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Abstract

An implementation of Ewald summation for use in mixed quantummechanics/molecular

mechanics (QM/MM) calculations is presented, which builds upon previous work by

others that was limited to semi-empirical electronic structure for the QM region. Un-

like previous work, our implementation describes the wave function’s periodic images

using “ChElPG” atomic charges, which are determined by fitting to the QM electro-

static potential evaluated on a real-space grid. This implementation is stable even for

large Gaussian basis sets with diffuse exponents, and is thus appropriate when the

QM region is described by a correlated wave function. Derivatives of the ChElPG

charges with respect to the QM density matrix are a potentially serious bottleneck in

this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev

grids. The ChElPG charges thus obtained exhibit good rotational invariance even for

sparse grids, enabling significant cost savings. Upon further examination new diges-

tion routines were created to enable an ever more significant cost savings. Detailed

analysis of the optimal choice of user-selected Ewald parameters, as well as timing

breakdowns, are presented.
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CHAPTER 1

Introduction

As computers have become more powerful, scientists have developed new methods

to condensed phase calculations. Unfortunately, the best theory, CCSD(T) (coupled

cluster singles, doubles, and perturbative triples), can only be used to calculate small

systems, about 200 basis functions. Obviously, this method is not appropriate for con-

densed phase calculations. Originially, quantum mechanics could only be performed

on single, small molecules with small basis sets in the gas phase.

The original way that scientists attempted to model condensed phase systems was

through cluster calculations. This entails taking a molecule of interest and surround-

ing it by a single or several solvation layers. Calculations are then performed on this

system in the hope that it will resemble the bulk solvated behavior of the system of

interest. Unfortunately, these calculations usually leave something to be desired.

Figure 1.1 show the radial distribution functions for a chloride-water system of

various sizes. The long range behavior of a radial distribution function should be

constant because the probability of finding a certain atom from another atom is a

constant value. As can be seen in the figure, the long range behavior decreases for

smaller cluster sizes. None of the clusters show a constant value at long range. The
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Figure 1.1: Radial distribution functions for chloride-water(n) systems. For system
I: n = 31, II: n = 63, and n = 127. The top graph is for the chloride-oxygen

distribution and the bottom graph is for the chloride-hydrogen distribution. This
figure is reproduced from ref.1.

lack of smoothness in the curves amounts from the small sample size in the numerical

integration.

Also in ref. ??, the autovelocity correlation function was calculated for the

chloride-water systems. This figure is shown in fig. 1.2. At long times, the au-

tovelocity correlation function should be zero because the velocity at the given time

2



Figure 1.2: Velocity autocorrelation function for chloride-water(n) systems. For
system I: n = 31, II: n = 63, and n = 127. This figure is reproduced from ref.1.

should be decoupled from the velocity at time zero. It can be argued that the sim-

ulation was not run for long enough for the velocities to decouple. The autovelocity

correlation function varies greatly with the system size. Unforutnately, there is no

way to experimentally measure this function, so it raises the question, when has the

bulk limit be reached? With the wide variance in this function with respect to cluster

size, it is not reasonable to assume that the bulk limit has been reached even in the

largest cluster.

The next step is to use a QM/MM (quantum mechanics/molecular mechanics)

calculation. This entails surrounding the quantum mechanical (QM)region with a

molecular mechanics (MM) region. The MM region is computed using Newton’s

laws. It adds long range behavior, but only as far as the region extends. In order to

get proper long range behavior either a very large number of MM atoms must be used
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Figure 1.3: The potential of mean force (PMF) for ammonioum chloride with 1034
TIP3P water molecules. This figure is reproduced from ref.2.

or a periodic boundary condition must be used. Periodic boundary conditions are the

cheapest way to incorporate these long range behaviors. The QM/MM/Ewald method

was originally implemented by Nam, Gao, and York2 for semi-emperical methods.

As can be seen in fig. 1.3, periodic boundary conditions are needed to get the long

range properties correct. Even when a cutoff of 11.5 Åis used for the electrostatics,

the long range behavior of the PMF is incorrect. This figure shows the obvious need

for periodic boundary conditions for long range electrostatic interactions.

Nam, Gao, and York also computed the PMF for methyl phosphate, which is the

simplest example of a phosphoryl in a dissociative phosphoryl transfer mechanism.

Once again a cut-off shows the incorrect long range behavior; however, there is an

accuracy issue as well. In their paper the author’s state that the free energy calculated

from this PMF profile produces a reaction free energy that is in error by as much
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Figure 1.4: The potential of mean force (PMF) for methyl phosphate with 1034
TIP3P water molecules. This figure is reproduced from ref.2.

as 10 kcal/mol. The authors suggest that better semi-emperical methods or better

parametrization are needed. In reality, these measures are not required if one could

actually use a Hartree-Fock based method.

Nam et al.2 implemented their Ewald method by using Mulliken atomic charges

to represent the periodic images of the QM wave function. With an appropriate

correction to the Fock matrix, the self-consistent field (SCF) procedure remains vari-

ational in these periodic QM/MM simulations.2 The method in Ref. 2 was designed

for semi-empirical QM calculations in minimal basis sets, for which Mulliken charges

are well-behaved, but experiences serious convergence problems in larger basis sets.3

To circumvent this problem, and to facilitate periodic QM/MM calculations in arbi-

trary basis sets, we recently reformulated the QM/MM-Ewald method of Ref. 2 to use

charges derived from the electrostatic potential4 (ChElPG) to represent the image
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wave functions.3

ChElPG charges are more expensive to compute than Mulliken charges, and their

derivatives even more so. The derivatives originally posed a problem because they

were overly expensive and the bottleneck of the calculation. Originally an attempt

was made to use Lebedev centered atomic grids (as opposed to the convention rect-

angular grids) to reduce the cost of the ChElPG density derivatives which are needed

for single point energy calculations. Lebedev grids did reduce the computation time

as compared to the rectangular grids; however, they did not eliminate the bottleneck.

Upon development of the gradients, it was discovered that the bottleneck in these

calculations were unsurprisingly found to be the ChElPG position derivatives. Un-

fortunately, due to the non-analytical weighting scheme of the Lebedev algorithm,

position gradients are not possible for these charges. This meant that the gradients

must be computed with the rectangular grid. At that point rewriting of the inte-

gral digestion routine was investigated. This new digestion routine for both density

derivatives and position derivatives of ChElPG charges sped up these routine to the

point where they were no longer the bottlenecks of the calculation.

In this document, a derivation of the analytical expression of the QM/MM Ewald

method for energies and gradients is presented. Their performance is then docu-

mented with timing breakdowns, parallelization across multiple processors, and a

discussion of the optimal user-selected Ewald parameters.
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CHAPTER 2

Ewald Summation Theory

2.1 Electrostatic Energy

Charge–charge interactions decay very slowly with distance and may not become

negligible in a calculation until the distance is on the order of hundreds of nanometers.

As such, the pairwise sum over such interactions is slowly convergent. In fact, it is

only conditionally convergent in a periodically-replicated simulation cell,5 shown in

fig. 2.1, which is the problem that Ewald summation is designed to overcome. This

section provides a brief overview of the Ewald summation technique, which also serves

to introduce the notation that we will use.

Traditional charge-charge Ewald summation splits the pairwise summation into

two parts: a real-space portion, based on a short-range interaction potential whose

pairwise sum converges quickly; and a long-range portion based on a slowly-varying

interaction potential whose pairwise sum converges relatively quickly in reciprocal

space. The Coulomb potential is partitioned using the error function (erf) and com-

plementary error function (erfc), according to

1

r
=

erf(ηr)

r
+

erfc(ηr)

r
. (2.1)
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Figure 2.1: A figure showing periodic replication.

Note that erfc(x) = 1 − erf(x). The Ewald parameter η controls the length scale

(∼ η−1) on which the short-range function erfc(ηr)/r decays, and thus controls how

much of the pairwise Coulomb sum is performed in real space. As η increases, more

of the summation is performed in reciprocal space, whereas setting η = 0 is the same

as performing the pairwise sum entirely in real space.

In the context of Ewald summation, the Coulomb energy in the simulation cell,

Ecell, is traditionally partitioned as

Ecell = Ereal + Eself + Erecip + Echarge + Edipole . (2.2)

The energy components include the real-space energy,

Ereal =
∑

n

NMM∑

j

NMM∑

k>j

qjqk
erfc (η |rjk + nL|)

|rjk + nL| (2.3)

(where rjk = rj − rk), the Coulomb self-energy,

Eself = − η√
π

NMM∑

j

q2j , (2.4)
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and the reciprocal-space energy,

Erecip =
∑

m 6=0

|S(m)|2
2Lπ |m|2

exp

(−π2|m|2
η2L2

)
. (2.5)

In these expressions, L denotes the length of the (cubic) simulation cell, and n and

m are real-space and reciprocal-space lattice vectors, respectively, sums over which

extend to infinity. The quantity S(m) in Eq. (2.17) is known as the structure factor,6

and is discussed below. The quantities qj and qk are point charges, the total number

of which is denoted NMM. For brevity, we have presented these equations for the

case that the unit cell is cubic. This is not a fundamental limitation of the Ewald

formalism, but the non-cubic case would require, splitting the sum over lattice vectors

n in Eq. (2.13) into separate sums over nx, ny, and nz, with lengths Lx, Ly, and Lz

for each side of the simulation cell.

The final two terms in Eq. (2.2) warrant some additional comments. The quantity

Echarge = −Q2
totπ

2L3η2
, (2.6)

is known as the surface charge term, where

Qtot =

NMM∑

j

qj (2.7)

represents the total charge of the simulation cell. Since the Coulomb energy is diver-

gent if Qtot 6= 0, Ewald summation can only be used to compute the Coulomb energy

for a neutral simulation cell, and Echarge represents the energy required to surround a

charged cell with a charge-compensating membrane of opposite charge. (If the cell is

electrically neutral, then Echarge = 0.) Artifacts due to Ewald simulation of a charged

unit cell have been noted,7–9 but will not concern us here.
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The final component of Ecell is the surface dipole term,10

Edipole = − π

(2ε+ 1)L3

NMM∑

j,k

qjqk|rjk|2 , (2.8)

If Qtot = 0 (which is often assumed when this term is discussed in the literature, as

for example in Ref. 11), the Edipole is proportional to the square of the dipole moment

of the simulation cell. In Eq. (2.8), we imagine placing the supercell (the simulation

cell along with all of its periodic images) into a dielectric medium, whose dielectric

constant is denoted by ε in Eq. (2.8).5,10,12 Often, one assumes “tin foil” boundary

conditions (ε = ∞, corresponding to placing the supercell inside of a conductor), in

which case Edipole = 0.

The last bit of notation to explain is the quantity |S(m)|2 in Eq. (2.9). In its most

general form, this quantity is defined as

|S(m)|2 =
NMM∑

j,k

qjqk exp

(
2πi

L
(m · rjk)

)
. (2.9)

Despite the appearance of i =
√
−1, the quantity |S(m)|2 is real, as the squared-

modulus notation indicates, and can be rewritten in a way that makes the real value

obvious:

|S(m)|2 =
NMM∑

j,k

qjqk cos

(
2π

L
(m · rjk)

)
. (2.10)

More often, this quantity is further simplified by separating rj and rk, which allows

the double summation to be recast as two identical single summations, with the

result6

|S(m)|2 =
[
NMM∑

j

qj cos

(
2π

L
(m · rj)

)]2
. (2.11)
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The latter form requires fewer operations to compute, and is therefore preferred. For

QM/MM applications, however, some of the rj vectors correspond to QM atoms and

sum to MM atoms, hence the simplifications leading to Eq. (2.11) will not be possible

and Eq. (2.10) must be used instead.

2.2 Gradients

In the presence of long-range Ewald summation, the mutual Coulomb interaction of

the simulation cell with itself and its periodic images can be partitioned into five

terms. Letting ∇̂k denote the nuclear gradient operator with respect to atom k, we

have

∇̂kEcell = ∇̂k

(
Ereal + Eself + Erecip + Echarge + Edipole

)

= ∇̂k

(
Ereal + Erecip + Edipole

)
.

(2.12)

The second equality follows because ∇̂kEself = 0 = ∇̂kEcharge, since neither Eself nor

Echarge depends on the atomic positions.

The real space energy is3

Ereal =
∑

n

NMM∑

j

NMM∑

k>j

qjqk
erfc
(
η|rjk + nL|

)

|rjk + nL| , (2.13)

where rjk = |rj − rk|. The derivative of this energy is

∇̂kEreal = −
∑

n

NMM∑

j 6=k

qjqk

(
erfc
(
η
∣∣rjk + nL

∣∣)
∣∣rjk + nL

∣∣

+
2η√
π
exp
(
−η2

∣∣rjk + nL
∣∣2)
)

rjk + nL
∣∣rjk + nL

∣∣2 .

(2.14)

The restriction that j 6= k arises from the fact that the case j = k is already excluded

for n = 0 (lest we count an atom’s Coulomb interaction with itself), and for n 6= 0
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and j = k the distance rjk = nL, which is no longer dependent on rk, hence its

gradient in Eq. (2.14) vanishes.

The dipole energy is3

Edipole = − π

(2ε+ 1)L3

NMM∑

j,k

qjqk|rjk|2 (2.15)

and its gradient is

∇̂kEdipole =
4π

(2ε+ 1)L3

NMM∑

j 6=k

qjqkrjk . (2.16)

Both the dipole energy and its gradient vanish under tin-foil boundary conditions

(ε → 0).

The final term in Eq. (2.12) is ∇̂kErecip. The quantity Erecip can be written in the

compact form3

Erecip =
1

2

∑

m 6=0

w(m) |S(m)|2 (2.17)

where

w(m) =

(
L2

V π|m|2
)
exp

(−π2|m|2
η2L2

)
(2.18)

is independent of the atomic positions but

|S(m)|2 =
∑

j,k

qjqk exp

(
2πi

L
m · rjk

)
(2.19)

depends on the atomic positions via rjk. Therefore

∇̂kErecip =
1

2

∑

m 6=0

w(m) ∇̂k|S(m)|2 . (2.20)

The gradient of the structure factor in this equation is

∇̂k|S(m)|2 =
NMM∑

j

4πqjqk
L

sin

(
2π

L
m · rjk

)
m (2.21)
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The restriction j 6= k does not appear because this derivative vanishes identically for

j = k.

The form of the gradient in Eq. (2.21) can always be used, i.e., regardless of

whether qk is an MM point charge or an atomic point charge representing the image

of the QM wave function. If the indices j and k are both MM point charges (so

that summations over these indices run over the same set of atoms, then a more

computationally efficient form of Eq. (2.21) is

∇̂k|S(m)|2 = 4πqk
L

{[
NMM∑

j

qj sin

(
2π

L
m · rj

)]
cos

(
2π

L
m · rk

)

−
[
NMM∑

j

qj cos

(
2π

L
m · rj

)]
sin

(
2π

L
m · rk

)}
m (2.22)

The terms in square brackets are sums over all MM atoms and have no dependence

on rk. These sums can be computed once and stored, eliminating the need for a

double sum over atomic indices. This makes Eq. (2.22) preferable to Eq. (2.21) for

MM/MM interactions. For the interactions between a QM atom k and all MM atoms

j, Eq. (2.21) will be used instead.
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CHAPTER 3

QM/MM and PBC

The QM/MM-Ewald technique introduced by Nam et al.2 is based upon the reason-

able assumption that the simulation cell is large compared to the spatial extent of

the QM wave function. As such, a large MM “buffer” screens the interaction between

the electron density and its periodic images, so collapsing this density onto point

charges for the purpose of computing these long-range Coulomb interactions should

not engender serious error. Once the density is reduced to point charges, classical

Ewald summation can be applied. In this section, we describe the basic theory behind

obtaining PBC corrections to the SCF energy and Fock matrix. In developing this

theory, we are concerned only with electrostatic interactions, as other QM/MM in-

teractions such as non-bonded Lennard-Jones interactions operate on shorter length

scales and PBC implementations based on smooth cutoffs should be fine. Thus, “to-

tal” energy will refer to the QM electronic structure energy plus all MM and QM/

MM electrostatic interactions; other MM interactions can simply be tacked on to the

formulas appearing below.
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3.1 Energy corrections

We first write the total QM/MM supersystem (SS) energy, which includes the inter-

actions between all periodic images, as

Etotal = ESS
QM-QM + ESS

QM-MM + ESS
MM-MM . (3.1)

The final term, ESS
MM-MM, can be evaluated using a standard, classical Ewald summa-

tion and need not be discussed further. It is helpful to partition the other two terms

into interactions between atoms in the simulation cell with other atoms in the simu-

lation cell, which we will call the real-space (RS) interactions, and also interactions

between the simulation cell and atoms contained in the periodic images (PI). The SS

energies in Eq. (3.1) can thus be broken down into RS and PI parts, shown pictorially

in fig. 3.1:

Etotal = ERS
QM-QM +∆EPI

QM-QM + ERS
QM-MM

+∆EPI
QM-MM + ESS

MM-MM . (3.2)

The term ERS
QM-QM (interaction between QM atoms in the simulation cell with other

QM atoms in the simulation cell) is simply the result of some QM electronic structure

calculation. The term ERS
QM-MM results from some QM/MM interaction scheme; note

that Eq. (3.1) tacitly assumes an “additive” QM/MM scheme, as opposed to a “sub-

tractive” scheme such as ONIOM.13 For the latter, there are no QM periodic images

so Ewald summation involves the MM system only, and is therefore straightforward.
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Figure 3.1: A color coded pictorial representation, where the orange oval represents
the QM region, for all interactions included in Etotal.

The remaining terms in Eq. (3.2) are calculated as differences between a SS cal-

culation and a RS calculation,

∆EPI = ESS − ERS . (3.3)

In particular, ∆EPI
QM-MM is obtained using a QM region embedded in a periodically-

replicated supercell of MM regions, but without replication of the QM region. This

interaction energy can be decomposed into real- and reciprocal-space parts, the latter

of which will involve only MM atoms provided that the QM region is fully enveloped

by the short-range part of the Coulomb potential in Eq. (2.1). The term ∆EPI
QM-QM

in Eq. (3.2) is obtained from a periodic array point charges obtained from collapsing

the QM electron density onto atom-centered charges, as described below and shown

in fig. 3.2.
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Figure 3.2: A pictorial representation of a replicated QM/MM simulation cell,
where the blue oval represents the QM region (second image), and its collapse onto
point charges (third image). Note that any circle not surrounded by the QM region

is a point charge.

Applying the fundamental assumption that the QM images are far apart and

screened by a wide buffer of MM charges, the calculation effectively reduces to a

series of pairwise Coulomb interactions between the atoms in the simulation cell and

those contained in the periodic images. It is therefore expected that ∆EPI
QM-QM and

∆EPI
QM-MM will have similar forms:

∆EPI
QM-QM =

1

2

NQM∑

α,β

QαQβ ω(rαβ) (3.4)

and

∆EPI
QM-MM =

NQM∑

α

NMM∑

j

Qαqj ω(rαj) . (3.5)

For clarity, we use Qα to denote the partial charge on a QM atom and qj to denote the

partial charge on an MM atom. As in standard Ewald summation, both quantities

can be described by a potential function, ω(r). For a neutral simulation cell (Qtot = 0)
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with tin-foil boundary conditions (ε = ∞), this potential is

ω(rαβ) =
∑

m 6=0

e−π2|m|2/η2L2

Lπ|m|2 cos

(
2π

L
(m · rαβ)

)
(3.6)

+
∑

n 6=0

erfc (η |rαβ + nL|)
|rαβ + nL| − erf (η |rαβ|)

|rαβ|

In obtaining this result, the form of |S(m)|2 in Eq. (2.10) has been used in the

reciprocal (first) term in Eq. (3.6). The reason to prefer this form, as opposed to that

in Eq. (2.11), is that the latter requires that each of the indices runs over the same

sum, which is not the case for QM/MM interactions where one of the summation

indices in Eq. (2.9) represents QM atoms while the other represents MM atoms.

The potential in Eq. (3.6) warrants some comments. First, the term containing a

sum over m 6= 0 is directly analogous to the reciprocal term in Eq. (2.17), whereas

the erf and erfc terms are analogous to the real space term in Eq. (2.13). The different

appearance of the erf term (representing the n = 0 vector) is due to the fact that

an energy ERS
real, with a Coulomb potential of 1/r, has been subtracted out of ESS

real

with a Coulomb potential of erfc(ηr)/r, to afford ∆EPI
real, with a Coulomb potential

of − erf(ηr)/r.

It should also be noted that nothing analogous to the self-energy is immediately

apparent in Eq. (3.6). In the QM-QM PI correction [Eq. (3.4)], there is no restriction

on the sum and so α = β is allowed. For α = β, the Coulomb interaction is given by

lim
r→0

erf (ηr)

r
=

2η√
π
, (3.7)

which is in fact the self term. Furthermore, there is no self energy corresponding to

the QM-MM PI correction [Eq. (3.5)], since the atom types in the two summations
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are different.

Finally, it is worth noting that the potential in Eq. (3.6) differs from the Ewald

potential given by Nam et al.,2 insofar as the term in Eq. (3.6) containing the sum

over n 6= 0 is absent in Ref. 2. The authors of Ref. 2 assume that the Ewald parameter

η has been chosen such that only the simulation cell must be considered in the real-

space portion of the Ewald sum. This is a reasonable assumption but is not assumed

a priori in this work, on the basis that cost considerations for more general QM/MM

calculations might favor a different partition of the effort. In the case of a charged

system, the charge term [Eq. (2.6)] is included in the MM Ewald summation. We

henceforth assume tin-foil boundary conditions and therefore omit the dipole term in

Eq. (2.2).

3.2 Fock matrix corrections

The corrections above must now be incorporated into the Fock matrix, which is

computed by taking the derivative of the energy with respect to the density matrix.

Using the chain rule, this correction can be expressed as

∆FPI
µν ≡ ∂∆EPI

∂Pµν

=

NQM∑

α

∂∆EPI

∂Qα

∂Qα

∂Pµν

(3.8)

where ∆EPI = EPI
QM-QM + EPI

QM-MM. The energy derivative with respect to an atomic

point charge can be evaluated directly from Eqs. (3.4) and (3.5):

∂∆EPI

∂Qα

=

NQM∑

β

Qβ ω(rαβ) +

NMM∑

j

qj ω(rαj) . (3.9)

The cost of evaluating Eq. (3.9) can be significantly reduced by recognizing that

the Ewald potential depends upon the positions of the atoms (both QM and MM),
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but not on any details of the electronic structure. Those details are encoded into

the QM charges Qβ, which are the only quantities in Eq. (3.9) that change from one

SCF cycle to the next. Thus, we can pre-compute the Ewald potential at the relevant

interatomic distances prior to entering the SCF iterations. In anticipation of doing

this, let us define a column vector

ω
α
=
[
ω(rα1) ω(rα1) · · · ω(rαNQM

)
∑NMM

j qj ω(rαj)
]†

. (3.10)

The final entry in this vector is identical to the second term in Eq. (3.9). Next, define

another column vector

Q =
[
Q1 Q2 · · · QNQM

1
]†

. (3.11)

(Save for the final entry, the vector Q consists simply of the QM atomic charges.)

Using this new notation, we can rewrite Eq. (3.9) as

∆FPI
µν =

NQM∑

α

∂Qα

∂Pµν

Q†
ω

α
. (3.12)

It remains to evaluate the charge derivatives ∂Qα/∂Pµν . The form of these deriva-

tives depends upon the charge scheme that is used (Mulliken, Löwdin, ChElPG4,

etc.). For Mulliken or Löwdin charges, these derivatives are quite simple. The Mul-

liken atomic charges, for example, are defined as

Qα = Zα −
∑

µ∈α
ν

PµνSµν , (3.13)

hence the requisite derivatives are nothing more than overlap matrix elements:

∂Qα

∂Pµν

= −Sµν δµ∈α . (3.14)
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Here, δµ∈α is a Kronecker delta-type symbol signifying that both atomic orbital (AO)

basis function µ must be centered on atom α, else the derivative is zero by definition.

It is not terribly surprising to discover that the Mulliken charges are unstable in

extended basis sets, and because in this context these charges make their way into

the Fock matrix, we find that the Mulliken-based QM/MM-Ewald scheme is difficult

or impossible to converge in extended basis sets. (Data to this effect are provided in

Section 6; we encounter similar difficulties in attempting to use Mulliken or Löwdin

charges in the context of the self-consistent XPol charge-embedding procedure.14)

ChElPG charges (shown in Chapter 5), on the other hand, appear to be stable and

robust, but the derivatives ∂Qα/∂Pµν are far more costly in the ChElPG case. These

derivatives will be given explicitly below, following a discussion of the basic theory

behind ChElPG charges.

3.3 Position derivative of the Ewald energy and potential

The energy of a periodically replicated QM/MM system can be expressed as3

Etotal = ERS
QM-QM + ERS

QM-MM + ESS
MM-MM +∆EPI (3.15)

where Etotal is total energy of the simulation cell, ERS
QM-QM and ERS

QM-MM are the simu-

lation cell QM and QM/MM energies, respectively, in real space (RS), and ESS
MM-MM is

the MM energy for the supersystem (SS), meaning the simulation cell and its periodic

images. Lastly, ∆EPI is the energy of interaction between the simulation cell and the

periodic images. Assuming a neutral system with tin-foil boundary conditions, this
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final term can be written

∆EPI =

NQM∑

α

Qα


1
2

NQM∑

β

Qβ ω(rαβ) +

NMM∑

j

qj ω(rαj)


 (3.16)

where Qα is the charge on a QM atom and qj is the charge on an MM atom. This

results in a Fock matrix correction, ∆FPI
µν ≡ ∂(∆EPI)/∂Pµν . This correction is2,3

∆FPI
µν =

NQM∑

α

∂Qα

∂Pµν




NQM∑

β

Qβ ωαβ +

NMM∑

j

qj ωαj


 . (3.17)

The quantity ωαk ≡ ω(rαk) is the real-space Ewald potential,3

ω(rαk) =
∑

am 6=0

cos(2π am · rαk)

V π|am|2
e−π2|am|2/η2

+
∑

bn 6=0

erfc (η |rαk + bn|)
|rαk + bn|

− erf(η |rαk|)
|rαk|

.

(3.18)

The gradient of ∆EPI with respect to a nuclear displacement is different depending

upon whether it is a QM or an MM atom that is displaced. We first consider a

displacement, xγ. Note that the MM charges are fixed but the QM charges are not,

and we have

∂∆EPI

∂xγ

=

NQM∑

α

Qα Qγ
∂ωαγ

∂xγ

(1− δαγ/2) +

NMM∑

j

qj Qγ
∂ωγj

∂xγ

+

NQM∑

α,β

∂Qα

∂xγ

Qβ ωαβ

+

NMM∑

j

NQM∑

α

qj
∂Qα

∂xγ

ωαj . (3.19)

In practice, we can eliminate the δαγ term since the dependence on nuclear coordinates

vanishes for α = γ, since rαα = 0. Thus

∂∆EPI

∂xγ

=

NQM∑

α

QαQγ
∂ωαγ

∂xγ

+

NMM∑

j

qjQγ
∂ωγj

∂xγ

+

NQM∑

α

∂Qα

∂xγ




NQM∑

β

Qβ ωαβ +

NMM∑

j

qjωαj


 .

