functionals

such as B3LYP.5,57

We use QM regions that range in size from a radius of 5.5–8.0 Å around the cen-

troid of the spin density, and we tune µ separately for each different size. Figure 2.1

demonstrates the tuning procedure for three snapshots containing 47–50 QM water

molecules, corresponding to a QM radius of 7.5 Å, extracted from an ab initio simu-

lation of interfacial e−(aq)4. Each of the three snapshots is separated in time by 4 ps.

As µ increases (and thus Hartree-Fock exchange is introduced on increasingly short

length scales), the SOMO is increasingly destabilized. This is the result of eliminating

self-interaction error associated with the unpaired electron, which is primarily a long-

range phenomena for this particular system since the unpaired electron exists largely

outside of the valence-electron regions of the water molecules. The IE, in contrast,

is less sensitive to changes in µ. In order to satisfy the criterion of Eq. 2.30 in an

average way across all three snapshots in Figure 2.1, we set µ = 0.18 a−1
0 . The value

of µ used for each QM size for both the bulk and interfacial species was determined

independently using this procedure. These “tuned” values of µ are listed in Table 2.1.

In a recent study of the optical spectrum of e−(aq) using time-dependent DFT

(TD-DFT),5 we showed that this spectrum is sensitive to the value of µ, and that the

spectrum is significantly blue-shifted (as compared to experiment) for µ & 0.3 a−1
0 .

This is despite the fact that values of µ > 0.3 a−1
0 afford accurate VEBEs for small,

gas-phase (H2O)−
N clusters.6,48 These discrepancies in the optical spectrum (with re-

spect to experiment) are not reconciled by increasing the size of the QM region.5 In

Ref. [5], a range-separation parameter µ = 0.165 a−1
0 was ultimately chosen based

on the tuning procedure described above (see Table 2.1). We emphasize that this
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Figure 2.1: Illustration of the tuning procedure for LRC-µBOP/6-31++G*, demon-
strated for three different (H2O)−

N geometries (with N = 47–50) that are shown in red,
blue, and green and were extracted from an ab initio interfacial e−(aq) simulation4.
The solid curves represent IE∆SCF(µ) and the dashed curves are −ǫSOMO(µ). Where
the dashed and solid curves of a particular color intersect is the “optimally tuned”
value of µ for that particular snapshot, and in this case we choose µ = 0.18 a−1

0 as the
best compromise value for these three snapshots. This value is indicated by a vertical
line, and the other vertical lines indicate other values of µ that have been employed
in previous hydrated-electron studies using this functional. These include µ = 0.165
a−1

0 (Ref. [5]), µ = 0.33 a−1
0 (Ref. [6]), and µ = 0.37 a−1

0 (Refs. [7] and [8]).
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System
QM region 〈N〉 µ/ VEBE / eV PCM Correction / eV Poisson Correction/ eV
radius/Å a−1

0 DFT RI-MP2 DFT RI-MP2 DFT RI-MP2
interface 5.5 21 0.205 2.05 ± 0.38 1.96 ± 0.37 – – 1.05 1.11
interface 6.0 26 0.195 2.17 ± 0.39 2.05 ± 0.38 – – 1.01 0.97
interface 6.5 32 0.190 2.22 ± 0.37 2.11 ± 0.34 – – 0.94 0.95
interface 7.0 39 0.185 2.30 ± 0.33 2.20 ± 0.33 – – 0.87 0.88
interface 7.5 47 0.180 2.37 ± 0.34 2.26 ± 0.35 – – 0.77 0.83
interface 8.0 58 0.170 2.45 ± 0.33 2.35 ± 0.33 – – 0.74 0.75
bulk 5.5 29 0.195 2.12 ± 0.29 2.04 ± 0.31 1.40 1.40 1.21 1.14
bulk 6.0 37 0.180 2.31 ± 0.32 2.22 ± 0.34 1.30 1.20 1.05 0.99
bulk 6.5 47 0.175 2.36 ± 0.31 2.29 ± 0.37 1.21 1.08 1.01 0.88
bulk 7.0 58 0.170 2.40 ± 0.32 2.33 ± 0.33 1.13 1.08 0.97 0.86
bulk 7.5 71 0.165 2.49 ± 0.35 2.39 ± 0.32 1.10 1.03 0.86 0.81
bulk 8.0 86 0.160 2.58 ± 0.33 2.51 ± 0.31 0.95 0.94 0.80 0.71

Table 2.1: Average number of water molecules, 〈N〉, and optimally-tuned range-separation parameters, µ, for LRC-µBOP.
Also shown are the average VEBEs for these QM regions, computed at the LRC-µBOP/ and RI-MP2/6-31++G* levels
of theory. (Uncertainties represent one standard deviation, averaged over snapshots extracted from the simulations.) In
these calculations, the QM region is treated as a gas-phase (H2O)−

N cluster, i.e., the QM regions are the same as in the
calculations presented in Table 2.6 but the latter calculations include PCM boundary conditions. Comparison of these
“gas phase” values with the results in Table 2.6 affords the PCM corrections that are listed here, which illustrate the
magnitude of the correction for long-range electrostatic effects.

39



tuning procedure needs to be performed separately at each unique QM system size,

and we have done so here. Evident from Table 2.1 is a small but clear anti-correlation

between the number of QM water molecules and the optimally-tuned value of µ.

In addition to listing the optimally-tuned values of µ, Table 2.1 provides the

average VEBE computed for the gas-phase QM region, i.e., a negatively-charged

water cluster with vacuum boundary conditions. As in Table 2.6, these calculations

are performed at both the LRC-µBOP/6-31++G* level of theory and the resolution-

of-identity92,93 (RI)-MP2/6-31++G* level. For each snapshot (extracted from the

QM/MM simulations reported in Refs. [11] and [4]), the Turi-Borgis pseudopotential

model45 was employed to estimate the centroid of the spin density, and then all water

molecules contained within a sphere centered at this point were included in the QM

region for the DFT or RI-MP2 calculations. We vary the radius of this sphere to watch

the convergence of the VEBE with respect to the size of the QM region. The average

number of H2O molecules contained in this sphere is shown as 〈N〉 in Table 2.1.

Note that the only difference between the calculations reported in Table 2.1 and

those in Table 2.6 is that in the latter case, continuum boundary conditions are applied

in order to obtain quantitative agreement with experiment, whereas in Table 2.1 the

QM region is treated as a gas-phase (H2O)−
N cluster. Comparison of the two data sets

allows us to assess the quantitative importance of the boundary conditions. We find

that the non-equilibrium solvation model increases the VEBE by ≈ 0.7–1.1 eV for the

interfacial species and by ≈ 0.7–1.4 eV for e−(aq) in bulk water. Notably, the VEBE

converges more rapidly, as a function of the size of the QM region, for calculations

that use continuum boundary conditions (Table 2.6) than it does for calculations with
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Table 2.2: Average VEBEs computed using two different basis sets, for the interfacial
hydrated electron (computed using the DFT/Poisson method) and the bulk hydrated
electron (computed using the DFT/PCM method).

System
QM radius/ VEBE / eV

Å 6-31++G* 6-31(1+,3+)G*
interface 5.5 3.15 ± 0.41 3.18 ± 0.43
interface 7.5 3.14 ± 0.41 3.16 ± 0.44
bulk 5.5 3.52 ± 0.31 3.55 ± 0.33
bulk 7.5 3.59 ± 0.35 3.62 ± 0.30

vacuum boundary conditions (Table 2.1), suggesting that the dielectric continuum is

providing the desired long-range electrostatic effect of the bulk solvent.

2.3.2 Basis Set Convergence

We used the 6-31++G* basis set to compute VEBEs in Tables 2.1 and 2.6, as in

previous simulations of the optical spectrum of e−(aq).5,7,57 The choice of basis set

has been carefully examined in previous work5,57,89,94–96 (see Ref. [57] in particular),

with the conclusion that in a condensed-phase aqueous environment, convergence of

the VEBE is rapid and requires only a single set of diffuse basis functions, despite the

fact that the electron occupies an excluded volume in the structure of liquid water.

Additional diffuse shells have a very limited effect.57

Nevertheless, to test basis-set effects in the present context we computed VEBEs

using the 6-31(1+,3+)G* basis set,95 which includes two additional diffuse shells as

compared to 6-31++G*, with exponents of ζ1 = 0.2700058 a−2
0 and ζ2 = 0.0845 a−2

0

that are reduced by successive factors of 3.2 relative to the most diffuse exponent in

the 6-31++G* basis set. Results are listed in Table 2.2. Only minor deviations of
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≈ 0.03 eV are observed between the two basis sets, and we thus regard the 6-31++G*

basis set as being sufficiently diffuse.

The DFT and RI-MP2 calculations described above were performed on snapshots

extracted from the QM/MM simulations reported in Refs. [11] and [4]. Although we

use large QM regions in these single-point calculations—up to a radius of 8.0 Å, which

encompasses ≈ 90 QM water molecules—longer-range polarization effects must still

be incorporated in order to obtain a VEBE that is in quantitative agreement with the

consensus value for e−(aq) in bulk water. This is evident in the fact that the VEBE

changes by ∼1 eV between the N = 600 simulation cell and the infinite-dilution

limit; see Figure 2.10. (The difference is smaller, but still not negligible, when a

polarizable pseudopotential model is employed.40) This speaks to the importance of

very long-range Coulomb effects on the VEBE.

2.3.3 Non-equilibrium Polarizable Continuum Models

The specific version of PCM employed here for the bulk species e−(aq) is the

“integral equation formalism”, IEF-PCM.63,68,97–99 The equilibrium version of IEF-

PCM affords aqueous solvation free energies within a few kcal/mol of experimental

values for small to medium-size molecules and ions, if non-electrostatic corrections

are applied,100–102 but accurate solvatochromatic shifts can be obtained without such

corrections, using the non-equilibrium version of the model.66 The non-equilibrium

model is designed to describe electronic polarization of the solvent upon vertical

excitation or ionization of the solute.71–74 In other words, while the ionization process

may be vertical (in the sense that the vibrational and orientational degrees of freedom

of the solvent molecules are not allowed to relax or respond in any way), electronic
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polarization of the solvent should take place on the same time scale as excitation or

ionization and ought to be considered, even in a continuum treatment. This effect is

represented by re-polarizing the continuum solvent in the excited state of the solute

using the solvent’s optical (rather than static) dielectric constant, ǫ∞ = n2, where n

is the solvent’s index of refraction. The total polarization response of the solvent is

partitioned into a “fast” component (due to the electrons and described using ǫ∞ = 1.8

for water) and a “slow” component (due to nuclear reorganization and described using

ǫstatic = 78.39 for water). Details of the PCM and its implementation in Q-Chem75

can be found in Sections 3.2.1 and 3.2.2 as well as Refs. [66] and [67].

The predictions of PCM-type methods are sensitive to the details of how the “so-

lute cavity” (i.e., the boundary between the atomistic QM region and the continuum

solvent) is constructed. Most often this cavity is taken to be a union of atom-centered

spheres, whose radii may be considered to be parameters of the model. The calcu-

lations presented here, however, include a large number of explicit water molecules,

obviating the need for such crude boundary conditions. These are suspect anyway for

a species like e−(aq) where one electron is clearly outside of the van der Waals radii

of the atoms and would therefore directly inhabit in continuum region. Moreover, in

the presence of explicit solvent molecules, the aforementioned “van der Waals” cavity

construction places dielectric medium between the explicit solvent molecules, which

should not be there since Coulomb interactions are treated explicitly in the QM re-

gion. A more detailed investigation of this problem is presented in Sections 3.4.3 and

3.4.4.

As an alternative, we use a QM/continuum interface consisting of single sphere

whose radius is selected to be 2.75 Å larger than the radius of the QM region. (The
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QM radii are reported in Table 2.6.) This cavity is discretized using a Lebedev

integration grid with 5,294 points. The 2.75 Å buffer reflects the estimated diameter

of a water molecule, according to effective ionic radii for the isoelectronic ions O2−,

OH−, and H3O
+.103 In addition, our selection criterion for placing H2O molecules in

the QM region is to do so if any one of the three atoms lies within the specified QM

radius, and as such there are cases where a hydrogen nucleus ends up as much as

2.75 Å farther away from the origin than the proscribed radius of the QM region. In

any case, the predicted VEBEs are relatively insensitive to small changes in the size

of the spherical cavity provided that it encompasses the entire QM region. (When

QM nuclei extend beyond the cavity, non-sensical results are obtained or in some

cases the SCF + PCM procedure fails to converge at all.)

2.3.4 Non-equilibrium Poisson Equation Solver

This section outlines the specific computational details needed to obtain non-

equilibrium solvation free energies using the algorithms described in Sections 2.2.2

and 2.2.3 as well as specifying the form of the dielectric function ǫ(r) for bulk liquid

and liquid-vapor interfaces. To solve Eqs. 2.9 and 2.21, we discretize the QM elec-

tron density ρelec(r) on a 25 Å × 25 Å × 25 Å Cartesian grid with a grid spacing of

∆x = 0.22 Å in each direction, which closely follows the details of both the classical

electrostatics calculations reported in Ref. [76] (although the grid used here is slightly

more conservative, reflecting the somewhat more complicated topology of the elec-

trostatic potential generated by a QM charge distribution104) as well as those of the

quantum electrostatics calculations reported in Refs. [10] and [64]. The Turi-Borgis

pseudopotential model45 is used to estimate the location of the centroid of the spin
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density, for reasons of computational expediency, and this point is selected as the

origin for the grid. Solution of Eq. 2.9 is then accomplished using a finite-difference,

pre-conditioned conjugate gradient algorithm adapted from Ref. [10]. The iterative

charge density, and therefore the polarization charge density, is updated until the

Euclidean norm of the residual vector between iterations falls below a threshold of

Tsolver = 10−5 a.u. We take η = 0.6 in Eq. 2.12. The SCF procedure is considered

converged when the DIIS error falls below a threshold of TSCF = 10−5 a.u.

In order to describe anisotropic dielectric environments, we employ a dielectric

function ǫ(r) that can assume a different value at each grid point in three-dimensional

space. For testing and comparison purposes we have also implemented this approach

for isotropic solvation, which we describe first. For e−(aq) in bulk water, we imagine

a spherical cavity whose radius is 2.75 Å larger than the radius of the QM region

(rQM), as in the PCM calculations described in Section 2.3.3. Across this boundary,

we interpolate ǫ(r) between the values ǫvac = 1.0 inside the cavity, where matter is

described atomistically, and ǫstatic = 78.39 outside the cavity. (This smooth change

in the dielectric aids with convergence of the finite-difference Poisson solver.105,106)

Interpolation is accomplished as a function of the radial distance r from the center

of the grid using a hyperbolic tangent switching function. In detail, the r-dependent

dielectric function that we use is

ǫ(r) =
1

2

{

ǫstatic + ǫvac + (ǫstatic − ǫvac)tanh
[

α(r − rmid)
]

}

. (2.32)

The parameter α = 3.9 Å−1 controls the length scale of the switching process and

rmid is the midpoint of the interpolation. We take rmid = rQM + 1.375 Å, so that the

dielectric assumes the value ǫ = (ǫvac + ǫstatic)/2 halfway between rQM and rcavity =

rQM + 2.75 Å. (See Figure 2.2 for an example.) Numerical results are not strongly
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dependent on the details of this smoothing procedure, and the calculations reported

in Table 2.6 for e−(aq) in bulk water demonstrate the extent to which IEF-PCM

results agree with this QM/Poisson procedure.

The QM/Poisson procedure for the interfacial species is similar. We first use the

Turi-Borgis model to estimate the center point of the electronic wave function and thus

locate the center of the grid. Across a spherical cavity of radius rcavity = rQM +2.75 Å

surrounding the Turi-Borgis centroid, we smoothly interpolate ǫ(r) as indicated in

Eq. 2.32. However, we also compute the instantaneous distance d between the centroid

of the electron and the GDS, for each snapshot from the simulations. Since the vapor

phase should have a dielectric of ǫvac = 1, we use a similar hyperbolic tangent function

to interpolate ǫ(z) across the GDS:

ǫ(z) =
1

2

[

ǫstatic + ǫvac + (ǫvac − ǫstatic)tanh
(

α|z − d|
)

]

. (2.33)

Here, z = 0 defines the middle of the slab, so Eq. 2.33 corresponds to a midpoint

of z = d for the switching function at the water/vapor interface. A diagram of this

interfacial setup appears in Figure 2.3.

It should be noted that employing Eqs. 2.32 and 2.33 to create spatially-varying

dielectric functions for the multiplicative factor in Eq. 2.19 is unnecessary; the com-

ponent of the smoothing functions containing the spatial dependence algebraically

cancels out, and thus the ratio χslow/χe is constant across the grid. The spatially-

varying nature of the dielectric is carried solely by the static dielectric function used to

compute the polarization charge in Eq. 2.10 and iterative charge densities in Eqs. 2.11

and 2.12.
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Figure 2.2: Dielectric function ǫ(r) from Eq. 2.32, as a function of the distance r
from the center of the QM region. The parameters of the switching function are
α = 3.9 Å−1 and rmid = 9.375 Å, as used in this work for a QM radius of 8.0 Å. In
this example, ǫ(rQM) = 1.002, ǫ(rmid) = 39.695, and ǫ(rcavity) = 78.388.
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Figure 2.3: Diagram of the setup for the QM/Poisson calculations at the water/
vacuum interface. Within the two shaded regions, the dielectric function is interpo-
lated between ǫ = 1.0 and ǫ = 78.39, as described in the text. The interfacial region
around the GDS uses the switching function in Eq. 2.33, whereas the spherical cavity
in bulk water uses the same switching function used for bulk solvation, Eq. 2.32.
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2.4 Results and Discussion

In Section 2.4.1, we present the results from the mixed quantum-classical molec-

ular dynamics simulations of e−(aq) in liquid water and at the liquid-vapor interface

and provide a discussion of these results in the context of recent liquid microjet exper-

iments. The VEBE of bulk e−(aq) computed with IEF-PCM and the PEQS methods

are provided in Section 2.4.2 as well as the VEBE of interfacial e−(aq) with the PEQS

method. A discussion of the performance of the PEQS method relative to PCM for

the bulk case is also included.

2.4.1 Simulations of e−(aq) in Liquid and at the Interface

There is a long history of mixed quantum/classical molecular dynamics (MD)

studies of e−(aq) using one-electron pseudopotential models.107–109 We report results

from simulations employing two variants of such a model: a fully polarizable model

that treats electron–water polarization explicitly and self-consistently,40 and a simpler

model45 wherein polarization is described by a pairwise-additive r−4 term in the

interaction potential, which is tantamount to a mean-field description of electron–

water polarization.107 Both models successfully reproduce the steady-state absorption

spectrum of e−(aq) as well as the radius of gyration

rg =
〈

(r − 〈r〉) · (r − 〈r〉)
〉1/2

that is inferred from a moment analysis of this spectrum,110 and both provide a

qualitatively correct value for the rather large diffusion coefficient of e−(aq).40,57 The

explicit-polarization model also reproduces the aforementioned “consensus” VEBE,

along with a variety of ab initio benchmarks for (H2O)−
N cluster anions.40
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Figure 2.4: Representative snapshots of a simulation using the mean-field polarization
model. In each panel, the opaque blue isocontour of the wave function encapsulates
50% of the one-electron probability distribution |ψ(r)|2, while the lighter, translucent
isosurface encloses 95%. At t = 0, where the solvent configuration is taken from an
equilibrated simulation of neat liquid water, the electron is localized in a surface trap
created by dangling O–H moieties, however the degree of localization (rg ≈ 6.25 Å) is
far less than for e−(aq) in bulk water. After only 0.1 ps, however, the wave function
has contracted to rg ≈ 3.50 Å, as seen in (b), while the VEBE has increased by 1.65 eV.
By t = 0.5 ps the wave function has contracted to rg ≈ 2.4 Å and is comparable in
size to the bulk species, yet resides ≈ 1.0 Å above the Gibbs dividing surface. The
size of the wave function has changed little by t = 10 ps, but its centroid has moved to
1.50 Å below the Gibbs dividing surface, and water molecules surround the electron.
The VEBE has increased by 0.5 eV relative to (c), and is now comparable to the
bulk value. Panel (e) shows a snapshot shortly after the electron internalizes, with
its centroid situated 8.74 Å below the Gibbs dividing surface and with a VEBE that
is similar to the bulk value and essentially unchanged relative to that in (d). By
t = 40 ps in (f), the electron centroid has been fluctuating around d = −8.50 Å for
28 ps with a VEBE that has fluctuated around the bulk value since t ≈ 10 ps.
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Our simulations begin from neat, equilibrated liquid water at T = 300 K and

and ρ = 0.997 g/cm3, in a periodic simulation cell containing 200 water molecules.

Convergence tests with respect to the size of the simulation cell are discussed in

detail below. At time t = 0 we introduce the extra electron simply by turning on the

electron–water interaction potential, and from this point the energy and forces are

obtained from the ground-state eigenvalue of the one-electron model Hamiltonian.

This does not constitute a direct simulation of electron injection into liquid water,

except possibly for an electron with zero kinetic energy, but does allow us to examine

the interface → bulk internalization process because at t = 0 the solvent configuration

is representative of neat liquid water, and dangling O–H moieties at the water/vacuum

interface create a number of shallow potential energy “traps” for the electron to

inhabit. As such, the ground-state wave function is fairly localized (at the interface)

at t = 0, as shown in Figure 2.4(a). Subsequent panels in Figure 2.4 show how the

wave function changes as it evolves in time.

The very early-time dynamics of e−(aq) at the interface suggest that within even

the first 100 fs of solvation dynamics, the electron is pulled farther below vacuum level

than the reported 1.6 eV for the putative surface-bound electron.9,41 Although not

yet as compact as the equilibrated species, the electron’s wave function is certainly

localized, whereas previous discussion has assumed that an electron ∼1.6 eV below

vacuum level would be delocalized.24 That assumption is based on a value V0 =

−1.5 eV for the band gap of liquid water,24 meaning that the conduction band sits

1.5 eV below vacuum level. Extrapolations of cluster ion data, however, suggest

instead that V0 ∼ 0.111 Moreover, on the surface of amorphous solid water, where

the librational dynamics that ultimately solvate the interfacial electron are frozen
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out, the surface-bound electron is stable for minutes, and is thought to localize in a

Bjerrum defect.112 The measured VEBE of e−(aq) on the surface of amorphous solid

water is 1.4 eV,113 consistent with values intermediate between those in Figure 2.4(a)

and (b).