(3.20)
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To obtain the derivative of ∆EPI with respect to an MM coordinate xk, the MM

charges come from a force field and are independent of the atom position. The QM

charges are dependent on the MM atom positions because the charges are dependent

on the density matrix. Thus, yielding

∂∆EPI

∂xk

=

NQM∑

α

qk Qα
∂ωαk

∂xk

+

NQM∑

α

∂Qα

∂xk




NQM∑

β

Qβ ωαβ +

NMM∑

j

qjωαj


 . (3.21)

Expressions for the charge derivatives ∂Qα/∂xγ are not universal and depend upon

how the QM charges are obtained from the wave function. These derivatives will be

discussed later. The derivative of the Ewald potential is universal, and we have

∇̂γ ωγk =

[
erf (η |rγk|)

|rγk|
− 2η√

π
e−η2|rγk|2

]
rγk

|rγk|2
− 2π

∑

am 6=0

ω(am) sin(2π am · rγk) am

−
∑

bn 6=0

(
erfc(η |rγk + bn|)

|rγk + bn|
+

2η√
π
e−η2|rγk+bn|2

)
rγk + bn

|rγk + bn|2
(3.22)

where we have opted for the use of Eq. (2.21) in the reciprocal term. The derivative

with respect to a MM nuclear coordinate is obtained easily by recognizing that

∇̂γ ωγk = −∇̂k ωγk . (3.23)

3.4 Position derivative of the SCF energy

The derivative of the Hartree-Fock energy εHF is

∂εHF

∂x
=
∑

µν

Pµν
∂Hµν

∂x
+

1

2

∑

µνλσ

PµνPλσ
∂

∂x
〈µν||λσ〉+ ∂Vnuc

∂x
+
∑

µν

∂Pµν

∂x
Fµν (3.24)

where the Fock matrix elements are

Fµν = Hµν +
∑

λσ

〈µν||λσ〉Pλσ , (3.25)
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and Pµν represents a density matrix. Equation (3.24) is adaptable to DFT in a

straightforward way, so for brevity we do not include the exchange-correlation term

in the derivation that follows. As shown long ago,15 Eq. (3.24) is needlessly expensive

because the density matrix derivatives ∂Pµν/∂x can be eliminated in favor of the

energy-weighted density matrix,

Wµν =
∑

i

εi c
∗
iµ cνi , (3.26)

so that

∂εHF

∂x
=
∑

µν

Pµν
∂Hµν

∂x
+

1

2

∑

µνλσ

PµνPλσ
∂

∂x
〈µν||λσ〉+ ∂Vnuc

∂x
−
∑

µν

Wµν
∂Sµν

∂x
. (3.27)

This transformation relies on two facts:

∑

ν

Fµνcνi =
∑

ν

εiSµνcνi (3.28)

and
∑

µν

c∗iµSµνcνj = δij . (3.29)

Let us use the chain rule to write the charge derivatives ∂Qα/∂xγ as

∂Qα

∂xγ

=
∑

µν

∂Qα

∂Pµν

∂Pµν

∂xγ

+
∑

M

∂Qα

∂M

∂M

∂xγ

. (3.30)

Here, M represents any quantity on which Qα depends, save for the density matrix.

Mulliken charges, for example, depend on the overlap matrix elements Sµν , hence

M = Sµν in that case. These “M-derivatives” will be evaluated below, for both

Mulliken and ChElPG chargs. In the general case, we can use Eq. (3.30) to rewrite
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Eq. (3.20) as

∂∆EPI

∂xγ

=

NQM∑

α

QαQγ
∂ωαγ

∂xγ

+

NMM∑

j

qjQγ
∂ωγj

∂xγ

+

NQM∑

α

∑

µν

∂Qα

∂Pµν

∂Pµν

∂xγ




NQM∑

β

Qβωαβ

+

NMM∑

j

qjωαj

)
+

NQM∑

α

∑

M

∂Qα

∂M

∂M

∂xγ




NQM∑

β

Qβωαβ +

NMM∑

j

qjωαj


 . (3.31)

Note that the third term in this equation looks like the Ewald Fock matrix correction

[Eq. (3.17)] contracted with the density matrix derivative ∂Pµν/∂xγ:

NQM∑

α

∑

µν

∂Qα

∂Pµν

∂Pµν

∂xγ




NQM∑

β

Qβωαβ +

NMM∑

j

qjωαj


 =

∑

µν

∂Pµν

∂xγ

∆FPI
µν . (3.32)

In the gradient of the total energy, ∂(εHF + ∆EPI)/∂xγ, this term is simply added

to the final term in Eq. (3.24), and is eventually folded into the term containing the

energy-weighted density matrix, since the Fock matrix for the periodic calculations

has matrix elements Fµν +∆FPI
µν . Therefore, the final gradient expression is obtained

by combining Eqs. (3.24) and (3.31) and using Eq. (3.32):

∂
(
εHF +∆EPI

)

∂xγ

=
∑

µν

Pµν
∂Hµν

∂xγ

+
1

2

∑

µνλσ

PµνPλσ
∂

∂xγ

〈µν||λσ〉+ ∂Vnuc

∂xγ

−

∑

µν

Wµν
∂Sµν

∂xγ

+

NQM∑

α

QαQγ
∂ωαγ

∂xγ

+

NMM∑

j

qjQγ
∂ωγj

∂xγ

+

NQM∑

α

∑

M

∂Qα

∂M

∂M

∂xγ




NQM∑

β

Qβωαβ +

NMM∑

j

qjωαj


 . (3.33)

There are three extra terms as compared to the traditional Hartree-Fock gradient.

Derivatives of the Ewald potential can be evaluated analytically [Eq. (3.22)]. Deriva-

tives of the QM atomic charges, which appear in the final term, are discussed below.
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The MM derivative is simpler. When an MM atomic coordinate xk is displaced,

the analogue of Eq. (3.30) for the QM charge derivatives reads

∂Qα

∂xk

=
∑

µν

∂Qα

∂Pµν

∂Pµν

∂xk

. (3.34)

The “M-derivative” term in Eq. (3.30) is absent, because quantities such as Sµν (and

other quantities required to evaluate the ChElPG charges) do not depend on the MM

atomic positions. Displacement of xk appears in dεHF/dxk in the form dHµν/dxk [see

Eq. (3.27)] This results in a derivative

∂
(
εHF +∆EPI

)

∂xk

=
∑

µν

Pµν
∂Hµν

∂xk

+
∂Vnuc

∂xk

+

NQM∑

α

qkQα
∂ωαk

∂xk

. (3.35)

3.5 Mulliken Charge Derivatives

Mulliken atomic charges were used in the original, minimal-basis QM/MM-Ewald

method of Ref. 2, but perform poorly (sometimes leading to SCF convergence failure)

in larger basis sets, or large QM regions.3 For completeness, however, we consider the

Mulliken case here, as it provides a gentle introduction to the more difficult ChElPG

case that is considered in Section 5.4.

What is needed is to evaluate the “M-derivatives”
∑

M(∂Qα/∂M)(∂M/∂xγ), for

all independent variables upon which Qα depends except Pµν , as that dependence is

already folded into the energy-weighted density matrix. Mulliken charges are defined

as

Qα = Zα −
∑

µ∈α
ν

PµνSµν , (3.36)
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so the independent variables are the Pµν and the Sµν . Therefore the M-derivative is

∑

M

∂Qα

∂M

∂M

∂xγ

=
∑

µν

∂Qα

∂Sµν

∂Sµν

∂xγ

= −
∑

µ∈α
ν

Pµν
∂Sµν

∂xγ

.
(3.37)
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CHAPTER 4

Parameters for the Ewald sums

In addition to the charge scheme, the user-controlled Ewald parameter, η, can greatly

influence the calculation time. This parameter controls how much of the pairwise

sum is performed in real space, and thus controls how many vectors are required to

converge the vector summations in the real-space term [Eq. (2.13)] and the reciprocal-

space term [Eq. (2.17)]. Both summations converge as Gaussian functions.5 Following

Ref. 5, we thus choose a constant, C, such that exp(C2) is within a specified conver-

gence threshold. We take this to be the same as the threshold (drop tolerance) used

for the one- and two-electron integrals,

C =
√

−ln (Integral Threshhold) . (4.1)

Unless otherwise stated, the integral threshhold will be set to 10−8 here, the default

integral threshhold for a single point energy calculation in Q-Chem.

In real space, the argument of the complimentary error function [see Eq. (2.13)]

controls the convergence, hence we want

exp(C2) ≤ exp
(
η2|rαβ + nmaxL|2

)
, (4.2)

28



where the vector nmax = (nmax, 0, 0) specifies how many periodic boxes one must use

in the calculation to achieve a required level of accuracy. This is equivalent to figuring

out how far away two atoms must be before their pairwise interaction contributes less

than the integral threshold. Thus we obtain

C ≤ η|rαβ + nmaxL| . (4.3)

Each of the components of rαβ must be less than the box length, L. Replacing nmax+1

with nmax for convenience, one obtains

C ≤ η|nmaxL| = η nmaxL (4.4)

and therefore

nmax = ceiling

(
C

ηL

)
. (4.5)

Equation (4.5) specifies the largest vector that must be included in the real-space

sum in order to achieve a certain drop tolerance. If the integers nx, ny, nz are run

from −nmax to nmax, however, there are unnecessary vectors that are included in this

“supercube”. The farthest distance that needs to be considered is actually |nmax|,

so we need include only those lattice vectors satisfying the condition |n| ≤ |nmax|.

Enforcing the condition creates a “supersphere” where some lattice vectors from the

corners of the supercube have been excluded. Note from Eq. (4.5) that nmax = 0

when C/ηL < 1/2. This condition leads to a cutoff radius, Rc = C/η < L/2, so that

all significant interactions are included using the minimum-image convention (cutoff

at half the box length) in the real-space sum. In this case, the real-space sum is

calculated only within the simulation cell, with the result that the n 6= 0 term in
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Eq. (3.6) is zero. This is in accordance with the assumption made by Nam et al.2

and is often the case for large simulation cells.

The requisite number of reciprocal-space vectors m is calculated in the same

manner. Since the argument of the exponential function in Eq. (2.17) is π2|m|2/η2L2,

this quantity replaces (η |rαβ + nmaxL|)2 in an inequality similar to Eq. (4.2), with

the result

mmax = ceiling

(
CLη

π

)
. (4.6)

Each of the elements in m runs from −mmax to mmax with 0 excluded and subject to

a constraint that |m| < |mmax|.

Now it is possible to determine the exact number of vectors that will be needed

for the calculation, given a particular value of η. The number of total vectors in the

supercube is

vtot = (2nmax + 1)3 + (2mmax + 1)3 . (4.7)

The number of total vectors that satisfy the constraints (i.e., the supersphere) is not

so easily computed but can be determined through recursion relations. In order to

find these numbers the reader should consult Sloane’s handbook of integer sequences,

(specifically, series A000605).16,17

In this work, we employ standard Ewald summation as opposed to the particle-

mesh Ewald technique18,19 that is more common in strictly classical simulations. As

such, the cost of both the real- and reciprocal-space sums scales quadratically with

the number of vectors. As such, the minimum number of vectors leads to the fastest
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calculation and the value of η that affords this minimum is the optimal Ewald pa-

rameter. This value can be determined by numerical solution of the equation

2CL3η3√
π3

+
L2η2√

π
− Lη − 2C = 0 . (4.8)

Alternatively, one may build a table where one finds the number of total vectors in

the supercube and then chooses the η value corresponding to the smallest number of

vectors.
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CHAPTER 5

ChElPG charges

5.1 Basic theory

By construction, the ChElPG atomic charges minimize, in a least-squares sense, the

difference between the QM electrostatic potential (evaluated on a grid) and the elec-

trostatic potential derived from a set of atom-centered point charges (evaluated on

the same grid), subject to the constraint that the atomic charges must sum to the

molecular charge.4 A complete discussion of the ChElPG formalism, using the same

notation that is used here, can be found in Ref. 20. Briefly, the ChElPG charges are

given by

QA =

NMM∑

B

eB
(
G−1

)
BA

(5.1)

−




NMM∑
BC

eB (G−1)BC −Qtot

NMM∑
BC

(G−1)BC




NMM∑

B

(
G−1

)
BA

where

eB =

Ngrid∑

k

wk

|rk − rB|

(
NMM∑

J

ZJ

|rk − rJ |
−

Nbasis∑

µν

(Ik)µν Pµν

)
(5.2)

and

GAB =

Ngrid∑

k

wk

|rk − rA| |rk − rB|
. (5.3)
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The indices A,B, . . . index nuclei and k indexes the grid points on which the elec-

trostatic potential is evaluated; the quantity wk is the weight assigned to the kth

grid point. We have previously introduced a weighting scheme that ensures that the

charges are continuous functions of the atomic coordinates,14,20 although a differ-

ent weighting scheme, a first attempt at a speedup, will be used in this section, as

described below. Finally, the quantity

(Ik)µν =

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉

r

(5.4)

is a charge–density Coulomb integral. (The subscript r indicates that the electron

coordinate r is the integration variable.)

Historically, the nature of the grid on which to evaluate the electrostatic potential

was a source of debate, with various incarnations of the least-square fitting algorithm

using different types of grids. One early algorithm21 (originally called “ChElP”) used

a set of concentric, atom-centered spherical grids. However, the charges thus obtained

from were shown to be sensitive to molecular conformation,4 which was problematic

because a main goal was to use ChElP charges to parameterize force fields. The

ChElPG algorithm4 (so called to distinguish it from ChElP) consists of replacing

these spherical grids with a Cartesian grid, deleting points within the van der Waals

region in order to fit to the long-range parts of the electrostatic potential. Although

this reduced the conformational dependence of the charges, it was later demonstrated

that atom-centered grids (including those with icosahedral symmetry) lead to far

better rotational invariance of the charges, as compared to Cartesian grids.22
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In the present context, contraction of the integrals (Ik)µν with certain quantities

that arise in the construction of ∂Qα/∂Pµν proves to be a serious bottleneck, and it

therefore behooves us to reduce the number of grid points (Ngrid) as much as possible.

Since atom-centered Lebedev grids of octahedral symmetry are already ubiquitous in

Gaussian-orbital-based DFT codes, this was the natural choice to explore.

5.2 Lebedev grid implementation

This section documents our implementation of Eq. (5.1) using atom-centered Lebedev

grids. (Once the grid is constructed, this works like any other ChElPG algorithm,

but there are some numerical aspects worthy of discussion.) It could be argued

that the charges thus obtained should no longer be called “ChElPG” charges, since

the only difference between the ChElP and ChElPG algorithms is how the grid is

constructed. However, the ChElPG acronym is widely known and emphasizes the fact

that there is a grid-based aspect to the calculation. Thus, we refer to our algorithm

as a Lebedev grid-based implementation of the ChElPG charges. We will retain some

of the terminology from the original paper on ChElPG charges.4 Namely, the head

space refers to the distance from the van der Waals (vdW) surface to the outermost

radial shells that constitute the grid. (There are no points within the vdW surface.)

Also, let ∆x denote the spacing between radial shells. These two parameters, along

with the number of Lebedev points per shell (Np), serve to define the ChElPG grid.

The Lebedev grid with Np points on the unit sphere is constructed on each atom and
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Figure 5.1: Plot of the Lebedev grid for H2 in plane containing the internuclear axis.
(a) Actual grid using Np = 302 points per radial shell and nine shells per atom. (b)
Number of grid points contained in each 0.25 Å × 0.25 Å cell, equivalent to the

contribution of each cell to the least-squares fit when all the weights wk are identical.
(c) Each cell’s contribution when a simple weighting scheme (wk = 1/nk) is used.

then its radius is scaled by a factor

αi = rvdW + (i− 1)∆x (5.5)

for the ith shell. Radial shells are constructed from rvdW out to the head space

distance. Aside from the symmetry of the grids, this procedure is similar to that used

by Spackman22 to evaluate Cartesian versus atom-centered grids, and also to one of

the original ChElP algorithms.21

Although it is possible to perform a weighted least squares fit of the electrostatic

potential using the weights wk in Eq. (5.1), the original ChElPG paper of Breneman

and Wiberg4 sets all wk = 1, and the authors in fact emphasize the importance of

using an isotropic grid to reduce conformational dependence of the charges. The use

of atom-centered Lebedev grids leads to a highly anisotropic coverage of real space, as
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is evident from the Lebedev grid for H2, which is shown in Fig. 5.1(a). In Fig. 5.1(b),

we plot the number of grid points contained in each 0.25 Å × 0.25 Å cell, which

shows how each such cell contributes to the ChElPG fit when all wk = 1. Given the

cylindrical nature of the point density we expect radial anisotropy, which is readily

apparent in Fig. 5.1(b), but what is perhaps less intuitive is the fact that there is also

anisotropy orthogonal to the bonding plane. The latter arises from the presence of

“seams” where the two atom-centered grids meet.

To ameliorate this anisotropy, we propose a simple weighting scheme in which

wk = 1/nk, where nk is the number of grid points contained within the cell where

the point k resides. Figure 5.1(c) shows that this scheme significantly reduces the

anisotropy of the grid.

5.3 Density derivative of the charges

As compared to the Mulliken or Löwdin charge scheme, the derivatives ∂Qα/∂Pµν

are significantly more complicated in the case that Qα is a ChElPG atomic charge.

To evaluate these derivatives in the ChElPG case, note that eB is the only quantity

in Eq. (5.1) that is dependent on Pµν . Using the notation of Herbert et al.,20

∂QA

∂Pµν

= −
NMM∑

B

(
G−1

)
BA

Ngrid∑

k

wk

|rk − rB|
(Ik)µν (5.6)

+ γA

NMM∑

BC

(
G−1

)
CB

Ngrid∑

k

wk

|rk − rC |
(Ik)µν
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where

γA =

NMM∑
B

(G−1)BA

NMM∑
BC

(G−1)BC

. (5.7)

The quantity (Ik)µν in Eq. (5.6) contains the integrals in this derivative; therefore, it

is desirable to rearrange the derivative in such a way so that it needs to be calculated

only once for each atom. Defining

λAk =

NMM∑

B

(
G−1

)
BA

wk

|rk − rB|
, (5.8)

we obtain the following compact result:

∂QA

∂Pµν

=

NMM∑

B

(ΩB)µν (γA − δBA) . (5.9)

The quantity

(ΩB)µν =

Ngrid∑

k

λBk(Ik)µν (5.10)

consists of charge–density integrals in the AO basis, with “charges” λBk located at

points rk. Combining this with Eq. (3.12) and rearraning the order of summations,

one obtains a correction to the Fock matrix in which (ΩB)µν is evaluated just once

for each B, and thus the integrals (Ik)µν are calculated exactly once per QM atom.

5.4 Position derivatives of ChElPG Charges

The ChElPG charge derivatives are much more complicated. Instead of finding the M-

derivative directly as we did for Mulliken charges, it is easier to find the full derivative

of the ChElPG charges, and then subtract out the density derivative term. The
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ChElPG charges can be expressed as20

qA =
∑

B

eB
(
G−1

)
BA

−




∑
FH

eF (G−1)FH −Q

∑
CD

(G−1)CD



∑

B

(
G−1

)
BA

. (5.11)

In this representation, uppercase Roman letters stand for QM atoms, the index k

will stand for grid points, Q is the total charge on the system. Therefore, qA in this

section is equivalent to Qα in other sections. The matrix G is defined by

GCD =
∑

k

wk

|rk − rC | |rk − rD|
(5.12)

where wk is a weight for the kth grid point, and

eC =
∑

k

wk

|rk − rC |

(
∑

J

ZJ

‖rk − rJ |
−
∑

µν

(Ik)µνPµν

)
. (5.13)

Here

(Ik)µν =

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉

r

(5.14)

is a one-electron charge–density integral. (The subscript “r” is intended to indicate

that this is the integration variable.)

The ChElPG charge derivatives can be expressed in a relatively compact form:

q∇C =
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

+ Ξ
(
G−1

)∇
MN

]
(δNC − γC) . (5.15)

Here we have switched to a superscript notation to make the equations easier to read;

however, it is important to remember that every derivative is still taken with respect

to a nuclear coordinate, even though this is omitted from the notation for brevity.

This equation introduces the notation

Ξ =
Q−

∑
KL eK(G

−1)KL∑
CD(G

−1)CD

(5.16)
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and

γA =

∑
B(G

−1)AB∑
CD(G

−1)CD

. (5.17)

Equation (5.15) is deceptively compact, because although both (G−1)∇MN and e∇M can

be expressed in analytic form, these derivatives are fairly involved. One complexity is

the appearance of the grid points rk, which may be independent of xγ in the case of

a regular Cartesian grid (as in the original formulation of the ChElPG algorithm4),

or they might depend upon the nuclear positions (as in our Lebedev grid-based for-

mulation3). Each of these cases will be examined in turn. Before doing so, note

that

(G−1)∇ = (G−1)(G∇)(G−1) , (5.18)

which follows by differentiating the condition GG−1 = 1. In view of this, the deriva-

tive (G−1)∇ in Eq. (5.15) is readily obtained once G∇ is known, so we will only

discuss the latter.

5.4.1 Atom-independent grids

In this section, we limit our discussion to the case where the positions of the ChElPG

grid points are independent of the positions of the nuclei. (Most such implementations

use a rectangular grid, but the gradient formalism presented below does not require

this.) Some implementations use a uniform weighting scheme (wk ≡ 1), in which case

the derivatives of wk vanishes. A non-uniform weighting function, intended to insure

smoothness despite the use of a fixed Cartesian grid, was introduced in our previous

implementation of ChElPG charges,20 and will be discussed below.
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The derivative of the G matrix with respect to a nuclear coordinate on atom A is

G∇A

CD =
∑

k

w∇A

k

|rk − rC | |rk − rD|

+
∑

k

(rk − rA)

(
wk δCA

|rk − rA|
3 |rk − rD|

+
wk δDA

|rk − rC | |rk − rA|
3

)
. (5.19)

This part of the gradient has a simple analytic form that is easy to program.

The derivative of eC is more complicated and we will break it into pieces for

convenience, writing

e∇A

C = R∇A

C + S∇A

C + T∇A

C + U∇A

C (5.20)

where

R∇A

C =
∑

k

(
wk

|rk − rC |

)∇A

[
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

]
(5.21)

S∇A

C =
∑

k

wk

|rk − rC |

(
∑

J

ZJ

|rk − rJ |

)∇A

(5.22)

T∇A

C = −
∑

k

wk

|rk − rC |
∑

µν

(Ik)
∇A
µν Pµν (5.23)

U∇A

C = −
∑

k

wk

|rk − rC |
∑

µν

(Ik)µν P
∇A
µν (5.24)

The R∇A

C and S∇A

C terms are straightforward to derive and inexpensive to evaluate:

R∇A

C =
∑

k

(
w∇A

k

|rk − rC |
+

wk (rk − rA)

|rk − rA|3
δCA

)[
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µνPµν

]
(5.25)

S∇A

C =
∑

k

wkZA(rk − rA)

|rk − rC | |rk − rA|3
. (5.26)

The T∇A

C term is the most difficult and time-consuming part of the ChElPG M-

derivative, as it involves derivatives of one-electron integrals:

T∇A

C = −
∑

k

wk

|rk − rC |
∑

µν

Pµν

(〈
µ∇A

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉

r

+

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
∇A

〉

r

)
(5.27)
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There is no derivative over the distance because the grid point is independent of the

atom position. Finally,

U∇A

C =
∑

µν

∂QC

∂Pµν

P∇A
µν . (5.28)

If the term U∇A

C is excluded from the gradient, the charge derivative is identical

to the M-derivative. With this in mind, define

ẽ∇A

C = e∇A

C − U∇A

C . (5.29)

The M-derivative then assumes the form

∑

M

∂QC

∂M

∂M

∂xA

= q∇A

C −
∑

µν

∂QC

∂Pµν

P∇A
µν

=
∑

MN

[
ẽ∇A

M

(
G−1

)
MN

+ eM
(
G−1

)∇A

MN
+ Ξ

(
G−1

)∇A

MN

]
(δNC − γC)

(5.30)

Using Eqs. (5.19), (5.25), (5.26), (5.27), and (5.30), one can assemble the appropriate

M-derivative to be used in Eq. (3.33).

5.4.2 Atom-dependent grids

Atom-dependent grids add a new level of complexity to the derivatives. We assume,

as in our previous Lebedev grid-based implementation of ChElPG,3 that such grids

consist of atom-centered radial shells. In such a case, the locations of the grid points

can be expressed as

rk = rA + rd,n , (5.31)

where the vector rd,n depends upon the radial spacing (d) and the number of angular

grid points (n). Thus, we assume in what follows that the grid point locations (rk)
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depend linearly on the atomic positions (rA). Equations (5.19), (5.25), (5.26), and

(5.27) derived above are thereby replaced by Eqs. (5.32)–(5.35) that are presented

below, and used to assemble the derivatives in Eq. (5.30). Contained inside each

of Eqs. (5.32)–(5.35) is an analogous equation, introduced above for the case of an

atom-independent grid.

The new gradient equations are

G∇A

CD =
∑

k

w∇A

k

|rk − rC | |rk − rD|

+
∑

k/∈A
(rk − rA)

(
wk δCA

|rk − rA|3|rk − rD|
+

wk δDA

|rk − rC | |rk − rA|3
)

−
∑

k∈A

wk (1− δCD)

|rk − rC | |rk − rD|

(
(rk − rC)δCA

|rk − rC |2
+

(rk − rD)δDA

|rk − rD|2
)

(5.32)

R∇A

C =
∑

k

w∇A

k

|rk − rC |

(
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µνPµν

)

+
∑

k/∈A

wk(rk − rA)δCA

|rk − rA|3

(
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µνPµν

)

−
∑

k∈A

wk(rk − rC) (1− δCA)

|rk − rC |3

(
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µνPµν

)
(5.33)

S∇A

C =
∑

k/∈A

wkZA(rk − rA)

|rk − rC | |rk − rA|3
−
∑

k∈A

wk

|rk − rC |
∑

J

ZJ(rk − rJ)

|rk − rJ |3
(1− δJA) (5.34)

T∇A

C = −
∑

k

wk

|rk − rC |
∑

µν

Pµν

[〈
µ∇A

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉

r

+

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
∇A

〉

r

−
〈
µ

∣∣∣∣∣
1

|r− rk|
3

∣∣∣∣∣ν
〉

r

]
(5.35)
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5.4.3 Weights of rectangular ChElPG charges

In Q-Chem’s implementation of the ChElPG charges,20 the weights

wk(rk, {rA}) = wLR
k (rk, {rA})

Natoms∏

J

AJ
k (rk, rJ) (5.36)

associated with the grid points are chosen to consist of a long-range weighting func-

tion, wLR
k , and a product of atomic switching functions AJ

k . The aim of this approach

is to ensure that the ChElPG charges are smooth, continuous functions of the nuclear

coordinates, despite the use of a fixed Cartesian grid to evaluate the electrostatic

potential. Gradients of Eq. (5.36) are straightforward:

∇̂Lwk = (∇̂Lw
LR
k )

Natoms∏

J

AJ
k + wLR

k (∇̂LA
L
k )

Natoms∏

J 6=L

AJ
k . (5.37)

The gradient ∇̂Lwk goes to zero if grid point k is not in the region where the switching

functions are significant.
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CHAPTER 6

Results

The Lebedev ChElPG method and the QM/MM-Ewald method described above have

been implemented in a locally-modified version of Q-Chem v. 4.0.23,24 Here, we de-

scribe various numerical tests designed to evaluate the numerical performance of the

method.

6.1 Charge schemes

In attempting to implement the algorithm in Ref. 2, we encountered serious SCF

convergence problems that we suspected were due to the use of extended basis sets in

conjunction with Mulliken image charges. Since no such difficulties have been reported

in previous minimal-basis implementations of the algorithm,2,25 we first wanted to

verify that the Mulliken version [with charge derivatives given in Eq. (3.14)] does

indeed work in a minimal basis set. To test this, calculations were run at the QM

= Hartree-Fock (HF)/STO-3G level of theory, for a single QM water molecule in a

box of 215 TIP3P water molecules,26 with L = 18.643 Å corresponding to ambient

liquid density. This calculation converged rapidly using Mulliken charges, and in

comparison to the corresponding calculation using a Cartesian ChElPG grid (head
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Figure 6.1: Converged partial charges for the oxygen atom of a single QM water
molecule in an MM water box, plotted against the number of basis functions used to
describe the QM region, for 6-31(x+,y+)G* and 6-311(x+,y+)G* basis sets. In (a),
the QM/MM-Ewald method uses Mulliken image charges whereas in (b) it uses
ChElPG image charges. In the latter case, Mulliken charges were also computed

upon SCF convergence.

spacing of 5 Å and ∆x = 1 Å), essentially the same energy is obtained. Moreover,

if we compute Mulliken charges using the density matrix obtained from the ChElPG

Ewald calculation, we obtain values within 0.003 a.u. of the Mulliken charges obtained

from the Mulliken Ewald calculation. This confirms that various charge schemes work

equally well in minimal basis sets.

In order to test extended basis sets, the same calculation was preformed using the

6-31(x+,y+)G* and 6-311(x+,y+)G* basis sets, where x and y range from 0 to 3,

except that the 6-31(3+,+)G*, 6-31(3+,2+)G*, and 6-311(3+,+)G* basis sets were
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excluded because in these cases the Mulliken-based Ewald procedure fails to converge

after 50 SCF cycles. Figure 6.1 shows the final, converged point charge on the oxygen

atom of the QM water molecule as a function of basis set size. We converge the SCF

Ewald calculation using either Mulliken image charges [Fig. 6.1(a)] or else ChElPG

image charges [Fig. 6.1(b)], and in the latter case we also compute Mulliken charges

using the final, converged SCF density matrix. From panel (a) we see that the use

of Mulliken image charges—when the calculation can be converged—often leads to

a positive partial charge on the oxygen atom in larger basis sets. Not only is this

behavior not observed with ChElPG charges, but if we use ChElPG image charges

to converge the SCF calculation (i.e., the ChElPG charges are used to construct the

Fock matrix correction ∆FPI
µν ), then the Mulliken charges obtained upon convergence

are reasonable [see Fig. 6.1(b)]. This suggests that the problem lies with instabilities

in the Mulliken charge derivatives as the basis set is expanded, which are exacerbated

when these charges are included as part of the self-consistent iteration procedure.

These instabilities are borne out by the SCF energies, plotted as a function of

basis size in Fig. 6.2. When Mulliken image charges are employed, the correct SCF

energy of ≈ −76 hartree is obtained only in small basis sets; in larger basis sets,

the “converged” SCF energy differs from this value by as much as 1.5 hartree. For

ChElPG image charges, the SCF energy is stable with respect to basis-set expansion.

Clearly, Mulliken charges cannot be used for QM/MM-Ewald calculations in non-

minimal basis sets. The remainder of this work explores the use of ChElPG images

charges. In that case, one must determine electrostatic grid parameters to ensure that
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water molecule in a box of MM water molecules, using either (a) Mulliken image

charges or (b) ChElPG image charges.
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the charges are converged. Tests of how the ChElPG charges converge with respect

to grid parameters are presented in the next section.

6.2 Lebedev ChElPG charges

6.2.1 Gas phase

Our Lebedev grid-based implementation of the ChElPG algorithm is new, and here

we seek to test it against the original Cartesian grid-based version of Breneman and

Wiberg.4 The Lebedev version is inherently much more efficient, as it uses far fewer

grid points for the same head space and grid spacing, so we seek to understand how

sparse we can make the Lebedev grid without adversely affecting the charges that are

obtained. In these tests, we leave the head space set to 2.8 Å (the value recommended

by Breneman and Wiberg4), and use Bondi radii27 to define the vdW surface. Atom-

centered radial Lebedev shells with Np = 590 points per shell extend from the atomic

Bondi radius out to 2.8 Å away from that surface, in radial increments of ∆x. (The

value of Np has previously been shown to provide good rotational invariance, in

the context of polarizable continuum model calculations where the vdW cavity is

discretized with atom-centered Lebedev grids.28) Choosing bins of volume (∆x)3,

this leaves only ∆x as a parameter to test convergence of the ChElPG charges.

We first aim to determine whether the Lebedev ChElPG charges provided are a

reasonable representation of the electrostatic potential. To that end, we first examine

the convergence behavior of the Cartesian ChElPG charges, in order to establish a
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Figure 6.3: Convergence of the Cartesian ChElPG charges (atomic units) computed
at the HF/aug-cc-pVDZ level, as a function of the Cartesian grid spacing ∆x. The
reference values were computed using ∆x = 0.05 Å. The vertical axis plots the mean

unsigned error (MUE) for all of the charges in the molecule.

baseline. Note that the Cartesian ChElPG charges provide the best possible rep-

resentation of the electrostatic potential, in a least-squares sense, in the limit that

∆x → 0, and we will take Cartesian ChElPG charges computed using ∆x = 0.05 Å to

be the “true” ChElPG charges. (This choice is justified by the fact that the charges

change by only ∼ 10−3 a.u. when ∆x is increased to 0.10 Å.) Convergence of the

Cartesian ChElPG charges towards these “true” values, as a function of ∆x, is plot-

ted in Fig. 6.3 for several small molecules. Even for ∆x = 0.5 Å, the charges are

already converged to about two decimal places.

The convergence of the weighted and unweighted Lebedev ChElPG charges, as a

function of ∆x, is shown in Fig. 6.4. Use of the weighting scheme tends to afford

better agreement with the Cartesian ChElPG charges, suggesting that an approxi-

mately isotropic grid is indeed important for reproducing Cartesian ChElPG charges.

49



 0.01

 0.02

 0.03

 0.04
(a) Weighted

 0.01
 0.02
 0.03
 0.04
 0.05

 0.1  0.2  0.3  0.4  0.5

M
U

E
 / 

a.
u.

Δx / Å

(b) Unweighted

(H2O)F –

H2O
CH3OH

C6H6

Glycine

Figure 6.4: Convergence of the Lebedev ChElPG charges (atomic units) computed
at the HF/aug-cc-pVDZ level, as a function of the grid spacing ∆x. The reference
values were computed using a Cartesian grid with ∆x = 0.05 Å. The vertical axis
plots the mean unsigned error (MUE) for all of the charges in the molecule. In (a),
the weighting scheme discussed in Section 5.2 is employed (wk = 1/nk), whereas in

(b) the weights are all equal.

Interestingly, the slope of errors with respect to ∆x is about the same regardless of

whether the weighting scheme is used or not. We take this to mean that the charges

converge at about the same rate with respect to ∆x, but converge to different values

depending on whether the weighting is used. The data in Fig. 6.4 suggest that it is

reasonable to expect errors of the same order of magnitude, or maybe only slightly

larger, as those seen for Cartesian ChElPG charges when using Lebedev ChElPG

charges.

Given that we can converge the Lebedev ChElPG charges to about the same

values as their Cartesian counterparts, we now turn our attention to the rotational

invariance of the ChElPGcharges. To this end, we have computed the HF/6-31G*

ChElPG charges of a glycine molecule in the standard nuclear orientation (principle
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Figure 6.5: Rotational invariance (a.u.) of the Lebedev and Cartesian ChElPG
charges on the hydroxyl oxygen of glycine as the molecule is rotated by 180◦ about

an axis. Charges are computed at the HF/6-31G* level of theory.

axes of nuclear charge) and also after rotation around the x axis from 0 to π radians,

in increments of π/12 radians. We examine the ChElPG charge on the hydroxyl

oxygen atom as a function of this rotation angle, as compared to the value obtained

at 0◦. The mean unsigned error (MUE), which is a measure of rotational invariance,

is plotted in Fig. 6.5 as a function of ∆x.

For comparison, the actual ChElPG charge on the hydroxyl oxygen ranges from

−0.78 to −0.80 a.u., whereas the data in Fig. 6.5 suggest that both the Cartesian

and Lebedev grids afford charges that are rotationally invariant to within 0.01 a.u. or

better, even for ∆x = 0.5 Å. For grid spacings ∆x < 0.15 Å, no further improvement

in the rotational invariance is observed. One interesting point is that the Lebedev grid

exhibits better rotational invariance when ∆x is large, but (slightly) worse invariance

when ∆x is small. This is seemingly at odds with Spackmans’s results for spheri-

cal and icosahedral grids.22 However, Spackman took care to only compare grids of

51



relatively the same density.

In this particular glycine example, the Cartesian grid has sides of ≈ 21 Å, meaning

the Cartesian grids occupy a volume of ≈ 9300 Å3 and the Lebedev grid (assuming

it is constructed from spheres) has a volume of ≈ 4800 Å3. At ∆x = 0.5 Å, the

Cartesian grid contains about 15,800 points and the Lebedev grid about 9,000 grid

points, or point densities of 1.7 Å−3 and 1.9 Å−3, respectively. On the other hand, at

∆x = 0.05 Å the Cartesian grid has about 1.5 x 107 points for a point density of about

1,600 Å−3, while the Lebedev grid has 84,000 points for a density of 17.5 Å−3. In other

words, the Cartesian grid is about 100 times more dense than the Lebedev grid for

∆x = 0.05 Å. We conclude that for Lebedev and Cartesian grids of similar densities

(e.g., the ∆x = 0.5 Å case), the Lebedev grids exhibit better rotational invariance.

For cases where the point densities are very different (e.g., the ∆x = 0.5 Åcase),

the more dense grid exhibits the better rotational invariance. This is consistent with

Spackman’s results.22

6.2.2 Condensed phase

The results above show that use of weighted Lebedev grids affords ChElPG charges

that are nearly identical to those obtained using Cartesian grids, but can do so with

far fewer grid points. However, the benchmarks above use Np = 590 points per radial

shell, which will be expensive in calculations with larger QM regions. Reducing this

number to Np = 50, we have tested the rotational invariance of the ChElPG charges

in the context of a QM/MM-Ewald calculation, taking as a test system a QM region

composed of five water molecules (B3LYP/6-31+G* level) in a periodic cell containing
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211 MM water molecules (L = 18.643 Å).The ChElPG charges were computed using a

head space of 3.0 Å with ∆x = 0.5 Å. We carried out single-point energy calculations

after rotating the entire simulation cell in increments of 90◦, leaving fixed the axis

system that defines the ChElPG unit spheres. (That is, the axes of the simulation

cell are rotated with respect to the axes that define the grid.)
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0◦ 90◦ 180◦ 270◦ |∆max-min|
ESCF/a.u. −382.2489807663 −382.2489808032 −382.2489806988 −382.2489807549 0.000000
ǫHOMO/a.u. −0.300498 −0.300498 −0.300498 −0.300498 0.000000
Qoxy/a.u. −1.026878 −1.030694 −1.035725 −1.027292 0.008847
Qhyd1/a.u. 0.465895 0.468642 0.467734 0.466975 0.001839
Qhyd2/a.u. 0.559032 0.560517 0.564779 0.557386 0.007393

Table 6.1: SCF energies and Lebedev ChElPG charges as the simulation cell (containing 5 QM and 211 MM
water molecules) is rotated with respect to the axes that define the Lebedev unit spheres. The final column is
the difference between the maximum and minimum values for the various quantities in each row. The SCF

convergence threshold was set to 10−5 hartree.

force / a.u.
0◦ 90◦ 180◦ 270◦ |∆max-min|

|Ftotal| 0.0318286779 0.0318296463 0.0318290238 0.0318289497 0.0000010
|FQM/MM| 0.0318488287 0.0318484627 0.0318490519 0.0318486728 0.0000006
|FEwald| 0.0000201508 0.0000188163 0.0000200282 0.0000197231 0.0000013

Table 6.2: Magnitude of the force on a single oxygen atom as the simulation cell (containing 5 QM and 211 MM
water molecules) is rotated with respect to the axes that define the Lebedev unit spheres. The final column is
the difference between the maximum and minimum values for the various quantities in each row. The SCF

convergence threshold was set to 10−7 hartree and the integral threshold to 10−10, with the corresponding value
of C determined from Eq. (4.1).
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The results, which are summarized in Tables 6.1 and 6.2, use a sparser grid than

was used for the gas-phase calculations, yet good rotational invariance of both en-

ergies (Table 6.1) and forces (Table 6.2) is observed. The variation in the SCF en-

ergy as a function of rotation angle is smaller than the SCF convergence threshold

(10−5 hartree, for the calculations in Table 6.1). The convergence threshold was

tightened to 10−7 hartree for the gradient calculations (Table 6.2), yet the variation

in different components of the force is no larger that 1.3 x 10−7 a.u. These results

suggest rotational invariance can be achieved in condensed-phase systems using grids

that are far sparser than those used in the gas-phase calculations presented above.

6.3 Timings

One drawback to the use of ChElPG charges is the expense associated with computing

the charge derivatives ∂Qα/∂Pµν , especially the tensor ΩB in Eq. (5.10). The choice

of the Ewald parameter η can also make a large difference in calculation time, as it

controls the number of vectors used in the real- and reciprocal-space sums. A poor

choice for η can double the calculation time, in our experience.

To understand how the Ewald parameter affects the calculation time, two systems

were analyzed. The first is intended to be indicative of a fairly small QM region,

consisting of 11 QM water molecules (B3LYP/6-31+G* level of theory, for a total of

253 basis functions) in a L = 18.643 Å simulation cell containing 205 TIP3P water

molecules.26 The second calculation is much larger, and consists of a QM region

containing an aqueous cytidine molecule and all 27 water molecules that reside within
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Figure 6.6: The total CPU time required to calculate ∂∆EPI/∂Qα [Eq. (3.9)] for (a)
11 QM water molecules in a large MM water box, and (b) 27 water molecules plus
cytidine in the QM region, surrounded by a larger box of MM water molecules.

6 Å of the cytidine molecule. The QM region is described at the B3LYP/6-31+G*

level (970 basis functions) and placed in a L = 50.0 Å simulation cell containing 4,122

TIP3P water molecules. In both cases, the ChElPG parameters are set to 3.0 Å for

the head space, Np = 50, and ∆x = 0.5 Å, since these values afford good rotational

invariance for the test case in Section 6.2.2. We compute the SCF energy of both

systems as a function of η. For the first system, all values of η afford the same energy

to within 10−10 hartree, while for the larger system the variation is no greater than

2 x 10−7 hartree. This implies that we have indeed converged both the real- and the

reciprocal-space sums for each value of η, which should be the case if one follows the

recommendations in Section 4.
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Figure 6.6 shows the CPU time required to compute the ∂∆EPI/∂Qα [Eq. (3.9)],

as a function of η, for these two test systems. Note that in a single-point calculation,

this is essentially a one-time cost insofar as the main cost is in calculating the Ewald

potential, which is done outside of the SCF iterations. Unless the Ewald parameter

is chosen poorly, the cost of this step is small in comparison to the time required

to compute the ChElPG charge derivatives, ∂Qα/∂Pµν . This is demonstrated in

Fig. 6.7, where we compare (as a function of η) the fraction of the total job time

that is consumed in computing derivatives ∂∆EPI/∂Qα versus the fraction required

to compute the derivatives ∂Qα/∂Pµν . Note that all of these calculations are exact

(within the integral drop tolerance), insofar as we use the criteria given in Section 4

to decide how many vectors are necessary to converge the real- and reciprocal-space

sums.

As can be seen in Figs. 6.6 and 6.7, a poor choice for η can make a large difference

in the calculation time. This issue is less important in smaller systems where the

time to compute the Ewald potential is small; however, in a large system (such as

cytidine in 27 QM water molecules), this step can become the bottleneck if η is chosen

too large. This point has not been emphasized previously in the context of Ewald

summation for QM/MM calculations.

Most classical implementations of Ewald summation are based on the particle-

mesh Ewald method,18,19 in which the reciprocal-space summation is faster (scaling

as Nvec logNvec with respect to the number of reciprocal lattice vectors, Nvec) than

the real-space summation (which scales as N2
MM with respect to the number of point
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Figure 6.7: Percentage of the total single-point energy calculation time that is spent
in calculating derivates ∂∆EPI/∂Qα and ∂Qα/∂Pµν , for a water test system (small
QM region) (top graph) and an aqueous cytidine test system (large QM region)

(bottom graph). The time required to calculate ∂Qα/∂Pµν is independent of η but
becomes a smaller percentage as the time to compute ∂∆EPI/∂Qα increases.
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Lebedev Cartesian
One-electron integrals 6.4 6.4
Ewald potential (∂∆EPI/∂Qα) 31.5 31.4
Two-electron integrals 17.6 12.2 17.7 12.4
ChElPG charges 0.4 0.4 3.9 3.8
∂Qα/∂Pµν 16.2 16.1 176.4 176.2
Other 6.1 4.8 6.1 4.7
Total Fock build 71.7 33.4 235.4 197.1
Total SCF 348.6 1658.9

Table 6.3: Timings (in seconds) for a single-point QM/MM calculation of cytidine
(QM) in water (MM), with periodic boundary conditions using η = 0.04 Å−1. The
QM region consists of 30 atoms and 349 basis functions (B3LYP/6-31+G*) and the
MM region consists of 12,840 point charges (4,160 TIP3P water molecules). The

Lebedev and Cartesian ChElPG grids consist of 885 and 32,598 points, respectively.
For the steps that must be repeated at each SCF calculation, two columns of timing

data are provided, corresponding to the second (left column) and ninth (right
column) SCF cycles. The row labeled “other” includes the XC quadrature step and

any remaining overhead associated with the Fock build.

charges). For this reason, a larger Ewald parameter is generally selected, in order to

perform more of the summation in reciprocal space, which may not be an effective

strategy for the present implementation, where the cost of the reciprocal-space sum

scales as N2
vec. Although a particle-mesh implementation of QM/MM-Ewald may

be interesting to consider (especially in view of the recent quantum Ewald mesh for

evaluation of electron repulsion integrals29), at present the ∂∆EPI/∂Qα term is often

not the bottleneck of the calculation, as can be seen in Fig. 6.7. As such, there seems

to be little need to accelerate this part of the calculation at present.

It is beneficial to analyze the complete timings of the QM/MM-Ewald calculations,
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and we will present timings for a variety of aqueous cytidine calculations performed

at the B3LYP/6-31+G* level, using ChElPG charges with a head space of 3.0 Å,

Np = 26, and ∆x = 0.5 Å. (Although the convergence tests of the ChElPG charges

reported in Section 6.2.1 used a much larger number of Lebedev grid points, numerical

tests of QM/MM-Ewald calculations, comparing Np = 26 to Np = 590, demonstrate

that the converged SCF energies differ by less than the convergence threshold of

10−5 hartree.) Table 6.3 compares timing data for Lebedev and Cartesian ChElPG

grids in the QM/MM-Ewald procedure, for a calculation in which only the cytidine

molecule is treated at a QM level. The use of Lebedev grids reduces the number

of grid points from 32,598 points to just 885 points, which substantially reduces the

cost of computing the charge derivatives ∂Qα/∂Pµν . At the same time, the difference

between the SCF energies in the two calculations is only 6.663 x 10−6 hartree, which is

smaller than the SCF convergence threshold of 10−5 hartree, so there is every reason

to prefer the Lebedev-based approach.
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R = 6 Å R = 7 Å R = 8 Å R = 9 Å
No. QM atoms 108 174 249 345
No. MM atoms 12,402 12,336 12,231 12,165
No. basis functions 947 1,453 2,028 2,764
No. ChElPG grid points 2,700 4,194 5,683 7,642
One-electron integrals 27 44 67 93
Ewald potential (∂∆EPI/∂Qα) 104 166 236 324
Two-electron integrals 291 122 943 317 2,169 735 4,546 1,288
ChElPG charges 4 4 11 11 24 24 48 47
∂Qα/∂Pµν 762 763 3,476 3,477 10,761 10,767 29,930 29,925
Other 45 29 85 63 137 102 207 153
Total Fock build 1,206 917 4,681 3,868 13,327 11,629 35,054 31,417
Total SCF 8,363 29,795 86,921 231,248

Table 6.4: Timing data (rounded to the nearest second) for QM/MM calculations of aqueous cytidine in which
the QM region consists of a region of specified radius, R, around the cytidine molecule, described at the

B3LYP/6-31+G* level. All calculations were performed with periodic boundary conditions using η = 0.04 Å−1

and ChElPG charges. For the steps that must be repeated at each SCF calculation, two columns of timing data
are provided, corresponding to the second (left column) and ninth (right column) SCF cycles. Timings labeled

“other” includes the XC quadrature step and any remaining overhead associated with the Fock build. All
calculations were run in serial on a single Intel Xeon x5650 processor with 48 GB RAM with no competing

processes on the node.
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Timing data are provided in Table 6.4 for a sequence of related calculations

in which the QM region consists of the cytidine molecule plus all water molecules

containing an atom within some specified distance, R, of the glycosidic nitrogen.

(All calculations contained 4,160 QM + MM water molecules in the simulation cell.)

These calculations were performed at the B3LYP/6-31+G* level with η = 0.04 Å−1.

ChElPG grid parameters are the same as those for the cytidine-only QM region dis-

cussed above.

The data in Table 6.4 reveal that the time needed to calculate the one-electron

integrals is almost negligible. (Note that the one-electron integral timings quoted the

table includes only the QM-MM interactions within the simulation cell. The time

required to calculate the QM-MM image interactions is included in the ∂∆EPI/∂Qα

term.) Given the data in Table 6.4, it seems that there is little motivation at this point

to work on accelerating the one-electron integral evaluation, e.g., using asymptotic

expansions.30

The data also reveal that the cost of computing ∂∆EPI/∂Qα is an order-of-

magnitude less than the cost of computing electron repulsion integrals, except for

the smallest QM regions. As such, the particle-mesh Ewald technique,18 which is

generally regarded as the method of choice for implementing PBC in classical simu-

lations, does not appear to be a promising way forward in the present context, since

the most expensive step in our QM/MM-Ewald algorithm (by a very wide margin,

especially for large QM regions) is calculation of the charge derivatives ∂Qα/∂Pµν . In

particular, the matrix ΩB in Eq. (5.10) must be computed NQM times (once for each
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QM atom, B) in order to calculate the charge derivatives ∂Qα/∂Pµν . Each of the

ΩB matrices is independent of one another so this step can be trivially parallelized

across NMM processors, and further parallelism will be as good as the parallelization

of the one-electron integrals (Ik)µν [Eq. (5.4)]. Even a factor of two reduction in the

time to calculate ∂Qα/∂Pµν would reduce the total SCF time for the calculations in

Table 6.4 by a minimum of 45%, and by 70% in the case of the smallest (R = 6 Å)

QM region.

6.4 A new digestion routine

Upon examination of the results from the energy calculations and the derivative calcu-

lations, the time required by the ∂Qα/∂Pµν and ∂Qα/∂xγ were deemed unacceptable.

Reason tells us that two electron integrals should dominate the calculation except in

specific cases. The number of two electrons integrals scales as O (N4
basis), nominally.

In practice, a screening procedure is used to determine pairs of basis functions that

are significant. These are known as functions pairs. In reality, the number of two

electron integrals scales as O
(
N2

fp

)
, where Nfp is the number of function pairs.

In the case of ChElPG density derivatives, there are NfpNgridNatoms integrals that

need to be computed. The Natoms dependence arises because of the weights on the

charge-density integrals and the sum over the number of grid points, see eqns. 5.9 and

5.10. Normally when integrals are computed they are combined with density matrix

using a routine known as a digestion routine. The digestion routine performs a sum

over the index of the coordinates. This sum keeps the arrays in memory to a small
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size, namely Nfp. In the ChElPG charges there is an outer sum over the number of

atoms causes us to recompute NfpNgrid integrals Natoms times if the digestion routine

is to be used. If we do not use the conventional digestion routine, a new routine

can be written that will perform NfpNgrid integrals and store them in core memory.

These integrals can then be combined with the NatomsNgrid weights. By doing this

new routine, the number of integrals computed can be reduced by a factor of Natoms;

therefore, we expect a roughly Natoms speedup in the computation of this term.

In a 15.0 Å cubic box containing one cytidine molecule (30 atoms) as the QM

region at the HF/6-31G level (Nbasis = 179 and Nfp = 13329) and 110 TIP3P MM

waters using a rectangular grid from ChElPG charges with ∆x = 0.75Å and the head

space being 2.8 Å, there is a significant speedup in the amount of time spent in the

∂Qα/∂Pµν and ∂Qα/∂xγ terms. The results can be seen in table 6.5. The classic

routine consists of doing the digestion routine with the sum over grid points done

internally. The new routine consists of doing the digestion using the new scheme

described earlier in this section. It is obvious that the charge derivatives are the

bottlenecks for both the energy and the gradient calculations. The new routine no

longer makes the ChElPG derivatives the bottleneck on one processor. The speed

up between the new routine and the classic routine is a factor of Natoms/2 for this

calculation. While this is not as high as the value predicted, it is expected that the

speed up will approach Natoms when the system becomes large because there is a

larger difference between the time to computer the number of integrals and the linear

algebra routine needed to combine the integral values with the weights.
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On one processor the computation of the two-electron integrals is the bottleneck

process. The reader will note that the computation of ChElPG charges are also a large

portion of the calculation. There are three terms that are unique to a QM/MM Ewald

calculation: ChElPG charges, Ewald potential, and ∂Qα/∂Pµν . The computation of

the ChElPG charges is the dominant term because the charges must be recomputed

at every SCF cycle in order to respond to the change in the density matrix. The

Ewald potential and ∂Qα/∂Pµν are both only dependent on the position of the nuclei

and not on the density matrix, so these terms only have to be calculated once per

geometry.

Table 6.5 also showcases the speed up of the calculations across multiple pro-

cessors using OpenMP. The best speed up is shown in the two-electron parts of the

calculation. The most significant speed up for all terms is between 1 and 5 processors.

Very little speed up is obtained going from 5 processors to 20 processors. This tells

us that this job is not appropriate to look at parallel speed up because the overhead

is a significant portion of the calculation.