Figure 2.5 depicts the time evolution of the VEBE, the radius of gyration, and the

distance d between the centroid of the excess electron wave function and the Gibbs

dividing surface, which is defined as the locus of points in the z direction for which the

solvent density has fallen to half its value in bulk solution, and is used to demarcate

the liquid/vapor interface. Although initially quite diffuse and weakly bound, the

interfacial electron undergoes an ultrafast hydration process that begins to stabilize

and localize the diffuse charge within 25 fs, via rotation of O–H moieties into the

charge cloud. This process increases the VEBE by ∼ 1 eV. A deuterium isotope

effect observed in the early-time signal (35–80 fs) in pump/probe experiments has

previously been taken as evidence that librational motion of the waters is responsible

for the first stages of electron localization,114,115 and we observe this directly in our

simulations. An additional 1.0–1.5 eV of stabilization occurs in the next 125 fs, and

by t = 0.5–1.0 ps the VEBE of the interfacial species is essentially indistinguishable

from that of e−(aq) in bulk water. Concurrently, the size of the interfacial charge

collapses from rg ∼ 6–8 Å to rg ∼ 2–3 Å as shown in Figure 2.5(b). The electron

localization timescale that we observe directly in bulk water is consistent with that

inferred from time-resolved terahertz spectroscopy.116

Twenty trajectories were examined for both the bulk and interfacial electron, for

each pseudopotential model and for periodic simulation cells containing 200, 300,

and 600 water molecules, and in every single case the interfacial electron undergoes a
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Figure 2.5: Time evolution of (a) the VEBE, (b) the radius of gyration, and (c) the
distance between the centroid of the e−(aq) charge distribution and the Gibbs dividing
surface. (The time axis is linear for the first 0.5 ps then switches to a logarithmic
scale.) Data are obtained from quantum/classical MD using two different one-electron
models, under ambient conditions.
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transition into bulk water on a timescale of ≈ 10–25 ps for the mean-field polarization

model and ≈ 25–35 ps for the explicitly polarizable model [see Figure 2.5(c)]. This

is consistent with previous simulations of relaxation dynamics of e−(aq) at the wa-

ter/vacuum interface at ambient temperature,52 and also with recent work in which

the mean-field polarization model was used to compute the potential of mean force

for dragging an electron through the interface.58,59 In the latter simulations, the free

energy profile for moving the electron from the interface to a depth of 9–10 Å is

either strictly downhill,58 or else exhibits a barrier to internalization of < 2kBT (at

T = 300 K),59 depending upon how the interface is defined. Electron–water polariza-

tion is the only component of the interaction energy that drives the electron inward

from the interface,58 and the mean-field r−4 polarization potential is known to overes-

timate the polarization energy relative to explicit, many-body treatments of electron–

solvent polarization.117,118 One might therefore expect that an explicitly-polarizable

model would afford a slightly longer timescale for internalization as compared to a

mean-field polarization model, which is in fact what we observe. In any case, the

potential of mean force is found to be completely flat for d < −1 nm,58,59 so the fact

that we do not observe bulk-solvated electrons spontaneously return to the interface

can be explained based simply on the fact that the volume of phase space consistent

with d < −1 nm is far less than that within 1 nm of the interface.

Figure 2.6 is a scatter plot examining the correlation between the VEBE and the

quantities rg and d. Anti-correlation between VEBE and rg [Figure 2.6(a)] is observed

for all of the simulations, regardless of initial conditions or which one-electron model

is used. This has also been observed in previous simulations of both e−(aq)4,11,45,52 as

well as finite (H2O)−
N clusters.8,49 In clusters, the correlation between the VEBE and
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Figure 2.6: VEBE as a function of (a) the radius of gyration and (b) the distance
between the electron and the Gibbs dividing surface. The data are taken from the
trajectories plotted in Figure 2.5, sampled every 20 fs.
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Table 2.3: Average values for selected observables from one-electron pseudopotential
simulations.

Polarization System 〈VEBE〉 〈rg〉 〈d〉
Method (eV) (Å) (Å)
explicit interfacea 3.10 2.27 −2.05
explicit bulk 3.30 2.21 −8.54
mean-field interfacea 3.13 2.55 −1.76
mean-field bulk 3.39 2.43 −8.46
aAverages exclude data points after the electron

internalizes.

rg is observed for both surface-bound isomers (the cluster analogs of the interfacial

hydrated electron) as well as “internalized” isomers (analogs of the electron in bulk

water). A similar correlation is found between rg and the electronic absorption maxi-

mum, in both clusters and for e−(aq) in bulk water, although the clusters span a much

wider range of rg values and make it apparent that both the VEBE and the absorption

maximum vary as r−2
g , a dependence that can be derived from a particle-in-a-cavity

model for bulk e−(aq), or from a Rydberg atom model for (H2O)−
N .8 On the other

hand, the VEBE data span a range of ∼1 eV (see Figure 2.6), so while these toy mod-

els successfully predict the qualitative r−2
g trend that is somewhat evident in the data

in Figure 2.6(a), and more obvious in the cluster data,8 they cannot quantitatively

predict the VEBE. For this, detailed atomistic calculations are required.

In contrast to the correlation with rg, the VEBE appears to be uncorrelated with

the distance d from the water/vacuum interface, as has been seen in previous simu-

lations as well.4,52 Averages for these observables are reported in Table 2.4, and are

essentially unchanged even if half of the trajectories are discarded. It should be noted
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that there are important finite-size corrections to the VEBE, which is especially sen-

sitive to long-range Coulomb effects,40,119 and these are addressed in Section 2.3.1. as

well as by all-electron quantum chemistry calculations with continuum boundary con-

ditions that are described below. What is most important to the present discussion is

that the interfacial and bulk VEBEs differ only by about 0.2 eV. Full probability dis-

tributions for the bulk and interfacial VEBEs (Figure 2.9) are consistent with a shift

of 0.2 eV, and a broadening of < 0.2 eV, in the VEBE distribution at the interface

relative to that in bulk water.

For the bulk species, values of d span a narrow range around −8.5 Å that reflects

about half the thickness of the periodic slab used in the simulations. (This is true in

larger simulation cells as well; in a 300 H2O cell with a slab thickness of 20.8 Å, the

bulk species fluctuates around d = −8.9 Å and in a 600 H2O cell with a thickness of

26.2 Å it fluctuates around d = −13.0 Å, as shown in Figure 2.5.) Evidence of the

prompt disappearance of the interfacial species can be seen in Figure 2.6(b), where

trajectories initialized at d = 0 migrate to d ≈ −8.5 Å within tens of picoseconds.

Once it passes into bulk solution, the electron VEBE fluctuates between 2.5–3.5 eV,

which is roughly the same range observed for the original, interfacial state, for which

d ranges from −5 Å to +1 Å. Evidently, the VEBE is controlled by the size of the

electron (rg) but is uncorrelated with its distance from the interface.

This, too, is similar to what is observed in finite clusters.8 Whereas when the

unpaired electron is far from the water cluster, it is dipole-bound and exhibits a

VEBE < 0.5 eV, as the centroid of its wave function approaches the cluster surface,

the distribution of VEBEs broadens and approaches values similar to the case of a fully

solvated electron. Similarly, the present calculations show that even for an interfacial
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electron that is 1–2 Å above the surface of liquid water, the VEBE spans a range of

values comparable to what is observed for e−(aq) in bulk water [see Figure 2.6(b)].

Simulations reported here and elsewhere52 suggest that the interfacial species may

not be stable beyond a timescale of ∼30 ps, and perhaps more importantly, that mea-

surement of the VEBE by photoelectron spectroscopy may be unable to differentiate

between e−(aq) in bulk solution and e−(aq) at the water/vacuum interface. (It is

possible that measurement of photoelectron angular distributions might be able to

make such a distinction; such a technique has recently been used in an attempt to

elucidate electron binding motifs in sodium-doped water clusters.120) Photoelectron

spectroscopy likely probes the compactness of the solvated electron’s spin density,

rather than its position relative to the interface, much like terahertz spectroscopy of

e−(aq) in bulk water.116 Recently, we also concluded that the the steady-state absorp-

tion spectrum of e−(aq) that, historically speaking, is the primary observable used to

monitor production and annihilation of this species,121–125 also fails to discriminate

e−(aq) in bulk water from that at the interface.5 As in the photoelectron case, ab-

sorption spectroscopy is primarily a probe of the electron’s compactness, regardless

of binding motif.8

Although e−(aq) has been detected in experiments using various surface-sensitive

spectroscopies,126,127 those experiments have been interpreted to imply that the species

responsible for the “interfacial” signal might reside anywhere within the first 1–2 nm

of the liquid,126 and that its lifetime in the vicinity of the interface is < 100 ps.127

Even at a depth of 1 nm, our calculations suggest that the properties of the nom-

inally “interfacial” electron are actually indistinguishable from those of the equili-

brated species in bulk water, owing to the presence of sufficiently many solvation
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shells to converge rg. In this interpretation, surface-sensitive spectroscopy simply

detects whatever bulk-like electrons happen to diffuse close enough to the surface

to break spatial inversion symmetry and thus become observable. This is consistent

with an electron attenuation length of ∼ 5 nm at 3 eV of electron kinetic energy,128

meaning that photoemission from any putative surface-bound species should always

be accompanied by a strong signal from the bulk species.31,38

Additional testing was performed to examine the dependence of our results on

the number of water molecules, choice of simulation grid and periodic unit cell, and

initial conditions. To this end we performed twenty simulations each with N = 300

and N = 600 water molecules in the unit cell, using the mean-field Turi-Borgis

polarization model at T = 300 K. The density was kept the same as the smaller

simulations discussed above (ρ = 0.997 g cm−3), which in the present cases means

Lx = Ly = 20.7961 Å for N = 300 and Lx = Ly = 26.2105 Å for N = 600, with

Lz = 5Lx in all cases. The simulation grid representing the electronic wave function

was chosen in the same manner as above, with ∆x = ∆y = ∆z = 0.95 Å. To make

the calculations tractable (because the dimension of the Hamiltonian is equal to the

total number of grid points in three dimensions), we used the same simulation grid

for N = 600 that we did for N = 300, so in the former case the grid does not extend

quite to the edges of the simulation cell. (Since the electron localizes rapidly in each

trajectory, this is not a serious limitation.)

As with the N = 200 simulations described above, initial structures were extracted

from an equilibrated simulation of neat liquid water (SPC water model) with either

N = 300 or 600 molecules in the unit cell. Trajectories were propagated for 80 ps,

and as in the smaller unit cells the electron internalizes into the bulk in every single
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trajectory. Simulations were propagated for an additional 50 ps to equilibrate the

internalized e−(aq) for use in bulk simulations, as discussed above, and the initial

structures were randomly selected from the last 10 ps of these equilibration trajecto-

ries. The bulk simulations were also propagated for 80 ps.

It should be noted that the initialization procedure used in these simulations does

not represent a simulation of electron injection into water, except possibly that of

an electron with zero kinetic energy. Rather, we simulate adiabatic dynamics on

the ground-state Born-Oppenheimer potential energy surface generated by the one-

electron model Hamiltonian. At t = 0, the electron is found wherever the potential

energy is low, and that is consistently found to be a surface trap state formed by

dangling O–H moieties at the water/vacuum interface, as shown for example in Fig-

ure 2.4(a). We have verified that different initial guesses for the wave function at t = 0

lead to the same solution, demonstrating that our eigensolver (the details of which are

described in Ref. [40]) is robust. For example, Figure 2.7 is analogous to Figure 2.4

but for a unit cell containing 600 water molecules, and with an initial guess wave

function that is completely delocalized. Very similar localization and internalization

dynamics can be seen in this trajectory as compared to that in Figure 2.4.

Figure 2.8 shows representative trajectories for all three unit cell sizes, with the

N = 200 trajectories being the same ones that are plotted in Figure 2.5. Despite being

initialized as a delocalized particle below the GDS, the interfacial e−(aq) immediately

appears as a diffuse charge cloud [rg ≈ 5–6 Å, see Figure 2.8(b)] located at d ≈ 3–6

Å above the liquid surface as illustrated in Figure 2.7(a). This behavior is easily

understood. Unlike in previous simulations of e−(aq) in bulk water that used an

isotropic unit cell (i.e., no water/vacuum interface), and for which the electron takes
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(a)

t = 0.00 ps

VEBE = 0.42 eV

t = 0.10 ps

VEBE = 1.68 eV

t = 0.50 ps

VEBE = 2.38 eV

T = 8.50 ps

VEBE = 3.67 eV

T = 12.50 ps

VEBE = 3.49 eV

T = 40.00 ps

VEBE = 3.78 eV

(b) (c)

(d) (e) (f)

Figure 2.7: Snapshots from a simulation of an electron initialized delocalized in liquid
water using the Turi-Borgis pseudopotential model. In each panel, the opaque blue
isocontour of the wave function encapsulates 50% of the one-electron probability
distribution |ψ(r)|2, while the lighter translucent isosurface encloses 95%. At t = 0,
the electron is initialized as a completely delocalized particle in liquid water, with
rg ≈ 6.78 Å. After 100 fs the wave function has contracted to rg ≈ 3.93 Å, as seen in
(b), while the VEBE has increased by 1.46 eV. By 500 fs, the wave function further
contracts to rg ≈ 3.12 Å and resides ≈ 1.1 Å above the GDS. By t = 8.50 ps, the
size of the wave function is comparable to the bulk species with rg = 2.45 Å, and its
centroid has moved to 1.50 Å below the GDS where water molecules surround the
electron, such that the VEBE in (d) is 1.29 eV larger than that in (c), and is similar
to the bulk value. Panel (e) shows a snapshot shortly before the electron internalizes,
with its centroid situated 7.75 Å below the GDS and with a VEBE that is similar
to the bulk value and essentially unchanged relative to that in (d). By t = 40 ps in
(f), the electron centroid has been fluctuating around d = −13.00 Å for 28 ps with a
VEBE that has fluctuated around the bulk value since t ≈ 8.50 ps.
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Figure 2.8: Time evolution of (a) the VEBE, (b) the radius of gyration (rg), and (c)
the distance (d) between the centroid of the e−(aq) charge distribution and the Gibbs
dividing surface from MD simulations employing a mean-field polarization potential
model at ambient temperatures. (The time axis is linear for the first 0.5 ps then
switches to a logarithmic scale.) For comparison to the simulations utilizing N = 300
and N = 600 water molecules, the data from representative N = 200 trajectories are
reproduced from Figure 2.5.
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∼1 ps to carve out and localize in an excluded volume,40 in the present simulations

there exist, already at t = 0, shallow potential energy “traps” around dangling O–H

moieties at the interface. The ground-state wave function at t = 0 occupies in these

traps, one of which is apparently deep enough relative to the others such that the

electron localizes in it, as shown in Figure 2.7(a).

Essentially instantaneous electron localization is observed in every trajectory at

every box size, as is the rapid increase in VEBE during the first 0.5 ps, as exemplified

by panels (b) and (c) of Figures 2.4 and 2.7. The internalization process is sponta-

neous on a timescale of 20–25 ps regardless of the size of the simulation cell or the

initial conditions used to introduce the electron at t = 0, and upon internalization

the electron fluctuates around d ≈ 9–10 Å for N = 200 and N = 300 simulations

and d ≈ 13 Å for N = 600, which reflects half the thickness of the simulated water

slab. (The N = 200 and N = 300 simulation cells are sufficiently similar in size,

at Lx = 18.1617 and 20.7961 Å, respectively, that the 1.0–1.5 Å fluctuations about

the midpoint blur the distinction and the electron fluctuates around similar values

of d in both cases.) The good agreement that we see amongst all three simulation

cell sizes is consistent with the fact that the potential of mean force for pulling an

electron through the interface, which was computed in Refs. [58] and [59] using the

same Turis-Borgis pseudopotential that is used here, flattens out at d ≈ 9.5 Å, just

slightly more than half the width of the slab in our smallest simulation cell.

Table 2.4 reports averages for the quantities rg, VEBE, and d, comparing different

simulation cell sizes from all twenty simulations. For each given box size, values of the

VEBE and radius of gyration are rather similar, regardless of whether the electron

was initialized in the bulk or at the interface, although the average VEBE for the
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Figure 2.9: Probability distributions for the bulk and interfacial VEBE using (a)
the mean-field polarization model, in an N = 600 water box; and (b) the explicit
polarization model, in an N = 200 water box, with histogram bin widths of 0.05 eV
in each case. Panels (c) and (d) show Gaussian fits to the data in (a) and (b),
respectively. (Fitting parameters are listed in Table 2.5.) The interfacial distributions
are also shown following a shift in energy equal to the difference in the mean VEBEs
of the bulk and interfacial distributions, as reported in Tables and 2.4. Differences
in the center points of the distributions in (a) versus (b) are partly the result of the
effects of finite box size.

64



Table 2.4: Average values for selected observables from mean-field polarization model
simulations with varying numbers of water molecules, N .

N System 〈VEBE〉 〈rg〉 〈d〉
(eV) (Å) (Å)

200 interfacea 3.13 2.55 −1.76
200 bulk 3.39 2.43 −8.46
300 interfacea 3.34 2.49 −1.97
300 bulk 3.57 2.40 −8.78
600 interfacea 3.67 2.44 −1.66
600 bulk 3.84 2.39 −13.01
aAverages exclude data points after the electron
internalizes.

interfacial species is about 0.2 eV smaller than that of the bulk species. As a test of

convergence, we can throw out half of the trajectories and recompute the averages,

and we find that they change hardly at all. Average VEBEs change by only about

0.05 eV and 〈rg〉 by about 0.05 Å, for both the bulk and interfacial species. The

average distance 〈d〉 to the GDS is essentially unchanged for the bulk species and

changes by < 0.1 Å for the interfacial species. Full probability distributions for the

bulk and interfacial VEBE are depicted in Figure 2.9 and are fit quite well to Gaussian

probability distributions,

g(E) = exp

(

−(E − 〈E〉)2

2σ2

)

, (2.34)

with fitting parameters given in Table 2.5. Although the distributions of interfacial

VEBEs are 0.1–0.2 eV wider than those obtained in bulk water, we find that even
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Table 2.5: Parameters for the Gaussian fits [Eq. 2.34] of the VEBE data in Figure 2.9.

Polarization System Parameter (eV)
Method 〈E〉 σ FWHMb

explicit interface 3.1060 0.3392 0.7987
explicit bulka 3.2856 0.2596 0.6113
mean-field interface 3.6489 0.3583 0.8437
mean-field bulka 3.9115 0.3175 0.7476
aAverages exclude data points after the electron internalizes.
bFull width at half maximum of the Gaussian distribution.

in terms of the raw data both distributions look quite similar if the interfacial distri-

bution is simply shifted 0.2 eV higher in energy, which is the difference in the mean

VEBE at the interface relative to that in bulk water.

Very recently, Casey et al.,59 also reported distributions of bulk and interfacial

VEBEs based on simulations employing the mean-field Turi-Borgis pseudopotential,

but based on an alternative definition of the instantaneous liquid interface.129 (In

our simulations, the Gibbs dividing surface is also updated at each time step.) The

simulations and sampling protocol reported in Ref. [59] afford a shift approaching

0.5 eV between the interfacial and bulk VEBE distributions, as opposed to the 0.2 eV

shift reported here. The reasons for this discrepancy are unclear, although there is

certainly a tail in our interfacial VEBE distributions that is shifted much more than

0.5 eV from the mean value in bulk water, so it could simply be that the definition of

the liquid surface that is used in Ref. [59] excludes more of the water molecules than

does the Gibbs dividing surface, giving it a preference for identifying as “interfacial”

simulation snapshots where the electron is more weakly solvated, as compared to

those snapshots that the Gibbs surface identifies as interfacial. The 0.2 eV shift that
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we obtain using both pseudopotential models agrees quantitatively with the shift

obtained from DFT and RI-MP2 calculations based on QM/MM trajectories; see

Table 2.6.

The averages in Table 2.4 do show that the VEBE increases with box size, due

to the importance of long-range Coulomb interactions in the ionization process, as

we have reported previously.40 As in previous work,40 we can correct for this by

extrapolating 〈VEBE〉 as a function of the inverse unit cell length, L−1
x , and such

an extrapolation is shown in Figure 2.10. Remarkably, both the interfacial and bulk

VEBE extrapolate essentially to the same value in the infinite-dilution limit: 4.87 eV

for the interfacial species versus 4.85 eV for the bulk species. The extrapolated bulk

value is also consistent with a previous extrapolation of 4.79 eV for the bulk species,

using the same Turis-Borgis pseudopotential.40 When the VEBEs for large (H2O)−
N

clusters are extrapolated to N → ∞ using the Turis-Borgis pseudopotential, a value

of 4.4 eV is obtained for the interior (cavity) states, versus 3.9 eV for surface-bound

electrons.119

Each of these extrapolated values for the bulk VEBE is significantly larger than

the accepted range of experimental values, 3.3–3.7 eV.9,32,33,36,39 In Ref. [40], the

infinite-dilution extrapolation was performed using the explicit polarization model (in

addition to the mean-field Turi-Borgis model), and it was found that the electronic

reorganization energy associated with relaxing the inducible dipole moments on the

water molecules is significant, and reduces the VEBE by 1.37 eV in the limit L →

∞. A very similar correction to the non-polarizable Turi-Borgis VEBE, 1.3 eV, was

obtained using a continuum model,40 which inspires some confidence that this is

indeed the electronic (clampled-nuclei) reorganization energy associated with vertical
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Figure 2.10: Extrapolation of the average VEBE computed using the mean-field
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over time.
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ionization of e−(aq). A correction of 1.3 eV applied to the extrapolated Turis-Borgis

VEBE from Figure 2.10 affords a corrected VEBE of 3.6 eV, within the experimental

range.

2.4.2 Vertical Binding Energy of e−(aq)

To complement the one-electron pseudopotential simulations discussed above, we

also computed the VEBE at the level of DFT and RI-MP2 including a quantum-

mechanical (QM) description of a significant number of surrounding water molecules.

DFT calculations employed a long-range-corrected functional (LRC-µBOP) that has

been shown to provide accurate VEBEs for (H2O)−
N clusters6,48 as well as an accurate

absorption spectrum for e−(aq) in bulk water.5 The range-separation parameter, µ, is

tuned in a non-empirical way to satisfy the ionization energy (IE) condition88 shown

in Eq. 2.30, and must be adjusted when the size of the QM region changes.5 (Consult

Section 2.3.1 for details and for tuned values of µ.) RI-MP2 calculations, in contrast,

have no such adjustable parameter and have been shown to provide VEBEs within

∼0.05 eV of CCSD(T) values for strongly-bound (H2O)−
N clusters.94,130

The ab initio calculations reported here were performed on snapshots extracted

from mixed quantum/classical (QM/MM) simulations of both bulk and interfacial

e−(aq),4,11 which we have previously used to obtain quantitative agreement with the

electronic absorption spectrum of the bulk species.5 From these snapshots, we extract

QM regions ranging in radius from 5.5–8.0 Å around the centroid of the spin density

(ρα − ρβ). For the bulk species, this corresponds to ≈ 30 H2O molecules for the

smallest QM regions and ≈ 90 for the largest, whereas for the interfacial species the

corresponding numbers are ≈ 20 and ≈ 60 H2O molecules, respectively.
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To incorporate longer-range solvent effects for e−(aq) in bulk water, we employ

a non-equilibrium polarizable continuum model (PCM) that uses the solvent optical

dielectric constant to model electronic polarization upon vertical ionization.66,67 PCM

calculations in quantum chemistry usually describe the QM/continuum boundary by

means of a union of atom-centered van der Waals spheres,63 but this makes little sense

in the present context given the highly delocalized nature of the solute (an electron),

which is not assignable to any particular atom. In addition, with a significant number

of solvent molecules considered explicitly within the QM region, the van der Waals

cavity construction would allow the interstitial excess electron to inhabit the dielectric

medium, to unknown effect. To avoid these problems, we define the boundary between

atomistic and continuum regions to consist of a single spherical surface, centered at

the centroid of the spin density and whose radius extends 2.75 Å beyond the farthest

atom in the QM region. (Consult Section 2.3.3 for a justification of this choice.)