6.5 Gradient results

If the gradient for a calculation is correct, an NVE AIMD simulation should show a

conservation of energy. Such behavior is shown in figure 6.8. This figure hides the

fact that there is an upward trent in the total energy. This is believed to be caused

by a flaw in the algorithm when the AIMD calculation is restarted. When running an

AIMD simulation over long time periods, the total calculation for all time steps must

65



No. of Processors 1 5 10 15 20
One-electron integrals 0.2 0.1 0.1 0.1 0.1
Two-electron integrals 19.9 4.5 2.6 2.2 2.4
ChElPG charges 17.4 5.3 5.0 4.8 5.0
Ewald potential 1.4 0.6 0.6 0.6 0.6
∂Qα/∂Pµν (New routine) 2.2 2.1 2.6 3.6 4.4
∂Qα/∂Pµν (Classic routine) 33.4 8.9 8.4 7.9 8.0

Derivative of one-electron integrals 0.5 0.1 0.1 0.1 0.1
Derivative of two-electron integrals 7.5 1.5 1.5 1.4 1.4
Derivative of Ewald potential 0.4 0.6 1.0 1.5 8.0
Derivative of ChElPG charges (New routine) 7.3 2.3 2.7 3.3 3.8
Derivative of ChElPG charges (Classic routine) 127.7 34.0 37.6 40.2 40.7

Table 6.5: Timing data (rounded to the nearest tenth of a second) for QM/MM
calculations of aqueous cytidine in which the QM region consists of a region of the
cytidine molecule, described at the HF/6-31G level. All calculations were performed
with periodic boundary conditions using η = 0.12 Å−1 and ChElPG charges. All
calculations were run in serial on a single Intel Xeon x5650 processor with 48 GB

RAM with no competing processes on the node.
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Figure 6.8: Conservation of energy for QM/MM calculations of aqueous cytidine in
which the QM region consists of a region of the cytidine molecule, described at the
HF/6-31G level. The y-axis is the energy of the time step minus the average energy

over the last 100 time steps.

be split into a series of calculations over some of the time steps. After one calculation

with a fraction of the total time steps is completed a new calculation is started from

the scratch files (coordinates and velocities) of the previous AIMD calculation in order

to calculate time steps.

The analytical gradients agree with a three point finite difference routine with a

step size of 10−3 Å to 10−6 for QM gradients and 10−8 for MM gradients. Thus,

it is expected that force calculations are correct and that the problem solely comes

from the AIMD portion of the calculation. There are two routines that are important

only in dynamics calculations. The first is a routine that enforces periodic boundary
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conditions. When a periodic boundary condition is employed, it is expected that

there are no molecules outside of the simulation cell. In a dynamics simulation it

is not unreasonable for a force to be applied to a molecule that causes the molecule

to be outside the edge of the simulation cell. In order the keep the simulation cell

“intacted”, the molecule must be translated by the cell length (in the appropriate

direction) so that it “enter” from the opposite edge of the cell. One complexity is

that the connectivity information must be known and stored so that all atoms in a

molecule are translated together. Currently this is done based on the position of the

center of mass of the molecule.

The other routine that must be done is to center the simulation cell. In order

to tell if a molecule has strayed past the edge of the simulation cell, it is necessary

to know where the center of the simulation cell is. Currently, this is taken care of

at the beginning of the simulation by measuring the minimum and maximum atom

coordinates and subtracting to find the center of the simulation cell as input by the

user. All atoms are then translated so that the center of the cell occurs at the origin.

While this routine makes sense for a large group of small molecules, such as a water

box, it may not prove to be the best method for a large solute molecule in a solvent.

In this case it may be better to recenter the box at every time step where the center

of the simulation cell is the center of mass of the solute molecule. The reason for

this is because one can imagine a large solute molecule, which still has it center of

mass inside the simulation cell, but where a significant portion of the molecule is

outside of the edge of the cell. In this case, the simulation cell may not provide a
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good representation of the solvation of the solute molecule.
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CHAPTER 7

Conclusion

Although the theory of Ewald summation for QM/MM calculations has been de-

scribed before,2,25 in the context of semi-empirical QM methods, we have provided a

robust and general way to extend this technique to extended basis sets, where ear-

lier implementations based on Mulliken image charges for the QM electron density

experience stability problems. These are alleviated by using ChElPG image charges

instead, and the relatively high cost of computing such charges is mitigated somewhat

by an implementation of the ChElPG algorithm using atom-centered Lebedev grids

for evaluation of the QM electrostatic potential. These Lebedev ChElPG charges

exhibit good rotational invariance and reproduce the QM/MM-Ewald results using

traditional ChElPG charges, even for very sparse grids. This is important, because

for large QM regions the cost of evaluating derivatives of the ChElPG charges with

respect to the density matrix becomes the overwhelming bottleneck in the calculation.

(For a more realistic QM region of 349 basis functions, this cost is comparable to the

cost of building the Coulomb and exchange matrices for a hybrid density functional.)

After gradients were implemented, new integral digestion routines were specifically

written for ChElPG charge derivatives, so as to minimize the number of integrals
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computed. These routines decrease the time needed to compute derivatives by at

least an order of magnitude for small systems. These new routines have eliminated

the need to use Lebedev grids and have sped up the use of these routines to the

point where the QM/MM-Ewald part of the calculation is no longer the bottle neck

of the calculation. This allows one to add long range effects to QM/MMcalculations

and has led to a QM/MM-Ewald procedure that is a promising way to perform

periodic QM/MM calculations in a Gaussian-orbital-based SCF electronic structure

code. The method works for both HF and DFT calculations, including functionals

of arbitrary complexity. Post-HF correlated wave functions can be built upon HF

molecular orbitals and eigenvalues that are polarized by the PBC, and the fact that

large basis sets can be used means that QM/MM calculations with correlated wave

functions are possible.

This document shows the method required to acheive long-range electrostatics

in QM/MM calculations for non-minimal basis sets using the Hartree-Fock method.

The theory for this method is developed in a general way so that if desired, it could

be implemented for post-HF methods and any charge scheme the user desires.
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APPENDIX A

Ewald Summation

Note:

Γ (y) =

ˆ ∞

0

xy−1e−x dx (A.1)

Γ

(
1

2

)
=

√
π (A.2)

erfc (z) =
2√
π

ˆ ∞

z

e−x2

dx (A.3)

σ is introduced because of a singularity at 0

The prime on the ij sum denotes that i 6= j iff n = 0

Definitions: bn = nL; am = m

L
; V is Volume; D is the number of Dimensions of

replication

A.1 Transformation

1

Γ (s)

ˆ ∞

0

ts−1e−t|rij+bn|2 dt (A.4)
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Let: u = t |rij + bn|2; du = |rij + bn|2 dt; t = u
|rij+bn|2

; dt = du
|rij+bn|2

1

Γ (s)

ˆ ∞

0

(
u

|rij + bn|2

)s−1

e−u

(
du

|rij + bn|2

)
(A.5)

1

Γ (s)
|rij + bn|−2 |rij + bn|−2(s−1)

ˆ ∞

0

us−1e−u du (A.6)

1

Γ (s)
|rij + bn|−2s Γ (s) (A.7)

|rij + bn|−2s (A.8)

A.2 Ecell

Ecell =
1

2

∑

bn

∑

ij

′

qiqj |rij + bn|−2s (A.9)

Ecell =
1

2
lim
σ→0

∑

bn

∑

ij

′ qiqj
Γ (s)

ˆ ∞

0

ts−1e−t|rij+bn|2e−σbn dt (A.10)

Ecell =
1

2
lim
σ→0

∑

bn

∑

ij

′ qiqj
Γ (s)




ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt

︸ ︷︷ ︸
Ek−space

+

ˆ ∞

η2
ts−1e−t|rij+bn|2e−σbn dt

︸ ︷︷ ︸
Ereal




(A.11)
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A.3 Ereal

Ereal =
1

2
lim
σ→0

∑

bn

∑

ij

′ qiqj
Γ (s)

ˆ ∞

η2
ts−1e−t|rij+bn|2e−σbn dt (A.12)

True Form: Ereal (s) =
1

2

∑

bn

∑

ij

′ qiqj
Γ (s)

ˆ ∞

η2
ts−1e−t|rij+bn|2 dt (A.13)

Ereal

(
s =

1

2

)
=

1

2

∑

bn

∑

ij

′ qiqj

Γ
(
1
2

)
ˆ ∞

η2
t−

1
2 e−t|rij+bn|2 dt (A.14)

Let: u2 = t |rij + bn|2; 2u du = dt |rij + bn|2; t−
1
2 =

|rij+bn|
u

; dt = |rij + bn|−2 2u du

Ereal

(
s =

1

2

)
=

1

2

∑

bn

∑

ij

′ qiqj√
π

ˆ ∞

η|rij+bn|

|rij + bn|
u

e−u2 2u

|rij + bn|2
du (A.15)

Ereal

(
s =

1

2

)
=

1

2

∑

bn

∑

ij

′ qiqj√
π

ˆ ∞

η|rij+bn|

2

|rij + bn|
e−u2

du (A.16)

Ereal

(
s =

1

2

)
=

1

2

∑

bn

∑

ij

′ qiqj
|rij + bn|

2√
π

ˆ ∞

η|rij+bn|
e−u2

du (A.17)

Ereal

(
s =

1

2

)
=

1

2

∑

bn

∑

ij

′

qiqj
erfc (η |rij + bn|)

|rij + bn|
(A.18)
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A.4 Erecip and Eself

Ek−space =
1

2
lim
σ→0

∑

bn

∑

ij

′ qiqj
Γ (s)

ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt (A.19)

Ek−space =
1

2
lim
σ→0

∑

bn

∑

ij

qiqj
Γ (s)

ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt

︸ ︷︷ ︸
Ek−other

− 1

2
lim
σ→0

δbn0δij
qiqj
Γ (s)

ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt

︸ ︷︷ ︸
Eself

(A.20)

A.4.1 Eself

Eself = −1

2
lim
σ→0

δbn0

∑

i

δij
qiqj
Γ (s)

ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt (A.21)

True Form: Eself = −1

2

∑

i

q2i
Γ (s)

ˆ η2

0

ts−1 dt (A.22)

Eself

(
s =

1

2

)
= −1

2

∑

i

q2i
Γ
(
1
2

)
ˆ η2

0

t−
1
2 dt (A.23)

Eself

(
s =

1

2

)
= −1

2

∑

i

q2i√
π
2t

1
2

∣∣∣∣
η2

t=0

(A.24)

Eself

(
s =

1

2

)
= − η√

π

∑

i

q2i (A.25)

75



A.4.2 Erecip

Ek−other =
1

2
lim
σ→0

∑

bn

∑

ij

qiqj
Γ (s)

ˆ η2

0

ts−1e−t|rij+bn|2e−σbn dt (A.26)

See Appendix ??

Ek−other =
1

2
lim
σ→0

∑

bn

∑

ij

qiqj
Γ (s)

ˆ η2

0

ts−1e−tz2ije−
σt
σ+t

ρ2ije−(σ+t)|bn+
t

σ+t
ρij|2 dt (A.27)

Jacobi Sum Formula:
∑

b
e−y|x+b|2 = 1

V

(
π
y

)D
2 ∑

a
e−

π2

y
a2

e2πia·x

Let: y = σ + t and x = t
σ+t

ρij

Ek−other = lim
σ→0

∑

am

∑

ij

1

2

qiqj
Γ (s)

ˆ η2

0

ts−1e−tz2ije−
σt
σ+t

ρ2ij
1

V

(
π

σ + t

)D
2

e−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

(A.28)

Ek−other = lim
σ→0

∑

am

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ije−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

(A.29)

Ek−other = lim
σ→0

∑

am 6=0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ije−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

︸ ︷︷ ︸
Erecip

+ lim
σ→0

δam0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ije−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

︸ ︷︷ ︸
Eother

(A.30)
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Erecip = lim
σ→0

∑

am 6=0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ije−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

(A.31)

True Form: Erecip =
∑

am 6=0

∑

ij

qiqjπ
D
2

2V Γ (s)

ˆ η2

0

ts−1−D
2 e−tz2ije−

π2

t
a2
me2πiam·ρij dt (A.32)

For s = 1
2
and D = 3; the box is replicated in 3 out of 3 dimensions so zij = 0 and

ρij = rij

Erecip

(
s =

1

2
, D = 3

)
=
∑

am 6=0

∑

ij

qiqjπ
3
2

2V Γ
(
1
2

)
ˆ η2

0

t
1
2
−1− 3

2 e−
π2

t
a2
me2πiam·rij 1

π2 |am|2
dt

(A.33)

Erecip

(
s =

1

2
, D = 3

)
=
∑

am 6=0

∑

ij

qiqj

2V π |am|2
ˆ η2

0

t−2e−
π2

t
a2
me2πiam·rij dt (A.34)

Let: v = −π2a2
m

t
; dv = π2a2

m

t2
dt; t−2dt = dv

π2a2
m

Erecip

(
s =

1

2
, D = 3

)
=
∑

am 6=0

∑

ij

qiqj

2V π |am|2
ˆ

−π2
a
2
m

η2

0

eve2πiam·rij dv (A.35)

Erecip

(
s =

1

2
, D = 3

)
=
∑

am 6=0

∑

ij

qiqj

2V π |am|2
e2πiam·rijev

∣∣∣∣

−π2
a
2
m

η2

0

(A.36)
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Erecip

(
s =

1

2
, D = 3

)
=
∑

am 6=0

∑

ij

qiqj

2V π |am|2
e

−π2
a
2
m

η2 e2πiam·rij (A.37)

Let: w (am) =
1

V πa2
m
e

−π2|am|2

η2 and |S (am)|2 =
∑
ij

qiqje
2πiam·rij

Erecip

(
s =

1

2
, D = 3

)
=

1

2

∑

am 6=0

w (am) |S (am)|2 (A.38)

|S (am)|2 =
∑

ij

qiqje
2πiam·(ri−rj) (A.39)

|S (am)|2 =
∑

ij

qiqje
2πiam·rie−2πiam·rj (A.40)

|S (am)|2 =
∑

i

qie
2πiam·ri

∑

j

qje
−2πiam·rj (A.41)

|S (am)|2 =
∑

i

qie
2πiam·ri

∑

i

qie
−2πiam·ri (A.42)

|S (am)|2 =
∣∣∣∣∣
∑

i

qie
2πiam·ri

∣∣∣∣∣

2

(A.43)

|S (am)|2 =
∣∣∣∣∣
∑

i

qi [cos (2πam · ri) + i sin (2πam · ri)]
∣∣∣∣∣

2

(A.44)

|S (am)|2 =
[
∑

i

qi cos (2πam · ri)
]2

+

[
∑

i

qi sin (2πam · ri)
]2

(A.45)
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A.5 Edipole

Eother = lim
σ→0

δam0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ije−
π2

σ+t
a2
me2πiam· t

σ+t
ρij dt

(A.46)

Eother = lim
σ→0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

e−tz2ije−
σt
σ+t

ρ2ij dt (A.47)

lim
σ→0

ts−1

(σ+t)
D
2

= ts−1−D
2 if s+ D

2
> 1 then there is a divergence at t = 0

Eother = lim
σ→0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V




ˆ η2

0

ts−1

(σ + t)
D
2

dt

︸ ︷︷ ︸
Ediv

+

ˆ η2

0

ts−1

(σ + t)
D
2

[
e−tz2ije−

σt
σ+t

ρ2ij − 1
]
dt

︸ ︷︷ ︸
Edipole




(A.48)

True Form: Edipole = lim
σ→0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

[
e−tz2ije−

σt
σ+t

ρ2ij − 1
]
dt (A.49)

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

1

2

qiqj

Γ
(
1
2

) π
3
2

V

ˆ η2

0

t−
1
2

(σ + t)
3
2

[
e−

σt
σ+t

r2ij − 1
]
dt (A.50)

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

qiqjπ

2V

ˆ η2

0

t−
1
2

(σ + t)
3
2

[( ∞∑

ξ=0

1

ξ!

(
− σt

σ + t
r2ij

)ξ
)

− 1

]
dt (A.51)
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Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

qiqjπ

2V

ˆ η2

0

t−
1
2

(σ + t)
3
2

[ ∞∑

ξ=1

1

ξ!

(
− σt

σ + t
r2ij

)ξ
]
dt

(A.52)

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

∞∑

ξ=1

qiqjπ

2V

σξr2ξij
ξ!

(−1)ξ
ˆ η2

0

tξ−
1
2 (σ + t)−(ξ+

3
2) dt

(A.53)

Use:

ˆ

xc (a+ bx)d dx =
xc+1 (a+ bx)d

c+ d+ 1
+

ad

c+ d+ 1

ˆ

xc (a+ bx)d−1 dx

=
1

a (d+ 1)

[
−xc+1 (a+ bx)d+1

+(c+ d+ 2)

ˆ

xc (a+ bx)d+1

]
dx (A.54)

Let: a = σ; b = 1; c = ξ − 1
2
; d = −

(
ξ + 3

2

)
; x = t

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

∞∑

ξ=1

qiqjπ

2V

σξr2ξij
ξ!

(−1)ξ

[
−1

σ
(
ξ + 1

2

)
[
−tξ+

1
2 (σ + t)−(ξ+

1
2) + 0

]] ∣∣∣∣
η2

t=0

(A.55)

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

∞∑

ξ=1

qiqjπ

2V

σξ−1r2ξij

ξ!
(
ξ + 1

2

) (−1)ξ+2 η2ξ+1
(
σ + η2

)−(ξ+ 1
2)

(A.56)
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The only term that survives is ξ = 1

Edipole

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

qiqjπ

2V

r2ij
3
2

(−1)3 η3
(
σ + η2

)− 3
2 (A.57)

Edipole

(
s =

1

2
, D = 3

)
=
∑

ij

−qiqjπ

3V
r2ij (A.58)

Edipole

(
s =

1

2
, D = 3

)
= − π

3V

∑

ij

qiqjr
2
ij (A.59)

Edipole

(
s =

1

2
, D = 3

)
= − π

3V

∑

ij

qiqj |ri − rj|2 (A.60)

Edipole

(
s =

1

2
, D = 3

)
= − π

3V

∑

ij

qiqj
[
|ri|2 − 2ri · rj + |rj|2

]
(A.61)

Edipole

(
s =

1

2
, D = 3

)
= − π

3V

[
∑

i

qi |ri|2
∑

j

qj −
∑

ij

2qiqjri · rj

+
∑

j

qj |rj|2
∑

i

qi

]
(A.62)

Edipole

(
s =

1

2
, D = 3

)
= − 2π

3V

[
Q
∑

i

qi |ri|2 −
∑

i

qiri ·
∑

j

qjrj

]
(A.63)

Edipole

(
s =

1

2
, D = 3

)
= − 2π

3V


Q

∑

i

qi |ri|2 −
(
∑

i

qiri

)2

 (A.64)
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A.6 Echarge

True Form: Ediv = lim
σ→0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

dt (A.65)

Ediv

(
s =

1

2
, D = 3

)
= lim

σ→0

∑

ij

qiqjπ

2V

ˆ η2

0

t−
1
2 (σ + t)−

3
2 dt (A.66)

Replicated/Image Charge Density (charge density of macrosystem (R) minus

charge density of simulation cell):

ρ (r) =
∑

i

∑

bn

qiδ (r− ri − bn)−
Q

V
(A.67)

Energy of Simulation Cell:

Note: Term in brackets removes self interactions. Ñ = the total number of cells.

Ecell =
1

2Ñ

¨

R

ρ (r) ρ (r′)

|r− r′| [1− δ (r− r′)] dr dr′ (A.68)

Ecell =
1

2Ñ

¨

R

1− δ (r− r′)

|r− r′|



∑

ij

∑

bnb
′
n

′

qiqjδ (r− ri − bn) δ (r
′ − rj − b′

n)

−2Q

V

∑

i

∑

bn

qiδ (r− ri − bn) +
Q2

V 2


 dr dr′ (A.69)

Ecell =
1

2Ñ

∑

ij

∑

bnb
′
n

′ qiqj
|ri − rj + bn − b′

n|

− 1

Ñ

Q

V

∑

i

∑

bn

ˆ

R

qi [1− δ (r− ri − bn)]

|r− ri − bn|
dr+

1

2Ñ

Q2

V 2

¨

R

1− δ (r− r′)

|r− r′| dr dr′ (A.70)
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Let: cn = bn − b′
n

Redefine: 2nd Term: r = r− ri − bn and 3rd Term: r = r− r′

Ecell =
1

2Ñ

∑

ij

∑

cnb
′
n

′ qiqj
|ri − rj + cn|

− 1

Ñ

Q

V

∑

i

qi
∑

bn

ˆ

R

1− δ (r)

|r| dr

+
1

2Ñ

Q2

V 2

¨

R

1− δ (r)

|r| dr dr′ (A.71)

Ecell =
1

2Ñ

∑

ij

∑

cn

′

Ñ
qiqj

|ri − rj + cn|
− 1

Ñ

Q

V
QÑ

ˆ

R

1− δ (r)

|r| dr

+
1

2Ñ

Q2

V 2

ˆ

R

ÑV
1− δ (r)

|r| dr (A.72)

δ (r) = 0 as long as D > 1

Ecell =
1

2

∑

ij

∑

cn

′ qiqj
|ri − rj + cn|

︸ ︷︷ ︸
Etotal

− 1

2

Q2

V

ˆ

R

1

|r| dr

︸ ︷︷ ︸
Eperiod

(A.73)

Etotal is the energy of the macrosystem and Eperiod is the energy of periodic images

Ecell = Etotal − Eperiod (A.74)

Ecell = Ereal + Erecip + Eself + Edipole + Ediv (A.75)

Etotal = Ereal + Erecip + Eself + Edipole + Echarge (A.76)

Echarge = Ediv + Eperiod (A.77)
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Back Transform using r = r− ri:

Eperiod = −1

2

Q

V

∑

i

qi

ˆ

R

|r− ri|−2s dr (A.78)

Echarge = lim
σ→0

∑

ij

1

2

qiqj
Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

dt− 1

2

Q

V

∑

i

qi

ˆ

R

|r− ri|−2s dr (A.79)

Echarge = lim
σ→0

1

2

Q2

Γ (s)

π
D
2

V

ˆ η2

0

ts−1

(σ + t)
D
2

dt− lim
σ→0

1

2

Q

V

∑

i

qi

ˆ

R

|r− ri|−2s e−σ|r−ri|2 dr

(A.80)

Echarge = lim
σ→0

Q

2V


Qπ

D
2

Γ (s)

ˆ η2

0

ts−1

(σ + t)
D
2

dt−
∑

i

qi

ˆ

R

|r− ri|−2s e−σ|r−ri|2 dr


 (A.81)

Echarge = lim
σ→0

Q

2V

[
Qπ

D
2

Γ (s)

ˆ η2

0

ts−1

(σ + t)
D
2

dt

−
∑

i

qi

ˆ ∞

0

ˆ

R

1

Γ (s)
ts−1e−t|r−ri|2e−σ|r−ri|2 dr dt


 (A.82)

Echarge = lim
σ→0

Q

2V


Qπ

D
2

Γ (s)

ˆ η2

0

ts−1

(σ + t)
D
2

dt− 1

Γ (s)

∑

i

qi

ˆ ∞

0

ˆ

R

ts−1e−(σ+t)|r−ri|2 dr dt




(A.83)

Use:
´

R

ae−|x+b|/c2 dx = a |c|D π
D
2

Let: a = ts−1 and c = (σ + t)−1/2
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Echarge = lim
σ→0

Q

2V

[
Qπ

D
2

Γ (s)

ˆ η2

0

ts−1 (σ + t)−
D
2 dt

− 1

Γ (s)

∑

i

qi

ˆ ∞

0

ts−1 (σ + t)−
D
2 π

D
2 dt

]
(A.84)

Echarge = lim
σ→0

Q2π
D
2

2V Γ (s)

[
ˆ η2

0

ts−1 (σ + t)−
D
2 dt−

ˆ ∞

0

ts−1 (σ + t)−
D
2 dt

]
(A.85)

Echarge = lim
σ→0

− Q2π
D
2

2V Γ (s)

ˆ ∞

η2
ts−1 (σ + t)−

D
2 dt (A.86)

True Form: Echarge = − Q2π
D
2

2V Γ (s)

ˆ ∞

η2
ts−1−D

2 dt (A.87)

Echarge

(
s =

1

2
, D = 3

)
= − Q2π

3
2

2V Γ
(
1
2

)
ˆ ∞

η2
t
1
2
−1− 3

2 dt (A.88)

Echarge

(
s =

1

2
, D = 3

)
= −Q2π

2V

ˆ ∞

η2
t−2 dt (A.89)

Echarge

(
s =

1

2
, D = 3

)
= −Q2π

2V

(
−t−1

) ∣∣∣∣
∞

η2
(A.90)

Echarge

(
s =

1

2
, D = 3

)
= − Q2π

2V η2
(A.91)

85



A.7 Ecorr

This is a correction term that is needed to remove double counting when performing

MD on bonded systems. Eq. A.92 is the equation for Ecell when Ewald summation is

used only to include non-1-2, non-1-3, and non-1-4 interactions; hence, a correction

term is needed. Eq. A.93 states that the energy from the complete Ewald summation

is the energy of the cell.

Ecell = Ebond + Eangle + Etorsion + Eewald + Ecorr (A.92)

Ecell = Eewald (A.93)

−Ecorr = Ebond + Eangle + Etorsion (A.94)

Ecorr = −
∑

i∈1
j∈2,3,4

wijqiqj
|rij|

= −1

2

∑

i 6=j∈1,2,3,4

wijqiqj
|rij|

(A.95)

The sums are to indicate that all 1-2, 1-3, and 1-4 interactions should be excluded.

Note that for certain force fields 1-5 interactions should also be included. wij is a

weight that is used in some force fields w12 and w13 are often 1, but w14 is usually

smaller, something around 0.5.
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A.8 Orthorhombic Boxes vs Cubic Boxes

• For a primitive cubic cell: a = b = c, α = β = γ = 90, L will be used for the box length

• For a primitive orthorombic cell: a 6= b 6= c, α = β = γ = 90,
[
Lx Ly Lz

]
will be used as the box length

vector

Variables P-Cubic Definition P-Orthorhombic Definition Energies Affected

bn

[
nxL nyL nzL

] [
nxLx nyLy nzLz

]
Ereal

am

[
mx

L

my

L
mz

L

] [
mx

Lx

my

Ly

mz

Lz

]
Erecip

V L3 LxLyLz Erecip, Edipole, Echarge

87



APPENDIX B

Ewald Derivatives

Note:

∇if (|rij|) = f ′ (|rij|)
rij
|rij|

= −∇jf (|rij|) (B.1)

∇i∇jf (|rij|) =
(
f ′ (|rij|)
|rij|

− f ′′ (|rij|)
)

rijrij

|rij|2
− f ′ (|rij|)

|rij|
1 (B.2)

∇i |rij|−1 = − rij

|rij|3
(B.3)

∇i∇jf (|rij|) =
1

|rij|3

(
1− rijrij

|rij|2

)
(B.4)

d

dx
erfc (x) = −2e−x2

√
π

(B.5)

B.1 Further Energies

Ecd =
∑

ij

µi · ∇i

∑

bn

qj |rij + bn|−1 (B.6)
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Edd =
1

2

∑

ij

µiµj : ∇i∇j

∑

bn

′ |rij + bn|−1 (B.7)

B.2 Charge-Charge Gradients

For s = 1
2
and D = 3

Ereal =
1

2

∑

bn

∑

ij

′

qiqj
erfc (η |rij + bn|)

|rij + bn|
(B.8)

Eself = − η√
π

∑

i

q2i (B.9)

Erecip =
∑

am 6=0

∑

ij

qiqj

2V π |am|2
e

−π2
a
2
m

η2 e2πiam·rij (B.10)

Edipole = − π

3V

∑

ij

qiqjr
2
ij (B.11)

Echarge = − Q2π

2V η2
(B.12)

Ecorr =
∑

i∈1
j∈2,3,4

wijqiqj
|rij|

(B.13)

B.2.1 ∇kEself and ∇kEcharge

∇kEself = 0 (B.14)
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∇kEcharge = 0 (B.15)

B.2.2 ∇kEdipole

∇kEdipole = − π

3V
∇k

∑

ij

qiqjr
2
ij (B.16)

∇kEdipole = − π

3V
∇k



∑

i 6=k
j

qiqjr
2
ij +

∑

j

qkqjr
2
kj


 (B.17)

∇kEdipole = − π

3V
∇k

(
∑

ij 6=k

qiqjr
2
ij +

∑

j 6=k

qkqjr
2
kj +

∑

i 6=k

qiqkr
2
ik + qkr

2
kk

)
(B.18)

∇kEdipole = − π

3V
∇k

(
∑

j 6=k

qkqjr
2
kj +

∑

i 6=k

qiqkr
2
ik

)
(B.19)

∇kEdipole = − 2π

3V
∇k

∑

i 6=k

qiqkr
2
ik (B.20)

∇kEdipole =
4π

3V

∑

i 6=k

qiqkrik (B.21)

B.2.3 ∇kEreal

xij =
erfc(η|rij+bn|)

|rij+bn|

∇kEreal =
1

2

∑

bn

∇k

∑

ij

′

qiqjxij (B.22)
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∇kEreal =
1

2

∑

bn

∇k



∑

i 6=k
j

′

qiqjxij +
∑

j

′

qkqjxkj


 (B.23)

∇kEreal =
1

2

∑

bn

∇k

(
∑

ij 6=k

′

qiqjxij +
∑

j 6=k

qkqjxkj +
∑

i 6=k

qiqkxik

)
+

1

2

∑

bn 6=0

∇kqkqkxkk

(B.24)

∇kEreal =
∑

bn

∇k

∑

i 6=k

qiqkxik +
1

2

∑

bn 6=0

∇kqkqkxkk (B.25)

∇kEreal =
∑

bn

∇k

∑

i 6=k

qiqk
erfc (η |rik + bn|)

|rik + bn|
+

1

2

∑

bn 6=0

∇kqkqk
erfc (η |bn|)

|bn|
(B.26)

∇kEreal =
∑

bn

∑

i 6=k

qiqk∇k
erfc (η |rik + bn|)

|rik + bn|
(B.27)

∇kEreal =
∑

bn

∑

i 6=k

qiqk

[
−erfc (η |rik + bn|)

|rik + bn|2
+− 2η√

π

e−η2|rik+bn|2

|rik + bn|

]
rik + bn

|rik + bn|
(B.28)

∇kEreal = −
∑

bn

∑

i 6=k

qiqk

[
erfc (η |rik + bn|)

|rik + bn|
+

2η√
π
e−η2|rik+bn|2

]
rik + bn

|rik + bn|2
(B.29)

B.2.4 ∇kErecip

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

∑

ij

qiqje
2πiam·rij (B.30)
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∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

∑

ij

qiqje
2πiam·rij (B.31)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k



∑

i 6=k
j

qiqje
2πiam·rij +

∑

j

qkqje
2πiam·rkj


 (B.32)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

(
∑

ij 6=k

qiqje
2πiam·rij +

∑

i 6=k

qiqke
2πiam·rik

+
∑

j 6=k

qkqje
2πiam·rkj + q2ke

2πiam·rkk

)
(B.33)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

(
∑

i 6=k

qiqke
2πiam·rik +

∑

j 6=k

qkqje
2πiam·rkj

)
(B.34)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

(
∑

i 6=k

qiqke
2πiam·rik +

∑

i 6=k

qiqke
2πiam·−rik

)

(B.35)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

∑

i 6=k

qiqk
(
e2πiam·rik + e−2πiam·rik

)
(B.36)

∇kErecip =
∑

am 6=0

1

2V π |am|2
e

−π2
a
2
m

η2 ∇k

∑

i 6=k

qiqk2 cos (2πam · rik) (B.37)

∇kErecip =
∑

am 6=0

1

V π |am|2
e

−π2
a
2
m

η2

∑

i 6=k

qiqk∇k cos (2πam · rik) (B.38)
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∇kErecip =
∑

am 6=0

1

V π |am|2
e

−π2
a
2
m

η2

∑

i 6=k

qiqk · − sin (2πam · rik) · −2πam (B.39)

Note: the restriction is removed because rkk = 0 which will cause the argument

of the sine function to be 0 and therefore the sine function itself to be 0.

∇kErecip =
∑

am 6=0

∑

i

2qiqk

V |am|2
e

−π2
a
2
m

η2 sin (2πam · rik) am (B.40)

OR

∇kErecip = ∇k

∑

am 6=0

1

2V πa2
m

e
−π2|am|2

η2



[
∑

i

qi cos (2πam · ri)
]2

+

[
∑

i

qi sin (2πam · ri)
]2
 (B.41)

∇kErecip =
∑

am 6=0

1

2V πa2
m

e
−π2|am|2

η2 ∇k



[
∑

i

qi cos (2πam · ri)
]2

+

[
∑

i

qi sin (2πam · ri)
]2
 (B.42)

∇kErecip =
∑

am 6=0

1

2V πa2
m

e
−π2|am|2

η2

(
2

[
∑

i

qi cos (2πam · ri)
]

∇k

[
∑

i

qi cos (2πam · ri)
]
+ 2

[
∑

i

qi sin (2πam · ri)
]
∇k

[
∑

i

qi sin (2πam · ri)
])

(B.43)
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∇kErecip =
∑

am 6=0

1

2V πa2
m

e
−π2|am|2

η2

(
2

[
∑

i

qi cos (2πam · ri)
]

[−qk sin (2πam · rk)2πam] + 2

[
∑

i

qi sin (2πam · ri)
]
[qk cos (2πam · rk)2πam]

)

(B.44)

∇kErecip =
∑

am 6=0

4π

2V πa2
m

e
−π2|am|2

η2

([
∑

i

qi cos (2πam · ri)
]
[−qk sin (2πam · rk)]

+

[
∑

i

qi sin (2πam · ri)
]
[qk cos (2πam · rk)]

)
am (B.45)

∇kErecip =
∑

am 6=0

2

V a2
m

e
−π2|am|2

η2

([
∑

i

qi sin (2πam · ri)
]
[qk cos (2πam · rk)]

−
[
∑

i

qi cos (2πam · ri)
]
[qk sin (2πam · rk)]

)
am (B.46)

B.2.5 ∇kEcorr

∇kEcorr = ∇k

∑

i∈1
j∈2,3,4

wijqiqj
|rij|

(B.47)

∇kEcorr = −1

2
∇k

∑

i 6=j∈1,2,3,4

wijqiqj
|rij|

(B.48)

∇kEcorr = −1

2
∇k




∑

i 6=k
i 6=j

∈1,2,3,4

wijqiqj
|rij|

+
∑

j 6=k∈1,2,3,4

wkjqkqj
|rkj|


 (B.49)
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∇kEcorr = −1

2
∇k




∑

i 6=k
i 6=j
j 6=k

∈1,2,3,4

wijqiqj
|rij|

+
∑

i 6=k∈1,2,3,4

wikqiqk
|rik|

+
∑

j 6=k∈1,2,3,4

wkjqkqj
|rkj|




(B.50)

∇kEcorr = −∇k

∑

i 6=k∈1,2,3,4

wikqiqk
|rik|

(B.51)

∇kEcorr =
∑

i 6=k∈1,2,3,4

wikqiqk

|rik|3
rik (B.52)
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APPENDIX C

MM Dynamics

Note: σij = σi + σj and εij =
√
εiεj. Usually these are true; however, different

conventions can be used.

C.1 van der Waal’s Energy

C.1.1 vdW Energy

EvdW =
1

2

∑

i 6=j

EvdW
ij (C.1)

EvdW
ij = εij

[(
σij

|rij|

)12

− 2

(
σij

|rij|

)6
]

(C.2)

EvdW
ij = εij

(
σij

|rij|

)6
[(

σij

|rij|

)6

− 2

]
(C.3)

C.1.2 Switching Function

f (|rij|) =
(|rij| − rc)

2 (3rc − r1 − 2 |rij|)
(r1 − rc)

3 (C.4)

Note: rc is a cutoff radius that can be set to anything. In Q-Chem, if it is not

user-defined, then the default is rc = 5 σij. r1 = 0.9 rc for the default r1 = 4.5 σij.
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f (|rij|) =
(|rij| − 5 σij)

2 (15 σij − 4.5 σij − 2 |rij|)
(4.5 σij − 5 σij)

3 (C.5)

f (|rij|) =
(|rij| − 5 σij)

2 (10.5 σij − 2 |rij|)
(−0.5 σij)

3 (C.6)

f (|rij|) =
−8

σ3
ij

[(
|rij|2 − 10 σij |rij|+ 25 σij

)
(10.5 σij − 2 |rij|)

]
(C.7)

f (|rij|) =
−8

σ3
ij

[
10.5 σij |rij|2 − 105 σ2

ij |rij|+ 262.5 σ3
ij − 2 |rij|3

+20 σij |rij|2 − 50 σ2
ij |rij|

]
(C.8)

f (|rij|) =
−8

σ3
ij

[
−2 |rij|3 + 30.5 σij |rij|2 − 155 σ2

ij |rij|+ 262.5 σ3
ij

]
(C.9)

f (|rij|) =
−8

σ3
ij

[
−2 |rij|3 + 30.5 σij |rij|2 − 155 σ2

ij |rij|+ 262.5 σ3
ij

]
(C.10)

f (|rij|) = 16

( |rij|
σij

)3

− 244

( |rij|
σij

)2

+ 1240

( |rij|
σij

)
− 2100 (C.11)

C.1.3 Smooth Energy

EvdW =
1

2

∑

i 6=j





EvdW
ij if |rij| ≤ r1

EvdW
ij f (|rij|) if r1 < |rij| < rc

0 if |rij| > rc

(C.12)
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C.2 van der Waal’s Gradient

C.2.1 vdW Gradient

∇kEvdW = ∇k



1

2

∑

i 6=j
i 6=k

EvdW
ij +

1

2

∑

j 6=k

EvdW
kj


 (C.13)

∇kEvdW = ∇k



1

2

∑

i 6=j
i 6=k

EvdW
ij +

1

2

∑

j 6=k

EvdW
kj


 (C.14)

∇kEvdW = ∇k



1

2

∑

i 6=j
ij 6=k

EvdW
ij +

1

2

∑

j 6=k

EvdW
kj +

1

2

∑

i 6=k

EvdW
ik


 (C.15)

∇kEvdW = ∇k

∑

i 6=k

EvdW
ik (C.16)

∇kE
vdW
ik = ∇kεik

[(
σik

|rik|

)12

− 2

(
σik

|rik|

)6
]

(C.17)

∇kE
vdW
ik = εik

[
σ12
ik∇k

(
1

|rik|12
)
− 2σ6

ik∇k

(
1

|rik|6
)]

(C.18)

∇kE
vdW
ik = εik

[
−12 σ12

ik

1

|rik|13
∇k (|rik|)− 2 · −6 σ6

ik

1

|rik|7
∇k (|rik|)

]
(C.19)

∇kE
vdW
ik = εik

[
−12

σ12
ik

|rik|13
+ 12

σ6
ik

|rik|7
]
∇k (|rik|) (C.20)

∇kE
vdW
ik = 12 εik

σ6
ik

|rik|7
[
− σ6

ik

|rik|6
+ 1

]
rik
|rik|

(C.21)
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∇kE
vdW
ik = 12 εik

σ6
ik

|rik|8
[
1− σ6

ik

|rik|6
]
rik (C.22)

C.2.2 Derivative of Switching Function

∇kf (|rik|) = ∇k
(|rik| − rc)

2 (3rc − r1 − 2 |rik|)
(r1 − rc)

3 (C.23)

∇kf (|rik|) =
1

(r1 − rc)
3∇k (|rik| − rc)

2 (3rc − r1 − 2 |rik|) (C.24)

∇kf (|rik|) =
1

(r1 − rc)
3

[
(3rc − r1 − 2 |rik|)∇k (|rik| − rc)

2

+(|rik| − rc)
2 ∇k (3rc − r1 − 2 |rik|)

]
(C.25)

∇kf (|rik|) =
1

(r1 − rc)
3 [(3rc − r1 − 2 |rik|) 2 (|rik| − rc)∇k |rik|

+(|rik| − rc)
2 · −2∇k |rik|

]
(C.26)

∇kf (|rik|) =
2

(r1 − rc)
3

[
(3rc − r1 − 2 |rik|) (|rik| − rc)− (|rik| − rc)

2]∇k |rik|

(C.27)

∇kf (|rik|) =
2

(r1 − rc)
3

[(
3rc |rik| − r1 |rik| − 2 |rik|2 − 3r2c + r1rc + 2rc |rik|

)

−
(
|rik|2 − 2rc |rik|+ r2c

)] rik
|rik|

(C.28)
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∇kf (|rik|) =
2

(r1 − rc)
3

[
3rc |rik| − r1 |rik| − 3 |rik|2 − 4r2c + r1rc

] rik
|rik|

(C.29)

Using the substitution in the Note.

∇kf (|rik|) = ∇k

[
16

( |rik|
σik

)3

− 244

( |rik|
σik

)2

+ 1240

( |rik|
σik

)
− 2100

]
(C.30)

∇kf (|rik|) =
16

σ3
ik

∇k |rik|3 −
244

σ2
ik

∇k |rik|2 +
1240

σik

∇k |rik| (C.31)

∇kf (|rik|) =
[
16

σ3
ik

3 |rik|2 −
244

σ2
ik

2 |rik|+
1240

σik

]
∇k |rik| (C.32)

∇kf (|rik|) =
[
48

σ3
ik

|rik|2 −
488

σ2
ik

|rik|+
1240

σik

]
rik
|rik|

(C.33)

∇kf (|rik|) =
[
48 |rik|
σ3
ik

− 488

σ2
ik

+
1240

σik |rik|

]
rik (C.34)

C.2.3 Smooth vdW Gradient

∇kEvdW =
∑

i 6=k





∇kE
vdW
ik if |rik| ≤ r1

f (|rij|)∇kE
vdW
ik + EvdW

ik ∇kf (|rik|) if r1 < |rik| < rc
0 if |rik| > rc

(C.35)

C.3 Minimum Image Convention

This is done in the ndistance routine. w is a place holder for x, y, and z.
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• rij = ri − rj

• Take rij and break it down into components rijx , r
ij
y , r

ij
z .

• If |rijw | < Lw

2
, do nothing.

• If |rijw | > Lw

2

– If rijw > 0 then rijw = rijw − Lw

– If rijw < 0 then rijw = rijw + Lw

• Then, if needed, add the appropriate box vector,
[
nxLx nyLy nzLz

]
.

C.4 Confining Potential

Vconfine =
∑

i

V0 (1 + tanh [ℓc (|ri| − rc)]) (C.36)

2V0 is the maximum value of the function. Note that this will be in kcal/mol. It

will get turned into hartree by the code. rc is the cutoff radius. ℓc is the width of the

function. 4/ℓc is the approximate width that it takes for the function to go from 0 to

2V0 which is centered around rc. i is the set of atoms whose original positions, ri, are

within the cutoff sphere, i.e. |ri(t = 0)| < rc.
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ℓc

4

V0

rc

0

2V0

V0(1+tanh[ℓc*(x-rc)])

Figure C.1: Graph of the hyperbolic tangent function with parameters of interest
shown.

102



∇kVconfine =
V0ℓc
|rk|

sech2 [ℓc (|rk| − rc)] rk (C.37)

Note:

tanhz = ez−e−z

ez+e−z

dtanhz
dz

= d
dz
(ez − e−z) (ez + e−z)

−1

dtanhz
dz

= (ez + e−z)
−1 d

dz
(ez − e−z) + (ez − e−z) d

dz
(ez + e−z)

−1

dtanhz
dz

= (ez + e−z)
−1

(ez + e−z)− (ez − e−z)
2
(ez + e−z)

−2

dtanhz
dz

= 1−
(

ez−e−z

ez+e−z

)2

dtanhz
dz

=
(ez+e−z)

2−(ez−e−z)
2

(ez+e−z)2

dtanhz
dz

= e2z+2+e−2z−e2z+2−e−2z

(ez+e−z)2

dtanhz
dz

= 4
(ez+e−z)2

dtanhz
dz

=
(

2
ez+e−z

)2

dtanhz
dz

= sech2z
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APPENDIX D

Ewald Energy Correction

Note: SS = supersystem (simulation cell plus images) aka PB (periodic bound); RS

= real space (simulation cell only); PI (periodic images only) aka PBC (periodic

boundary correction)

ESS
total = ESS

QM/QM + ESS
QM/MM + ESS

MM/MM (D.1)

ESS
total = ERS

QM/QM +∆EPI
QM/QM + ERS

QM/MM +∆EPI
QM/MM + ESS

MM/MM (D.2)

ESS
MM/MM is the term for normal MM Ewald

ERS
QM/QM is some flavor of electronic structure

ERS
QM/MM is some flavor of QM/MM scheme such as Janus or ONIOM

D.1 ∆EPI
QM/QM

∆EPI
QM/QM = ESS

QM/QM − ERS
QM/QM (D.3)
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Assume
∑
J

qJ = 0

Assume a tin-foil boundary or use enough boxes to reach a desired convergence so

Edipole = 0

∆EPI
QM/QM = E

QM/QM
real + E

QM/QM
recip + E

QM/QM
self − ERS

QM/QM (D.4)

∆EPI
QM/QM =

1

2

NQM∑

αβ

QαQβ

{[
∑

bn

erfc (η |rαβ + bn|)
|rαβ + bn|

(1− δαβδbn0)

]
+

[
∑

am 6=0

e−π2a2
m/η2

πV a2
m

e2πiam·rαβ

]
− 2η√

π
δαβ

}
− 1

2

NQM∑

αβ

QαQβ
1− δαβ
|rαβ|

(D.5)

Note: In the reciprocal term, |S (am)|2 or |S ′ (am)|2 can be used. The primed

quantity is defined in the next section. The latter is currently implemented so the

same function can be used for QM/QM and QM/MM evaluation.

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{

[
∑

bn

erfc (η |rαβ + bn|)
|rαβ + bn|

(1− δαβδbn0)

]
− 2η√

π
δαβ −

1− δαβ
|rαβ|

}
(D.6)

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{

[
∑

bn

1− erf (η |rαβ + bn|)
|rαβ + bn|

(1− δαβδbn0)

]
− 2η√

π
δαβδbn0 −

1− δαβ
|rαβ|

δbn0

}
(D.7)
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∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{∑

bn

(D.8)

1

|rαβ + bn|
− erf (η |rαβ + bn|)

|rαβ + bn|
− δαβδbn0

|rαβ + bn|
+

erf (η |rαβ + bn|) δαβδbn0

|rαβ + bn|
(D.9)

− 2η√
π
δαβδbn0 −

δbn0

|rαβ + bn|
+

δαβδbn0

|rαβ + bn|

}
(D.10)

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{∑

bn

1− δbn0

|rαβ + bn|
− erf (η |rαβ + bn|)

|rαβ + bn|
+

erf (η |rαβ + bn|) δαβδbn0

|rαβ + bn|
− 2η√

π

}
(D.11)

Note: lim
x→0

erf(κx)
x

= 2κ√
π

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{
∑

bn

1− δbn0

|rαβ + bn|

−erf (η |rαβ + bn|)
|rαβ + bn|

}
(D.12)

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{
∑

bn 6=0

1

|rαβ + bn|

−erf (η |rαβ + bn|)
|rαβ + bn|

− erf (η |rαβ|)
|rαβ|

}
(D.13)
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∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+

1

2

NQM∑

αβ

QαQβ

{
−erf (η |rαβ|)

|rαβ|

+
∑

bn 6=0

erfc (η |rαβ + bn|)
|rαβ + bn|

}
(D.14)

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S (am)|2
]
+


1
2

NQM∑

αβ

QαQβ

∑

bn 6=0

erfc (η |rαβ + bn|)
|rαβ + bn|




−


1
2

NQM∑

α 6=β

QαQβ
erf (η |rαβ|)

|rαβ|


−


 η√

π

NQM∑

α

Q2
α


 (D.15)

D.2 ∆EPI
QM/MM

∆EPI
QM/MM = ESS

QM/MM − ERS
QM/MM (D.16)

Assume
NQM∑
α

Qα = 0 and
NMM∑

j

qj = 0. ∵ j 6= α there is no self term or primes on

sums.

∆EPI
QM/MM = Ereal + Erecip + Echarge − ERS

QM/MM (D.17)

D.2.1 Real Space Term

Ereal − ERS
QM/MM =

NQM∑

α

NMM∑

j

[
Qαqj

∑

bn

erfc (η |rαj + bn|)
|rαj + bn|

]
− Qαqj

|rαj|
(D.18)

Ereal − ERS
QM/MM =

∑

α

Qα

∑

j

qj

{[
∑

bn 6=0

erfc (η |rαj + bn|)
|rαj + bn|

]
+

erfc (η |rαj|)
|rαj|

− 1

|rαj|

}

(D.19)
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Ereal − ERS
QM/MM =

∑

α

Qα

∑

j

qj

{[
∑

bn 6=0

erfc (η |rαj + bn|)
|rαj + bn|

]
− erf (η |rαj|)

|rαj|

}
(D.20)

D.2.2 Reciprocal Term

Erecip =
∑

α

Qα

∑

j

qj
∑

am 6=0

1

V π |am|2
e

−π2
a
2
m

η2 e2πiam·rjα (D.21)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqje
2πiam·rjα (D.22)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqje
2πiam·rje−2πiam·rα (D.23)

Let: x = 2πam · rj and y = 2πam · rα

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqje
ixe−iy (D.24)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj
1

2

[
eixe−iy + e−ixeiy

]
(D.25)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj
1

2
[(cos x+ i sin x) (cos y − i sin y)

+ (cosx− i sin x) (cos y + i sin y)] (D.26)
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Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj
1

2
[(cos x cos y − i cos x sin y + i sin x cos y

+sin x sin y) + (cos x cos y + i cos x sin y − i sin x cos y + sin x sin y)] (D.27)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj [(cosx cos y + sin x sin y)] (D.28)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj [cos (x− y)] (D.29)

Erecip =
∑

α

∑

j

∑

am 6=0

w (am)Qαqj [cos (2πam · rjα)] (D.30)

Let: |S ′ (am)|2 =
∑
α

∑
j

Qαqj [cos (2πam · rjα)]

∆EPI
QM/MM =

∑

α

Qα

∑

j

qj

{[
∑

bn 6=0

erfc (η |rαj + bn|)
|rαj + bn|

]
− erf (η |rαj|)

|rαj|

}

+
∑

α

∑

j

∑

am 6=0

1

V π |am|2
e

−π2
a
2
m

η2 Qαqj [cos (2πam · rjα)] (D.31)

D.3 Forming Pair Potential

∆EPI
QM/QM =

[
∑

am 6=0

w (am) |S ′ (am)|2
]
+


1
2

NQM∑

αβ

QαQβ

∑

bn 6=0

erfc (η |rαβ + bn|)
|rαβ + bn|




−


1
2

NQM∑

α 6=β

QαQβ
erf (η |rαβ|)

|rαβ|


 (D.32)
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Note: The self term can be added back into the erf term to remove the restriction

on the sum.

∆EPI
QM/QM =

1

2

[
∑

am 6=0

w (am) |S ′ (am)|2
]
+


1
2

NQM∑

αβ

QαQβ

∑

bn 6=0

erfc (η |rαβ + bn|)
|rαβ + bn|




−


1
2

NQM∑

αβ

QαQβ
erf (η |rαβ|)

|rαβ|


 (D.33)

∆EPI
QM/MM =

[
∑

am 6=0

w (am) |S ′ (am)|2
]
+




NQM∑

α

Qα

NMM∑

j

qj
∑

bn 6=0

erfc (η |rαj + bn|)
|rαj + bn|




−


1
2

NQM∑

α

Qα

NMM∑

j

qj
erf (η |rαj|)

|rαj|


 (D.34)

∵ ∆EPI
QM/QM and ∆EPI

QM/MM have the same forms, if we invoke tin-foil boundary

conditions to remove the dipole terms, we can define a pair potential ω (r).

∆EPI = ∆EPI
QM/QM +∆EPI

QM/MM (D.35)

∆EPI =
1

2

NQM∑

αβ

QαQβ ω (rαβ) +

NQM∑

α

Qα

NMM∑

j

qj ω (rαj) (D.36)

ω (rαℵ) =

[
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 cos (2πam · rαℵ)
]
+

[
∑

bn 6=0

erfc (η |rαℵ + bn|)
|rαℵ + bn|

]

−
[
erf (η |rαℵ|)

|rαℵ|

]
(D.37)
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D.4 Maximum Vectors and Timings

Both the real space sum and the reciprocal space sum converge as Gaussians. A

constant is chosen such that e−C2

is small. In the case of an SCF convergence the

sum must converge to a value that is equal to or less than the threshhold.

∴ C =
√

−ln (SCFThreshhold) (D.38)

Every vector is subject to the constraint that it’s distance must be less than the

distance of the max vectors, |n| ≤ |nmax| or |m| ≤ |mmax|. Setting the maximum

value of each direction to the max value yields a supercube (SC). Adding in the

constraint yields a supersphere (SS). The code creates the supercube and makes each

vector subject to the constraint so that a supersphere is obtained. The total vectors

for both SC and SS are shown; however, SS is non-trivial. The derivation of the

equation is shown in appendix I.

D.4.1 Real Space

Note:

nmax ≡



nmax

0
0


 =




0
nmax

0


 =




0
0

nmax




1 ≡



1
1
1




ntotal is the total number of n’s used.

C ≤ η |rαℵ + bnmax
| (D.39)

111



C ≤ η |rαℵ + nmaxL| (D.40)

∵ rαℵ ≤ L1 (D.41)

Redefine nmax so it includes the extra 1

C ≤ η |nmaxL| (D.42)

C

ηL
≤ |nmax| (D.43)

C

ηL
≤ nmax (D.44)

nmax = ceiling

(
C

ηL

)
(D.45)

If C
ηL

≤ 1
2
then rc < L

2
and nmax = 0, assuming Minimum Image Convention is

used.

nSC
total = (2nmax + 1)3 (D.46)
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nmax nSS
total = N(3, nmax)

0 1
1 7
2 33
3 123
4 257
5 515
6 925
7 1419
8 2109
9 3071
10 4169

D.4.2 Reciprocal Space

Notes are the same as for previous subsection.