This spherical-boundary approach is not possible for the interfacial species, where

the dielectric medium is spatially anisotropic. In this case, we directly solve Pois-

son’s equation expressed in Eq. 2.1 using an algorithm adapted from Ref. [10], for

a spatially-inhomogeneous dielectric function ǫ(r) that takes the value ǫ = 78 for

d < 0 and ǫ = 1 for d > 0. The QM charge density ρ(r) is discretized onto a

three-dimensional grid and we solve for the electrostatic potential ϕ(r) at each self-

consistent field iteration, whereupon the (equilibrium) solvation free energy is given

by Eq. 2.4. The converged electrostatic potential ϕ(r) can then be used in the non-

equilibrium reaction-field method of Refs. [66] and [67], in order to compute the

change in solvation free energy upon vertical ionization. This represents a model in

which electronic polarization is considered following ionization, but vibrational and
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orientational polarization is frozen, since the ionization process is vertical in terms of

the nuclear coordinates.

VEBEs computed using these non-equilibrium QM/PCM and QM/Poisson meth-

ods are listed in Table 2.6. For the bulk species, DFT/PCM and MP2/PCM calcula-

tions both afford VEBEs of 3.4–3.6 eV, in agreement with the experimental consensus

of 3.3–3.7 eV,9,32–39 and with prior QM/MM simulations.11 The computed VEBEs

converge rapidly with respect to the size of the QM region, and even the smallest QM

region (comprising approximately two solvation shells around the spin density) affords

a VEBE within 0.1 eV of the converged result. This is consistent with observations

in previous calculations that the spin density extends outward through two solvation

shells, but not three.40,96,108 Continuum boundary conditions contribute 0.7–1.4 eV

to the VEBE (see Table 2.1), and are therefore indispensable for obtaining agreement

with experiment. Simulations using the explicitly-polarizable one-electron model also

suggest a polarization response of ≈ 1.4 eV for vertical ionization of e−(aq).40

For the bulk species, where the dielectric function is isotropic, solution of Poisson’s

equation should afford very similar results to the PCM, up to discretization errors

and the fact that the PCM provides only an approximate treatment of the volume

polarization that arises from the tail of the wave function that penetrates beyond

the continuum boundary.63 Comparing Poisson- and PCM-based VEBEs for the bulk

species (Table 2.6), we find that the former are consistently 0.2 eV smaller but still

within the experimentally measured range of bulk e−(aq). This favorable comparison

validates our implementation of the non-equilibrium Poisson solver that is described

in Sections 2.2.2 and 2.3.3.
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Table 2.6: VEBEsa (in eV) computed at the DFTb/ and RI-MP2c/6-31++G* levels of theory using non-equilibrium
solvation models.

QM Bulk e−(aq) Interfacial e−(aq)
radius DFT RI-MP2 DFT RI-MP2 DFT RI-MP2

(Å) PCM PCM Poisson Poisson Poisson Poisson
5.5 3.52 ± 0.31 3.44 ± 0.35 3.33 ± 0.31 3.18 ± 0.32 3.15 ± 0.41 3.07 ± 0.46
6.0 3.61 ± 0.35 3.42 ± 0.34 3.36 ± 0.32 3.21 ± 0.34 3.18 ± 0.43 3.02 ± 0.40
6.5 3.57 ± 0.38 3.37 ± 0.30 3.40 ± 0.33 3.17 ± 0.34 3.16 ± 0.42 3.06 ± 0.46
7.0 3.53 ± 0.35 3.41 ± 0.31 3.37 ± 0.34 3.19 ± 0.32 3.17 ± 0.41 3.08 ± 0.44
7.5 3.59 ± 0.35 3.42 ± 0.32 3.35 ± 0.31 3.20 ± 0.33 3.14 ± 0.41 3.09 ± 0.43
8.0 3.54 ± 0.32 3.45 ± 0.33 3.39 ± 0.33 3.22 ± 0.35 3.19 ± 0.44 3.10 ± 0.47

aUsing structures extracted from QM/MM simulations reported in Refs. [11] and [4]. Uncertainties
represent one standard deviation. bLRC-µBOP with µ tuned individually at each QM size so that
ε

SOMO
= −IE. cUsing the resolution-of-identity approximation.
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Only the QM/Poisson approach is available for the interfacial species due to the

anisotropic nature of the dielectric boundary in this case. The QM/Poisson approach

affords an interfacial VEBE that is consistently 0.1–0.2 eV smaller than the bulk

value computed with the same algorithm, but this difference is well within statistical

fluctuations. Furthermore the VEBEs computed with the QM/Poisson methodology

are in agreement with QM/MM simulations of the interfacial species under periodic

boundary conditions,4 as well as mixed quantum/classical MD simulations of the

relaxation dynamics of an excess electron at the vacuum/water interface that employ

a one-electron pseudopotential and a much larger periodic simulation cell.52 Given

the quantitative agreement between these various simulation methods, and the fact

that they all agree with experimental results for e−(aq) in bulk water, our calculations

for the interfacial species appear to exclude the possibility of an interfacial solvated

electron whose VEBE is significantly smaller than that of e−(aq) in bulk water.

2.5 Conclusions

The picture that emerges from this work is one in which librational modes con-

tribute to ultrafast (< 1 ps) electron localization, both in bulk water and at the

water/vacuum interface. Simulations indicate that an electron spawned at the inter-

face of neat liquid water is unstable and migrates into bulk water within ∼ 30 ps.

Even during the short time that the electron samples a truly interfacial environment,

however, we find that its energy (measured relative to vacuum level) is essentially

indistinguishable from that of equilibrated aqueous electron in bulk water. Ab initio

calculations of the VEBE for the bulk species afford values of 3.4–3.6 eV that agree

quantitatively with the experimental consensus of 3.3–3.7 eV, but also suggest that
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the VEBE is not significantly different for the short-lived interfacial species. As such,

these calculations lend no support to the idea of an electron at the vacuum/water

interface with a VEBE that is significantly smaller than the bulk value.

Our results for both the energy and lifetime of the interfacial species are at odds

with a recent experimental report,9 in which a long-lived (& 100 ps) signal at 1.6 eV

in a liquid microjet photoelectron spectrum was assigned to an electron bound at

the water/vacuum interface. Based on electron attachment energies computed for

temporary anion resonances in nucleotide monophosphates,131,132 it was suggested in

subsequent review articles17,41–43 that a hydrated electron situated ≤ 2.5 eV below

vacuum level is in the right range to induce DNA single strand breaks, via dissociative

electron attachment. An electron whose VEBE is ≈ 1.6 eV would thus fall into this

range, but one whose VEBE is ≥ 3.3 eV would not.

Recent QM and QM/MM calculations of double-stranded DNA133 and individual

nucleobases134 in aqueous solution shown that the adiabatic electron affinities (EAs)

of the DNA bases increase dramatically upon solvation, although the effect saturates

after about two solvation shells and values in the range 0.75–1.20 eV are obtained.134

Both the vertical and adiabatic EAs are relevant in the discussion of electron attach-

ment to DNA, but in aqueous solution one expects the latter to be larger,9 hence these

values set an upper bound on the VEBE that would make the interfacial hydrated

electron relevant to dissociative electron attachment reactions in DNA. Our calcula-

tions suggest that the energetics of an electron solvated at the surface of neat liquid

water lie well outside of this bound, with both the bulk and the interfacial species

residing too far below vacuum level. The energetics of this scenario are illustrated

schematically in Figure 2.11.
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Figure 2.11: Hypothetical potential energy curves for dissociative electron attachment
by an aqueous electron. The molecular anion formed by electron attachment is sta-
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the adiabatic electron affinity (AEA) in which electron attachment is energetically
feasible; the left part of the diagram suggests that the equilibrated species e−(aq) lies
too far below vacuum level for this process to occur. Adapted from Ref. [9].
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Notably, the only other microjet experiment to report a feature at 1.6 eV for

e−(aq) observed this signal to decay in . 100 fs.36 That timescale is consistent with

the excited-state lifetime of e−(aq),114,115,135,136 and thus it is suggested that the 1.6 eV

feature might simply be a short-lived excited state of e−(aq).36 Given that the most

probable s → p excitation energy of the equilibrated species in bulk water is 1.7 eV,39

a VEBE of 1.6 eV for an excited state is consistent with a ground-state VEBE of

3.3 eV.

Results presented here appear to close the door on the notion that an electron at

the surface of neat liquid water is responsible for the 1.6 eV binding energy that is

reported in Ref. [9], but leave open the question of the chemical identity of the species

responsible for this feature. Its energetics are uncannily similar to the s → p excited

state of e−(aq),5 whether in bulk water or at the interface, but the & 100 ps lifetime

for this signal that is reported in Ref. [9] is inconsistent with the < 1 ps excited-state

lifetime that is reported elsewhere.114,115,135,136 There is speculation that this signal

might be attributable to a Rydberg anion supported by H3O
+ at the interface, where

the hydronium ion might occur naturally or might have been created photochemi-

cally as a side product of two-photon ionization of water.43 Such speculation may

suggest new calculations aimed to interpret experimental measurements that seek to

understand the nature of the water/vacuum interface.
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Chapter 3: Continuum Solvation Models

3.1 The Road to Implicit Solvation

As technology continues to push computing capabilities to astounding limits,

quantum mechanical (QM) methodologies can investigate increasingly more elabo-

rate chemical phenomenon and are becoming ubiquitous in other disciplines of sci-

ence. Perhaps one of the most useful utilities of quantum chemistry its ability to treat

large molecular systems embedded in complex environments, which makes it possible

to, for example, simulate biologically relevant processes or examine the properties

of new materials. This computational feat is made possible by the development of

solvation models that treat the environment classically. The classical description of

the solvent is either made explicitly through the use of molecular mechanics (MM) or

implicitly using continuum models. Although the computational cost for a large MM

representation of the solvent is negligible relative to the expense of a molecular QM

calculation for the solute, an exhaustive amount of configurational sampling must be

performed to observe the desired chemical phenomenom such as protein folding in

aqueous solution. An implicit treatment of the solvent environment with a uniform

dielectric media obviates the need for extensive sampling by accounting for thermal
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fluctuations of the solvent in an average way. The tradeoff for this computational ef-

ficiency is the loss of important solute-solvent interactions such as hydrogen-bonding

which can be captured only with explicit solvent molecules. However, it is possi-

ble to layer these methodologies by including a smaller MM region (e.g., one or two

solvation shells of water molecules) around the QM solute molecule of interest, and

then immersing the QM/MM system in a dielectric continuum. The rest of this in-

troductory section will focus on the origin of continuum solvation models, beginning

with Max Born’s model for solvating a point charge, continuing with a discussion of

John Kirkwood and Lars Onsager’s seminal work on solvating a point dipole in polar

media, and ending with a survey of modern methods.

Before proceeding it should be pointed out that to obtain chemically accurate

solvation free energies with continuum models, it is necessary to incorporate inter-

actions that go beyond electrostatic contributions. However, these nonelectrostatic

terms, which account for cavitation energies, attractive van der Waals interactions,

repulsive solute-solvent steric interactions, and thermal motions of the nuclei, will

not be considered any further, and the solvation free energies discussed below reflect

only the electrostatic contributions. The underlying physical basis for continuum

solvation models is relatively straightforward: upon immersion of a solute in a di-

electric medium, the solute charge distribution polarizes the surrounding dielectric

medium. This interaction results in a polarization potential that is a self-consistent

solution to Poisson’s equation, which directly influences the classical continuum and

indirectly affects the quantum charge distribution through Schroödinger’s equation.

The interaction of the resulting polarization potential, ϕpol(r), with the solute charge

density, ρsol(r), gives rise to the polarization free energy, Gpol, and the electrostatic
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contribution to the total free energy of the solvated solute molecule, Gel, which is

relative to a reference system where the energy is taken to be zero, is expressed as

Gel = Eint +
1

2

∫

dr ϕpol(r) ρsol(r)

= Eint +Gpol ,

(3.1)

where Eint is the internal energy of the solute and the factor of one-half in Gpol

accounts for the work associated with polarizing the dielectric medium.

3.1.1 Generalized Born Model

By way of introducing the fundamental concepts of continuum solvation, we begin

with a simplistic model137 proposed by Max Born in 1920. The model sets forth to

approximate Gpol for solvating a point charge of strength Ze located in the center of

solvent-excluded sphere of radius a within a dielectric medium. We define ∆GBorn in

a slightly different manner than Gel by making reference to a system composed of a

pure liquid at equilibrium and an isolated solute molecule in vacuum:

∆GBorn = Gel − Evac

= Eint − Evac +Gpol ,
(3.2)

where Evac is the self-energy of a point charge in vacuum. The terms Eint in Eq. 3.1

and Evac in Eq. 3.2 are not necessarily the same quantity: in the context of QM

calculations, Eint is the eigenvalue of a gas-phase Hamiltonian in which the eigenvec-

tors have been polarized by the dielectric medium. Therefore, Eint is not truly the

gas-phase interal energy of the solute molecule because its underlying wave function

has been polarized. (A more in-depth discussion of continuum model/QM calcula-

tions is presented later). However, for the simplistic model we are considering here,

Eint = Evac and ∆GBorn = Gpol
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The theoretical origin of the Born model is Poisson’s equation,

∇̂ ·

[

ǫ(r)∇̂ϕtot(r)
]

= −4πρsol(r) , (3.3)

which provides the framework for computing the total electrostatic potential, ϕtot,

for a given solute charge density interacting with a continuum dielectric described by

ǫ(r). Once ϕtot is obtained from the solution of Eq. 3.3, the electrostatic interaction

energy is computed as

Gel =
1

8π

∫

dr E(r) · D(r)

=
1

8π

∫

dr ǫ(r) |∇̂ϕtot(r)|2 ,
(3.4)

where E(r) = −∇̂ϕtot(r) is the total electric field and D(r) is the displacement field

composed of E(r) and the polarization field, P(r):

D(r) = E(r) + 4π P(r)

= ǫ(r) E(r) .
(3.5)

Furthermore, we show that Gel defined by Eq. 3.4 is identical to the first definition

given in Eq. 3.1 by integrating the second equality by parts and applying Eq. 3.3 to

yield

Gel =
1

2

∫

dr ϕsol(r) ρsol(r) +
1

2

∫

dr ϕpol(r) ρsol(r) , (3.6)

where ϕtot(r) is decomposed into the solute molecule electrostatic potential, ϕsol(r),

and the polarization potential, ϕpol(r), generated from the solute interaction the

dielectric medium. By comparing Eqs. 3.1 and 3.6, it is immediately obvious that the

second term on the right-side of Eq. 3.6 is Gpol and the first term is an expression for

the internal energy of the solute, Eint.

The simplicity of the Born model lies in the assumption of a uniform dielectric

for both the solvating environment and in vacuum, and therefore ǫ(r) → ǫr where ǫr
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either takes the value of ǫsolv for the solvent or 1 in vacuum. Therefore, Eq. 3.3 can

be simplified to a second-order differential equation:

∇2ϕtot(r) = −4πZeδ(r)

ǫ0ǫr

, (3.7)

where the Zeδ(r) on the right side of Eq. 3.7 describes the point charge centerd at

the origin. ∆GBorn is then computed as the difference between electrostatic energies

given by Eq. 3.4 using the respective dielectric constants and the second equality in

Eq. 3.5 to define the displacement field. Putting all these ingredients together yields

∆GBorn =
ǫsolv

8π

∫

dr |Eel(r)|2 − 1

8π

∫

dr |Evac(r)|2 , (3.8)

and the exact electric fields are derived from Eq. 3.3 with the respective dielectric

constants:

Eel(r) =







Ze
ǫ0

r

r3 for r < a
Ze

ǫsolv

r

r3 for r ≥ a
(3.9)

and

Evac(r) =
Ze

ǫ0

r

r3
, (3.10)

where ǫ0 is the permittivity of free space and the point charge is located at the origin

which defines the vector r. With the electric fields in hand, the Born model solvation

energy in atomic units is given by

∆GBorn = −Z2

2a

(

ǫsolv − 1

ǫsolv

)

(3.11)

(Note that 4πǫ0 = 1 and e = 1 in atomic units.) Physically, the quantity in Eq. 3.11

illustrates two important features that manifest in a continuum description of sol-

vation: the interaction of charges with a dielectric medium must lower the total

energy of the system and the magnitude of the polarization free energy is inversely
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proportional with respect to the size of the cavity in which the charge resides. The

generalized Born model (GBM), which extends this model to a set of N interacting

charged spheres, required significant effort,138 and an effective Coulomb operator r−1
eff

was derived to account for the interactions among the charged spheres as well as

the surrounding dielectric medium. The resulting expression for the polarization free

energy in this case is given by

∆GBorn = −
(

ǫsolv − 1

ǫsolv

) N
∑

ij

ZiZj

2reff

, (3.12)

where reff takes the form

reff =
√

r2
ij + a2

ije
−Dij . (3.13)

In Eq. 3.13, rij = |ri − rj| is the distance between two point charges Zi and Zj, aij is

the geometric mean of two Born radii ai and aj, and the exponent Dij = r2
ij/2a

2
ij is

necessary to smoothly transition reff to the usual Coulomb operator when two charged

spheres are merged together to a dampened Coulomb operator for spheres that are

separated by large distances.62 The accuracy of the GBM depends sensitively on the

underlying description of the Born radii, which for a large molecular system, define

the solute cavity that separates it from the surrounding solvent. Although a few

of definitions have been proposed139,140 for determining the Born radii, perhaps the

most useful parameterization for use in large protein systems arises by minimizing

the differences between Born radii computed using Eq. 3.12 and those computed by

finite differencing the Poisson-Boltzmann equation.141 It is important to note that

issues arising in the determination of such a solute-solvent boundaries are ubiquitous

in continuum solvation models and will be a recurring theme in the upcoming sec-

tions. There is no unique methodology for defining the solute cavity encompassing
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the molecular region, however there are certain physical features that should be cap-

tured. We reserve a discussion of this for Sections 3.4.3 and 3.4.4 where we explore the

nature of the solute cavity in the context of modern continuum models by examining

the successes and pitfalls of common definitions and then proposing techniques to im-

prove them. This concludes our brief tour of the Born model and its variations where

we have introduced the fundamental concepts of continuum solvation. We now move

onto a discourse of the Kirkwood-Onsager solvation model that laid the theoretical

foundation on which more sophisticated models were built.

3.1.2 Kirkwood-Onsager Model

The discussion of the previous section revolved around the concept of solvating

a monopole in a solvent-exlcluded region characterized by a sphere of radius a. To

extend this idea further, the natural progression is to consider a point dipole which is

meant to model a molecule with no net electric charge but possesses a nonzero dipole

moment, µ = µ0ur + αF, where µ0 is its permanent dipole moment, ur is the axis

along which its dipole is oriented, α is the polarizability of the molecule, and F is an

external electric field. In Lars Onsager’s seminal work142 describing the interaction of

a point dipole with a polarizable medium in terms of a total electrostatic potential, he

set out to improve the theory of dipoles first explored by Peter Debye. Debye’s dipole

theory qualitatively captures the dielectric properties in dielectric liquid, and posits

that equality exists between an internal field that polarizes a molecule in a dielectric

medium and an external field representative of (4π/3) times the electric moment

induced per unit volume of the liquid.142 Out of Debye’s analysis arose the idea that

the force from a polarized dielectric medium acting on an electrically asymmetric
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molecule is directly related to this internal field, which leads to a formula for the

dielectric medium of a substance depending on µ. Since real molecules possess a

positive polarizability, interaction with a polarizing medium will act to enhance its

own electrical asymmetry, and an assumption of a static dipole moment is therefore

problematic. In fact, this “self-enhancement” is through a reaction field, and in

Ref. [142] the fundamental concepts of a molecular cavity and this reaction field are

introduced. It is on these foundations that all modern continuum solvation models

are built. As will be seen in the following section, the continuum models employ a

reaction field operator as a perturbative potential in the electronic Hamiltonian, and

it is through this perturbation that environmental effects are captured in ab initio

calculations.

A couple years prior to Onsager’s work, John Kirkwood formulated143 the inter-

action energy for a classical charge distribution arranged in a solvent-excluded sphere

of radius a in terms of a multipole expansion (MPE). Such a distribution of classical

point charges is represented as ρsol(r
′) = e

∑N
m Zmδ(r

′ − rm). The electrostatic po-

tential arising from both the solute charge distribution (first term) and the solvent

reaction potential (second term) are derived from Poisson’s equation with appropriate

boundary conditions, and is expressed as144

ϕtot(r) =
∞
∑

k

1

rk+1

k
∑

l=−k

M l
k Y

l
k(θ, φ) +

∞
∑

k

ckr
k+1

k
∑

l=−k

M l
k Y

l
k(θ, φ) , (3.14)

where M l
k are known as the multipole moments defined as

M l
k =

∫ ∞

0
dr′

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ Yl

k(θ, φ) |r′|2+kρsol(r
′) (3.15)
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and Y l
k(θ, φ) are the spherical harmonic functions. The reaction potential coefficients,

ck, contain the effect of the solvent dielectric and take the form

ck = − (k + 1)(ǫsolv − 1)

k + (k + 1)(ǫsolv)

1

a2k+1
. (3.16)

The free energy of solvation is one-half the solute-solvent interaction energy, which is

expressed elegantly in the compact form62

∆GMP E =
1

2

∑

k

∑

l

M l
kR

l
k . (3.17)

where Rl
k is the reaction field component corresponding to multipole moment M l

k,

which can be written as62

Rl
k =

∑

k′

∑

l′
f ll′

kk′M l′

k′ , (3.18)

and f ll′

kk′ are the generalized reaction field coefficients.

Returning now to Onsager’s work for computing the interaction of a point dipole

with a dielectric medium, the results of Kirkwood’s multipole analysis (Eqs. 3.14 and

3.15) can be applied to derive the necessary electrostatic potentials, where k = 1 is

appropriate for the dipole terms, and in polar coordinates the expressions are142

Eel(r, θ) =







−
(

2µ
r3 +Dµ

)

cos(θ)
ǫ0

ur +
(

Dµ− µ
r3

)

sin(θ)
ǫ0

uθ for r < a

−2µµ∗

r3

cos(θ)
ǫsolv

ur − µµ∗

r3

sin(θ)
ǫsolv

uθ for r ≥ a
(3.19)

and

Evac(r, θ) = −2µ

r3

cos(θ)

ǫ0

ur − µ

r3

sin(θ)

ǫ0

uθ , (3.20)

where ur and uθ are unit vectors along the dipole moment and rotation axes, respec-

tively. The pinnacle of Onsager’s analysis is the arrival at the expressions for µ∗ and

D, the former representing the strength of the exteral force exerted on a charge in the

dielectric medium and the latter measures the strength of the reaction field generated
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by the electric field acting on the dipole as a result of its own electric displacements

D.142 Onsager showed that

µ∗ =
(

3ǫsolv

2ǫsolv + 1

)

(3.21)

and

D =
2(ǫsolv − 1)

2ǫsolv + 1

1

a3
, (3.22)

which is equivalent to Eq. 3.16 with k = 1. The free energy of solvation for the

Onsager model in the absence of an external electric field, ∆GOnsager, is computed as

before for the Born model with the electric fields given by Eqs. 3.19 and 3.20:

∆GOnsager = −Dµ2
0

2
, (3.23)

which is equivalent to Eq. 3.17 for the case of a point dipole in a sphere of radius a.

∆GOnsager in Eq. 3.23 can be made arbitrarily accurate by adjusting the size of the

solvent-excluded sphere. However, there are a variety of procedures for estimating

the size of the sphere, the most common of which is the relationship

a =
(

3Mv

4πNA

)1/3

, (3.24)

where Mv is the molar volume of the solute and NA is Avogadro’s number. Another

way to estimate a is to set this value equal to the maximum distance between the

solute center of mass and solute atoms, where the distances include the atomic van der

Waals radii. A second alternative to Eq. 3.24 is to set 2a equal to the largest solute-

solvent internuclear distance, again with the atomic van der Waals radii included.

We conclude this section with a discussion of transitioning the classical description

of these models to one that incorporates quantum effects. The charge distributions

considered were arbitrary arrangements of point charges in a solvent-excluded sphere,
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but Krikwood143 posits that the results are general such that a continuous charge

distribution can be used. Furthermore, these continuous charge distributions can be

described with the aid of quantum mechanics that employ the molecular wave function

for the electrons, while the nuclear components are satisfactorally described as point

charges. This was done for the electronic components of the MPE, where theM l
k terms

were recast in terms of one-electron integrals using atom-centered basis functions gµ(r)

and the corresponding one-electron density matrix P, as shown here:62,145

M l
k(I) =

∑

µ∈I

∑

ν∈I

Pµν 〈gµ(r)|M̂ l
k|gν(r)〉 . (3.25)

In Eq. 3.25, the multipole moments are computed for each nucleus I and therefore only

the basis functions centered on each nucleus are considered. The reaction field speci-

fied by Eq. 3.18 can then be added to the molecular Hamiltonian, and a self-consistent

procedure is performed to simultaneously update the electronic wave function which

in turn produces a new reaction field. This describes a quantum mechanical imple-

mentation of the Kirkwood-Onsager solvation model. In the final introductory section

below, the computational details of a self-consistent reaction field (SCRF) technique

that exploits Onsager’s dipole reaction field to describe solvent environmental effects

is outlined, and its performance is discussed.

3.1.3 The Onsager Self-Consistent Reaction Field Model

For the remaining part of this work, reference will be made to an effective Hamil-

tonian that is defined explicitly here:

Ĥeff = Ĥ0 + V̂ , (3.26)

where Ĥ0 is the molecular Hamiltonian that governs the internal energy of the solute

and V̂ is the reaction field operator that acts on the solute charge distribution to yield
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the electrostatic effects from the surrounding dielectric environment. The functional

form of Ĥ0 depends on the chosen ab initio method such as HF, MP2, or DFT (see

Chapter 1). Likewise the form V̂ takes depends on the desired description of the

solute-solvent interaction (e.g. the multipole moment operator M̂ l
k of Eq. 3.25). In

the original implementation of the Onsager-SCRF, both HF and MP2 methods are

employed for the QM description of the solute molecules, and Ĥ0 is the Hartree-Fock

operator represented as the Fock matrix F. The reaction field operator couples the

solute and solvent together through the molecular dipole moment and takes the form

V̂ = −µ̂ · ~R, and ~R = D~µ. The strength of the Onsager dipole reaction field ~R is

controlled through D (see Eq. 3.22 and surrounding discussion) and ~µ is the molecular

dipole moment comprised of the electronic and nuclear components defined as146

~µ =
(

Qsol +Nelec

Nelec

)

〈Ψ|µ̂elec|Ψ〉 +
Natom
∑

i

qiri . (3.27)

In Eq. 3.27, Qsol is the total charge of the molecule, Nelec is the total number of

electrons, |Ψ〉 is the molecular wave function, µ̂elec is the electronic dipole moment

operator expressed as

µ̂elec = x̂x̂ + ŷŷ + ẑẑ . (3.28)

The second term on the right side of Eq. 3.27 is the classical dipole moment operator

where each qi is a nuclear charge and r is the vector of nuclear positions referenced

to an arbitrary origin that is generally taken to be the charge distribution centroid.

Sections 3.1.1 and 3.1.2 have dealt with deriving polarization free energies em-

ploying the principles of classical electrostatics. In this section we have introduced

an effective QM Hamiltonian that quantizes the Onsager dipole reaction field. As

discussed in Chapter 1, within the context of HF, MP2, and DFT calculations, the
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Hamiltonians represented by Fock matrices are nonlinear and require a self-consistent

procedure for the simultaneous solution of the molecular wave function (i.e. the opti-

mized molecular orbitals) and corresponding energy. Therefore to explicitly incorpo-

rate the Onsager dipole reaction field into the effective Hamiltonian and self-consistent

field equations, the Fock matrix elements are modified according to146:

Fµν = F 0
µν − ~R · 〈gµ(r)|µ̂|gν(r)〉 , (3.29)

where F 0
µν corresponds to the Fock matrix for the solute in the absence of solvent and

gµ(r) is an atom-centered basis function. The total free energy corresponding to the

Fock matrix in Eq. 3.29 is expressed as146

Gel = F0 · P − 1

2
~µ · ~R , (3.30)

where the first term on the right side is the solute internal energy, Eint, that is

computed as the trace of the unperturbed solute Fock matrix with the one-electron

density matrix, P, and the second term is the polarization free energy. For neutral

molecules, Qsol = 0 and there is no monopole contribution to the solvation energy,

and therefor only the dipole moment of the molecule will lead to solvation (granted

that it is nonzero). However, for nonzero Qsol, it is trivial to incorporate the Born

model monopole term by adding Eq. 3.11 (with Z = Qsol) to Eq. 3.30.

In Refs. [146] and [147], Eqs. 3.29 and 3.30, along with the corresponding gra-

dients, were implemented to investigate solvent effects on various molecular prop-

erties, rotational barriers, charge distributions, and the equilibria between confor-

mational isomers of different ionic and neutral dipolar organic molecules. The sen-

sitive behavior of the Onsager model of solvation with respect to the radius a of

the solvent-excluded sphere is highlighted by some computed molecular properties
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of 1,2-dichloroethane. For example, the gauche–trans rotational barrier for 1,2-

dicholorethane in liquid water at the HF and MP2 levels of theory can be made

arbitrarily negative for small values of the cavity, for which the dipole moment is

made larger due to the inverse relationship of the solvation free energy and cavity

radius, or can be made arbitrarily positive for large values. Using an alternative

definition for the cavity radius that computes a as the largest internuclear distance

with the van der Waals radii included, both HF and MP2 predict relatively accurate

barrier heights in different solvents with low and high dielectrics. Furthermore, for

ionic molecules that include both the monopole and dipole terms, it was found that

high dielectric solvents have a dramatic effect on the molecular structure.

We conclude Section 3.1 by noting the success of Onsager’s reaction field theory

for incorporating solvation effects in QM methods. With the theoretical foundation

for implicit solvation laid, we move onto modern methods. In Section 3.2 we explore

isotropic polarizable continuum models (PCMs) for equilibrium and non-equilibrium

solvation processes. We then show how these methodologies are applied to compute

vertical ionization energies for e−(aq), alkali metal cations, and halide ions in liquid

water. In Section 3.3 we present a recently developed method for computing equilib-

rium solvation free energies for an arbitrary description of the dielectric medium, and

then discuss a method to incorporate of non-equilibrium solvent effects. This state-

of-the-art technique is then applied to the aforementioned systems with an isotropic

description of the dielectric for validation against experimental measurements and

PCM calculations, and also with an anisotropic dielectric in order to predict vertical

ionization energies at the liquid-vapor interface.
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3.2 Isotropic Solvation with Polarizable Continuum Models

This section discusses the formulation of modern PCMs within the context of ap-

parent surface charge (ASC) techniques, where the methodology to compute ϕtot(r)

through Poisson’s equation in Eq. 3.3 is combined with electronic structures meth-

ods employing Eq. 3.26 to compute the solute charge distribution in the presence

of an induced polarization potential, ϕpol(r). In Section 3.1.1 it was shown that

the polarization free energy is computed as a free energy difference between an ion

in a solvent-excluded sphere in dielectric medium and the ion in vacuum, and this

free energy depends sensitively on the sphere radius, a. Modern PCMs describe the

solvent-excluded cavity with complex shapes and sizes, and employ a variety of so-

phisticated algorithms to accomplish this. A more thorough discussion of this topic is

presented in Section 3.4.3, but for the time being we will denote a complex molecular

cavity by M. Similar to the Born solvation model, modern PCMs make use of a

simplistic, discontinuous form of ǫ(r) that mathematically manifests as148

ǫ(r) =







1 for r ∈ M

ǫsolv for r /∈ M
(3.31)

This assumption for the dielectric function reduces the complexity of Poisson’s such

that two equations for ϕtot(r) must be solved simultaneously, and are expressed as

ϕtot(r) →






∇2ϕtot(r) = −4πρsol(r) for r ∈ M

−ǫsolv∇2ϕtot(r) = 0 for r /∈ M ,
(3.32)

where we explicitly note that the total electrostatic potential is comprised of the

solute and solvent-induced polarization components:

ϕtot(r) = ϕsol(r) + ϕpol(r) (3.33)
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The potential and its electric field must be continuous across the surface, Γ, of M,

and therefore62

[ϕtot(r ∈ Γ)] = ϕr∈M

tot (r ∈ Γ) − ϕr/∈M

tot (r ∈ Γ) = 0 (3.34)

[∂ϕtot(r ∈ Γ))] =

(

∂ϕtot

∂n

) ∣

∣

∣

∣

∣

r∈M

− ǫsolv

(

∂ϕtot

∂n

) ∣

∣

∣

∣

∣

r/∈M

= 0 , (3.35)

where it is noted that the discontinuity of the electric field involves only its normal

components, n. Taken together, Eqs. 3.31–3.35 lay the groundwork for ASC methods.

In such methods, the jump conditions given in Eqs. 3.34 and 3.35 limit the solution

of Poisson’s equation to Γ, and this leads to an unequivocal definition of ϕpol(r)

expressed as

ϕpol(r) =
∫

Γ

ds
σpol(s)

|r − s| , (3.36)

where the integral is over the molecular cavity surface Γ, the coordinates of which are

denoted by s, and σpol(s) are the ASCs induced by ρsol(r) at Γ. The solute charge

density ρsol(r) can be expressed as the sum of it electronic and nuclear contributions:

ρsol(r) = ρelec(r) + ρnuc(r)

= |Ψ(r)|2 +
Natom
∑

α

Zα δ(r − Rα) ,
(3.37)

where the |Ψ(r)|2 is the modulus-square of the electronic wave function and the

nuclear component is represented by classical point charges. The linearity of Poisson’s

equation allows the reaction potential operator in Eq. 3.26 that generates σpol(s) to

be split into its electronic and nuclear components as

V̂ = V̂elec +
∫

Γ

ds
σnuc

pol (s)

|r − s|
= V̂elec + ϕnuc

pol (r) ,

(3.38)

where σnuc
pol (s) are the ASCs generated at Γ arising from ρnuc(r), and ϕnuc

pol (r) is the

corresponding nuclear contribution to the polarization potential. The polarization
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free energy, Gel, is then computed as

Gel =
1

2
〈Ψ|V̂elec|Ψ〉 +

1

2

∫

V

dr ρnuc(r) ϕnuc
pol (r)

=
1

2

∫

V

dr ρelec(r) ϕelec
pol (r) +

1

2

∫

V

dr ρnuc(r) ϕnuc
pol (r)

=
1

2

∫

V

dr ρsol(r) ϕpol(r) ,

(3.39)

where the last equality is equivalent to the expression for Gel in Eq. 3.1 and it is

explicitly noted that the integrals are over the volume V in R
3. Furthermore, the

expressions in Eq. 3.39 can be recast in terms of surface integrals, which significantly

reduces the computational burden from integrals over R
3 to R

2:67

Gel =
1

2

∫

V

dr ρsol(r)
∫

Γ

ds
σpol(s)

|r − s|

=
1

2

∫

Γ

ds σpol(s)
∫

V

dr
ρsol(r)

|r − s|

=
1

2

∫

Γ

ds σpol(s) ϕρ
sol(s) ,

(3.40)

where the notation ϕρ
sol(s) is introduced to signify the electrostatic on Γ generated

from the solute charge distribution, which is mathematically expressed as

ϕρ
sol(s) =

∫

V

dr
ρsol(s)

|r − s| . (3.41)

We conclude this section by noting that, up to this point in the discussion, no

approximations have been made, and Eq. 3.40 is formally the exact solution to the

boundary conditions specified by Eqs. 3.31–3.35. In practice, Eqs. 3.36 and 3.40 are

used for all flavors of PCM, and the computational problem is reduced to solving for

the ASCs on the surrounding molecular cavity. To accomplish this, the molecular

cavity surface is discretized into a number of finite elements using an alogirthm such

as GEOPOL.149–151 The discretized elements are called tesserae and the GEOPOL

algorithm constructs them small enough such that σpol(s) is nearly constant within
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each. This discretization process transforms the integral expression in Eq. 3.36 into

a summation over the surface charge elements σpol(si):

ϕpol(r) ≃
Ntess
∑

i

σpol(si)Ai

|r − si|

≃
Ntess
∑

i

qpol(si)

|r − si|
,

(3.42)

where {si} is the set of ASC coordinates for the Ntess is the number of tesserae needed

to discretize the surface. In the next section, the details for computing σpol(si) are

outlined for various types of PCMs, some of which are employed for the calculations

presented in this Chapter.

3.2.1 Reference State Formalism

With the foundation of ASC techniques laid out in the previous section, we are

now in a position to formally introduce the methodologies for determining σpol(si).

All PCM calculations reported in this work employ IEF-PCM152–154 for computing

the ASCs on a molecular cavity surface. Furthermore, the formalisms to follow as-

sume that the solute and solvent are in thermal equilibrium for a given temperature

and pressure, and that the solvent is described fully by a homogenous and isotropic

dielectric constant. At the beginning of Chapter 3, it was noted in Eq. 3.5 that the

displacement field, D(r), can be expressed in two unique ways, and equating these

expressions to eliminate D(r) allows one to solve for the polarization field in terms

of the electric field:

P(r) =
(

ǫsolv − 1

4π

)

E(r) , (3.43)

where we have used an isotropic assumption for the solvent dielectric: that is ǫ(r) =

ǫsolv. The predecessor to CPCM and IEF-PCM, called DPCM155, computes σpol(s)
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directly from Eq. 3.43 by enforcing continuity of P(r) across the molecular cavity

surface. Such a process results in

σpol(s) =
(

ǫsolv − 1

4πǫsolv

)

∂

∂n
[ϕρ

sol(s) + ϕpol(s)] , (3.44)

where n is the vector normal to the molecular cavity surface, pointing into the dielec-

tric medium, and a new quantity ϕpol(s) has been introduced that is representative

of a surface potential generated from σpol(s). The quantity ϕpol(s) can be generated

from the action of the surface integral operator Ŝ on σpol(s) as

Ŝσpol(s) =
∫

Γ

ds′ σpol(s
′)

|s − s′| = ϕpol(s) . (3.45)

Furthermore, the expression given by Eq. 3.44 can be recast in terms of an integral

operator D̂∗ in matrix form as148

[

2π
(

ǫsolv + 1

ǫsolv − 1

)

I − D∗
]

σpol(s) =
∂

∂n
ϕρ

sol(s) , (3.46)

where the action of D̂∗ on σpol(s) is expressed as148

D̂∗σpol(s) =
∫

Γ

ds′

[

∂

∂n

1

|s − s′|

]

σpol(s
′) , (3.47)

and I is the identity matrix. Taken together, Eqs. 3.46 and 3.47 specify a method for

computing the D-PCM ASCs. The CPCM method takes a more simplistic approach

to this by equating ϕpol(s) to ϕsol(s) that has been scaled a factor f(ǫsolv) as148

Ŝσpol(s) = −f(ǫsolv)ϕsol(s) , (3.48)

where

f(ǫsolv) =
ǫsolv − 1

ǫsolv

. (3.49)
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The IEF-PCM methodolgy is expressed by the following integral equation148

[

2π
(

ǫsolv + 1

ǫsolv − 1

)

I − D
]

σpol(s) = [2π I − D]ϕρ
sol(s) , (3.50)

where D is the adjoint of the integral operator D̂∗ in matrix form. As noted in

Refs. [97], [98], and [70], IEF-PCM overcomes a technical issue of neglecting the

solute electronic density escaping the solvent-excluded molecular cavity. The ideal

molecular cavity should contain the entirety of the solute charge distribution. The

simplistic DPCM formulation presented above suffers from errors in neglecting elec-

tronic charge penetration into the solvent, and it has been shown that IEF-PCM

correctly accounts for this implicitly and therefore yields the correct reaction poten-

tial within the molecular cavity,148 which is important in systems like e−(aq) where

the excess charge density can be diffuse.

Regardless of which PCM method is chosen, once the molecular cavity is tesselated

and the numerical mesh for evaluating the quantities in Eqs. 3.46, 3.48, and 3.50 is

made concrete, those equations can be reduced to the following linear matrix equation:

Kq = −Rϕ , (3.51)

where K and R are known matrices that correspond to the respective operators in the

aforementioned equations, and q and ϕ are column vectors containing the unknown

discretized values of qpol(si) and the known values of ϕρ
sol(si), respectively. Note that

the form of ASCs on the left side of Eq. 3.51 has changed from σ to q reflecting the

specification of the set of tesserae surface area elements {A}i∈Ntess
. The unknown

ASCs in Eq. 3.52, q, are then computed as

q = −K−1R ϕ

= Q ϕ ,
(3.52)
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which is generally accomplished for small- or medium-sized systems through direct

matrix inversion, the scaling of which is O(N3
tess) in time and O(N2

tess) in memory,

or for large systems through an iterative conjugate gradient method that scales as

O(N2
tess) in time and O(Ntess) in memory. The notation K−1R = Q is introduced to

represent the polarization weights156. In practice Q is symmetrized for computational

efficiency, and q is recast as

q̃ =

(

Q + QT

2

)

ϕ

= Qs ϕ .

(3.53)

This section concludes in a similar fashion as Section 3.1.3 with a discussion for

incorporating q̃ into modern electronic structure methods. Referring back to the

effective Hamiltonian in Eq. 3.26, we now recast the reaction field operator in terms

of the ASCs. Recognizing that the reaction field operator V̂ generates the polarization

potential in Eq. 3.42, the continuous expression of the operator in Eq 3.38 is rewritten

in terms of the discrete surface elements as

V̂ =
Ntess
∑

i

qpol(si) V̂ (si) , (3.54)

After computing q from Eq. 3.53 the solvation free energy is expressed as

Gel = 〈Ψ|Ĥ0|Ψ〉 +
1

2
q̃ · ϕ

= Eint +Gpol ,

(3.55)

where the second expression in the first or second equality is Gpol within the PCM

framework. To include the effects of the solvent reaction field operator V̂ into elec-

tronic structure calculations, the Fock matrix must be modified similar to Eq. 3.29.

Formally, the correction that must be added to the isolated solute molecular Fock ma-

trix is the functional derivative of Gel with respect to the electronic density matrix,
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expressed as148

Fµν =
∂Gel

∂Pµν

=
∂Eint

∂Pµν

+
1

2

∂q̃ · ϕ

∂Pµν

= F 0
µν + (q̃ · ϕ)µν ,

(3.56)

where the matrix elements (q̃ · ϕ)µν are added as a correction to the one-electron

matrix as follows:

(q̃ · ϕ)µν =
∫

Γ

ds q̃(s)
∫

V

dr
gµ(r) gµ(r)

|r − s| . (3.57)

Eqs. 3.53, 3.55, and 3.56 specify the ingredients needed for a fully variational and

SCF procedure (see Chapter 1) for a discussion of incorporating solvation effects).

3.2.2 Non-equilibrium Solvent Effects

In Section 2.2.3 a methodology for incoporating non-equilibrium solvent polar-

ization effects through a perturbative approach was outlined. In this section a more

robust state-specific formalism66,67 is discussed for use with the PCM methods of Sec-

tion 3.2.1. Furthermore, the state-specific formalism presented here will also serve as

the foundation for the non-equilibrium PEQS method discussed in Section 3.3.2. Be-

fore proceeding with the state-specific formalism, a brief introduction to the concept

of non-equilibrium solvation within a classical picutre is provided.

The fundamental principle for non-equilibrium solvation is the idea that the sol-

vent polarization field, described by Eq. 3.43, can be partitioned into fast and slow

components. For the solvation models discussed up to this point, such a partitioning

of P(r) is unecessary because it is assumed the electric field due to the solute charge

distribution is in equilibrium with the solvent polarization field. However, for vertical

excitation or ionization processes of the solute molecule, there is an abrupt change in

98



its electronic charge density and electric field, and an equilibrium approach for solva-

tion effects is no longer sufficient, which necessitates the inclusion of non-equilibrium

effects. Non-equilibrium solvation effects arise from the fast components of the po-

larization field, Pfast(r), and the details depend on which of the two commonly used

partition schemes proposed by Marcus77,78 and Pekar157 is employed.

Although the formalisms presented in this Chapter are time-independent, the

concept of “polarization time” will be introduced to facilitate the discussion of the

partitioning schemes. Within the Marcus partitioning scheme (MP), upon a rapid

disruption of the solute electronic charge density, Pfast(r) adjusts simultaneously to

the new electric field generated from the solute molecule, while the slow components,

Pslow(r), remain in equilibrium with the ground state or un-ionized solute charge

distribution. Mathematically, Pfast(r) at the current polarization time τcur can be

expressed as67

PMP
fast(r; τcur) =

(

ǫopt − 1

4π

)

E [ρsol(r; τcur),Pfast(r; τcur),Pslow(r; τpast)]

= χfast E [ρsol(r; τcur),Pfast(r; τcur),Pslow(r; τpast)] ,

(3.58)

where ǫopt is the solvent optical dielectric and the notation in brackets signifies that

the electric field arises from the vertically excited or ionized solute charge density at

τcur and is affected by the slow components of the early polarization at time τpast.