C ≤ π |mmax|
ηL

(D.47)

CLη

π
≤ |mmax| (D.48)

CLη

π
≤
√

m2
max (D.49)

CLη

π
≤ mmax (D.50)

mmax = ceiling

(
CLη

π

)
(D.51)

mSC
total = (2mmax + 1)3 (D.52)
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The above equation should technically be (2mmax + 1)3 − 1 because 0 is not in-

cluded; however, since the program must still go through the if loops for the 0 vector,

the −1 has been dropped. Conversion from SC to SS uses the same chart as above.

D.4.3 Finding ηmin

∂

∂η

[(
nSC
total

)3
+
(
mSC

total

)3]∣∣∣
η=ηmin

= 0 (D.53)

∂

∂η

[
(2nmax + 1)3 + (2mmax + 1)3

]∣∣
η=ηmin

= 0 (D.54)

[
6 (2nmax + 1)2

∂nmax

∂η
+ 6 (2mmax + 1)2

∂mmax

∂η

]
|η=ηmin

= 0 (D.55)

(
2C

ηminL
+ 1

)2

-
C

η2minL
+

(
2CLηmin

π
+ 1

)2
CL

π
= 0 (D.56)

(
2CLηmin + π

π

)2
CL

π
=

(
2C + ηminL

ηminL

)2
C

η2minL
(D.57)

(2CLηmin + π)2
L

π3
= (2C + ηminL)

2 1

η4minL
3

(D.58)

(2CLηmin + π)2
η4minL

4

π3
= (2C + ηminL)

2 (D.59)

(2CLηmin + π)
η2minL

2

π
√
π

= 2C + ηminL (D.60)
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2CL3η3min

π
√
π

+
η2minL

2

√
π

− ηminL− 2C = 0 (D.61)

D.4.4 Orthorhombic Cells

Real and Reciprocal Spaces

Lw will be used to represent Lx, Ly, and Lz

The equations do not change; however, the maxes are not the same in each of the

three directions.

nmax
w = ceiling

(
C

ηLw

)
(D.62)

mmax
w = ceiling

(
CLwη

π

)
(D.63)

Similar to cubic cells, the vectors are still subject to the constraint that |n| ≤

|nmax|; however, nmax is now defined as the maximum of nmax
x , nmax

y , or nmax
z . Like-

wise, the same process holds for mmax as well.

nmax =





[
nmax
x 0 0

]
if nmax

x ≥ nmax
y ∪ nmax

x ≥ nmax
z[

0 nmax
y 0

]
if nmax

y ≥ nmax
x ∪ nmax

y ≥ nmax
z[

0 0 nmax
z

]
if nmax

z ≥ nmax
x ∪ nmax

z ≥ nmax
y

(D.64)

Finding ηmin

Quick Way: Construct a cubic box using nmax and mmax. Note: Lmax and Lmin

will stand for the maximum and minimum components, respectively, of Lx, Ly, and

Lz.
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∂

∂η

[
(2nmax + 1)3 + (2mmax + 1)3

]∣∣
η=ηmin

= 0 (D.65)

[
6 (2nmax + 1)2

∂nmax

∂η
+ 6 (2mmax + 1)2

∂mmax

∂η

]
|η=ηmin

= 0 (D.66)

(
2C

ηminLmin

+ 1

)2

-
C

η2minLmin

+

(
2CLmaxηmin

π
+ 1

)2
CLmax

π
= 0 (D.67)

(
2CLmaxηmin

π
+ 1

)2
CLmax

π
=

C

η2minLmin

(
2C

ηminLmin

+ 1

)2

(D.68)

(
2CLmaxηmin + π

π

)2
Lmax

π
=

1

η2minLmin

(
2C + ηminLmin

ηminLmin

)2

(D.69)

(2CLmaxηmin + π)2
Lmax

π3
=

1

η4minL
3
min

(2C + ηminLmin)
2 (D.70)

(2CLmaxηmin + π)2
η4minL

3
minLmax

π3
= (2C + ηminLmin)

2 (D.71)

(2CLmaxηmin + π) η2min

√
L3
minLmax

π3
= 2C + ηminLmin (D.72)

Let ζ =

√
L3
minLmax

π3

2CLmaxζη
3
min + πζη2min − Lminηmin − 2C = 0 (D.73)
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Long Way:

∂

∂η

[
(2nmax

x + 1)
(
2nmax

y + 1
)
(2nmax

z + 1)+

(2mmax
x + 1)

(
2mmax

y + 1
)
(2mmax

z + 1)
]∣∣

η=ηmin
= 0 (D.74)

∂

∂η

[
(2nmax

x + 1)
(
4nmax

y nmax
z + 2nmax

y + 2nmax
z + 1

)

+(2mmax
x + 1)

(
4mmax

y mmax
z + 2mmax

y + 2mmax
z + 1

)]∣∣
η=ηmin

= 0 (D.75)

∂

∂η

[(
8nmax

x nmax
y nmax

z + 4nmax
x nmax

y + 4nmax
x nmax

z + 2nmax
x + 4nmax

y nmax
z

+2nmax
y + 2nmax

z + 1
)
+
(
8mmax

x mmax
y mmax

z + 4mmax
x mmax

y + 4mmax
x mmax

z

+2mmax
x + 4mmax

y mmax
z + 2mmax

y + 2mmax
z + 1

)]∣∣
η=ηmin

= 0 (D.76)

2
∂

∂η

[(
4nmax

x nmax
y nmax

z + 2nmax
x nmax

y + 2nmax
x nmax

z + 2nmax
y nmax

z + nmax
x + nmax

y

+nmax
z ) +

(
4mmax

x mmax
y mmax

z + 2mmax
x mmax

y + 2mmax
x mmax

z + 2mmax
y mmax

z

+mmax
x +mmax

y +mmax
z

)]∣∣
η=ηmin

= 0 (D.77)

∂

∂η

[
4C3

η3LxLyLz

+
2C2

η2

(
1

LxLy

+
1

LxLz

+
1

LyLz

)
+

C

η

(
1

Lx

+
1

Ly

+
1

Lz

)

+
4C3LxLyLzη

3

π3
+

2C2η2

π2
(LxLy + LxLz + LyLz) +

Cη

π
(Lx + Ly + Lz)

]∣∣∣∣
η=ηmin

= 0

(D.78)
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[ −12C3

η4LxLyLz

− 4C2

η3

(
1

LxLy

+
1

LxLz

+
1

LyLz

)
− C

η2

(
1

Lx

+
1

Ly

+
1

Lz

)

+
12C3LxLyLzη

2

π3
+

4C2η

π2
(LxLy + LxLz + LyLz) +

C

π
(Lx + Ly + Lz)

]∣∣∣∣
η=ηmin

= 0

(D.79)

12C2LxLyLzη
2
min

π3
+

4Cηmin

π2
(LxLy + LxLz + LyLz) +

1

π
(Lx + Ly + Lz)

=
12C2

η4minLxLyLz

+
4C

η3min

(
1

LxLy

+
1

LxLz

+
1

LyLz

)
+

1

η2min

(
1

Lx

+
1

Ly

+
1

Lz

)
(D.80)

Let: V = LxLyLz, Ls = Lx + Ly + Lz, Lp =
1
Lx

+ 1
Ly

+ 1
Lz
,

As = LxLy + LxLz + LyLz, and Ap =
1

LxLy
+ 1

LxLz
+ 1

LyLz

12C2V η2min

π3
+

4CηminAs

π2
+

Ls

π
=

12C2

η4minV
+

4CAp

η3min

+
Lp

η2min

(D.81)

12C2V 2η6min

π3
+

4CV η5minAs

π2
+

LsV η4min

π
= 12C2 + 4CApV ηmin + LpV η2min (D.82)

12C2V 2η6min + 4CV η5minAsπ + LsV η4minπ
2 = 12C2π3 + 4CApV ηminπ

3 + LpV η2minπ
3

(D.83)

Note: LpV = As and ApV = Ls

12C2V 2η6min+4CV η5minAsπ+LsV η4minπ
2 = 12C2π3+4CLsηminπ

3+Asη
2
minπ

3 (D.84)
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12C2V 2η6min + 4CV Asπη
5
min + LsV π2η4min − Asπ

3η2min − 4CLsπ
3ηmin − 12C2π3 = 0

(D.85)
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APPENDIX E

Ewald Fock Matrix Correction

Note: Greek letters are QM atoms; Roman letters are MM atoms; Hebrew letters

are QM or MM atoms

∆F PI
µν =

∂∆EPI

∂Pµν

(E.1)

∆F PI
µν =

∑

γ

∂∆EPI

∂Qγ

∂Qγ

∂Pµν

(E.2)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν

∂

∂Qγ


1
2

NQM∑

αβ

QαQβ ω (rαβ) +

NQM∑

α

Qα

NMM∑

j

qj ω (rαj)


 (E.3)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν

∂

∂Qγ



1

2

NQM∑

α 6=γ
β

QαQβ ω (rαβ) +
1

2

NQM∑

β

QγQβ ω (rγβ)

+

NQM∑

α 6=γ

Qα

NMM∑

j

qj ω (rαj) +Qγ

NMM∑

j

qj ω (rγj)


 (E.4)
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∆F PI
µν =

∑

γ

∂Qγ

∂Pµν

∂

∂Qγ



1

2

NQM∑

α 6=γ
β 6=γ

QαQβ ω (rαβ) +
1

2

NQM∑

α 6=γ

QαQγ ω (rαγ)

+
1

2

NQM∑

β 6=γ

QγQβ ω (rγβ) +
1

2
Q2

γ ω (rγγ) +

NQM∑

α 6=γ

Qα

NMM∑

j

qj ω (rαj) +Qγ

NMM∑

j

qj ω (rγj)




(E.5)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν


1
2

NQM∑

α 6=γ

Qα ω (rαγ) +
1

2

NQM∑

β 6=γ

Qβ ω (rγβ) +Qγ ω (rγγ)

+

NMM∑

j

qj ω (rγj)

]
(E.6)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν



NQM∑

α 6=γ

Qα ω (rαγ) +Qγ ω (rγγ) +

NMM∑

j

qj ω (rγj)


 (E.7)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν




NQM∑

α

Qα ω (rαγ) +

NMM∑

j

qj ω (rγj)


 (E.8)

∆F PI
µν =

∑

γ

∂Qγ

∂Pµν

[
Na∑

ℵ
Qℵ ω (rℵγ)

]
(E.9)
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APPENDIX F

Spatial Derivatives

F.1 Normal HF Derivative

εHF =
∑

µν

PµνHµν +
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+ Vnuc (F.1)

dεHF

dx
=
∑

µν

dPµν

dx
Hµν +

∑

µν

Pµν
dHµν

dx
+
∑

µνλσ

dPµν

dx
Pλσ 〈µν||λσ〉

+
1

2

∑

µνλσ

PµνPλσ
d

dx
〈µν||λσ〉+ dVnuc

dx
(F.2)

dεHF

dx
=
∑

µν

Pµν
dHµν

dx
+

1

2

∑

µνλσ

PµνPλσ
d

dx
〈µν||λσ〉+ dVnuc

dx
︸ ︷︷ ︸

ED

+
∑

µν

dPµν

dx
Hµν

+
∑

µνλσ

dPµν

dx
Pλσ 〈µν||λσ〉 (F.3)

dεHF

dx
= ED +

∑

µν

dPµν

dx

(
Hµν +

∑

λσ

Pλσ 〈µν||λσ〉
)

(F.4)

dεHF

dx
= ED +

∑

µν

dPµν

dx
Fµν (F.5)
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dεHF

dx
= ED +

∑

µν

∑

i

[
dc∗iµ
dx

Fµνcνi + c∗iµFµν
dcνi
dx

]
(F.6)

Aside:

∑
ν

Fµνcνi =
∑
ν

εiSµνcνi

∑
µ

c∗iµFµν =
∑
µ

c∗iµεiSµν

dεHF

dx
= ED +

∑

µν

∑

i

[
dc∗iµ
dx

εiSµνcνi + c∗iµεiSµν
dcνi
dx

]
(F.7)

dεHF

dx
= ED +

∑

i

εi
∑

µν

[
dc∗iµ
dx

Sµνcνi + c∗iµSµν
dcνi
dx

]
(F.8)

Aside:

∑
µν

c∗iµSµνcνi = 1

∑
µν

[
dc∗iµ
dx

Sµνcνi + c∗iµ
dSµν

dx
cνi + c∗iµSµν

cνi
dx

]
= 0

∑
µν

[
dc∗iµ
dx

Sµνcνi + c∗iµSµν
cνi
dx

]
= −∑

µν

c∗iµ
dSµν

dx
cνi

dεHF

dx
= ED −

∑

i

εi
∑

µν

c∗iµ
dSµν

dx
cνi (F.9)

dεHF

dx
= ED −

∑

µν

∑

i

εic
∗
iµcνi

︸ ︷︷ ︸
Wµν

dSµν

dx
(F.10)

dεHF

dx
=
∑

µν

Pµν
dHµν

dx
+

1

2

∑

µνλσ

PµνPλσ
d

dx
〈µν||λσ〉+ dVnuc

dx
−
∑

µν

Wµν
dSµν

dx
(F.11)
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F.2 Ewald HF Derivative

Note: α and β are over QM atoms, i is over MM atoms, ℵ is over all (QM+MM)

atoms, and ωxy is an abbreviation for ω (rxy).

F.2.1 w.r.t. QM Atom Position

ε̃HF =
∑

µν

PµνHµν +
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+Vnuc+
1

2

∑

αβ

QαQβωαβ+
∑

i

∑

α

qiQαωαi

(F.12)

ε̃HF =
∑

µν

PµνHµν+
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+Vnuc+
1

2

∑

α 6=γ
β

QαQβωαβ+
1

2

∑

β

QγQβωγβ

+
∑

i

∑

α 6=γ

qiQαωαi +
∑

i

qiQγωγi (F.13)

ε̃HF =
∑

µν

PµνHµν+
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+Vnuc+
1

2

∑

α 6=γ
β 6=γ

QαQβωαβ+
1

2

∑

α 6=γ

QαQγωαγ

+
1

2

∑

β 6=γ

QγQβωγβ +
1

2
Q2

γωγγ +
∑

i

∑

α 6=γ

qiQαωαi +
∑

i

qiQγωγi (F.14)

ε̃HF =
∑

µν

PµνHµν +
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+Vnuc+
1

2

∑

α 6=γ
β 6=γ

QαQβωαβ +
∑

α 6=γ

QαQγωαγ

+
1

2
Q2

γωγγ +
∑

i

∑

α 6=γ

qiQαωαi +
∑

i

qiQγωγi (F.15)
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∂ε̃HF

∂xγ

=
∑

µν

∂Pµν

∂xγ

Hµν +
∑

µν

Pµν
∂Hµν

∂xγ

+
∑

µνλσ

∂Pµν

∂xγ

Pλσ 〈µν||λσ〉

+
1

2

∑

µνλσ

PµνPλσ
∂

∂xγ

〈µν||λσ〉+ ∂Vnuc

∂xγ

+
1

2

∑

α 6=γ
β 6=γ

∂Qα

∂xγ

Qβωαβ

+
1

2

∑

α 6=γ
β 6=γ

Qα
∂Qβ

∂xγ

ωαβ +
∑

α 6=γ

∂Qα

∂xγ

Qγωαγ +
∑

α 6=γ

Qα
∂Qγ

∂xγ

ωαγ +
∑

α 6=γ

QαQγ
∂ωαγ

∂xγ

+Qγ
∂Qγ

∂xγ

ωγγ +
1

2
Q2

γ

∂ωγγ

∂xγ

+
∑

i

∑

α 6=γ

qi
∂Qα

∂xγ

ωαi +
∑

i

qi
∂Qγ

∂xγ

ωγi

+
∑

i

qiQγ
∂ωγi

∂xγ

(F.16)

∂ε̃HF

∂xγ

=
∑

µν

∂Pµν

∂xγ

Hµν +
∑

µν

Pµν
∂Hµν

∂xγ

+
∑

µνλσ

∂Pµν

∂xγ

Pλσ 〈µν||λσ〉

+
1

2

∑

µνλσ

PµνPλσ
∂

∂xγ

〈µν||λσ〉+ ∂Vnuc

∂xγ

+
∑

α 6=γ
β 6=γ

∂Qα

∂xγ

Qβωαβ

+
∑

α 6=γ

∂Qα

∂xγ

Qγωαγ +
∑

α

Qα
∂Qγ

∂xγ

ωαγ +
∑

α 6=γ

QαQγ
∂ωαγ

∂xγ

+
1

2
Q2

γ

∂ωγγ

∂xγ

+
∑

i

∑

α

qi
∂Qα

∂xγ

ωαi +
∑

i

qiQγ
∂ωγi

∂xγ

(F.17)
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∂ε̃HF

∂xγ

=
∑

µν

Pµν
∂Hµν

∂xγ

+
1

2

∑

µνλσ

PµνPλσ
∂

∂xγ

〈µν||λσ〉+ ∂Vnuc

∂xγ

︸ ︷︷ ︸
ED

+
∑

α 6=γ

QαQγ
∂ωαγ

∂xγ

+
1

2
Q2

γ

∂ωγγ

∂xγ

+
∑

i

qiQγ
∂ωγi

∂xγ

+
∑

µν

∂Pµν

∂xγ

Hµν +
∑

µνλσ

∂Pµν

∂xγ

Pλσ 〈µν||λσ〉

+
∑

α 6=γ
β 6=γ

∂Qα

∂xγ

Qβωαβ +
∑

α 6=γ

∂Qα

∂xγ

Qγωαγ +
∑

α

Qα
∂Qγ

∂xγ

ωαγ +
∑

i

∑

α

qi
∂Qα

∂xγ

ωαi

(F.18)

∂ε̃HF

∂xγ

=ED +
∑

α 6=γ

QαQγ
∂ωαγ

∂xγ

+
1

2
Q2

γ

∂ωγγ

∂xγ

+
∑

i

qiQγ
∂ωγi

∂xγ

+
∑

µν

∂Pµν

∂xγ

Fµν

+
∑

α 6=γ
β 6=γ

∂Qα

∂xγ

Qβωαβ +
∑

α 6=γ

∂Qα

∂xγ

Qγωαγ +
∑

α

Qα
∂Qγ

∂xγ

ωαγ +
∑

i

∑

α

qi
∂Qα

∂xγ

ωαi

(F.19)

∂ε̃HF

∂xγ

= ED +
∑

α

QαQγ
∂ωαγ

∂xγ

(
1− δαγ

2

)
+
∑

i

qiQγ
∂ωγi

∂xγ

+
∑

µν

∂Pµν

∂xγ

Fµν

+
∑

α 6=γ
β

∂Qα

∂xγ

Qβωαβ +
∑

α

Qα
∂Qγ

∂xγ

ωαγ +
∑

i

∑

α

qi
∂Qα

∂xγ

ωαi (F.20)

∂ε̃HF

∂xγ

= ED +
∑

ℵ
QℵQγ

∂ωℵγ
∂xγ

(
1− δℵγ

2

)

︸ ︷︷ ︸
ẼD

+
∑

µν

∂Pµν

∂xγ

Fµν +
∑

αβ

∂Qα

∂xγ

Qβωαβ

+
∑

i

∑

α

qi
∂Qα

∂xγ

ωαi (F.21)

∂ε̃HF

∂xγ

= ẼD +
∑

µν

∂Pµν

∂xγ

Fµν +
∑

α

∂Qα

∂xγ

∑

ℵ
Qℵωαℵ (F.22)
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∂ε̃HF

∂xγ

= ẼD +
∑

µν

∂Pµν

∂xγ

Fµν +
∑

α

∂Qα

∂xγ

∂EPI

∂Qα

(F.23)

Note: df(y(x),z(x))
dx

= ∂f
∂y

∂y
∂x

+ ∂f
∂z

∂z
∂x

∴
df(y(x),z(x), ... )

dx
=
∑
M

∂f
∂M

∂M
∂x

, where M are all functions of f that depend on x.

∂ε̃HF

∂xγ

= ẼD +
∑

µν

∂Pµν

∂xγ

Fµν +
∑

µν

∂Pµν

∂xγ

∑

α

∂Qα

∂Pµν

∂EPI

∂Qα

+
∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.24)

Note: In this derivation, M will be all variables (and the appropriate sums) needed

to take a complete derivative of Qα excluding Pµν . See section H.5 for what these

particular derivatives are.

∂ε̃HF

∂xγ

= ẼD +
∑

µν

∂Pµν

∂xγ

Fµν +
∑

µν

∂Pµν

∂xγ

∆F PI
µν +

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.25)

∂ε̃HF

∂xγ

= ẼD +
∑

µν

∂Pµν

∂xγ

F̃µν +
∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.26)

Continue from equation F.5 of section F.1 to finish the derivation to achieve the

result:

∂ε̃HF

∂xγ

=
∑

µν

Pµν
∂Hµν

∂xγ

+
1

2

∑

µνλσ

PµνPλσ
∂

∂xγ

〈µν||λσ〉+ ∂Vnuc

∂xγ

−
∑

µν

Wµν
∂Sµν

∂xγ

+
∑

ℵ
QℵQγ

∂ωℵγ
∂xγ

(
1− δℵγ

2

)
+
∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.27)
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F.2.2 w.r.t. MM Atom Position

ε̃HF =
∑

µν

PµνHµν +
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉+Vnuc+
1

2

∑

αβ

QαQβωαβ+
∑

i

∑

α

qiQαωαi

(F.28)

∂ε̃HF

∂xj

=
∑

µν

(
∂Pµν

∂xj

Hµν + Pµν
∂Hµν

∂xj

)

+
1

2

∑

µνλσ


2

∂Pµν

∂xj

Pλσ 〈µν||λσ〉+ PµνPλσ
∂ 〈µν||λσ〉

∂xj︸ ︷︷ ︸
=0


+

∂Vnuc

∂xj

+
1

2

∑

αβ


2

∂Qα

∂xj

Qβωαβ +QαQβ
∂ωαβ

∂xj︸ ︷︷ ︸
=0




+
∑

i

∑

α




∂qi
∂xj︸︷︷︸
=0

Qαωαi + qi
∂Qα

∂xj

ωαi + qiQα
∂ωαi

∂xj

δij


 (F.29)

∂ε̃HF

∂xj

=
∑

µν

(
∂Pµν

∂xj

Hµν + Pµν
∂Hµν

∂xj

)
+
∑

µνλσ

∂Pµν

∂xj

Pλσ 〈µν||λσ〉+
∂Vnuc

∂xj

+
∑

αβ

∂Qα

∂xj

Qβωαβ +
∑

i

∑

α

qi
∂Qα

∂xj

ωαi +
∑

α

qjQα
∂ωαj

∂xj

(F.30)

∂ε̃HF

∂xj

=
∑

µν

∂Pµν

∂xj

Hµν +
∑

µν

Pµν
∂Hµν

∂xj

+
∑

µν

∂Pµν

∂xj

∑

λσ

Pλσ 〈µν||λσ〉+
∂Vnuc

∂xj

+
∑

α

∂Qα

∂xj

∑

β

Qβωαβ +
∑

α

∂Qα

∂xj

∑

i

qiωαi + qj
∑

α

Qα
∂ωαj

∂xj

(F.31)
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∂ε̃HF

∂xj

=
∑

µν

∂Pµν

∂xj

(
Hµν +

∑

λσ

Pλσ 〈µν||λσ〉
)

+
∑

µν

Pµν
∂Hµν

∂xj

+
∂Vnuc

∂xj

+
∑

α

∂Qα

∂xj

∑

ℵ
Qβωαℵ + qj

∑

α

Qα
∂ωαj

∂xj

(F.32)

∂ε̃HF

∂xj

=
∑

µν

∂Pµν

∂xj

Fµν+
∑

µν

Pµν
∂Hµν

∂xj

+
∂Vnuc

∂xj

+
∑

α

∂Qα

∂xj

∂EPI

∂Qα

+qj
∑

α

Qα
∂ωαj

∂xj

(F.33)

∂ε̃HF

∂xj

=
∑

µν

Pµν
∂Hµν

∂xj

+
∂Vnuc

∂xj

+ qj
∑

α

Qα
∂ωαj

∂xj

︸ ︷︷ ︸
ẼD

+
∑

µν

∂Pµν

∂xj

Fµν +
∑

α

∂Qα

∂xj

∂EPI

∂Qα

+
∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.34)

∂ε̃HF

∂xj

= ẼD +
∑

µν

∂Pµν

∂xj

Fµν +
∑

µν

∂Pµν

∂xj

∑

α

∂Qα

∂Pµν

∂EPI

∂Qα

+
∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.35)

∂ε̃HF

∂xj

= ẼD +
∑

µν

∂Pµν

∂xj

F̃µν +
∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.36)

Using the second aside in section F.1:

∂ε̃HF

∂xj

= ẼD +
∑

µν

∂S̃µν

∂xj

W̃µν +
∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.37)

But ∂S̃µν

∂xj
= 0 so
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∂ε̃HF

∂xj

=
∑

µν

Pµν
∂Hµν

∂xj

+
∂Vnuc

∂xj

+ qj
∑

α

Qα
∂ωαj

∂xj

+
∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

(F.38)

F.2.3 Derivative of the Pair Potential

ω (rγℵ) =

[
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 cos (2πam · rγℵ)
]

︸ ︷︷ ︸
recip

+

[
∑

bn 6=0

erfc (η |rγℵ + bn|)
|rγℵ + bn|

]

︸ ︷︷ ︸
realrest

−
[
erf (η |rγℵ|)

|rγℵ|

]

︸ ︷︷ ︸
real0

(F.39)

∇γ ωrecip (rγℵ) = ∇γ

[
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 cos (2πam · rγℵ)
]

(F.40)

∇γ ωrecip (rγℵ) =
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 ∇γ cos (2πam · rγℵ) (F.41)

∇γ ωrecip (rγℵ) =
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 [− sin (2πam · rγℵ)∇γ (2πam · rγℵ)] (F.42)

∇γ ωrecip (rγℵ) =
∑

am 6=0

1

V πa2
m

e
−π2

a
2
m

η2 [− sin (2πam · rγℵ) (2πam)] (F.43)

∇γ ωrecip (rγℵ) =
∑

am 6=0

−2πw (am) sin (2πam · rγℵ) am (F.44)

∇γ ωreal0 (rγℵ) = −∇γ

[
erf (η |rγℵ|)

|rγℵ|

]
(F.45)
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∇γ ωreal0 (rγℵ) = −
[
erf (η |rγℵ|)∇γ

1

|rγℵ|
+

1

|rγℵ|
∇γerf (η |rγℵ|)

]
(F.46)

∇γ ωreal0 (rγℵ) = −
[
erf (η |rγℵ|)

−rγℵ

|rγℵ|3
+

1

|rγℵ|
∇γ

2√
π

ˆ η|rγℵ|

0

e−x2

dx

]
(F.47)

∇γ ωreal0 (rγℵ) = erf (η |rγℵ|)
rγℵ

|rγℵ|3
− 1

|rγℵ|
2√
π
e−η2|rγℵ|2∇γη |rγℵ| (F.48)

∇γ ωreal0 (rγℵ) = erf (η |rγℵ|)
rγℵ

|rγℵ|3
− 1

|rγℵ|
2√
π
e−η2|rγℵ|2η rγℵ

|rγℵ|
(F.49)

∇γ ωreal0 (rγℵ) = erf (η |rγℵ|)
rγℵ

|rγℵ|3
− 2η√

π
e−η2|rγℵ|2 rγℵ

|rγℵ|2
(F.50)

∇γ ωreal0 (rγℵ) =

[
erf (η |rγℵ|)

|rγℵ|
− 2η√

π
e−η2|rγℵ|2

]
rγℵ

|rγℵ|2
(F.51)

∇γ ωrealrest (rγℵ) = ∇γ

∑

bn 6=0

[
erfc (η |rγℵ + bn|)

|rγℵ + bn|

]
(F.52)

∇γ ωrealrest (rγℵ) =
∑

bn 6=0

[
erfc (η |rγℵ + bn|)∇γ

1

|rγℵ + bn|

+
1

|rγℵ + bn|
∇γerfc (η |rγℵ + bn|)

]
(F.53)
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∇γ ωrealrest (rγℵ) =
∑

bn 6=0

[
erfc (η |rγℵ + bn|)

− (rγℵ + bn)

|rγℵ + bn|3

+
1

|rγℵ + bn|
∇γ

2√
π

ˆ ∞

η|rγℵ+bn|
e−x2

dx

]
(F.54)

∇γ ωrealrest (rγℵ) =
∑

bn 6=0

[
erfc (η |rγℵ + bn|)

− (rγℵ + bn)

|rγℵ + bn|3

+
1

|rγℵ + bn|

[
− 2√

π
e−η2|rγℵ+bn|2∇γη |rγℵ + bn|

]]
(F.55)

∇γ ωrealrest (rγℵ) = −
∑

bn 6=0

[
erfc (η |rγℵ + bn|)

(rγℵ + bn)

|rγℵ + bn|3

+
1

|rγℵ + bn|
2√
π
e−η2|rγℵ+bn|2 η (rγℵ + bn)

|rγℵ + bn|

]
(F.56)

∇γ ωrealrest (rγℵ) = −
∑

bn 6=0

[
erfc (η |rγℵ + bn|)

(rγℵ + bn)

|rγℵ + bn|3

+
2η√
π
e−η2|rγℵ+bn|2 (rγℵ + bn)

|rγℵ + bn|2

]
(F.57)

∇γ ωrealrest (rγℵ) = −
∑

bn 6=0

[[
erfc (η |rγℵ + bn|)

|rγℵ + bn|
+

2η√
π
e−η2|rγℵ+bn|2

]
(rγℵ + bn)

|rγℵ + bn|2

]

(F.58)
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∇γ ω (rγℵ) =

[
erf (η |rγℵ|)

|rγℵ|
− 2η√

π
e−η2|rγℵ|2

]
rγℵ

|rγℵ|2
−
∑

am 6=0

2πw (am) sin (2πam · rγℵ) am

−
∑

bn 6=0

[[
erfc (η |rγℵ + bn|)

|rγℵ + bn|
+

2η√
π
e−η2|rγℵ+bn|2

]
(rγℵ + bn)

|rγℵ + bn|2

]

(F.59)

F.3 Logistics in Q-Chem

F.3.1 Outputs and Relationships

Q-Chem Output
Energy Derivative

QM
SCF ESCF SCF GSCF

Kinetic ET Overlap and Kinetic GTS

Nuclear Attraction EV Nuclear Attraction GV

Coulomb EJ Coulomb and Exchange G2e

Exchange EKα , EKβ

Nuclear Repulsion ENN Nuclear-Nuclear GNN

QM/MM
QM/MM Energy (E qmmm) Etot total grad after. . . Gtot

External Charge (E) GQE

External Charge (N) GQN

MM Energy (Etot) EMM MM energy gradient GvdW

QM/MM Ewald
Ewald QM/MM Eewald Ewald Potential Gω

Ewald Charge GM

E1e = ET + EV (+EZ) (F.60)

E2e = EJ + EKα + EKβ (F.61)
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ESCF = E1e + E2e + ENN (+Eewald) (F.62)

Etot = ESCF + EMM (F.63)

GQ = GQE +GQN (F.64)

GSCF = GTS +G2e +GV +GNN (+GQ +Gω +GM) (F.65)

Gtot = GSCF +GvdW (F.66)

F.3.2 QM Derivatives

ESCF =
∑

µν

PµνTµν

︸ ︷︷ ︸
ET

+
∑

µν

PµνVµν

︸ ︷︷ ︸
EV

+
1

2

∑

µνλσ

PµνPλσ 〈µν||λσ〉
︸ ︷︷ ︸

E2e=
1
2

∑

µν
Pµν(Jµν+Kµν)

+VNN︸︷︷︸
ENN

(F.67)

∆ET

∆x
=
∑

µν

∂Pµν

∂x
Tµν +

∑

µν

Pµν
∂Tµν

∂x
(F.68)

∆EV

∆x
=
∑

µν

∂Pµν

∂x
Vµν +

∑

µν

Pµν
∂Vµν

∂x
︸ ︷︷ ︸

Gx
V

(F.69)

∆E2e

∆x
=
∑

µνλσ

∂Pµν

∂x
Pλσ 〈µν||λσ〉+

1

2

∑

µνλσ

PµνPλσ
∂ 〈µν||λσ〉

∂x
︸ ︷︷ ︸

Gx
2e

(F.70)
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∆ENN

∆x
=

∂VNN

∂x︸ ︷︷ ︸
Gx

NN

(F.71)

Gx
TS =

∑

µν

Pµν
∂Tµν

∂x
−
∑

µν

Wµν
∂Sµν

∂x
(F.72)

−
∑

µν

Wµν
∂Sµν

∂x
=
∑

µν

∂Pµν

∂x
Tµν +

∑

µν

∂Pµν

∂x
Vµν +

∑

µνλσ

∂Pµν

∂x
Pλσ 〈µν||λσ〉 (F.73)

Gx
TS =

∑

µν

Pµν
∂Tµν

∂x
+
∑

µν

∂Pµν

∂x
Tµν

︸ ︷︷ ︸
∆ET
∆x

+
∑

µν

∂Pµν

∂x
Vµν

︸ ︷︷ ︸
∆EV
∆x

−Gx
V

+
∑

µνλσ

∂Pµν

∂x
Pλσ 〈µν||λσ〉

︸ ︷︷ ︸
∆E2e
∆x

−Gx
2e

(F.74)

F.3.3 QM/MM Derivatives

ESCF +=
∑

µν

PµνZµν

︸ ︷︷ ︸
EZ

+ZNN (F.75)

Note: ET in the output is calculated by taking E1e − EV . This leads to an

incorrect value for ET in QM/MM jobs because E1e −EV = ET +EZ because Hµν =

Tµν + Vµν + Zµν . In order to get the proper ET use Tr(TP).

∆ZNN

∆x
= Gx

QN (F.76)

∆EZ

∆x
=
∑

µν

∂Pµν

∂x
Zµν

︸ ︷︷ ︸
in Gx

TS

+
∑

µν

Pµν
∂Zµν

∂x
︸ ︷︷ ︸

Gx

QE

(F.77)
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F.3.4 QM/MM Ewald Derivatives

ESCF +=
∑

α

(
1

2

∑

β

Qβωαβ +
∑

j

qjωαj

)

︸ ︷︷ ︸
Eewald

(F.78)

∆Eewald

∆x
=
∑

α

Qα

∑

ℵ
Qℵ

∂ωαℵ
∂x

︸ ︷︷ ︸
Gx

ω

+
∑

µν

∂Pµν

∂x

∑

α

∂Qα

∂Pµν

∑

ℵ
Qℵωαℵ

︸ ︷︷ ︸
in Gx

TS

+
∑

M

∂M

∂x

∑

α

∂Qα

∂M

∑

ℵ
Qℵωαℵ

︸ ︷︷ ︸
Gx

M

(F.79)

F.3.5 Scratch Files

Q-Chem Scratch Files
Variable File # Notes

F 58 Stored unvectorized
J 55 Not normally stored
K 56 Not normally stored
S 320 Not normally stored
Sx 23 Stored vectorized
Fx 24
P 54 Stored unvectorized
H1e 51 Stored vectorized
V 57 Temporary file number
W 111 Temporary file number
T 100 Temporary file number

~c and ~ε 53 See Note

Note: File 53.0 (FILE MO COEFS) is stored in the following way (variable

followed by number of entries): cαiµ (Nbasis ×Norbs), c
β
iµ (Nbasis ×Norbs), ε

α
i (Norbs),

εβi (Norbs)
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Entries for FILE ENERGY (99.0), scfman.C lines 4230-4263
Entry # Variable Name of Energy

0 ESCF SCF (see note)
1 E1e One-Electron
2 EJ Total Coulomb
3 EKα Alpha Exchange
4 EKβ Beta Exchange
5 EX DFT Exchange
6 EC DFT Correlation
7 ET Kinetic
8 ENN Nuclear Repu.
9 EV Nuclear Attr.
11 Etot Total (with MM energy, if included)
25 EMM MM
26 Eewald Ewald QM/MM

F.3.6 Outline of Code for Computing ∆E
∆Pµν

Directly

• Define and zero variables

• Call GetH

• Unvectorize jHv

• Load P from file

• Modify so that you have jPv (vectorized total density), jPA and jPB (unvec-

torized alpha & beta densities)

• Call MakeJK

• Unvectorize jJv

• for µ
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– for ν

∗ Load P from file (need unvectorized)

∗ Add/Subtract δPµν

∗ Compute Ewald energy (use new density for charges)

∗ Take trace of density matrix with jH, jJ, & jK

∗ Add and store energies in the appropriate energy vector

• Take the negative of the negative energy vector

• Add the positive and negative energy vectors

• Scale by 1
4×stepsize

(4 if you added δPµν to jPA then doubled to get jP)
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APPENDIX G

Charge Schemes

G.1 Mulliken

Qα = Zα − Trα (PS) (G.1)

Qα = Zα −
∑

ζ∈α
(PS)ζζ (G.2)

Qα = Zα −
∑

ζ∈α
ξ

PζξSξζ (G.3)

Note: Sξζ is Hermitian so Sξζ = Sζξ

Qα = Zα −
Nbasis∑

ζ∈α
ξ

PζξSζξ (G.4)

G.2 QM Potential at a Grid Point

V (rk) =

ˆ

ρ (r)

|r− rk|
dr (G.5)

ρ (r) =
∑

µν

∑

i

c∗µiϕ
∗
µ (r) ciνϕν (r) (G.6)

139



ρ (r) =
∑

µν

ϕ∗
µ (r)ϕν (r)Pµν (G.7)

V (rk) =
∑

µν

ˆ

ϕ∗
µ (r)ϕν (r)

|r− rk|
Pµν dr (G.8)

V (rk) =
∑

µν

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉

r

Pµν (G.9)

V (rk) =
∑

µν

(Ik)µν Pµν (G.10)

G.3 ChElP-G

Let: Ng = the number of grid points, Na = the number of atoms; Nb = the number

of basis functions; wk = a weighting function; Q = charge of system

Note: (Ik)µν =
〈
µ
∣∣∣ 1
|r−rk|

∣∣∣ ν
〉
; φk =

Na∑
J

qJ
|rk−rJ | ; Φk =

Na∑
J

ZJ

|rk−rJ | −
Nb∑
µν

(Ik)µν Pµν

G.3.1 Charges

ChElPG charges are the charges that minimize the difference, in a least squares

fashion, between a static potential and the potential constructed from the density

matrix subject to the constraint that the charges sum to the total system charge.

L =

Ng∑

k

wk (Φk − φk)
2 − λ

(
Q−

Na∑

J

qJ

)
(G.11)
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∂L
∂λ

= 0 = Q−
Na∑

J

qJ ∴ Q =
Na∑

J

qJ (G.12)

∂L
∂qA

= 0 =

Ng∑

k

2wk (Φk − φk)

(
−∂φk

∂qA

)
+ λ (G.13)

Note: ∂φk

∂qA
= 1

|rk−rA|

λ =
∑

k

2wk (Φk − φk)
1

|rk − rA|
(G.14)

Let: eA =
∑
k

wkΦk

|rk−rA|

λ = 2eA − 2
∑

k

wkφk

|rk − rA|
(G.15)

λ = 2eA − 2
∑

k

∑

J

wkqj
|rk − rA| |rk − rJ |

(G.16)

λ = 2eA − 2
∑

J

qJ
∑

k

wk

|rk − rA| |rk − rJ |
(G.17)

Let: GJA =
∑
k

wk

|rk−rA||rk−rJ |

λ = 2eA − 2
∑

J

qJGJA (G.18)
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λ = 2eA − 2 (Gq)A (G.19)

eA = (Gq)A +
λ

2
(G.20)

Begin Sidenote

Let: N = Na

e′ =




e1
e2
...
eN
Q




q′ =




q1
q2
...
qN
λ




G′ =




G11 G12 · · · G1N
1
2

G21 G22 · · · G2N
1
2

...
...

. . .
...

...
1 1 · · · 1 0




∴ e′ = G′q′

End Sidenote

eA = (Gq)A +
λ

2
(G.21)

Construct Na eqns Note: 1 =




1
1
...
1


 that is an Na × 1 vector
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e = Gq+
λ

2
1 (G.22)

Gq = e− λ

2
1 (G.23)

q = G−1

(
e− λ

2
1

)
(G.24)

qA =
(
G−1e

)
A
− λ

2

(
G−1 1

)
A

(G.25)

qA =
Na∑

B

eB
(
G−1

)
BA

− λ

2

Na∑

B

(
G−1

)
BA

(G.26)

Q =
Na∑

C

qC (G.27)

Q =
Na∑

BC

eB
(
G−1

)
BC

− λ

2

Na∑

CB

(
G−1

)
BC

(G.28)

λ

2

Na∑

BC

(
G−1

)
BC

=
Na∑

BC

eB
(
G−1

)
BC

−Q (G.29)

λ =

2

(
Na∑
BC

eB (G−1)BC −Q

)

Na∑
BC

(G−1)BC

(G.30)
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qA =
Na∑

B

eB
(
G−1

)
BA

−

(
Na∑
BC

eB (G−1)BC −Q

)

Na∑
BC

(G−1)BC

Na∑

B

(
G−1

)
BA

(G.31)
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APPENDIX H

Charge Derivatives

H.1 Density Derivative for Mulliken Charges

H.1.1 Non-Symmetric Form

Qα = Zα −
Nbasis∑

ζ∈α
ξ

PζξSζξ (H.1)

∂Qα

∂Pµν

=
∂

∂Pµν


−

Nbasis∑

ζ∈α
ξ

PζξSζξ


 (H.2)

∂Qα

∂Pµν

= −Sµνδα∈µ (H.3)

H.1.2 Symmetric Form

Qα = Zα −
Nbasis∑

ζ∈α
ξ

PζξSζξ (H.4)

Note: Xyz =
1
2
(Xyz +Xzy) iff X is Hermitian.

Qα = Zα − 1

2




Nbasis∑

ζ∈α
ξ

PζξSζξ +

Nbasis∑

ξ∈α
ζ

PξζSξζ


 (H.5)
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∂Qα

∂Pµν

=
∂

∂Pµν


−

1

2




Nbasis∑

ζ∈α
ξ

PζξSζξ +

Nbasis∑

ξ∈α
ζ

PξζSξζ





 (H.6)

∂Qα

∂Pµν

= −1

2
(Sµνδα∈µ + Sνµδα∈ν) (H.7)

The symmetric form must be used in Q-Chem because the diagonalization of the

Fock matrix (which occurs in another step) is dependent upon the Fock matrix being

Hermitian.

H.2 Density Derivative for ChElP-G Charges

Note:
∂(G−1)

BA

∂Pζξ
=
∑
k

∂Q
∂Pζξ

= 0

∂eB
∂Pζξ

=
∑

k

wk

|rk − rB|
∂Φk

∂Pζξ

(H.8)

∂eB
∂Pζξ

= − (ΞB)ζξ =
∑

k

−wk

|rk − rB|
(Ik)ζξ (H.9)

∂qA
∂Pζξ

= (ΛB)ζξ = −
Na∑

B

(ΞB)ζξ
(
G−1

)
BA

+

Na∑
AB

(ΞB)ζξ (G
−1)BA

Na∑
AB

(G−1)BA

Na∑

B

(
G−1

)
BA

(H.10)

H.2.1 Simplification of Derivative

(ΛM)µν = −
∑

L

(
G−1

)
ML

(ΞL)µν +

∑
J

(G−1)MJ

∑
IJ

(G−1)
IJ

∑

LN

(
G−1

)
LN

(ΞN)µν (H.11)
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(ΛM)µν = −
∑

L

(
G−1

)
ML

∑

k

wk

|rk − rL|
(Ik)µν

+

∑
J

(G−1)MJ

∑
IJ

(G−1)
IJ

∑

LN

(
G−1

)
LN

∑

k

wk

|rk − rN |
(Ik)µν (H.12)

Let Γ =
∑
IJ

(G−1)
IJ and akLN = (G−1)LN

wk

|rk−rN |

(ΛM)µν = −
∑

kL

akML (Ik)µν +
1

Γ

∑

J

(
G−1

)
MJ

∑

kLN

akLN (Ik)µν (H.13)

Let bkN =
∑
L

akNL

(ΛM)µν = −
∑

k

bkM (Ik)µν +
1

Γ

∑

J

(
G−1

)
MJ

∑

kL

bkL (Ik)µν (H.14)

Let ck =
∑
L

bkL

(ΛM)µν = −
∑

k

bkM (Ik)µν +
1

Γ

∑

J

(
G−1

)
MJ

∑

k

ck (Ik)µν (H.15)

Let dkM = 1
Γ

∑
J

(G−1)MJ ck

(ΛM)µν = −
∑

k

bkM (Ik)µν +
∑

k

dkM (Ik)µν (H.16)
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Let fkM = dkM − bkM

(ΛM)µν =
∑

k

fkM (Ik)µν (H.17)

So fkM = −∑
L

(G−1)ML
wk

|rk−rL| +

∑

J
(G−1)

MJ
∑

IJ

(G−1)
IJ

∑
LN

(G−1)LN
wk

|rk−rN |

H.2.2 Alternate Simplification of Derivative

(ΛM)µν = −
∑

L

(
G−1

)
ML

∑

k

wk

|rk − rL|
(Ik)µν

+

∑
J

(G−1)MJ

∑
IJ

(G−1)
IJ

∑

LN

(
G−1

)
LN

∑

k

wk

|rk − rN |
(Ik)µν (H.18)

Let γM =

∑

J
(G−1)

MJ
∑

IJ

(G−1)IJ
and λkM =

∑
L

(G−1)ML
wk

|rk−rL|

(ΛM)µν = −
∑

k

λkM (Ik)µν + γM
∑

N

∑

k

λkN (Ik)µν (H.19)

Let (ΩM)µν =
∑
k

λkM (Ik)µν

(ΛM)µν = − (ΩM)µν + γM
∑

N

(ΩN)µν (H.20)

(ΛM)µν =
∑

N

(ΩN)µν (γM − δMN) (H.21)
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H.2.3 Application of Derivative to Fock Matrix

∆Fµν =
∑

J

∂E

∂QJ

(ΛJ)µν (H.22)

∆Fµν =
∑

J

∂E

∂QJ

∑

N

(ΩN)µν (γJ − δJN) (H.23)

∆Fµν =
∑

N

(ΩN)µν
∑

J

∂E

∂QJ

(γJ − δJN) (H.24)

H.3 Spatial Derivative for ChElP-G Charges

Note: All sums are over the total number of (QM) atoms. Note: In all cases in this

section ∇ = ∇F , (where F is an arbitrary atom) but the subscript atom will be

omitted for clarity.

qA =
∑

B

eB
(
G−1

)
BA

−

∑
FH

eF (G−1)FH −Q

∑
CD

(G−1)CD

∑

I

(
G−1

)
IA

(H.25)

qA
∑

CD

(
G−1

)
CD

=
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)
BA

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)
IA

(H.26)

∇
[
qA
∑

CD

(
G−1

)
CD

]
= ∇

[
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)
BA

−
∑

FH

eF
(
G−1

)
FH

∑

I

(
G−1

)
IA

+Q
∑

I

(
G−1

)
IA

]
(H.27)
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q∇A
∑

CD

(
G−1

)
CD

+ qA
∑

CD

(
G−1

)∇
CD

=
∑

CD

(
G−1

)∇
CD

∑

B

eB
(
G−1

)
BA

+
∑

CD

(
G−1

)
CD

∑

B

e∇B
(
G−1

)
BA

+
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)∇
BA

−
∑

FH

e∇F
(
G−1

)
FH

∑

I

(
G−1

)
IA

−
∑

FH

eF
(
G−1

)∇
FH

∑

I

(
G−1

)
IA

−
∑

FH

eF
(
G−1

)
FH

∑

I

(
G−1

)∇
IA

+Q
∑

I

(
G−1

)∇
IA

(H.28)

q∇A
∑

CD

(
G−1

)
CD

=

[
∑

B

eB
(
G−1

)
BA

− qA

]
∑

CD

(
G−1

)∇
CD

+
∑

CD

(
G−1

)
CD

∑

B

e∇B
(
G−1

)
BA

+
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)∇
BA

−
∑

FH

e∇F
(
G−1

)
FH

∑

I

(
G−1

)
IA

−
∑

FH

eF
(
G−1

)∇
FH

∑

I

(
G−1

)
IA

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)∇
IA

(H.29)

q∇A
∑

CD

(
G−1

)
CD

=

[
∑

B

eB
(
G−1

)
BA

− qA

]
∑

CD

(
G−1

)∇
CD

︸ ︷︷ ︸
term 1

+
∑

CD

(
G−1

)
CD

∑

B

e∇B
(
G−1

)
BA

︸ ︷︷ ︸
term 2

+
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)∇
BA

︸ ︷︷ ︸
term 3

−
∑

FH

e∇F
(
G−1

)
FH

∑

I

(
G−1

)
IA

︸ ︷︷ ︸
term 4

−
∑

FH

eF
(
G−1

)∇
FH

∑

I

(
G−1

)
IA

︸ ︷︷ ︸
term 5

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)∇
IA

︸ ︷︷ ︸
term 6

(H.30)
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H.3.1 Simplify Terms 1 and 6

T16 =

[
∑

B

eB
(
G−1

)
BA

− qA

]
∑

CD

(
G−1

)∇
CD

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)∇
IA

(H.31)

T16 =

[
∑

B

eB
(
G−1

)
BA

−
∑

J

eJ
(
G−1

)
JA

+

∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN

∑

I

(
G−1

)
IA



∑

CD

(
G−1

)∇
CD

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)∇
IA

(H.32)

T16 =




∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN

∑

I

(
G−1

)
IA



∑

CD

(
G−1

)∇
CD

−
[
∑

FH

eF
(
G−1

)
FH

−Q

]
∑

I

(
G−1

)∇
IA

·

∑
MN

(G−1)MN

∑
MN

(G−1)MN

(H.33)

T16 =




∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN



[
∑

I

(
G−1

)
IA

∑

CD

(
G−1

)∇
CD

−
∑

I

(
G−1

)∇
IA

∑

MN

(
G−1

)
MN

]
(H.34)

T16 =




∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN



[
∑

PQ

(
G−1

)
PQ

δQA

∑

RS

(
G−1

)∇
RS

−
∑

RS

(
G−1

)∇
RS

δSA
∑

PQ

(
G−1

)
PQ

]
(H.35)
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T16 =




∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN



∑

RS

(
G−1

)∇
RS

[
∑

PQ

(
G−1

)
PQ

δQA − δSA
∑

PQ

(
G−1

)
PQ

]

(H.36)

T16 =




∑
KL

eK (G−1)KL −Q

∑
MN

(G−1)MN



∑

RS

(
G−1

)∇
RS

[
∑

P

(
G−1

)
PA

− δSA
∑

PQ

(
G−1

)
PQ

]

(H.37)

T16 =

[
∑

KL

eK
(
G−1

)
KL

−Q

]
∑

RS

(
G−1

)∇
RS




∑
P

(G−1)PA

∑
MN

(G−1)MN

− δSA

∑
PQ

(G−1)PQ

∑
MN

(G−1)MN




(H.38)

Let: γA =

∑

P
(G−1)

PA
∑

MN

(G−1)MN

T16 =

[
∑

KL

eK
(
G−1

)
KL

−Q

]
∑

RS

(
G−1

)∇
RS

[γA − δSA] (H.39)

H.3.2 Terms 2 and 4

T24 =
∑

CD

(
G−1

)
CD

∑

B

e∇B
(
G−1

)
BA

−
∑

FH

e∇F
(
G−1

)
FH

∑

I

(
G−1

)
IA

(H.40)

T24 =
∑

PQ

(
G−1

)
PQ

∑

RS

e∇R
(
G−1

)
RS

δSA −
∑

RS

e∇R
(
G−1

)
RS

∑

P

(
G−1

)
PA

(H.41)

T24 =
∑

RS

e∇R
(
G−1

)
RS

[
δSA

∑

PQ

(
G−1

)
PQ

−
∑

P

(
G−1

)
PA

]
(H.42)
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H.3.3 Terms 3 and 5

T35 =
∑

CD

(
G−1

)
CD

∑

B

eB
(
G−1

)∇
BA

−
∑

FH

eF
(
G−1

)∇
FH

∑

I

(
G−1

)
IA

(H.43)

T35 =
∑

PQ

(
G−1

)
PQ

∑

RS

eR
(
G−1

)∇
RS

δSA −
∑

RS

eR
(
G−1

)∇
RS

∑

P

(
G−1

)
PA

(H.44)

T35 =
∑

RS

eR
(
G−1

)∇
RS

[
δSA

∑

PQ

(
G−1

)
PQ

−
∑

P

(
G−1

)
PA

]
(H.45)

H.3.4 Recombine

q∇A
∑

CD

(
G−1

)
CD

= T16 + T24 + T35 (H.46)

q∇A
∑

CD

(
G−1

)
CD

=

[
∑

KL

eK
(
G−1

)
KL

−Q

]
∑

RS

(
G−1

)∇
RS

[γA − δSA]

+
∑

MN

e∇M
(
G−1

)
MN

[
δNA

∑

IJ

(
G−1

)
IJ

−
∑

I

(
G−1

)
IA

]

+
∑

WX

eW
(
G−1

)∇
WX

[
δXA

∑

PQ

(
G−1

)
PQ

−
∑

P

(
G−1

)
PA

]
(H.47)

q∇A =

∑
KL

eK (G−1)KL −Q

∑
CD

(G−1)CD

∑

RS

(
G−1

)∇
RS

[γA − δSA]