Generally ǫopt = n2, where n is the solvent index of refraction, and takes on values in

the range of 1.5 − 3.0.67 Similarly, Pslow(r) is given by the following expression67

PMP
slow(r; τcur) = Ptotal(r; τcur) − Pfast(r; τcur)

=
(

ǫsolv − ǫopt

4π

)

E [ρsol(r; τcur),Pfast(r; τcur),Pslow(r; τpast)]

= χslow E [ρsol(r; τcur),Pfast(r; τcur),Pslow(r; τpast)] .

(3.59)

The Pekar partition (PP) differs from the MP scheme in that the polarization at τcur

is not affected from earlier polarization at τpast. Therefore, within the PP scheme, the
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solvent polarization depends only on the solute charge density at τcur as follows:67

PPP
fast(r; τcur) = χfast E [ρsol(r; τcur),Pfast(r; τcur))] , (3.60)

and the difference between the total polarization and Eq. 3.60 yields the the slow

polarization field:

PPP
slow(r; τcur) = Ptotal(r; τcur) − Pfast(r; τcur) . (3.61)

The manner in which the “polarization time” manifests is made concrete by ex-

amining the equations above: PMP
slow(r; τcur) employs both the equilibrium and optical

solvent dielectric constants, whereas PPP
slow(r; τcur) makes use of only the latter. Al-

though the methods describe the same physical phenomenom and therefore should

yield identical non-equilibrium solvation free energies within the regime for which

the solvent may be described by a linear dielectric, it was shown in Ref. [67] that

differences in computed vertical excitations arise as a result of the numerical imple-

mentation of certain PCMs such as IEF-PCM, although these differences were quite

small. However the subtlety in which the polarization components are separated does

impose an additional computational burden for the PP scheme. As will be shown

in the upcoming discussions of the state-specific methodology, the non-equilibrium

reaction field operator in the solute Hamiltonian requires a contribution from the

slow components of the ground state or un-ionized polarization field. For the MP

scheme, one needs only compute the equilibrium polarization field as described in

Section 3.2.1 and multiply by a constant factor in order to obtain the slow compo-

nents. However, for the PP scheme, a consequence of Eq. 3.61 is that a computation

for both Ptotal(r; τcur) and Pfast(r; τcur) is required to obtain PPP
slow(r; τcur), which ef-

fectively doubles the total CPU time.
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The details for incorporating non-equilibrium solvation effects into an electronic

structure calculation for the ionization potential are now presented, the origin of

which is a state-specific form of Schrödinger’s equation:

ĤSS
i |Ψi〉 = ESS

i |Ψi〉 (3.62)

where the state-specific Hamiltonian takes the form

ĤSS
i = Ĥvac

i + V̂ slow
0 + V̂ fast

i . (3.63)

For consistency with the perturbative approach presented in Section 2.2.3, the sub-

script notation is reused. To reiterate, i = 0 reflects an energy, electrostatic potential,

or charge density arising from the equilibrium reference state, whereas i = 1 is for

the ionized state. Ĥvac
i is the isolated solute molecular Hamiltonian in the absence of

solute-solvent interactions, which corresponds to the Hartree-Fock or Kohn-Sham op-

erators. V̂i is the total reaction field operator for either the reference or ionized solute

state that generates the solvent polarization potential through Eq. 3.36 using either

σ(s)pol,0 (reference state ASCs) or σ(s)pol,1 (ionized state ASCs). The superscripts

“slow” and “fast” designate which component of the ASCs are used to construct the

response potential through

ϕ
slow/fast
pol,i (r) =

∫

Γ

ds
σ

slow/fast
pol,i (s)

|r − s| . (3.64)

For the case that i = 0, the state-specific Hamiltonian in Eq. 3.63 becomes

ĤSS
0 = Ĥvac

0 + V̂ slow
0 + V̂ fast

0

= Ĥvac
0 + V̂0 ,

(3.65)

which is identical to Eq. 3.26, and an equilibrium PCM methodology is used to

compute the reference state solvation free energy, Gel, via Eq. 3.55, the notation of
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which is changed to Gel
0 for clarity in this discussion. For the ionized case with i = 1,

the state-specific Hamiltonian in Eq. 3.63 takes the form

ĤSS
1 = Ĥvac

1 + V̂ slow
0 + V̂ fast

1 , (3.66)

where the non-equilibrium effects of the vertical ionization process manifest in the

representation of the total reaction field operator, which contains contributions from

the slow components of the reference state and the fast components of the ionized

state.

In order to compute a non-equilibrium solvation free energy from Eq. 3.66, the

MP or PP scheme is utilized within the PCM framework to generate the appropriate

reaction field operators. For the reference state, the symmetrized operator Qs in

Eq. 3.53 is employed on the vector ϕ to compute the vector of ASCs, q̃, which

determines the equilibrium solvent response. A similar approach is taken for the non-

equilibrium state, and Qs is constructed with the optical dielectric constant ǫopt and

is denoted as Qǫopt
s . The resulting expressions for the fast components of the ionized

ASCs q̃fast
i for the MP and PP schemes are67,158–160

q̃fast
i =







Qǫopt
s

(

ϕσsol,i + ϕσslow
pol,0

)

for MP

Qǫopt
s ϕσsol,i for PP .

(3.67)

The difference between the partitioning schemes arises from the different electrostatic

potentials on the right side of Eq. 3.67: for the Marcus partition, q̃fast
1 is generated

from the sum of the electrostatic potential due to the ionized solute charge distri-

bution, ϕσsol,1 , and the slow component of the polarization reaction field from the

reference state, ϕσslow
pol,0 , whereas for the Pekar partition, only ϕσsol,1 is relevant. The

slow components of the reference state ASCs are defined as

q̃slow
0 =







(

χslow

χfast+χslow

)

q̃0 for MP

q̃0 − q̃fast
0 for PP .

(3.68)
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For the Marcus partitioning scheme, generation of q̃slow
0 is trivial: once q̃0 is obtained

from the reference state calculation, the fast and slow components are immediately

available after multiplying by the appropriate factors. The Pekar partitioning scheme

requires two separate PCM calculations: first for q̃0 with ǫsolv and the second for q̃fast
0

using Eq. 3.67 with i = 0 and ǫopt.

With the various components of the solvent polarization field now defined, the

non-equilibrium solvation free energy, Gel
1 , is computed as67

Gel
1 =







Eint
1 + 1

2
q̃slow

0 · ϕ0 + 1
2

q̃fast
1 · ϕ1 +W0,1 for MP

Eint
1 + 1

2
q̃slow

0 · ϕ0 + 1
2

q̃fast
1 · ϕ1 for PP ,

(3.69)

where the additional term W0,1 present for the MP scheme accounts for the effect on

the fast polarization components at τcur from the slow components of the polarization

at τpast, and is given by62,67,70

W0,1 =
1

2
ϕσslow

pol,0 ·
(

q̃fast
1 − q̃fast

0

)

(3.70)

This section concludes with the expression for the vertical ionization potential (VIP),

computed as the difference in solvation free energies between the ionized and refer-

ence states at the reference state molecular geometry, that is employed for all non-

equilibrium PCM calculations reported in this work:

VIP =







(Eint
1 − Eint

0 ) + 1
2

q̃fast
0 · ϕ0 + 1

2
q̃fast

1 · ϕ1 +W0,1 for MP

(Eint
1 − Eint

0 ) + 1
2

q̃fast
0 · ϕ0 + 1

2
q̃fast

1 · ϕ1 for PP ,
(3.71)

where the term in parentheses represents the difference in internal energies of the

ionized and reference solute states. Finally to incorporate the non-equilibrium effects

into the QM calculation, the Fock matrix is modified according to

Fµν = F 1
µν +

(

q̃slow
0

· ϕ0

)

µν
+
(

q̃fast
1

· ϕ1

)

µν
, (3.72)
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regardless of the chosen partitioning scheme, and F 1
µν is the Fock matrix of the gas-

phase ionized solute molecule.

3.3 Anisotropic Solvation with the Poisson Equation Solver

In Section 2.2.2 the PEQS method for computing the equilibrium solvent response

of immersing a molecule in an arbitrary and spatially-varying dielectric function, ǫ(r),

was presented for use in electronic structure calculations, and a form of ǫ(r) for bulk

liquid and the liquid-vapor interface was discussed in Section 2.3.4. In this section we

focus on improvements made to the PEQS methodology for incorporating equilibrium

(Section 3.3.1) and non-equilibrium (Section 3.3.2) solvation effects. A more detailed

explanation of the polarization partitioning scheme that was deferred in Chapter 2

(see Eqs. 2.21–2.24) is also provided in Section 3.3.2, and this discussion ties together

the concepts introduced in Section 3.2.2 regarding non-equilibrium solvation with

PCMs. Alternative definitions of ǫ(r) will be presented in Section 3.4.4.

3.3.1 Revised Reference State Solvation

Although the fundamental concept of the PEQS method remains unchanged (i.e.,

Eq. 2.9 is still used for obtaining ϕtot(r) and ρpol(r) through an iterative procedure),

modifying the manner in which the electronic and nuclear electrostatic potentials

and charge densities are computed improves the efficiency of Algorithm 1. Obtaining

ϕsol(r) is necessary for isolating ϕpol(r) after computing ϕtot(r), but the methodology

presented in Section 2.2.2 requires a separate solution of Poisson’s equation with

ǫ(r) = 1 for this, which effectively doubles the computational cost. This is avoided

by directly computing the exact electrostatic potentials and charge densities (up to
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discretization errors on the Cartesian grid) for the electronic and nuclear components,

and then summing them together to form ϕsol(r) and ρsol(r), as shown below.

For electronic structure methods utilizing atom-centered Gaussian basis functions

gµ(r), the electronic electrostatic potential is expressed as

ϕelec(r) =
Nbasis
∑

µν

Pµν

∫

dr′ gµ(r′)gν(r′)

|r − r′|

=
Nbasis
∑

µν

Pµν ϕµν(r)

(3.73)

where P is the one-electron density matrix, Nbasis is the number of basis functions for

the desired basis set, and ϕµν(r) is introduced to denote the electrostatic potential in

the atomic orbital respresentation. The electronic charge density is computed as

ρelec(r) = − 1

4π
∇2ϕelec(r) , (3.74)

where the Laplacian operator is discretized on a Cartesian grid using a high-order

finite difference scheme. A formal discussion of finite difference methods for obtaining

numerical solutions to Poisson’s equation, and the errors associated with them, is

reserved for Section 4.1. The solute nuclei are treated as classical point charges

approximated by Gaussian functions of finite width σ:

ρnuc(r) = −
Natom
∑

α

Zα

(2πσ)3/2
exp

(

−|r − Rα|2
2σ2

)

, (3.75)

where −Zα and Rα are the charge and position vector of nucleus α and Natom is the

number of nuclei in the solute molecule. The exact nuclear electrostatic potential

corresponding to ρnuc(r) in Eq. 3.75 is

ϕnuc(r) = −
Natom
∑

α

Zα

|r − Rα| erf

(

|r − Rα|√
2σ

)

. (3.76)
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In the event solute nucleus α lies on top of a Cartesian grid point, such that r = Rα,

the contribution to the nuclear electrostatic potential is

ϕnuc(r = Rα) = −
√

2

π

Qsol

σ
, (3.77)

where Qsol =
∑Natom

α Zα is the total nuclear charge of the solute. Thus, using Eq. 3.76

for ϕnuc(r) alleviates singularities that arise with a point charge description of the

nuclei on Cartesian grids. Having computed the components of ϕsol(r) and ρsol(r),

which bypasses the need to solve Poisson’s equation with ǫ(r) = 1, the iterative

procedure outlined in Section 2.2.2 is followed for obtaining ϕtot(r), ϕpol(r), and

ρpol(r), and the equilibrium solvation free energy, Gel, is computed using Eq. 2.4. One

final modification is made for including the solvent response into electronic structure

calculations: instead of augmenting the Fock matrix with the correction term given

by Eq. 2.13, Eq. 2.20 is exploited so that ρpol(r) can be included as a correction to

the one-electron matrix h instead of using ϕpol(r) as a correction to the Fock matrix

F. The correction term ∆h has matrix elements

∆hµν =
∫

dr ρpol(r) ϕµν(r) . (3.78)

Obtaining ϕµν(r) requires evaluation of one-electron integrals (see Eq 3.73), and this

is accomplished by utilizing the OpenMP parallelized integrals-engine within the Q-

Chem software package.75 The definitions of ρelec(r) in Eq. 2.7 and ∆Fµν in Eq. 2.13

require evaluation of Nbasis basis functions on Ngrid Cartesian grid points at each

SCF iteration because it is generally not feasible to store these values for production-

quality grids requiring O(106) points. Although the new methodology is subject

to the same computational cost, a significant amount of overhead is eliminated by

utilizing the optimized routines available in Q-Chem for the one-electron integrals as
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opposed to using a previous implementation that serially evaluates the Fock matrix

correction. Thus, by computing ϕelec(r) with Eq 3.73 and then ρelec(r) with a finite

difference method as well as correcting h according to Eq. 3.78, a speedup of the PEQS

routines are observed at each SCF cycle. The improved PEQS method for equilibrium

solvation discussed in this section is presented as Algorithm 3 on Page 107.

Algorithm 3: Improved PEQS algorithm for equilbrium solvation

1 begin SCF procedure
2 Initialize ∆h ≡ 0.
3 repeat n = 1, 2, . . . SCF iterations
4 Diagonalize the Fock matrix F = F0 + ∆h to obtain the density matrix

P(n), where F0 is the gas-phase Fock matrix and ∆h is the equilibrium
solvation correction to the one-electron matrix h.

5 Compute ϕelec(r), ρelec(r), ρnuc(r), and ϕnuc(r) on the Cartesian grid via
Eqs. 3.73–3.76.

6 Form ρsol(r) = ρelec(r) + ρnuc(r) and ϕsol(r) = ϕelec(r) + ϕnuc(r).
7 Form ǫ(r) with ǫsolv.
8 // The form of the dielectric function is discussed in

Sections 2.3.4 and 3.4.4.

9 Set ρtot(r) = ρsol(r) and ϕtot(r) = ϕsol(r).

10 Compute ρ
(i=1)
iter (r) via Eq. 2.11 with ϕtot(r) and ǫ(r).

11 repeat i = 1, 2, . . . PEQS iterations
12 begin PEQS routines

13 Compute ϕ
(i)
tot(r) via Eq. 2.9.

14 Update ρ
(i+1)
iter (r) via Eq. 2.12 with ǫ(r), ϕ

(i)
tot(r), and ρ

(i)
iter(r).

15 Update ρpol(r) and ρtot(r) via Eqs. 2.10 and 2.5.

16 until ||ρ(i+1)
iter (r) − ρ

(i)
iter(r)|| < Tsolver

17 Compute ϕpol(r) = ϕtot(r) − ϕsol(r).

18 If performing a non-equilibrium solvation calculation with the MP
scheme, compute ρslow

pol,0(r) and ϕslow
pol,0(r) via Eqs. 3.79 and 2.20.

19 Generate ∆h via Eq. 3.78 with ϕpol(r).

20 Compute Eel via Eq. 2.14 and add it to the SCF energy.

21 until DIIS error < TSCF

22 Compute the equilibrium solvation free energy Gel
0 via Eq. 2.4.
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3.3.2 State-Specific Non-equilibrium Solvent Effects

A perturbative approach for the PEQS method to incorporate non-equilibrium

effects into the solvation free energies computed for vertically ionized systems is pre-

sented in Section 2.2.3. This is tantamount to “freezing” the reference state reaction

field such that, upon vertical ionization, the slow and fast inertial components of the

reference polarization field are unable to adjust to the ionized charge distribution.

Therefore the ionized solute-solvent interaction is governed by this “frozen” refer-

ence state reaction field. In this section a novel state-specific PEQS methodology for

non-equilibrium solvation is adapted from the technique in Section 3.2.2 for PCMs.

Whereas the PCM approach is derived for two-dimensional ASCs, the PEQS approach

is applicable for arbitrary three-dimensional boundary conditions. Furthermore, the

details for adapting the MP and PP schemes to the PEQS method are elucidated

here.

The state-specific Hamiltonian in Eqs. 3.62 and 3.63 is the theoretical foundation

for the state-specific PEQS method, and the notation is reused to preserve consistency.

For i = 0, the state-specific and perturbative PEQS methods employ an identical

effective Hamiltonian, and the improved procedure given in Algorithm 3 is performed

to obtain Gel
0 and the necessary reference state potentials and charge densities. The

state-specific and perturbative PEQS methods differ when i = 1 for the ionized state,

and the effective Hamiltonian for the state-specific PEQS method takes the form

as expressed in Eq. 3.66, where it is necessary to partition the solvent polarization

response into fast and slow components utilizing either the MP or PP schemes.
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For the slow component of the reference state polarization response field, Eq. 3.68

is used:

ϕslow
pol,0(r) =







(

χslow

χfast+χslow

)

ϕpol,0(r) for MP

ϕpol,0(r) − ϕfast
pol,0(r) for PP .

(3.79)

To obtain ϕslow
pol,0(r) from the polarization potential within the MP scheme, it is only

necessary to multiply by the constant factor
(

χslow

χfast+χslow

)

. For the PP scheme, Eq. 2.9

must be solved twice: once using ǫsolv in ǫ(r), and the second time using ǫopt. The

former will yield ϕpol,0(r) using the methods from Section 3.3.1, whereas the latter

will result in a modified version of Eq. 2.9 that provides the fast components of both

the total reference electrostatic potential and polarization charge density:

∇̂2ϕfast
tot,0(r) = −4π

[

ρsol,0(r) + ρfast
pol,0(r)

]

, (3.80)

and the fast component of the reference state polarization charge density is obtained

by

ρfast
pol,0(r) = ρiter,0(r) +

[

1 − ǫopt(r)

ǫopt(r)

]

ρsol,0(r) , (3.81)

where ρiter,0(r) is computed using Eq. 2.11 with ǫopt(r) and ϕfast
tot,0(r). Finally the fast

component of the reference state polarization response is obtained by

ϕfast
pol,0(r) = ϕfast

tot,0(r) − ϕsol,0(r) , (3.82)

which then allows ϕslow
pol,0(r) to be computed using Eq. 3.79.

For the fast components of the ionized state polarization field, Eq. 3.67 that

describes the partitioning schemes for PCMs must be modified for the PEQS method.

The MP scheme uses a combined potential arising from the ionized solute electrostatic

potential and the slow contribution of the solvent reaction field to generate the fast

ASCs using the polarization weight operator that employs ǫopt. For the PP scheme,
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the same polarization weight operator is utilized, but the potential that generates the

fast ASCs arises only from the the ionized solute electrostatic potential. To capture

the physical nature of these partitioning schemes for the PEQS method, Poisson’s

equation is modified as

∇̂ ·

[

ǫopt(r)∇̂ϕfast
tot,1(r)

]

=







−4π
[

ρsol,1(r) + ρslow
pol,0(r)

]

for MP

−4πρsol,1(r) for PP ,
(3.83)

where ϕfast
tot,1(r) is the fast component of the total electrostatic potential of the ionized

state. The difference between these partitioning schemes manifests in the description

of the charge density source on the right side of Eq. 3.83. For both partitioning

schemes, however, the polarization response is generated by the interaction of their

respective sources with the fast component of the solvent dielectrc that is encoded in

ǫopt.

To apply the procedures of the PEQS method introduced in Section 2.2.3, it is

useful to rewrite Eq. 3.83 as

∇̂2ϕfast
tot,1(r) =







−4π
[

ρsol,1(r) + ρslow
pol,0(r) + ρfast

pol,1(r)
]

for MP

−4π
[

ρsol,1(r) + ρfast
pol,1(r)

]

for PP ,
(3.84)

where ρfast
pol,1(r) and ϕfast

tot,1(r) are iteratively computed self-consistently. For the respec-

tive partitioning schemes, ρfast
pol,1(r) takes the form

ρfast
pol,1(r) =







ρiter,1(r) +
[

1−ǫopt(r)
ǫopt(r)

] [

ρsol,1(r) + ρslow
pol,0(r)

]

for MP

ρiter,1(r) +
[

1−ǫopt(r)
ǫopt(r)

]

ρsol,1(r) for PP ,
(3.85)

where ρiter,1(r) is computed and updated using Eqs. 2.11 and 2.12 with ǫopt(r) and

ϕfast
tot,1(r). The corresponding fast polarization response for the ionized state is then

computed as

ϕfast
pol,1(r) =







ϕfast
tot,1(r) − ϕsol,1(r) − ϕslow

pol,0(r) for MP

ϕfast
tot,1(r) − ϕsol,1(r) for PP .

(3.86)
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Utilizing these quantities, the non-equilibrium solvation free energy of the ionized

state, Gel
1 , for the two partitioning schemes is computed as

Gel
1 =







Eint
1 + 1

2

∫

dr ϕslow
pol,0(r) ρsol,0(r) + 1

2

∫

dr ϕfast
pol,1(r) ρsol,1(r) +W0,1 for MP

Eint
1 + 1

2

∫

dr ϕslow
pol,0(r) ρsol,0(r) + 1

2

∫

dr ϕfast
pol,1(r) ρsol,1(r) for PP .

(3.87)

The correction term arising from the MP scheme, W0,1, represents the same physical

quantity described by Eq. 3.70, and is computed identically for the perturbative and

state-specific PEQS methods by Eq. 2.28. The non-equilibrium VIPs reported for the

state-specific PEQS method are computed as VIP = G1
el −G0

el shown explicitly here:

VIP =







(Eint
1 − Eint

0 ) + 1
2

∫

dr ϕfast
pol,0(r) ρsol,0(r) + 1

2

∫

dr ϕfast
pol,1(r) ρsol,1(r) +W0,1 for MP

(Eint
1 − Eint

0 ) + 1
2

∫

dr ϕfast
pol,0(r) ρsol,0(r) + 1

2

∫

dr ϕfast
pol,1(r) ρsol,1(r) for PP .

(3.88)

Finally, to include the non-equilibrium solvent response in the electronic structure

calculations, the matrix elements of the corresponding correction term made to the

one-electron matrix h are

∆hµν =
∫

dr ρslow
pol,0(r) ϕµν,0(r) +

∫

dr ρfast
pol,1(r) ϕµν,1(r) , (3.89)

and the SCF energy is augmented with the quantity Eel,1 expressed as

Eel,1 =
∫

dr ϕslow
pol,0(r) ρsol,0(r) +

∫

dr ϕfast
pol,1(r) ρsol,1(r) (3.90)

that corresponds to the total non-equilibrium solute-solvent interaction without ac-

counting for the polarization work of the dielectric medium. A modified algorithm

showing the changes that must be made to the equilibrium solvation algorithm in

order to compute the required reference state quantities for the non-equilibrium PP

scheme is presented in Algorithm 4 on Page 112. Then, the improved state-specific

PEQS method for non-equilibrium solvation with both partitioning schemes is pre-

sented as Algorithm 5 on Page 113.
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Algorithm 4: Improved PEQS algorithm for equilbrium solvation with the PP
scheme
1 begin SCF procedure
2 Initialize ∆h ≡ 0.
3 repeat n = 1, 2, . . . SCF iterations
4 Diagonalize the Fock matrix F = F0 + ∆h to obtain the density matrix

P(n), where F0 is the gas-phase Fock matrix and ∆h is the equilibrium
solvation correction to the one-electron matrix h.

5 Compute ϕelec,0(r), ρelec,0(r), ρnuc,0(r), and ϕnuc,0(r) via Eqs. 3.73–3.76.

6 Form ρsol,0(r) = ρelec,0(r) + ρnuc,0(r) and ϕsol,0(r) = ϕelec,0(r) + ϕnuc,0(r).

7 Form ǫ(r) with ǫsolv.
8 // The form of the dielectric function is discussed in

Sections 2.3.4 and 3.4.4.

9 Set ρtot,0(r) = ρsol,0(r) and ϕtot,0(r) = ϕsol,0(r).

10 Compute ρ
(i=1)
iter,0 (r) via Eq. 2.11 with ϕtot,0(r) and ǫ(r).

11 repeat i = 1, 2, . . . PEQS iterations
12 begin PEQS routines

13 Compute ϕ
(i)
tot,0(r) via Eq. 2.9.

14 Update ρ
(i+1)
iter,0 (r) via Eq. 2.12 with ǫ(r), ϕ

(i)
tot,0(r), and ρ

(i)
iter,0(r).

15 Update ρpol,0(r) and ρtot,0(r) via Eqs. 2.10 and 2.5.

16 until ||ρ(i+1)
iter,0 (r) − ρ

(i)
iter,0(r)|| < Tsolver

17 Reform ǫ(r) with ǫopt.
18 Reset ρtot,0(r) = ρsol,0(r) and ϕtot,0(r) = ϕsol,0(r).

19 Compute ρ
(i=1)
iter,0 (r) via Eq. 2.11 with ϕtot,0(r) and ǫopt(r).

20 repeat i = 1, 2, . . . PEQS iterations
21 begin PEQS routines

22 Compute ϕ
fast,(i)
tot,0 (r) via Eq. 3.80.

23 Update ρ
(i+1)
iter,0 (r) via Eq. 2.12 with ǫopt(r), ϕ

fast,(i)
tot,0 (r), and ρ

(i)
iter,0(r).

24 Update ρfast
pol,0(r) via Eq. 3.81.

25 until ||ρ(i+1)
iter,0 (r) − ρ

(i)
iter,0(r)|| < Tsolver

26 Compute ϕpol,0(r) = ϕtot,0(r) − ϕsol,0(r).

27 Compute ϕfast
pol,0(r) via Eq. 3.82 and ϕfast

pol,0(r) via Eq. 3.79.

28 Generate ∆h via Eq. 3.78 with ϕpol,0(r).

29 Compute Eel via Eq. 2.14 and add it to the SCF energy.

30 until DIIS error < TSCF

31 Compute the equilibrium solvation free energy Gel
0 via Eq. 2.4.
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Algorithm 5: Improved non-equilibrium PEQS procedure using the MP and
PP schemes
1 begin Reference state procedure
2 Proceed with Algorithms 3 or 4 to compute the energies, electrostatic

potentials, and charge densities for the MP or PP schemes, respectively,
and save to disk.

Input: Gel
0 , ϕ

fast/slow
pol,0 (r), ρ

fast/slow
pol,0 (r), and ρsol,0(r).

3 begin Ionized state procedure
4 Initialize ∆h ≡ 0.
5 repeat n = 1, 2, . . . SCF iterations
6 Diagonalize the Fock matrix F = F0 + ∆h to obtain the density matrix

P(n), where F0 is the gas-phase Fock matrix and ∆h is the
non-equilibrium solvation correction.

7 Compute ϕelec,1(r), ρelec,1(r), ρnuc,1(r), and ϕnuc,1(r) via Eqs. 3.73–3.76.

8 Form ρsol,1(r) = ρelec,1(r) + ρnuc,1(r) and ϕsol,1(r) = ϕelec,1(r) + ϕnuc,1(r).

9 Form ǫ(r) with ǫopt.
10 If (MP), set ρtot,1(r) = ρsol,1(r) + ρslow

pol,0(r) and
ϕtot,1(r) = ϕsol,1(r) + ϕslow

pol,0(r).

11 Else if (PP), set ρtot,1(r) = ρsol,1(r) and ϕtot,1(r) = ϕsol,1(r).

12 Compute ρ
(i=1)
iter,1 (r) via Eq. 2.11 with ǫopt(r) and ϕtot,1(r).

13 repeat i = 1, 2, . . . PEQS iterations
14 begin PEQS routines

15 Compute ϕ
fast,(i)
tot,1 (r) via Eq. 3.84.

16 Update ρ
(i+1)
iter,1 (r) via Eq. 2.12 with ǫopt(r), ϕ

fast,(i)
tot,1 (r), and ρ

(i)
iter,1(r).

ρfast
pol,1(r) Update and via Eq. 3.85.

17 until ||ρ(i+1)
iter,1 (r) − ρ

(i)
iter,1(r)|| < Tsolver

18 Compute ϕfast
pol,1(r) via Eq. 3.86.

19 Generate ∆h via Eq. 3.89.
20 Compute Eel,1 via Eq. 3.90 and add it to the SCF energy.

21 until DIIS error < TSCF

22 Compute the non-equilibrium polarization interaction energy Gel
1 via Eq. 3.87.

23 Compute VIP via Eq. 3.88.
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3.4 Computational Details and Methods

In this section, the computational details for the methods discussed in the previous

sections are presented. Section 3.4.1 outlines the molecular dynamics simulations that

were performed to generate the classical nuclear configurations for the alkali metal

cation and anion halide systems that are investigated in this Chapter. The electronic

structure methodology and choice of basis sets employed for the quantum-mechanical

description of these systems is discussed in Section 3.4.2. Sections 3.4.3 and 3.4.4

discuss the details for computing the VIPs within the non-equilibrium PCM and

PEQS frameworks, respectively, and emphasis is placed on discussing the various

forms of the molecular cavity used in PCM and the functional forms of the dielectric

function ǫ(r) for the PEQS method.

3.4.1 Molecular Dynamics Simulations

Simulations of neat liquid water were performed with 222 water molecules in a

cubic unit cell of side 18.8 Å (corresponding to a density of 0.9995 g/cm3) that was

replicated periodically in three dimensions at 300 K. The AMOEBA47 polarizable

force field within the Tinker molecular modeling package161 was employed to de-

scribe the ions and water molecules and perform the molecular dynamics simulations,

and electrostatic interactions were computed using standard Ewald summation with

an interaction cutoff of 9.4 Å. The ion polarizabilities for Li+, Na+, F−, and Cl− are

0.0280, 0.1200, 1.350, and 4.000 Å3, respectively, within this forcefield.47 The neat

liquid water simulations were equilibrated for 1 ns, and the last 500 ps of the equi-

libration were extracted for further use. For neat liquid-vapor simulations, the last

configuration from the bulk water equilibration was extracted and the simulation box
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was extended to 90.0 Å in the z-direction (18.8 Å× 18.8 Å× 90.0 Å). The resulting

water “slab” was equilibrated for an additional 1 ns at 300 K. The last configuration

from either of these equilibrations was used to generate the initial configuration for

the alkali metal and halide simulations. For the simulations in liquid water, the water

molecule nearest the center of the cubic unit cell was located and replaced with Li+,

Na+, F−, or Cl−, whereas the water molecule nearest the interface was replaced for the

liquid-vapor simulations. The location of the interface is characterized by the Gibbs

dividing surface (GDS), and the procedure for determining this quantity is discussed

below in Section 3.4.4. After insertion of the ion, the simulations were equilibrated

for 250 ps at 300 K followed by a 500 ps production run where the configurations

were stored every 10 ps for further use in the electronic structure/continuum model

calculations. The configurations for e−(aq) in liquid water and at the interface are

identical to the ones used in Chapter 2, and were extracted from the simulations of

Refs. [11] and [4].

3.4.2 Basis Sets and Electronic Structure Methods

All electronic structure computations presented in this Chapter employ the resolution-

of-identity92,93 (RI)-MP2 method, and the results of Section 3.5 utilize the following

basis sets:

1. The alkali metal cations Li+ and Na+ are treated with the cc-pVQZ and auxil-

lary rimp2-cc-pVQZ basis sets and the 6-311+G* and auxillary rimp2-cc-pVTZ

basis sets are employed for the explicit solvent water molecules.
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2. e−(aq), the halide anions F− and Cl−, and the explicit solvent water molecules

in these systems are treated with the 6-311++G* and auxillary rimp2-aug-cc-

pVTZ basis sets.

3. The neutral liquid water systems are treated with the 6-311+G* and auxillary

rimp2-aug-cc-pVTZ basis sets.

[In Ref. [1], it was noted that a very diffuse sp even-tempered set of basis func-

tions were added for Cl− to properly describe the CTTS levels in aqueous solution.

However, this affected the computed ionization potentials of Cl− by ≈ 7 meV, and

was therefore omitted for this work.] The details of all basis sets listed above were

obtained from Ref. [162] and references therein.

Furthermore, it was anticipated that the magnitude of the computed ionization

potentials of Li+ and Na+ would be far greater than for liquid water, and additional

considerations for performing the SCF procedure are required. The measured ioniza-

tion potentials for the 1s state of Li+ and the 2p state of Na+ are 60.4 ± 0.07 eV1 and

35.4 ± 0.04 eV1, respectively, whereas ionization from the 1b1 orbital of liquid water

produces a broad absorption band centered at 11.23 eV2. Since the cation-water sys-

tems considered here contain nearly two solvation shells of explicit water molecules as

part of the QM solute, and the cation ionization states lie much higher in energy com-

pared to the lowest ionization of liquid water, a standard SCF procedure cannot be

used. The variational nature of the HF method that underlies RI-MP2 would provide

the lowest energy ionization state for the cation-water system, which is removal of an

electron from the surrounding water molecules. We are interested in computing the

ionization potentials for the cations, and therefore we employ the maximum overlap

method163 (MOM) to circumvent this issue. As discussed in Sections 3.2 and 3.3,
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two separate SCF procedures must be performed for the non-equilibrium solvation

models: the first for the reference state and a second for the ionized state. After com-

pleting the reference state SCF procedure, the 1s orbital for Li+ or the 2p orbital for

Na+ is identified. Before the ionized state calculation begins, an electron is explicitly

removed from the 1s or 2p reference state orbital of Li+ or Na+, respectively, and this

set of “ionized” reference state orbitals is saved to disk. Starting with the first SCF

cycle for the ionized state, the MOM procedure maximizes the overlap at each cycle

between the computed orbitals for the ionized state and the set of “ionized” reference

state orbitals that were saved from the previous calculation. Using this procedure

results in ionization from the desired 1s and 2p orbitals of Li+ or Na+, respectively,

and the spin density [ρspin(r) = ρα(r) − ρβ(r)] is shown for each is shown in Fig 3.2(c)

and (d).

The success of this MOM-SCF procedure for the cation-water systems relies on

the fact that the 1s and 2p orbitals for Li+ and Na+ are energetically well-separated

from the molecular orbitals of the surrounding water molecules. This is no longer

the case for F−, for which the 2p ionization potential has recently been measured2

to be 11.58 eV. Since the relative energies of the 2p orbitals of F− and 1b1 orbital

of water are similar, significant mixing occurs and it is impossible to identify them

explicitly. Using the MOM-SCF procedure just described results in an undesired

collective ionization of fluoride and multiple water molecules in the QM region, and

the spin density of the resulting system is shown in Fig 3.1(a). Furthermore, we are

also interested in obtaining the ionization potential of a single solvated water molecule,

where the solvent is comprised of other quantum-mechanical water molecules and the

classical continuum. Again, using the MOM-SCF procedure previously described
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results in ionization of a water molecule close to the continuum boundary as shown

in Fig 3.1(c). This is undesirable because it neglects explicit hydrogen bonds present

for a more centrally located water molecule. In both cases, the computed ionization

potentials differ from experiment by nearly 1.5 eV.

These issues are addressed by utilizing a similar approach that exploits a different

method for generating the initial guess of the molecular wave function. Instead of

using a set of “ionized” reference state orbitals as for the cation-water systems, a

FRAGMO75 procedure is utilized. For the fluoride-water and single water molecule

ionizations, all ions and molecules are treated as individual fragments for which a

complete SCF procedure is performed. In doing this, the fluoride anion and a sin-

gle water molecule can be explicitly ionized, while the surrounding water molecules

remained unaffected, neutral, and closed-shell. A superposition of the resulting frag-

ment molecular orbitals creates a wave function for the total molecular system that

reflects an ionized fluoride atom or single water molecule at the center of the QM so-

lute region, and this superposition is used as the initial guess in the ionized state SCF

procedure. MOM-SCF is then employed to ensure the overlap between the computed

molecular orbitals at each SCF cycle and the FRAGMO initial guess wave function is

maximized. The success of this FRAGMO-MOM-SCF method is shown in Fig 3.1,

where the resulting spin densities reflect ionization from the desired 2p orbital on

fluoride [Panel (b)] and the 1b1 orbital on a central water molecule [Panel (d)] that

is far from the continuum boundary and properly participating in hydrogen bonding

with the surrounding quantum-mechanical solvent water molecules. We end this sec-

tion by noting that the SCF procedure for e−(aq) and Cl− required no modifications
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(a) (b)

(c) (d)

Figure 3.1: Panels (a) and (c) show the spin density computed using the MOM-
SCF procedure for the fluoride-water and neutral water systems, respectively, and
Panels (b) and (d) show the spin density computed using the FRAGMO-MOM-SCF
procedure for the same systems. In Panels (a) and (b), the fluorine atom is colored
pink. In all Panels, the opaque and transparent blue color illustrates 50% and 95%
of the spin density, respectively. Panel (a) illustrates the difficulty in separating the
fluoride 2p orbital from the orbitals of the surrounding water molecules: removal of
an electron from the system results in a collective ionization of both the fluoride and
water molecules. In Panel (c), the MOM-SCF procedure for the neutral water system
results in ionization of a water molecule close to the solute-solvent boundary, where
the effects of hydrogen bonding are neglected. Using the FRAGMO-MOM-SCF
procedure fixes this issue, and the desired orbitals are ionized as shown in Panels (b)
and (d).
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because the ionization potentials for these species lie below and are energetically well-

separated from that of liquid water. The excess spin density of e−(aq) is shown in

Fig 3.2(a) and the spin density of the ionized chlorine-water system using a standard

SCF approach is shown in Fig 3.2(b).

3.4.3 Molecular Cavities for PCM

The simulations for the alkali metal cations and halide anions described in Sec-

tion 3.4.1 provide the configurations that were utilized for all the calculations reported

in Section 3.5, except for the e−(aq) configurations that were extracted from Refs. [4]

and [11]. For each of the systems investigated, the ion or excess electron and a certian

number of explicit water molecules are treated quantum-mechanically with RI-MP2

as described in Section 3.4.2. The number of QM water molecules is determined by

carving a sphere of radius 5.5 Å around the ion or excess electron centroid, and all

water molecules within this sphere are treated explicitly. This roughly corresponds to

two solvation shells of water molecules that are treated quantum-mechanically. For

all of these configurations, the origin of the system is placed at its center-of-mass.

The last detail that needs specified for the non-equilibrium IEF-PCM technique

employed to compute the VIPs presented in Section 3.5 is the form of the solute

molecular cavity, which is the topic of this section. In addition to introducing the

concept of a reaction field, L. Onsager explicates the properties of the solute cavity

and discusses its physical meaning:142 the molecular cavity should contain within it as

much of the solute charge distribution as possible, be devoid of solvent, and conform

as closely to the molecular shape as possible. Ensuring the solute charge distribution

is entirely within the cavity becomes difficult to achieve for quantum mechanical
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(a) (b)

(c) (d)

Figure 3.2: In Panels (a)–(c), the opaque and transparent blue color illustrates 50%
and 95% of the spin density, respectively, while green is employed for the sodium-
water system in Panel (d). In Panel (c), the lithium atom is colored pink and in
Panel (d), the sodium atom is colored blue. Panel (a) shows the excess spin density
of e−(aq) from a bulk liquid water simulation. Panel (b) illustrates the spin density
of the ionized chlorine-water system using a standard SCF approach. Panels (c) and
(d) show the spin densities of the lithium- and sodium-water systems, and employing
the MOM-SCF approach results in ionization from the desired 1s and 2p orbitals.
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densities because these, in principle, asymptotically decay to zero. As was discussed

in Section 3.2.1, simpler PCMs neglect “charge penetration” effects where electron

density leaks into the surrounding dielectric, but the IEF-PCM method employed

in this work implicitly accounts for this.70,97,98 Furthermore, molecular cavities that

are significantly different than the actual molecular shape may suffer from deformed

charge densities and unphysical values for various molecular properties.62

The simplest of these cavities is a solvent-excluded sphere that encompasses the

solute molecule, the radius of which is taken to be 2.025 Å larger than the corre-

sponding QM radius. In other words, since the molecular solute region is 5.5 Å, the

size of the spherical cavity is 7.525 Å, which is 0.5 Å smaller than the cavities used in

Section 2.3.3. Though the spherical cavity is a crude model that does not adequately

reproduce the shape of the solute, it ensures that solvent dielectric is properly absent

within the molecular region that is treated quantum-mechanically. The second type

of molecular cavity employed in this investigation is derived by placing spheres on

each of the atoms comprising the solute molecule, the size of which is dictated by

their respective van der Waals radius. We utilize the Bondi definition for the atomic

van der Waals radii, and each radius is multiplied by a constant factor of 1.2. The

resulting surface that arises from the collection of these atomic spheres is called the

van der Waals surface (vdWS), and Figure 3.3 illustrates this as a black surface sur-

rounding two noncovalently bonded solute molecules. The grey shaded areas within

the vdWS are representative of the solvent-excluded regions for this particular so-

lute. The vdWS in conjuction with the Bondi definition is the most commonly used

molecular cavity as it provides a suitable description of a surface the conforms well

to the molecule and only needs calculated once at the beginning of the calculation
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once the nuclear positions are specified. However, for pathological cases like e−(aq),

where the system possesses a diffuse excess electron that is not associated with a par-

ticular solute atom or molecule, a van der Waals description of the molecular cavity

becomes ill-defined. Furthermore, Figure 3.3 shows a “problematic region” (purple

shaded area) where a hypothetical solvent molecule is too large to fit between the

noncovalently bonded molecular regions, yet solvent dielectric will be placed there

anyway because the vdWS prescription has left a gap between these disjointed parts

of the solute.

In an effort to address this problem exhibited by e−(aq), two variants of the

vdWS are examined. To derive both of these variations, consider a solvent molecule

represented by a single “probe” sphere with a volume equal to its van der Waals

volume. The unscaled vdWS (i.e., one using unscaled Bondi radii for the atomic

spheres) is first constructed for the molecule as described above. The spherical solvent

probe is then “rolled” along the vdWS, and the volume enclosed by this process results

in the Solvent-Excluded Surface (SES) depicted in Figure 3.3. The points where the

solvent probe, which is shown as a green circle in Figure 3.3, is unable to penetrate

into the molecular region are called the re-entry points, and these points are shown as

a red “re-entrant” surface in the figure. The union of the black and red surfaces forms

the SES, and by doing this, the problematic region is encompassed by the re-entrant

surfaces, and solvent dielectric will be properly eliminated. Additionally, the solvent

probe will smooth out cusps that arise at the intersections of atomic spheres used

to generate the vdWS. The second variation of an unscaled vdWS is also created by

rolling a spherical solvent probe along the vdWS, and the surface traced out by the

center of the probe forms the Solvent-Accessible-Surface (SAS), which is shown as
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Re-entrant portion of
solvent-excluded surface
(SES)

Solvent
probe

Problematic region

van der Waals surface (vdWS) Solvent-accesible surface (SAS)

Figure 3.3: The various molecular cavity surfaces discussed in Section 3.4.3 are illus-
trated here. A generic, noncovalently bonded solute molecule is represented by the
grey regions contained within the vdWS, which is shown in black. The problematic
region, where solvent-solvent interactions are double-counted and where solvent di-
electric is placed erroneously, is shown as the purple region between the noncovalently
bonded regions of the solute. A solvent molecule probe, which is used to generate
the SES and SAS cavities, is represented as a green circle. Where the solvent probe
makes contact with the solute molecule forms the SES, which is the union of the
black (vdWS) and red (re-entract surface between noncovalently bonded regions of
the molecule) surfaces. The SAS shown in blue is effectively a larger vdWS and is
the locus of points formed by tracing the centroid of the solvent probe as it “rolls”
around the solute molecule.
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a blue surface in Figure 3.3. In other words, the SAS is the surface enclosing the

volume where the probe center cannot enter the solute region.62

3.4.4 Dielectric Function ǫ(r) for PEQS

This section outlines the specific computational details needed to obtain non-

equilibrium solvation free energies using the improved algorithms described in Sec-

tions 3.3.1 and 3.3.2, and discusses the development of an improved description of

the dielectric function in liquid and at the liquid-vapor interface. To solve Eqs. 2.9,

3.80, and 3.84, we employ a three-dimensional, cubic Cartresian grid of side length

of 25 Å and a grid spacing of ∆x = 0.24 Å, and its origin is placed at the center-

of-mass of the quantum-mechanical solute. The solution of Poisson’s equation is

obtained using a finite difference scheme with a fourth order W-cycle multigrid con-

jugate gradient algorithm, which is described in Chapter 4. The requisite charge

densities and electrostatic potentials are then discretized on the Cartesian grid, and

the iterative procedures are performed to compute the solvent polarization response.

As in Section 2.3.4, the iterative charge density is updated until the Euclidean norm

of the residual vector between iterations falls below a threshold of Tsolver = 10−5 a.u.,

we use η = 0.6 in Eq. 2.12, and when the DIIS error falls below a threshold of

TSCF = 10−5 a.u., the SCF procedure is considered converged.

Ultimately, we chose to employ two models for describing the spatially-varying

dielectric function, the first of which is the spherical cavity that is described in Sec-

tion 2.3.4. Its functional form is shown in Eq. 2.32, and an example is illustrated in

Figure 2.2. The parameter α controls the length scale of the switching process of ǫvac

to ǫsolv, and we take α = 4.0 Å−1 which corresponds to a interpolation length of 1 Å.
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As an example, Eq. 2.32 is applied to a bulk e−(aq) configuration using the param-

eters described above, and a two-dimensional contour plot is provided in Figure 3.4.

The contour plot is reflective of the xz-plane through the Cartesian grid origin.