+
∑

MN

e∇M
(
G−1

)
MN

[δNA − γA] +
∑

WX

eW
(
G−1

)∇
WX

[δXA − γA] (H.48)
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q∇A =

∑
KL

eK (G−1)KL −Q

∑
CD

(G−1)CD

∑

RS

(
G−1

)∇
RS

[γA − δSA]

+
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

]
[δNA − γA] (H.49)

q∇A = −

∑
KL

eK (G−1)KL −Q

∑
CD

(G−1)CD

∑

MN

(
G−1

)∇
MN

[δNA − γA]

+
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

]
[δNA − γA] (H.50)

Let: Ξ = −
∑

KL

eK(G−1)
KL

−Q

∑

CD

(G−1)CD

q∇A = Ξ
∑

MN

(
G−1

)∇
MN

[δNA − γA] +
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

]
[δNA − γA]

(H.51)

q∇A =
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

+ Ξ
(
G−1

)∇
MN

]
[δNA − γA] (H.52)

H.3.5 Alternate Derivation

Let:

α =
Q−

Natoms
∑

P

gP

Natoms
∑

MN

(G−1)MN

gJ =
Natoms∑

R

eR (G−1)RJ
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qA = gA + α
∑

B

(
G−1

)
AB

(H.53)

qA = gA +




Q−
∑
C

gC
∑
DE

(G−1)DE



∑

B

(
G−1

)
AB

(H.54)

qA
∑

DE

(
G−1

)
DE

= gA
∑

FH

(
G−1

)
FH

+

(
Q−

∑

C

gC

)
∑

B

(
G−1

)
AB

(H.55)

q∇A
∑

DE

(
G−1

)
DE

+ qA
∑

IJ

(
G−1

)∇
IJ

= g∇A
∑

FH

(
G−1

)
FH

+ gA
∑

KL

(
G−1

)∇
KL

−
∑

C

g∇C
∑

B

(
G−1

)
AB

+

(
Q−

∑

M

gM

)
∑

N

(
G−1

)∇
AN

(H.56)

q∇A
∑

DE

(
G−1

)
DE

= g∇A
∑

FH

(
G−1

)
FH

︸ ︷︷ ︸
Terms 2 & 3

−
∑

C

g∇C
∑

B

(
G−1

)
AB

︸ ︷︷ ︸
Terms 4 & 5

+ gA
∑

KL

(
G−1

)∇
KL

− qA
∑

IJ

(
G−1

)∇
IJ

︸ ︷︷ ︸
Term 1

+

(
Q−

∑

M

gM

)
∑

N

(
G−1

)∇
AN

︸ ︷︷ ︸
Term 6

(H.57)

q∇A
∑

DE

(
G−1

)
DE

= g∇A
∑

FH

(
G−1

)
FH

−
∑

C

g∇C
∑

B

(
G−1

)
AB

+ gA
∑

KL

(
G−1

)∇
KL

−
(
gA + α

∑

P

(
G−1

)
AP

)
∑

IJ

(
G−1

)∇
IJ

+

(
Q−

∑

M

gM

)
∑

N

(
G−1

)∇
AN

(H.58)
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q∇A
∑

DE

(
G−1

)
DE

= g∇A
∑

FH

(
G−1

)
FH

−
∑

C

g∇C
∑

B

(
G−1

)
AB

− α
∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ

+

(
Q−

∑

M

gM

)
∑

N

(
G−1

)∇
AN

(H.59)

q∇A
∑

DE

(
G−1

)
DE

= g∇A
∑

FH

(
G−1

)
FH

−
∑

C

g∇C
∑

B

(
G−1

)
AB

−
Q−∑

Q

gQ

∑
RS

(G−1)RS

∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ

+

(
Q−

∑

M

gM

)
∑

N

(
G−1

)∇
AN

(H.60)

q∇A = g∇A

∑
FH

(G−1)FH

∑
DE

(G−1)DE

−
∑

C

g∇C

∑
B

(G−1)AB

∑
TU

(G−1)TU

−
Q−

∑
Q

gQ

[∑
RS

(G−1)RS

]2
∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ

+

(
Q−

∑
M

gM

)

∑
VW

(G−1)VW

∑

N

(
G−1

)∇
AN

(H.61)

Let: γA =

∑

B
(G−1)

AB
∑

TU

(G−1)TU
and Ξ =

(

Q−
∑

M

gM

)

∑

V W

(G−1)V W

q∇A = g∇A−
∑

C

g∇C γA−
Ξ∑

RS

(G−1)RS

∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ
+Ξ

∑

N

(
G−1

)∇
AN

(H.62)
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q∇A = g∇A −
∑

C

g∇C γA − Ξ∑
RS

(G−1)RS

∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ

+
Ξ∑

DE

(G−1)DE

∑

N

(
G−1

)∇
AN

∑

FH

(
G−1

)
FH

(H.63)

q∇A = g∇A −
∑

C

g∇C γA +
Ξ∑

RS

(G−1)RS

(
∑

N

(
G−1

)∇
AN

∑

FH

(
G−1

)
FH

−
∑

P

(
G−1

)
AP

∑

IJ

(
G−1

)∇
IJ

)
(H.64)

q∇A =
∑

C

(
g∇C δCA − g∇C γA

)
+

Ξ∑
RS

(G−1)RS

(
∑

MN

(
G−1

)∇
MN

δMA

∑

FH

(
G−1

)
FH

−
∑

PQ

(
G−1

)
PQ

δQA

∑

IJ

(
G−1

)∇
IJ

)
(H.65)

q∇A =
∑

C

g∇C (δCA − γA) +
Ξ∑

RS

(G−1)RS

(
∑

MN

(
G−1

)∇
MN

δMA

∑

PQ

(
G−1

)
PQ

−
∑

PQ

(
G−1

)
PQ

δQA

∑

MN

(
G−1

)∇
MN

)
(H.66)

q∇A =
∑

C

g∇C (δCA − γA) +

Ξ
∑
MN

(G−1)
∇
MN

∑
RS

(G−1)RS

(
δMA

∑

PQ

(
G−1

)
PQ

−
∑

PQ

(
G−1

)
PQ

δQA

)

(H.67)
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q∇A =
∑

C

g∇C (δCA − γA) + Ξ
∑

MN

(
G−1

)∇
MN

(δMA − γA) (H.68)

q∇A =
∑

C

(
∑

D

eD
(
G−1

)
DC

)∇

(δCA − γA) + Ξ
∑

MN

(
G−1

)∇
MN

(δMA − γA) (H.69)

q∇A =
∑

CD

(
e∇D
(
G−1

)
DC

+ eD
(
G−1

)∇
DC

)
(δCA − γA) + Ξ

∑

MN

(
G−1

)∇
MN

(δMA − γA)

(H.70)

q∇A =
∑

MN

(
e∇N
(
G−1

)
NM

+ eN
(
G−1

)∇
NM

)
(δMA − γA) + Ξ

∑

MN

(
G−1

)∇
MN

(δMA − γA)

(H.71)

q∇A =
∑

MN

(
e∇N
(
G−1

)
NM

+ eN
(
G−1

)∇
NM

+ Ξ
(
G−1

)∇
MN

)
(δMA − γA) (H.72)

H.3.6 Programmed Versions

(
q∇A
)
fast

=
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

+ Ξ
(
G−1

)∇
MN

]
[δNA − γA] (H.73)

(
q∇A
)
slow

=
−Ξ∑

CD

(G−1)CD

∑

MN

[(
G−1

)
MA

(
G−1

)∇
MN

−
(
G−1

)
MN

(
G−1

)∇
MA

]

+
∑

M

[
e∇M
(
G−1

)
MA

+ eM
(
G−1

)∇
MA

]

− γA
∑

MN

[
e∇M
(
G−1

)
MN

+ eM
(
G−1

)∇
MN

]
(H.74)
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H.4 Needed Derivatives for q∇A

H.4.1
(
G−1

)∇A

CD

Begin Sidenote AA−1 = I

∇ (AA−1) = ∇I

(A)∇ A−1 +A (A−1)
∇
= 0

A (A−1)
∇
= − (A)∇ A−1

(A−1)
∇
= −A−1 (A)∇ A−1

End Sidenote

G∇A

CD = ∇A

(
∑

k

wk

|rk − rC | |rk − rD|

)
(H.75)

G∇A

CD =
∑

k

w∇A

k

|rk − rC | |rk − rD|
+
∑

k

−wk (rk − rC)

|rk − rC |3 |rk − rD|
∇A (rk − rC)

+
∑

k

−wk (rk − rD)

|rk − rC | |rk − rD|3
∇A (rk − rD) (H.76)

Fixed Grid Points

Does not require the weight derivative term.

∇A (rk − rX)
X = A -1
X 6= A 0
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G∇A

CD (Last two terms)

C = A D = A
∑
k

2wk

|rk−rA|4 (rk − rA)

C = A D 6= A
∑
k

wk

|rk−rA|3|rk−rD| (rk − rA)

C 6= A D = A
∑
k

wk

|rk−rC ||rk−rA|3 (rk − rA)

C 6= A D 6= A 0

Dynamic Grid Points

Requires the weight derivative term.

∇A (rk − rX)
k ∈ A X = A 0
k /∈ A X = A -1
k ∈ A X 6= A 1
k /∈ A X 6= A 0

G∇A

CD (Last two terms)

k ∈ A C = A D = A 0

k /∈ A C = A D = A
∑
k/∈A

2wk

|rk−rA|4 (rk − rA)

k ∈ A C = A D 6= A
∑
k

−wk

|rk−rA||rk−rD|3 (rk − rD)

k /∈ A C = A D 6= A
∑
k/∈A

wk

|rk−rA|3|rk−rD| (rk − rA)

k ∈ A C 6= A D = A
∑
k

−wk

|rk−rC |3|rk−rA| (rk − rC)

k /∈ A C 6= A D = A
∑
k/∈A

wk

|rk−rC ||rk−rA|3 (rk − rA)

k ∈ A C 6= A D 6= A
∑
k∈A

−wk

|rk−rC ||rk−rD|

[
(rk−rC)

|rk−rC |2 +
(rk−rD)

|rk−rD|2
]

k /∈ A C 6= A D 6= A 0
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H.4.2 e∇A

C

e∇A

C = ∇A

(
∑

k

wk

|rk − rC |

[
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

])
(H.77)

e∇A

C =
∑

k

∇A

(
wk

|rk − rC |

)[∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

]

︸ ︷︷ ︸
term1

+
∑

k

wk

|rk − rC |
∇A

(
∑

J

ZJ

|rk − rJ |

)

︸ ︷︷ ︸
term2

+
∑

k

wk

|rk − rC |

[
−∇A

(
∑

µν

(Ik)µν Pµν

)]

︸ ︷︷ ︸
term3+term4

(H.78)

term1 =
∑

k

∇A

(
wk

|rk − rC |

)[∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

]
(H.79)

term1 =
∑

k

w∇A

k

|rk − rC |

[
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

]

+
∑

k

−wk (rk − rC)

|rk − rC |3
∇A (rk − rC)

[
∑

J

ZJ

|rk − rJ |
−
∑

µν

(Ik)µν Pµν

]
(H.80)

term2 =
∑

k

wk

|rk − rC |
∇A

(
∑

J

ZJ

|rk − rJ |

)
(H.81)

term2 =
∑

k

wk

|rk − rC |
∑

J

−ZJ (rk − rJ)

|rk − rJ |3
∇A (rk − rJ) (H.82)

term3 + term4 =
∑

k

−wk

|rk − rC |
∇A

(
∑

µν

(Ik)µν Pµν

)
(H.83)
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term3 + term4 =
∑

k

−wk

|rk − rC |
∑

µν

∇A

(
(Ik)µν

)
Pµν

︸ ︷︷ ︸
term3

+
∑

k

−wk

|rk − rC |
∑

µν

(Ik)µν ∇A (Pµν)

︸ ︷︷ ︸
term4

(H.84)

term4 is taken care of by WSx term.

term3 =
∑

k

−wk

|rk − rC |
∑

µν

∇A

(
(Ik)µν

)
Pµν (H.85)

term3 =
∑

k

−wk

|rk − rC |
∑

µν

∇A

(〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉)

Pµν (H.86)

term3 =
∑

k

−wk

|rk − rC |
∑

µν

(〈
∇Aµ

∣∣∣∣
1

|r− rk|

∣∣∣∣ν
〉
+

〈
µ

∣∣∣∣
−∇A (−rk)

|r− rk|3
∣∣∣∣ν
〉

+

〈
µ

∣∣∣∣
1

|r− rk|

∣∣∣∣∇Aν

〉)
Pµν (H.87)

Fixed Grid Points

Does not require weight derivatives

∇A (rk − rX)
X = A -1
X 6= A 0

term1 (Last term only)

C = A
∑
k

wk(rk−rA)

|rk−rA|3

[∑
J

ZJ

|rk−rJ | −
∑
µν

(Ik)µν Pµν

]

C 6= A 0
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term2

J = A
∑
k

wk

|rk−rC |
ZA(rk−rA)

|rk−rA|3

J 6= A 0

term3

µ ∈ A ν ∈ A
∑
k

−wk

|rk−rC |
∑
µν

(〈
µ∇A

∣∣∣ 1
|r−rk|

∣∣∣ν
〉
+
〈
µ
∣∣∣ 1
|r−rk|

∣∣∣ν∇A

〉)
Pµν

µ ∈ A ν /∈ A
∑
k

−wk

|rk−rC |
∑
µν

〈
µ∇A

∣∣∣ 1
|r−rk|

∣∣∣ν
〉
Pµν

µ /∈ A ν ∈ A
∑
k

−wk

|rk−rC |
∑
µν

〈
µ
∣∣∣ 1
|r−rk|

∣∣∣ν∇A

〉
Pµν

µ /∈ A ν /∈ A 0

For term3, Integral Job # -111 is

J−111 =
∑
k

∑
µν

(〈
µ∇A

∣∣∣ bk
|r−rk|

∣∣∣ν
〉
+
〈
µ
∣∣∣ bk
|r−rk|

∣∣∣ν∇A

〉)
Pµν . bk will have a dependence on

C because bk =
−wk

|rk−rC | . Thus, J
−111
C is dependent on C, so there are C integral calls.

Dynamic Grid Points

Requires weight derivatives

∇A (rk − rX)
k ∈ A X = A 0
k /∈ A X = A -1
k ∈ A X 6= A 1
k /∈ A X 6= A 0

term1 (Last term only)

k ∈ A C = A 0

k /∈ A C = A
∑
k/∈A

wk(rk−rA)

|rk−rA|3

[∑
J

ZJ

|rk−rJ | −
∑
µν

(Ik)µν Pµν

]

k ∈ A C 6= A
∑
k∈A

−wk(rk−rC)

|rk−rC |3

[∑
J

ZJ

|rk−rJ | −
∑
µν

(Ik)µν Pµν

]

k /∈ A C 6= A 0
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term2

k ∈ A J = A 0

k /∈ A J = A
∑
k/∈A

wk

|rk−rC |
ZA(rk−rA)

|rk−rA|3

k ∈ A J 6= A
∑
k∈A

−wk

|rk−rC |
∑
J

ZJ (rk−rJ )

|rk−rJ |3

k /∈ A J 6= A 0

term3 = J−111
C +

∑

k∈A

−wk

|rk − rC |
∑

µν

〈
µ

∣∣∣∣
1

|r− rk|3
∣∣∣∣ν
〉
Pµν (H.88)

I’m not sure what this second term is in terms of integral calls. Possibly 112?

H.5 M Derivatives

This section is the derivation of the derivatives
∑
M

∂M
∂xγ

∑
α

∂Qα

∂M
∂EPI

∂Qα
for QM atoms and

∑
M

∂M
∂xj

∑
α

∂Qα

∂M
∂EPI

∂Qα
for MM atoms.

Remember that in the M sum, Pµν is excluded.

H.5.1 Mulliken Charges

w.r.t. QM Atoms

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

µν

∂Sµν

∂xγ

∑

α

∂Qα

∂Sµν

∂EPI

∂Qα

(H.89)

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∑

µν

∂Sµν

∂xγ

∂Qα

∂Sµν

∑

ℵ
Qℵωℵα (H.90)

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∑

µν

∂Sµν

∂xγ

(−Pµνδµ∈α)
∑

ℵ
Qℵωℵα (H.91)
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∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

= −
∑

α

∑

ℵ
Qℵωℵα

∑

µ∈α
ν

Pµν
∂Sµν

∂xγ

(H.92)

w.r.t. MM Atoms

∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

µν

∂Sµν

∂xj︸ ︷︷ ︸
=0

∑

α

∂Qα

∂Sµν

∂EPI

∂Qα

(H.93)

∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

= 0 (H.94)

H.5.2 ChElP-G Charges

w.r.t. QM Atoms

∑

α

∂Qα

∂xγ

∂EPI

∂Qα

=
∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

+
∑

µν

∂Pµν

∂xγ

∑

α

∂Qα

∂Pµν

∂EPI

∂Qα

(H.95)

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂Qα

∂xγ

∂EPI

∂Qα

−
∑

µν

∂Pµν

∂xγ

∑

α

∂Qα

∂Pµν

∂EPI

∂Qα

(H.96)

∑

M

∂M

∂xγ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

(
∂Qα

∂xγ

−
∑

µν

∂Pµν

∂xγ

∂Qα

∂Pµν

)
(H.97)

Switch indicies from γ to ζ. Remember that αβ will be QM atoms and µν will be

basis functions.

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

(
∂Qα

∂xζ

−
∑

µν

∂Pµν

∂xζ

∂Qα

∂Pµν

)
(H.98)
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∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

(
∂Qα

∂xζ

−
∑

µν

∂Pµν

∂xζ

∑

β

(Ωβ)µν (γα − δαβ)

)

(H.99)

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

(
∂Qα

∂xζ

−
∑

µν

∂Pµν

∂xζ

∑

βφ

(
G−1

)
βφ

(γα − δαβ)
∑

k

wk

|rk − rφ|
(Ik)µν

)
(H.100)

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

[
∑

βφ

(
e∇φ
(
G−1

)
βφ

+ eφ
(
G−1

)∇
βφ

+ Ξ
(
G−1

)∇
βφ

)

(δαβ − γα) +
∑

βφ

(
G−1

)
βφ

(δαβ − γα)
∑

k

wk

|rk − rφ|
∑

µν

∂Pµν

∂xζ

(Ik)µν

]
(H.101)

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

∑

βφ

(δαβ − γα)
[
e∇φ
(
G−1

)
βφ

+ eφ
(
G−1

)∇
βφ

+Ξ
(
G−1

)∇
βφ

+
(
G−1

)
βφ

∑

k

wk

|rk − rφ|
∑

µν

∂Pµν

∂xζ

(Ik)µν

]
(H.102)

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

∑

βφ

(δαβ − γα)

[(
e∇φ +

∑

k

wk

|rk − rφ|
∑

µν

∂Pµν

∂xζ

(Ik)µν

)
(
G−1

)
βφ

+ eφ
(
G−1

)∇
βφ

+ Ξ
(
G−1

)∇
βφ

]

(H.103)
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Begin Sidenote:

Let: ẽ∇φ = e∇φ +
∑
k

wk

|rk−rφ|
∑
µν

∂Pµν

∂xζ
(Ik)µν

Looking at equation H.84, ẽ∇φ is exactly the position derivative of e∇φ excluding the

position derivative of the density matrix term.

End Sidenote

∑

M

∂M

∂xζ

∑

α

∂Qα

∂M

∂EPI

∂Qα

=
∑

α

∂EPI

∂Qα

∑

βφ

(δαβ − γα)
[
ẽ∇φ
(
G−1

)
βφ

+ eφ
(
G−1

)∇
βφ

+ Ξ
(
G−1

)∇
βφ

]
(H.104)

w.r.t. MM Atoms

∑

M

∂M

∂xj

∑

α

∂Qα

∂M

∂EPI

∂Qα

= 0 (H.105)

H.6 ChElPG Rectangular Weights

H.6.1 ChElPG Weighting Scheme

Note:

h is the headspace, d is the distance between grid points (dx), RvdW
i is the vdW radius

of atom i

yk is a long-range weighting function, AJ
k is an atomic switching function

subscript c stand for cutoff, superscript s stands for short, superscript ℓ stands for long
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Rs
c,J = RvdW

J − d

200
Ron

J = Rs
c,J + 0.1 (H.106)

Roff = h+
d

200
Rℓ

c = Roff −0.1 Rmin
k = min

J
|Rk −RJ |−RvdW

J (H.107)

wk = yk

Natoms∏

J

AJ
k (H.108)

AJ
k =





0 if |Rk −RJ | < Rs
c,J

τ
(
|Rk −RJ | ;Rs

c,J ;R
on
J

)
if Rs

c,J < |Rk −RJ | < Ron
J

1 if |Rk −RJ | > Ron
J

(H.109)

yk =





1 if Rmin
k < Rℓ

c

1− τ
(
Rmin

k ;Rℓ
c;R

off
)

if Rℓ
c < Rmin

k < Roff

0 if Rmin
k > Roff

(H.110)

τ (R;Rc;Ro) =
(R−Rc)

2 (3Ro −Rc − 2R)

(Ro −Rc)
3 (H.111)

H.6.2 Weight Derivatives

∇Lwk = (∇Lyk)
Natoms∏

J

AJ
k + yk

(
∇LA

L
k

)Natoms∏

J 6=L

AJ
k (H.112)

∇LA
L
k =





0 if |Rk −RL| < Rs
c,L

τ ′
(
|Rk −RL| ;Rs

c,L;R
on
L

)
if Rs

c,L < |Rk −RL| < Ron
L

0 if |Rk −RJ | > Ron
L

(H.113)

∇Lyk =





0 if Rmin
k < Rℓ

c

−τ ′
(
Rmin

k ;Rℓ
c;R

off
)

if Rℓ
c < Rmin

k < Roff and Rmin
k = |Rk −RL|

0 if Rℓ
c < Rmin

k < Roff and Rmin
k 6= |Rk −RL|

0 if Rmin
k > Roff

(H.114)
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τ (R;Rc;Ro) =
(R−Rc)

2 (3Ro −Rc − 2R)

(Ro −Rc)
3 (H.115)

τ ′ (R;Rc;Ro) =
2 (R−Rc)R

x (3Ro −Rc − 2R)− 2Rx (R−Rc)
2

(Ro −Rc)
3 (H.116)

τ ′ (R;Rc;Ro) = 2 (R−Rc)R
x (3Ro −Rc − 2R)− (R−Rc)

(Ro −Rc)
3 (H.117)

τ ′ (R;Rc;Ro) =
2 (R−Rc) (3Ro − 3R)

(Ro −Rc)
3 Rx (H.118)

τ ′ (|Rk −RL| ;Rc;Ro) =
6 (|Rk −RL| −Rc) (Ro − |Rk −RL|)

(Ro −Rc)
3

Rk −RL

|Rk −RL|
(H.119)
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APPENDIX I

Vectors Inside a Supersphere

The number of vectors are computed by use of a recursion formula. F stands for the

floor function. This process need not be done with integers. It will work for any real

numbers. n is the number of dimensions and r is the radius of interest.

I.1 All Vectors Inside a Supersphere, N

N (n, r) = N (n− 1, r) + 2

F (r)∑

k=1

N
(
n− 1,

√
r2 − k2

)
(I.1)

I.1.1 n = 0

N (0, r) = 1 (I.2)

I.1.2 n = 1

N (1, r) = 1 + 2

F (r)∑

k=1

N
(
0,
√
r2 − k2

)
(I.3)

N (1, r) = 1 + 2

F (r)∑

k=1

1 (I.4)

N (1, r) = 1 + 2F (r) (I.5)
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I.1.3 n = 2

N (2, r) = 1 + 2F (r) + 2

F (r)∑

k=1

N
(
1,
√
r2 − k2

)
(I.6)

N (2, r) = 1 + 2F (r) + 2

F (r)∑

k=1

[
1 + 2F

(√
r2 − k2

)]
(I.7)

N (2, r) = 1 + 4F (r) + 4

F (r)∑

k=1

F
(√

r2 − k2
)

(I.8)

I.1.4 n = 3

N (3, r) = 1 + 4F (r) + 4

F (r)∑

k=1

F
(√

r2 − k2
)
+ 2

F (r)∑

j=1

N
(
2,
√

r2 − j2
)

(I.9)

N (3, r) = 1 + 4F (r) + 4

F (r)∑

k=1

F
(√

r2 − k2
)

+ 2

F (r)∑

j=1


1 + 4F

(√
r2 − j2

)
+ 4

F (r)∑

k=1

F

(√√
r2 − j2

2 − k2

)
 (I.10)

N (3, r) = 1 + 6F (r) + 12

F (r)∑

k=1

F
(√

r2 − k2
)
+ 8

F (r)∑

j=1

F (r)∑

k=1

F
(√

r2 − j2 − k2
)

(I.11)

This is Sloane’s series A000605.
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r N(3, r)
0 1
1 7
2 33
3 123
4 257
5 515
6 925
7 1419
8 2109
9 3071
10 4169
11 5575
12 7153
13 9171
14 11513
15 14147
16 17077
17 20479
18 24405
19 28671
20 33401

I.2 All Positive Vectors in Sphere (First Octant), M

M (n, r) = M (n− 1, r) +

F (r)∑

k=1

M
(
n− 1,

√
r2 − k2

)
(I.12)

I.2.1 n = 0

M (0, r) = 1 (I.13)

I.2.2 n = 1

M (1, r) = 1 +

F (r)∑

k=1

M
(
0,
√
r2 − k2

)
(I.14)
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M (1, r) = 1 +

F (r)∑

k=1

1 (I.15)

M (1, r) = 1 + F (r) (I.16)

I.2.3 n = 2

M (2, r) = 1 + F (r) +

F (r)∑

k=1

M
(
1,
√
r2 − k2

)
(I.17)

M (2, r) = 1 + F (r) +

F (r)∑

k=1

[
1 + F

(√
r2 − k2

)]
(I.18)

M (2, r) = 1 + 2F (r) +

F (r)∑

k=1

F
(√

r2 − k2
)

(I.19)

I.2.4 n = 3

M (3, r) = 1 + 2F (r) +

F (r)∑

k=1

F
(√

r2 − k2
)
+

F (r)∑

j=1

M
(
2,
√

r2 − j2
)

(I.20)

N (3, r) = 1 + 2F (r) +

F (r)∑

k=1

F
(√

r2 − k2
)

+

F (r)∑

j=1


1 + 2F

(√
r2 − j2

)
+

F (r)∑

k=1

F

(√√
r2 − j2

2 − k2

)
 (I.21)

N (3, r) = 1 + 3F (r) + 3

F (r)∑

k=1

F
(√

r2 − k2
)
+

F (r)∑

j=1

F (r)∑

k=1

F
(√

r2 − j2 − k2
)

(I.22)

This is Sloane’s series A000604.
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r M(3, r)
0 1
1 4
2 11
3 29
4 54
5 99
6 163
7 239
8 344
9 486
10 648
11 847
12 1069
13 1355
14 1680
15 2046
16 2446
17 2911
18 3443
19 4022
20 4662
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