The second functional form of ǫ(r) was developed while investigating the various

solute-solvent surfaces discussed in Section 3.4.3. For traditional PCM calculations,

the default solute cavity is treated as a rigid, two-dimensional surface constructed

from a union of atom-centered spheres, the size of which are taken to be the atomic

van der Waals radii. At the surface of such solute cavities, there is an aburpt and dis-

continuous change in the value of the dielectric which assumes the value of ǫvac inside

the cavity and ǫsolv outside. A continuous and differentiable three-dimensional analog

of this model is adapted from Ref. [10], which employs a set spherically symmetric

error functions centered on the solute nuclei, the coordinates of which are specified

as Rα:

ǫ(r) = (ǫsolv − 1)







Natom
∏

α

h(dα,∆; |r − Rα|)






, (3.91)

where

h(dα,∆; |r − Rα|)
}

=
1

2

[

1 + erf

(

|r − Rα| − dα

∆

)]

, (3.92)

and the van der Waals radius of atom α is given by dα. Eq. 3.91 smoothly interpolates

the dielectric from vacuum to solvent (ǫsolv) over a length scale of ≈ 4∆. Following

Ref. [10], we take ∆ = 0.265 Å, which smoothly interpolates the dielectric for each

atom-centered sphere over a length scale of ≈ 1.0 Å. Using the same bulk e−(aq)

configuration for which the example in Figure 3.4 utilizes, a two-dimensional contour

plot of the xz−plane is shown in Fig 3.5. Although Eq. 3.91 performs well for creating

a cavity that correctly conforms to the molecular shape of the solute, Figure 3.5 shows

that it suffers from placing unphysical solvent dielectric in the interstices of the solute
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Figure 3.4: A two-dimensional contour plot of Eq. 2.32 applied to bulk e−(aq) with
α = 4.0 Å−1, rQM = 5.5 Å, and rmid = 6.0 Å is illustrated. The contour plot is
reflective of the xz-plane through the Cartesian grid origin. These parameters are
utilized for all systems investigated in Chapter 3.
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Figure 3.5: A two-dimensional contour plot of Eq. 3.91 applied to bulk e−(aq) with
∆ = 0.265 Å is shown. The contour plot is reflective of the xz-plane through the
Cartesian grid origin. This parameter is utilized for all systems investigated in Chap-
ter 3 as well as Ref. [10].
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molecule region. For the large molecular clusters being investigated in this work,

where there are a significant number of explicit solvent water molecules included in

the QM region, this erroneous solvent dielectric results in an overcounting of the

electrostatic interactions that are handled by the inter-particle Coulomb interactions

of the electronic Hamiltonian. This will overpolarize the solute wave function and

result in unphysical and unmeaningful results.

Therefore in an effort to remedy this issue, we adapt the approach taken in PCM

to create the SAS, which effectively uses a larger van der Waals radius for each

solute atom. To accomplish this, Eqs. 3.91 and 3.92 are employed as for the van

der Waals cavity, except with the modification dα → dα + rprobe, where rprobe is the

radius of a ficticious solvent “probe”, which is taken to be 1.4 Å for water. Such

a modification is shown in Figure 3.6(a), and comparing this to Figure 3.5 shows

that the three-dimensional analog of the PCM-SAS cavity improves the description

of the dielectric function, but there are still regions within the molecular solute region

where the dielectric assumes nonphysical values (show as ǫ > 1.0 in the plot). The

“hybrid cavity” that is developed for the PEQS method and shown in Figure 3.6(b)

was created to overcome the shortcomings of the spherical and van der Waals cavities

discussed above, yet retain some of their desired features. The spherical cavity results

in a form of the dielectric that properly takes the value of vacuum in the molecular

region of the solute molecule, but fails to adequately conform to its molecular shape;

the converse of this is true for the van der Waals cavity. Therefore the hybrid model

is created by applying Eqs. 3.91 and 3.92 (with ∆ = 0.265 Å) to the outermost atoms

of the solute, and then manually setting ǫ(r) = 1.0 in the internal molecular regions

of the solute. As seen in Figure 3.6(b), the hybrid cavity provides a satisfactory
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(b) Hybrid cavity
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Figure 3.6: In Panel (a), a two-dimensional contour plot of Eq. 3.91 applied to bulk
e−(aq) with ∆ = 0.265 Å along with a modification to the effective van der Waals
radius dα for atom α given by dα → dα +rprobe with rprobe = 1.4 Å is shown. This is a
three-dimensional anolog of the PCM-SAS cavity, which improves upon the van der
Waals cavity, but still has unphysical dielectric in the molecular region of the solute.
In panel (b) the two-dimensional contour plot of a hybrid cavity that effectively
applies Eq. 3.91 to the outermost atoms of the solute, and then sets ǫ(r) = 1.0 within
the molecular region of the solute is shown. The hybrid cavity is free of any erroneous
solvent dielectric as in the spherical cavity, yet properly conforms to the molecular
shape of the molecule as does the van der Waals cavity. These contour plot are
reflective of the xz-plane through the Cartesian grid origin, and the corresponding
parameters are utilized for all systems investigated in Chapter 3.
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description of the dielectric environment, and this cavity, along with the spherical

cavity, is used with the PEQS method method for computing VIPs in bulk liquid

water that are reported in Section 3.5.

To create the interfacial dielectric environments, a similar approach from Sec-

tion 2.3.4 is followed. The solvent dielectric is smoothly interpolated in the z−direction

across the GDS using the hyperbolic tangent switching function given by Eq. 2.33

(see Figure 2.3). This procedure is performed for an interfacial e−(aq) configuration

using the spherical and hybrid cavities, and a two-dimensional contour plot of the

xz−plane is illustrated in Figure 3.7 as an example.

3.5 Results and Discussion

The VIPs for e−(aq), alkali metal cations, halide anions, and a water molecule in

liquid water and at the liquid-vapor interface utilizing the solvation models presented

in Sections 3.2 and 3.3 in conjunction with the computational details from Section 3.4

are presented in this section. Recent liquid microjet measurements of these species

are reported in Refs. [1], [2], and [3], and the ionization potentials computed with

non-equilibrium the PEQS and PCM methods are discussed in context of those data.

The ionization potentials of alkali metal cations and halide anions were measured

directly by photoelectron spectroscopy of aqueous salt solutions with 100 eV photon

energies that can access both outer- and inner-shell electrons.1,2 The e−(aq), metal

cation (M+), anion (A−), and water molecule photoionization processes are expressed

by the following equations:

e−(aq) → H2O(l) + e− , (3.93)

M+(aq) → M2+(aq) + e− , (3.94)
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Figure 3.7: Panels (a) and (b) show the dielectric environment at the liquid vapor in-
terface employing either the spherical cavity [Panel (a)] or the hybrid cavity [Panel(b)]
for the molecular solute, which is an interfacial e−(aq) configuration. The location
of the GDS is shown as a black dotted line, and the solvent dielectric is smoothly
interpolated from the bulk value to vacuum across this region using Eq. 2.33.
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A−(aq) → A(aq) + e− , (3.95)

and

H2O(aq) → H2O
+(aq) + e− , (3.96)

respectively. Figures 1 and 2 of Ref. [1] illustrate the photoemission spectra of liquid

water, Li+(aq), Na+(aq), and Cl−(aq), the latter three of which result from 3 m

solutions of NaCl(aq) and Li(aq). The reported ionization energies obtained from

these spectra are 11.16 eV, 60.4 ± 0.07 eV, 35.4 ± 0.04 eV, and 9.6 ± 0.07 eV for the

1b1 orbital of liquid water, the 1s orbital of Li+(aq), the 2p orbital of Na+(aq), and

the 3p orbital Cl−(aq), respectively. In Ref. [2], the vertical ionization potential of

F−(aq) was remeasured after its value was erroneously assigned to the leading edge

of the 1b1 spectral feature arising from liquid water, and is reported to be 11.58 eV.

In Ref. [1], calculations were performed at the MP2 and CCSD(T) levels of the-

ory in conjunction with an equilibrium PCM approach for incorporating long-range

solvent effects to estimate the ionization potentials for the metal cation and anion

halide systems. For those PCM calculations, a single ion is placed in a spherical

cavity, the size of which is determined self-consistently through the electronic den-

sity at each SCF iteration, and the corresponding equilibrium solvation free energy

is obtained upon convergence. Similarly for the ionized state, a separate, equilibrium

PCM calculation is performed, and the difference between the ionized and union-

ized free energies is compared with the liquid microjet photoelectron measurements.

Additionally, Eq. 3.11 is utilized to compute the classical Born solvation free energy

for each state with the appropriate values of Z and a, and the free energy differ-

ence yields a second estimate to the reported ionization potentials. Following such

a “∆SCF”, where the ionized and unionized states are allowed to fully relax in the
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presence of the dielectric medium, or a “∆Born” approach provides an adiabatic ion-

ization energy, whereas the experiments are probing a vertical ionization energy. The

adiabatic ionization energies using PCM-CCSD(T), PCM-MP2, and the Born model

are 62.23 eV, 62.13 eV, and 60.95 eV for Li+(aq) and 35.45 eV, 35.50 eV, and 35.70 eV

for Na+(aq).1 The MP2 values are converged to within 0.1 eV of the CCSD(T) value

for the cationic systems, which suggests that MP2 is sufficiently capturing electron

correlation effects. Despite the agreement between CCSD(T) and MP2, however, the

computed adiabatic ionization energies for Li+(aq) with these methods are ≈ 2 eV

too large relative to experiment, whereas the Born model provides reasonable agree-

ment to within 0.55 eV. In contrast, equilibrium PCM and the classical Born model

provide ionization potentials in excellent agreement with experiment, differing by at

most 0.3 eV for Na+(aq).1 For the anionic systems, the PCM-CCSD(T), PCM-MP2,

and the Born model adiabatic ionization potentials are 7.8 eV, 8.09 eV, and 8.3 eV for

F−(aq) and 6.85 eV, 6.97 eV, and 7.3 eV for Cl−(aq), which deviate from experiment

by ≈ 3 − 4 eV for F−(aq) and ≈ 2.5 − 3 eV for Cl−(aq).1,2 The poor performance

of the adiabatic ionization energies for the anions suggests that non-equilibrium sol-

vent polarization effects are particularly important for these systems, and that an

adiabatic treatment of the ionization is not appropriate for these systems.

The results of Table 3.1 are a remarkable improvement compared to the data

presented in Refs. [1] and [2]. However, it is interesting to note that the adiabatic

ionization energies of the cations from Ref. [1] were more accurate than for the anions.

Upon vertical ionization of an equilibrated cation M+, the nuclear polarization of

the surrounding water molecules will not have to adjust much to accomodate the

dicationic species M2+ since they have already preferntially oriented around the M+
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Species Expt. / eV
PEQS / eV PCM / eV

Hybrid cavity Spherical cavity SAS cavity
Li+ 60.40 ± 0.07a 60.43 ± 0.55 61.27 ± 0.50 61.13 ± 0.44
Na+ 35.40 ± 0.04a 35.99 ± 0.73 36.35 ± 0.73 36.53 ± 0.50
H2O 11.23b 11.28 ± 0.52 11.51 ± 0.52 11.41 ± 0.45
e− 3.7 ± 0.1 3.51 ± 0.29 3.15 ± 0.32 3.16 ± 0.29
F− 11.58b 11.45 ± 0.40 11.19 ± 0.40 11.27 ± 0.36
Cl− 9.60 ± 0.07a 9.31 ± 0.37 9.23 ± 0.41 9.13 ± 0.41

Table 3.1: VIPs (in eV) at the RI-MP2 level of theory using the basis sets described
in Section 3.4.2 and the non-equilibrium solvation models described in Sections 3.2
and 3.3 for various systems in bulk liquid water. a Ref. [1]. b Ref. [2]. c Ref. [3].

species. A possible explanation for the VIP of Li+ being too large by ≈ 2 eV in

Ref. [1] is the inability of the employed adiabatic PCM approach to account for

changes in electronic polarization. The electric field from the ionized M2+ species is

significantly larger than for the M+ species, and therefore a non-equilibrium treatment

of the electronic polarization is most important.1 Table 3.1 shows that a state-specific,

non-equilibrium treatment of both the nuclear and electronic polarizations provides

VIPs for Li+ and Na+ to be within a few tenths of an eV relative to experiment.

Furthermore, inclusion of two solvation shells of water molecules for these systems,

which is not done in Ref. [1], captures most of the short-range polarization effects at

a high level of theory.

For the halide anions, where the adiabatic solvation techniques of Ref. [1] pro-

vide VIPs that are too small by > 2.5 eV, one can expect that nuclear polarization

effects will be more significant. Prior to ionization of an equilibrated species A−,

the hydrogen atoms of the surrounding water molecules will be oriented towards the
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Species
Hybrid Cavity

Bulk Interface
Li+ 60.43 ± 0.55 60.99 ± 0.50
Na+ 35.99 ± 0.73 36.66 ± 0.69
H2O 11.28 ± 0.52 11.54 ± 0.55
e− (1.6 eVa) 3.51 ± 0.29 3.34 ± 0.44
F− 11.45 ± 0.40 11.07 ± 0.42
Cl− 9.31 ± 0.37 9.05 ± 0.42

Table 3.2: VIPs (in eV) at the RI-MP2 level of theory using the basis sets described
in Section 3.4.2 and the non-equilibrium PEQS method described in Section 3.3 for
various systems at the liquid-vapor interface. The bulk liquid VIPs computed with
PEQS from Table 3.1 are reproduced here for comparison. a Ref. [9]

anion. Upon ionization to generate the species A, the oxygen atoms will preferen-

tially orient towards the neutral species, which will require significant reorientation

of the solvation shells.1 In contrast to the cationic systems, ionization of the anion

will not result in a strong change in the electronic polarization from the surrounding

solvent, and including two solvation shells of explicit water molecules should be suf-

ficient to capture the short-range electronic polarization effects. Table 3.1 illustrates

that the non-equilibrium PCM and PEQS methods are more accurately describing

these nuclear polarization effects, and provide VIPs that are within 0.3 − 0.5 eV of

experiment.

In addition to the bulk liquid VIPs presented above, which served as a metric

for verifying the robustness of the PEQS method against experimental measurements

and the well-established PCM methodology, the non-equilibrium PEQS technique

was employed to compute the VIPs of these species at a liquid-vapor interface. Such

calculations are not possible with standard PCMs due to the constraint of isotropic
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boundary conditions (see Section 3.2). Table 3.2 contains the interfacial VIPs using

the non-equilibrium PEQS method with the hybrid form of ǫ(r) for the solute cavity

as well as employing a smoothing function to interpolate the dielectric from its value

in liquid water to vacuum across the GDS (see Section 3.4.4). Since experimental

values for interfacial VIPs of these species have not yet been measured, except for

e−(aq) which is shown in parentheses and is taken from Ref. [9], the bulk liquid VIPs

computed using PEQS in Table 3.1 are reproduced in Table 3.2 for comparison. The

interfacial VIPs are consistently smaller for anionic species by 0.2 − 0.5 eV and larger

for the cationic species and water molecule by 0.4 − 0.6 eV. At ambient conditions,

the interfacial species likely does not linger around the GDS for long, and since two

solvation shells of explicit water molecules are also included in the calculations, the

short-range solvation structure is similar to that of the bulk species. Furthermore,

the VIP of e−(aq) in liquid and at the liquid-vapor were also reported in Section 2.4.2

using a perturbative approach for the non-equilibrium solvation models. The VIP

of e−(aq) using the improved, state-specific methodology presented in Section 3.3.2

are slightly more accurate relative to the previous perturbative approach and are in

agreement with previous ab initio results.4,11

3.6 Conclusions

We present the details for a newly developed continuum solvation model that

includes non-equilibrium solvent polarization effects and also employs an arbitrary

description of the dielectric environment. The details for constructing dielectric func-

tions ǫ(r) representing bulk liquid and liquid-vapor interfaces are also discussed.
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To examine the effectiveness of this model, the VIPs of alkali metal cations, an-

ion halides, e−(aq), and neutral liquid water were computed with PEQS and also

with non-equilibrium PCM. These systems were chosen because experimental and

computational endeavors have previously measured and calculated the VIPs of these

species with liquid microjet photoelectron spectroscopy and an adiabatic approach

with equilibrium PCM. For these species in liquid water, PEQS provides VIPs that

are in reasonable agreement with both non-equilibrium PCM and experimental mea-

surements, providing confidence that the method is robust. Furthermore, previously

calculated VIPs employing equilibrium PCM neglected important polarization effects

that lead to errors as large as 4 eV in some cases. For our calculations with non-

equilibrium PEQS and PCM, the electronic and nuclear polarization effects from the

solvent are treated on an equal footing, which is necessary for a proper description of

the vertical ionization process, and we reduce the discrepancy between experimental

and calculated VIPs to 0.2 − 1.0 eV. We then use PEQS in conjunction with an inter-

facial description of the dielectric to make predictions for the VIPs at the liquid-vapor

interface. This is not possible with standard PCMs because of the isotropic nature

of the methodology.
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Chapter 4: Numerically Solving Poisson’s Equation

4.1 Finite Difference Method

In Chapters 2 and 3, a variety of methods for incorporating solvent effects into

electronic structure calculations was discussed. For the PEQS method, the charge

densities and electrostatic potentials are discretized on a three-dimensional Cartesian

grid, and O(106) grid points are required to accurately represent these quantities. For

PCMs, the two-dimensional surface of the solute cavity, which separates the quantum-

mechanical solute particles from the classical continuum solvent, is discretized into

tesserae where the ASCs are computed. The required number of tesserae to achieve

satisfactory accuracy, which depends on the solute identity and type of cavitation

scheme, is orders of magnitude smaller by comparison. Therefore, to solve linear equa-

tions such as Eq. 3.52, it is commonplace for PCM methods to obtain the ASCs q by

direct inversion of the polarization weight matrix Q, the cost of which is O(N3
tess) and

O(N2
tess) in computational time and memory, respectively. However, this approach is

prohibitively expensive for the PEQS method, where the memory cost alone is > 7

TB for storing the matrix representation of the discretized Laplacian operator, and

it is necessary to use relaxation techniques such as an iterative conjugate gradient

(CG) procedure. This Chapter focuses on a finite difference discretization scheme for
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Poisson’s equation on large, rectangular Cartesian grids and also on improving the

efficiency of obtaining a numerical solution by exploiting a multigrid method.

Partial differential equations are ubiquitous in science and engineering, and many

techniques have been developed to provide accurate solutions to them. The analytical

solution of these equations is usually available only in asymptotic limits, and therefore

numerical approaches are required for complex problems at realistic length and time

scales. To begin our discussion, consider the generalized three-dimensional version of

Poisson’s equation recast in terms of a polarization charge density that was introduced

in Chapter 2:

∇2ϕtot(r) = −4π

[

ρsol(r)

ǫ(r)
+

∇̂ ln ǫ(r) · ∇̂ϕtot(r)

4π

]

= −4π [ρsol(r) + ρpol(r)] .

(4.1)

For the discussions of this Chapter, Eq. 4.1 is rewritten in its simplest form as

∇2ϕ(r) = ρ(r) , (4.2)

where the factor of −4π is included in ρ(r), the subscript notation signifying the

origin of the particular quantity (i.e. sol, pol, or tot) used previously is suppressed

for clarity, and it is understood that the unknown quantity on the left side of Eq. 4.2

is ϕtot(r), the source of which is ρtot(r) = ρsol(r) + ρpol(r). The Laplacian operator in

three-dimensional Cartesian coordinates is expanded as

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= ρ(x, y, z) for (x , y, z) ∈ Ω

ϕ(x, y, z) = 0 for (x , y, z) ∈ δΩ .

(4.3)

The domain Ω is defined as the region

Ω =
{

[−Lx/2 < x < Lx/2], [−Ly/2 < y < Ly/2], [−Lz/2 < z < Lz/2]
}

(4.4)
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of a rectangular grid centered at the origin O = (0, 0, 0) with side lengths Lx, Ly, and

Lz. The second equality of Eq. 4.3 enforces the Dirichlet boundary condition that

φ(r) → 0 at the domain boundary surface δΩ.

The rectangular grids utilized for the PEQS method can be thought of as three

infinite sets of evenly-spaced parallel lines orthogonal to each other, and the grid

points are defined as the intersections of these lines over the domain Ω The pro-

cess of discretization is to specify {Lx, Ly, Lz} and the corresponding set of spacings

{hx, hy, hz} between the respective parallel lines. In doing this, the complexity of

the problem is reduced, and it is transformed into a set of equations corresponding

to a set of unknowns. Additionally, by mapping the continuous function ϕ(x, y, z)

that contains an infinite amount of information onto a domain of finite size, it is

only necessary to solve the problem on a finite number of grid points. For a uniform

rectangular grid with side lengths {Lx, Ly, Lz} containing {Nx, Ny, Nz} grid points,

the spacings between the grid points in the three Cartesian coordinate directions are

given by hα = Lα/(Nα − 1) for α ∈ {x, y, z}. The Cartesian coordinates are mapped

onto the grid coordinates through xi = −Lx/2 + ihx where i = 0, ..., (Nx − 1) in-

dexes the x−component of the grid point. The mappings are similar for the y− and

z−components using the indices j and k, respectively. The value of the unknown

function ϕ at the grid point (xi, yj, zk) is denoted as ϕi,j,k = ϕ(xi, yj, zk).

To discretize the function derivatives on the grid required for the PEQS method, a

Taylor series expansion is utilized. The power of such an expansion lies in the ability

to relate a value of ϕi,j,k or its derivatives at a particular point {i, j, k} to values at

neighboring grid points. Using a Taylor series expansion, advancing one grid point
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forward or backward in the x−direction is expressed as

ϕi±1,j,k = ϕi,j,k ±
∞
∑

n=0

h(2n+1)
x

(2n+ 1)!

∂(2n+1)ϕ

∂x(2n+1)

∣

∣

∣

i,j,k
+

∞
∑

n=0

h(2n+2)
x

(2n+ 2)!

∂(2n+2)ϕ

∂x(2n+2)

∣

∣

∣

i,j,k
, (4.5)

and it is then possible to construct the first derivative of the electrostatic potential

with respect to perturbations in the x−coordinate:

∂ϕ

∂x

∣

∣

∣

i,j,k
=

± (ϕi±1,j,k − ϕi,j,k)

hx

−
∞
∑

n=1

h(2n)
x

(2n+ 1)!

∂(2n+1)ϕ

∂x(2n+1)

∣

∣

∣

i,j,k

∓
∞
∑

n=0

h(2n+1)
x

(2n+ 2)!

∂(2n+2)ϕ

∂x(2n+2)

∣

∣

∣

i,j,k

(4.6)

with similar expressions for perturbations in the other coordinates. The first term

in parentheses on the right side of Eq. 4.6 is either a forward [+ (ϕi+1,j,k − ϕi,j,k)] or

backward [− (ϕi−1,j,k − ϕi,j,k)] finite difference approximation to the first derivative,

while the remaining terms quantify the truncation error, Ti,j,k:12

∂ϕ

∂x

∣

∣

∣

i,j,k
=

± (ϕi±1,j,k − ϕi,j,k)

hx

+ Ti,j,k , (4.7)

where

Ti,j,k = −
∞
∑

n=1

h(2n)
x

(2n+ 1)!

∂(2n+1)ϕ

∂x(2n+1)

∣

∣

∣

i,j,k
∓

∞
∑

n=0

h(2n+1)
x

(2n+ 2)!

∂(2n+2)ϕ

∂x(2n+2)

∣

∣

∣

i,j,k
. (4.8)

Formally, in the limit that hx → 0, Ti,j,k → 0 and Eq. 4.6 is the exact continuous

derivative of ϕi,j,k. Unfortunately, it is impossible to compute the infinite sums re-

quired for an exact treatment of the derivatives within any discretization scheme, so

it necessary to truncate the summations in Eq. 4.6.

The order of accuracy for the finite difference approximations is determined by

the power of hx in the leading term of Ti,j,k. Both the forward and backward approxi-

mations in Eq. 4.6 exhibit O(hx) error, or, in words, exhibit errors that are first-order

with respect to the grid spacing hx. However, it is possible to systematically improve
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the discretization error by combining terms from the Taylor series expansion and

eliminating terms of lower order. For example, the first derivative of ϕi,j,k can also

be expressed as

∂ϕ

∂x

∣

∣

∣

i,j,k
=

(ϕi+1,j,k − ϕi−1,j,k)

2hx

+ Ti,j,k , (4.9)

which is known as the central difference approximation, and the truncation order

becomes

Ti,j,k = −
∞
∑

n=1

h(2n)
x

∂(2n+1)ϕ

∂x(2n+1)

∣

∣

∣

i,j,k
−

∞
∑

n=1

h(2n+1)
x

∂(2n+2)ϕ

∂x(2n+2)

∣

∣

∣

i,j,k
. (4.10)

The leading term in Eq. 4.10 contains a factor of h2
x, and the central difference ap-

proximation to the first derivative displays O(h2
x) error. A similar analysis can be

performed for the Laplacian operator that is required for solving Poisson’s equation in

Eq. 4.3. Focusing on the second derivative of the electrostatic potential with respect

to x, the central difference finite difference expression is

∂2ϕ

∂x2

∣

∣

∣

i,j,k
=

(ϕi+1,j,k − 2ϕi,j,k + ϕi−1,j,k)

h2
x

+ Ti,j,k , (4.11)

where the O(h2
x) error truncation error is

Ti,j,k = −2
∞
∑

n=1

h(2n)
x

(2n+ 2)!

∂(2n+2)ϕ

∂x(2n+2)

∣

∣

∣

i,j,k
. (4.12)

The three-dimensional Laplacian operator in Eq. 4.3 is rewritten in a discretized form

as

∇2ϕi,j,k =
ϕi+1,j,k − 2ϕi,j,k + ϕi−1,j,k

h2
x

+
ϕi,j+1,k − 2ϕi,j,k + ϕi,j−1,k

h2
y

+
ϕi,j,k+1 − 2ϕi,j,k + ϕi,j,k−1

h2
z

+ Ti,j,k ,

(4.13)

where

Ti,j,k = −2
∑

α∈{x,y,z}

∞
∑

n=1

h(2n)
α

(2n+ 2)!

∂(2n+2)ϕ

∂α(2n+2)

∣

∣

∣

i,j,k
, (4.14)
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and the error order is max
[

O(h2
x),O(h2

y),O(h2
z)
]

. Using Eq. 4.13 in Eq. 4.3 and

omitting the truncation error, the second-order discretized Poisson equation becomes

ϕi+1,j,k − 2ϕi,j,k + ϕi−1,j,k

h2
x

+
ϕi,j+1,k − 2ϕi,j,k + ϕi,j−1,k

h2
y

+
ϕi,j,k+1 − 2ϕi,j,k + ϕi,j,k−1

h2
z

= ρi,j,k

(4.15)

over the domain

Ω =
{

[1 ≤ i ≤ (Nx − 2)], [1 ≤ j ≤ (Ny − 2)], [1 ≤ k ≤ (Nz − 2)]
}

(4.16)

and ϕi,j,k = 0 on the boundary surface

δΩ ≡
{

i = 0 ∧ j = 0 ∧ k = 0 ∧ i = (Nx − 1) ∧ j = (Ny − 1) ∧ k = (Nz − 1)
}

. (4.17)

For the case {hx, hy, hz} → 0, Eq. 4.15 approaches the continuous form of Poisson’s

equation that provides the exact solution ϕexact
i,j,k . For {hx, hy, hz} > 0, the discretiza-

tion error vh
i,j,k is defined as the difference between ϕexact

i,j,k and the finite difference

approximation ϕh
i,j,k:12

vh
i,j,k = ϕexact

i,j,k − ϕh
i,j,k . (4.18)

In general, the discretization and truncations errors are of the same order, but they are

inherently different quantities. The quantity in Eq. 4.18 is reflective of error incurred

from a numerical solution of Poisson’s equation, whereas the truncation error arises

from the choice of finite difference discretization scheme and is independent of the

partial differential equation being solved.

In order to achieve the best possible accuracy for the numerical method, it is es-

sential to employ finite difference schemes that exhibit high-order errors (e.g. O(hm)

for large m). The central difference approximation given in Eqs. 4.9 and 4.13 are
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m n cm,−n cm,0 cm,n

1

1 – – – -1/2 0 1/2 – – –
2 – – 1/12 -2/3 0 2/3 -1/12 – –
3 – -1/60 3/20 -3/4 0 3/4 -3/20 1/60 –
4 1/280 -4/105 1/5 -4/5 0 4/5 -1/5 4/105 -1/280

2

2 – – – 1 -2 1 – – –
2 – – -1/12 4/3 -5/2 4/3 -1/12 – –
3 – 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90 –
4 -1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 -1/560

Table 4.1: The finite difference coefficients for the first and second derivatives (m =
1 or 2 in Eq. 4.19) and the corresponding orders of accuracy. [Note: the order of
accuracy is O(h2n).]

accurate up to O(h2), but higher-order methods are desired. Considering differen-

tiation along the x−coordinate as an example, with similar equations for y− and

z−derivatives, the general mth-order finite difference derivative expression is

∂mϕ

∂xm

∣

∣

∣

i,j,k
=

n
∑

−n

cm,n
ϕi+n,j,k

hm
x

, (4.19)

where cm,n are the finite difference coefficients (see Table 4.1) for the mth-order deriva-

tive with O(h2n
x ) accuracy. For the PEQS implementation within the QChem soft-

ware package,75 eighth-order accurate finite difference schemes for the gradient and

Laplacian operators were utilized. In addition to providing chemically accurate free

energies with O(106) grid points and high-order finite difference schemes, it is desir-

able that the method be computationally affordable. This is a challenging task given

the enormous number of grid points required to sufficiently capture the topological

features of the electronic density. Therefore, to make the PEQS method a useful

computational tool, an efficient numerical technique must be employed. To this end,
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a multigrid method is adapted for use within the PEQS algorithms to accelerate con-

vergence of the CG routines used to solve Eq. 4.3, and that is focus of the following

section.

4.2 Multigrid Method

The process of discretizing Poisson’s equation given by Eq. 4.2 with a high-order

finite difference scheme was presented in the previous section, but it is left to discuss

the manner in which a numerical solution is obtained. By recasting Poisson’s equation

as Eq. 4.2, the numerical problem is reduced to a set of linear equations expressed in

matrix-vector form as

L
hϕh = ρh , (4.20)

where L
h is the Ngrid × Ngrid matrix representation of the discretized Laplacian op-

erator and the vectors ϕh and ρh contain the Ngrid discretized values of ϕh
i,j,k, and

−4πρh
i,j,k,, respectively, subject to the boundary conditions Ω and δΩ. The simplest

approach to solve Eq. 4.20 is to invert L
h and apply

(

L
h
)−1

to ρh, but it was noted

at the beginning of this Chapter that such a route is not practical due to excessive

computational overhead.

As an alternative to a direct matrix inversion approach, a CG routine is imple-

mented to numerically solve Eq. 4.20. The CG computational time and memory

storage requirements scale as O(N2
grid) and O(Ngrid), respectively, which is an order

of magnitude improvement over a direct solver procedure. Furthermore, for the CG

routines, the matrix L
h is never explicitly formed, and only its action on the vector

ϕh is required. For symmetric and positive-semidefinite matrices such as L
h, the CG

routine is guaranteed to converge in Ngrid iterations, which is somewhat unsettling
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given its magnitude. Furthermore, in Chapter 2 of Ref [12], a Fourier analysis of the

discretization error shows that it contains a spectrum of wavelengths λ, the magni-

tudes of which are either short, comparable, or long relative to the grid resolution h.

The CG routine efficiently eliminates discretization error where λ ≃ h, but struggles

with components of the error where λ > h. Thus, iterative techniques such as CG

can effectively smooth out the short wavelength discretization errors, but they do

not perform well for efficiently obtaining a fully converged solution due to the long

wavelength components. To illustrate this, the CG routine was employed to compute

ϕh in Eq. 4.20 to an accuracy of 10−5 a.u. for a single water molecule placed at the

center of a 15 Å cubic Cartesian grid with resolution h = 0.074 Å, which corresponds

to Ngrid = 8615125. Figure 4.1 shows the Euclidean norm of the residual error vector

for the electrostatic potential, the expression of which is

rh = ρh − L
hϕh, (4.21)

as a function of iteration number. The “V-cycle” and “W-cycle” methods will be

addressed later, but for now consider the green points representing a CG routine

that does not utilize a multigrid method. There is a rapid drop in rh during the

first few iterations of the CG method, but over 250 iterations were necessary to

achieve convergence. Furthermore, the inability of the CG routine to eliminate the

long wavelength error components manifests as a broad and slowly decaying shoulder

feature present between ≈ 10-110 iterations.

Before discussing the details of multigrid methods, it is useful to revisit the dis-

cretization error vh
i,j,k that was introduced in Eq. 4.18. Both the residual error vector

rh and the discretization error vector vh are utilized in the multigrid algorithms, and

the relationship between them is described below. Since the charge density ρ(r) is
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known to arbitrary accuracy, it is free of discretization error upon formation of ρh.

Supposing that Eq. 4.20 can be solved exactly for the electrostatic potential, then

ρh = L
hϕexact and ϕh = ϕexact, which implies rh = 0. Using these expressions,

Eq. 4.21 can be written in terms of vh, when the exact solution is not known, as

follows12

rh = L
hϕexact − L

hϕh

= L
h
[

ϕexact − ϕh
]

= L
hvh ,

(4.22)

where we have used Eq. 4.18 to obtain the last equality. Despite never actually

acquiring ϕexact for real applications where h > 0, Eq. 4.22 provides an avenue for

computing vh by solving Poisson’s equation with the residual error vector replacing

the charge density that appears on the right side of Eq. 4.20. Although the importance

of vh may not be clear at the moment, its role in the multigrid method will be

discussed shortly.

The multigrid method seeks to obviate undesired computational effort spent elim-

inating long wavelength error components that results in the slow convergence exhib-

ited by the CG routine in Figure 4.1. For this discussion all grids are assumed to

be cubic, although generalization to rectangular grids is straightforward. A solution

to Eq. 4.20 is desired on a rectangular grid with a fine resolution, and this will be

referred to as the target grid with resolution h. The central idea behind the multigrid

method is to relax the iterative solution on the target grid, where the computational

cost is highest, only a handful of times in order to ensure that the short wavelength

error components are eliminated. Then, rh from the target grid is restricted to a

coarsened grid with half as many grid points along each Cartesian coordinate, the
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Figure 4.1: A comparison of the performance for solving Eq. 4.20 to an accuracy of
10−5 a.u. for a single water molecule placed at the center of a cubic Cartesian grid of
length 15 Å with Ngrid = 8615125 using a standard CG routine (green), a fourth-order
V-cycle multigrid (red), and a fourth-order W-cycle multigrid (blue). The slow decay
of the residual error for the standard CG routine is indicative of λ > h, and using this
method requires over 250 iterations. The two multigrid methods achieve convergence
more rapidly, with the W-cycle method performing best, and both exhibit a nearly
linear decrease of rh with respect to the iteration number that is in stark contrast to
the standard CG routine.
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resolution of which will be denoted H = 2h, to relax the residual error and eliminate

the long wavelength components. For three-dimensions, reducing the number of grid

points by half for each coordinate lessens Ngrid by a factor of ≈ 8, and this trans-

lates to a speedup of ≈ 64 for the computational time on the coarsened grid. After

relaxing rh on the coarsened grid, it can either be restricted to an even coarsener

grid or it can be interpolated back to the target grid where it will be used to update

the solution ϕh. The simplest implementation of a scheme following this procedure

is called a second-order multigrid, and a schematic of it is shown in Figure 4.2 with

an explanation of each step in the following paragraph. The multigrid order refers to

the number of grids with different resolutions that are employed for the procedure: a

second-order multigrid method uses a target grid of resolution h and one coarse grid

of resolution H.

Both the CG routine and multigrid method start with Step 1 of Figure 4.2: an

initial guess for ϕh is specified, and then rh is computed. For the CG algorithm,

rh is used to correct ϕh on the target grid, which in turn is used to create a new

vector of residuals, and this process is repeated until the desired accuracy is obtained.

The resulting solution ϕh is considered fully relaxed on the target grid with error

components reduced below a certain threshold value. For the multigrid method,

ϕh is relaxed on the target grid a small number of times (see discussion of fourth-

order methods below), which is in contrast to fully relaxing the solution, and this

unrelaxed solution is used in Eq. 4.21 to compute rh. The residual error vector is

then restricted from the target grid to a coarsened one resulting in rH , and Step 2 of

Figure 4.2 illustrates this process. The restricted residual error rH is expressed as

rH = IH
h rh , (4.23)
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Figure 4.2: An illustration of a second-order multigrid algorithm employed to solve
Eq. 4.20 is presented. The input is the known source charge density ρh and the
desired output is the electrostatic potential ϕh, both of which are discretized on a
target Cartesian grid of resolution h. Steps 1 and 2 show the formation of the residual
error rh on the target grid, and then its restriction to a coarsened grid. On the coarse
grid, the restricted residual error rH is utilized in a CG routine to form a relaxed
residual error vH in Step 3. The relaxed residual error is then interpolated to the
finer target grid to form vh in Step 4. In Step 5, vh is used to construct a correction
to the solution, and this process is repeated until convergence is reached.
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where IH
h is the matrix representation of the restriction operator. However, IH

h is not

formed in practice, and only its action on rh to generate rH is relevant:

rH
I,J,K =

rh
i,j,k

8

+
1

16

(

rh
i+1,j,k + rh

i−1,j,k + rh
i,j+1,k + rh

i,j−1,k + rh
i,j,k+1 + rh

i,j,k−1

)

+
1

32

(

rh
i+1,j+1,k + rh

i+1,j−1,k + rh
i−1,j+1,k + rh

i−1,j−1,k

)

+
1

32

(

rh
i+1,j,k+1 + rh

i+1,j,k−1 + rh
i−1,j,k+1 + rh

i−1,j,k−1

)

+
1

32

(

rh
i,j+1,k+1 + rh

i,j+1,k−1 + rh
i,j−1,k+1 + rh

i,j−1,k−1

)

+
1

64

(

rh
i+1,j+1,k+1 + rh

i+1,j+1,k−1 + rh
i+1,j−1,k+1 + rh

i+1,j−1,k−1

)

+
1

64

(

rh
i−1,j+1,k+1 + rh

i−1,j+1,k−1 + rh
i−1,j−1,k+1 + rh

i−1,j−1,k−1

)

,

(4.24)

where the notation {I, J,K} is introduced to denote that a different mapping scheme

for the coarse grid coordinates is required. Recall from Section 4.1 that the target

grid coordinates were mapped to the grid points through xi = −Lx/2 + ihx for

i = 0, ..., (Nx − 1) and hx = Lx/(Nx − 1). For the coarse grid, there are half as many

grid points for each coordinate, and therefore the mapping scheme becomes xI =

−Lx/2+IHx for I = 0, ..., (Nx−1)/2 andHx = 2hx. The target grid points {i, j, k} are

mapped to the coarse grid points {I, J,K} through {i, j, k} = {2I, 2J, 2K}. Eq. 4.24

is valid for three dimensions and shows that a particular value of the restricted error

on the coarse grid is an average of the values from all surrounding grid points of the

target grid with a weight determined by its proximity to coarse grid point rH
I,J,K .

In Step 3, after restricting the residual error vector to form rH , an analog of

Eq. 4.22 is solved for the discretization error on the coarse grid vH :

L
HvH = rH . (4.25)
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The discretization error measures the deviation between the exact solution and the

finite difference approximation, and is only indirectly obtainable by solving Eq. 4.22

or 4.25. By fully relaxing vH on the coarse grid, its problematic long wavelength

components are reduced, and since the input quantity rH of Eq. 4.25 has already

relaxed on the target grid, the error components of vH will be eliminated on multiple

length scales. Thus, vH can be used to create a better correction for ϕh as opposed

to using rh on the target grid as in the standard CG routine. However, vH cannot

be used directly to correct ϕh because it is the coarse grid approximation to vh.

Therefore, it is necessary to interpolate vH to the target grid, the process of which is

effectively the inverse of restriction, and this is demonstrated as Step 4 of Figure 4.2.

Interpolating the coarse grid discretization error to form vh on the target grid is

accomplished by applying the matrix representation of the interpolation operator Ih
H

to vH :

vh = Ih
HvH . (4.26)
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The action of the interpolation operator that maps Ih
H to the target grid is expressed

with the following set of equations:

vh
i,j,k = vH

I,J,K

vh
i+1,j,k =

1

2

(

vH
I,J,K + vH

I+1,J,K

)

vh
i,j+1,k =

1

2

(

vH
I,J,K + vH

I,J+1,K

)

vh
i,j,k+1 =

1

2

(

vH
I,J,K + vH

I,J,K+1

)

vh
i+1,j+1,k =

1

4

(

vH
I,J,K + vH

I+1,J,K + vH
I,J+1,K + vH

I+1,J+1,K

)

vh
i+1,j,k+1 =

1

4

(

vH
I,J,K + vH

I+1,J,K + vH
I,J,K+1 + vH

I+1,J,K+1

)

vh
i,j+1,k+1 =

1

4

(

vH
I,J,K + vH

I,J+1,K + vH
I,J,K+1 + vH

I,J+1,K+1

)

vh
i+1,j+1,k+1 =

1

8

(

vH
I,J,K + vH

I+1,J,K + vH
I,J+1,K + vH

I,J,K+1

)

+
1

8

(

vH
I+1,J+1,K + vH

I+1,J,K+1 + vH
I,J+1,K+1 + vH

I+1,J+1,K+1

)

.

(4.27)

The final step of the second-order method is to correct the target grid solution with

vh:

ϕh = ϕh + vh , (4.28)

which is shown as Step 5 of Figure 4.2. Convergence is tested by computing rh using

Eq. 4.21 with the updated solution ϕh from Eq. 4.28, and then comparing the value

of its Euclidean norm to a chosen threshold value. If convergence is achieved, ϕh

is the fully relaxed solution to Poisson’s equation given by Eq. 4.20; otherwise the

multigrid process continues with Step 2 as described above.

The reported results in Chapter 3 from production-quality calculations employed

two modifications of the method presented above. Figure 4.3 illustrates these modi-

fications as flow diagrams for the V-cycle and W-cycle multigrid implementations of

the PEQS method and introduces four parameters γ0, γ1, γ2, and γ3 that control the
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number of CG iterations spent at a particular grid level. Both the V-cycle and W-

cycle methods use a fourth-order scheme that employs four Cartesian grids: a target

grid possessesing the finest resolution h and three levels of coarse grids with increas-

ing resolutions H = 2h, H = 4h, and H = 8h. The quantity γ0 signifies that the

solution on the coarsest grid level is fully relaxed with the CG routine, and the values

for the other parameters are taken from Ref [12] as γ1 = 2, γ2 = 3, and γ3 = γ1 + γ2.

In doing this, the solution ϕh on the target grid, where the computational cost is

largest, is relaxed a total of γ1 + γ2 times for each V-cycle or W-cycle. Furthermore,

a fourth-order scheme will eliminate error components on a variety of wavelengths

that should, in principle, produce better corrections at each grid level and achieve

convergence on the target grid more rapidly (i.e. as few iterations on the grid of finest

resolution as possible).

The fourth-order V-cycle method presented in Figure 4.3 proceeds similarly to the

second-order method described above. At the target grid level, the residual error rh

corresponding to an unrelaxed solution ϕh after γ1 CG iterations is restricted, which

is signified by a downward arrow in Figure 4.3, to the first coarse grid level with

resolution H = 2h, denoted as rH=2h. Using rH=2h in Eq. 4.25, vH=2h is relaxed γ1

times and is stored in memory. This process is repeated twice more: rH=2h is further

restricted to the second and third coarse grid levels forming rH=4h and rH=8h, and at

each of those coarse grid levels, the solution is relaxed γ1 and γ0 times, respectively.

The upward arrows in Figure 4.3 signify interpolation of the discretization error from

a coarser grid to a finer one using Eq. 4.26 (i.e. vH=8h → vH=4h, vH=4h → vH=2h, and

vH=2h → vh) that is then used to update the corresponding solution at a particular

grid level using Eq. 4.28. After forming the appropriate correction at each grid level,
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the solution is further relaxed γ2 times before being interpolated to a finer grid. If the

solution on the target grid level is not converged after the first V-cycle, the process

is repeated until the desired level of accuracy is achieved. The W-cycle follows a sim-

ilar but slightly more sosphisticated procedure as illustrated in Figure 4.3, and the

downward (restriction) and upward (interpolation) arrows carry the same meaning

from the discussion above. Within a W-cycle, the error is restricted and interpolated

between the three coarse grid levels more times to enhance error elimination before

finally computing the solution on the target grid, and the process is repeated until

convergence is reached. Returning to the earlier discussion of Figure 4.1, both the

V-cycle and W-cycle multigrid methods were applied to compute the electrostatic po-

tential on a large Cartesian grid for a single water molecule. The number of iterations

on the target grid is reduced to ≈ 75 and ≈ 35 for the V-cycle and W-cycle meth-

ods, respectively, which is a remarkable improvement over the standard CG routine.

Because of its superior performance, the fourth-order W-cycle multigrid method was

employed for all VIPs reported in Chapter 3 using non-equilibrium PEQS.
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Figure 4.3: The flow diagrams for the fourth-order V-cycle (top) and W-cycle (bot-
tom) multigrid methods are presented. Both methods employ a target grid with the
finest resolution h and three coarse grids of resolutions H = 2h, H = 4h, and H = 8h.
The downward arrows represent restriction of the residual error vector from finer grids
to coarser ones where the discretization error is relaxed γ1 times for the target and
first two coarse grid levels and relaxed fully on the coarsest grid (denoted by γ0).
The discretization error is then interpolated from coarser grids to back to finer ones,
which is shown as an upward arrow, where it is further relaxed γ2 or γ3 times. After
completing the restriction and interpolation operations, convergence of the solution
on the target grid is tested, and the V- and W-cycles are repeated until the desired
accuracy is reached. Figure adapted from Chapter 3 of Ref [12].
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[34] A. Lübcke, F. Buchner, N. Heine, I. V. Hertel, and T. Schultz. Time-resolved

photoelectron spectroscopy of solvated electrons in aqueous NaI solution. Phys.

Chem. Chem. Phys., 12:14629–14634, 2010.

[35] T. Horio, H. Shen, S. Adachi, and T. Suzuki. Photoelectron spectra of solvated

electrons in bulk water, methanol, and ethanol. Chem. Phys. Lett., 535:12–16,

2012.
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