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ABSTRACT

An implementation of Ewald summation for use in mixed quantum mechanics/molecular
mechanics (QM/MM) calculations is presented, which builds upon previous work by
others that was limited to semi-empirical electronic structure for the QM region. Un-
like previous work, our implementation describes the wave function’s periodic images
using “ChEIPG” atomic charges, which are determined by fitting to the QM electro-
static potential evaluated on a real-space grid. This implementation is stable even for
large Gaussian basis sets with diffuse exponents, and is thus appropriate when the
QM region is described by a correlated wave function. Derivatives of the ChEIPG
charges with respect to the QM density matrix are a potentially serious bottleneck in
this approach, so we introduce a ChEIPG algorithm based on atom-centered Lebedev
grids. The ChEIPG charges thus obtained exhibit good rotational invariance even for
sparse grids, enabling significant cost savings. Upon further examination new diges-
tion routines were created to enable an ever more significant cost savings. Detailed
analysis of the optimal choice of user-selected Ewald parameters, as well as timing

breakdowns, are presented.
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CHAPTER 1

Introduction

As computers have become more powerful, scientists have developed new methods
to condensed phase calculations. Unfortunately, the best theory, CCSD(T) (coupled
cluster singles, doubles, and perturbative triples), can only be used to calculate small
systems, about 200 basis functions. Obviously, this method is not appropriate for con-
densed phase calculations. Originially, quantum mechanics could only be performed
on single, small molecules with small basis sets in the gas phase.

The original way that scientists attempted to model condensed phase systems was
through cluster calculations. This entails taking a molecule of interest and surround-
ing it by a single or several solvation layers. Calculations are then performed on this
system in the hope that it will resemble the bulk solvated behavior of the system of
interest. Unfortunately, these calculations usually leave something to be desired.

Figure 1.1 show the radial distribution functions for a chloride-water system of
various sizes. The long range behavior of a radial distribution function should be
constant because the probability of finding a certain atom from another atom is a
constant value. As can be seen in the figure, the long range behavior decreases for

smaller cluster sizes. None of the clusters show a constant value at long range. The



Figure 1.1: Radial distribution functions for chloride-water(n) systems. For system
I: n=31,II: n =63, and n = 127. The top graph is for the chloride-oxygen
distribution and the bottom graph is for the chloride-hydrogen distribution. This
figure is reproduced from ref.!.

lack of smoothness in the curves amounts from the small sample size in the numerical
integration.

Also in ref. 7?7, the autovelocity correlation function was calculated for the
chloride-water systems. This figure is shown in fig. 1.2. At long times, the au-

tovelocity correlation function should be zero because the velocity at the given time
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Figure 1.2: Velocity autocorrelation function for chloride-water(n) systems. For
system I: n = 31, II: n = 63, and n = 127. This figure is reproduced from ref.?.

should be decoupled from the velocity at time zero. It can be argued that the sim-
ulation was not run for long enough for the velocities to decouple. The autovelocity
correlation function varies greatly with the system size. Unforutnately, there is no
way to experimentally measure this function, so it raises the question, when has the
bulk limit be reached? With the wide variance in this function with respect to cluster
size, it is not reasonable to assume that the bulk limit has been reached even in the
largest cluster.

The next step is to use a QM /MM (quantum mechanics/molecular mechanics)
calculation. This entails surrounding the quantum mechanical (QM)region with a
molecular mechanics (MM) region. The MM region is computed using Newton’s
laws. It adds long range behavior, but only as far as the region extends. In order to

get proper long range behavior either a very large number of MM atoms must be used
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Figure 1.3: The potential of mean force (PMF) for ammonioum chloride with 1034
TIP3P water molecules. This figure is reproduced from ref.?.

or a periodic boundary condition must be used. Periodic boundary conditions are the
cheapest way to incorporate these long range behaviors. The QM /MM /Ewald method
was originally implemented by Nam, Gao, and York? for semi-emperical methods.

As can be seen in fig. 1.3, periodic boundary conditions are needed to get the long
range properties correct. Even when a cutoff of 11.5 Ais used for the electrostatics,
the long range behavior of the PMF is incorrect. This figure shows the obvious need
for periodic boundary conditions for long range electrostatic interactions.

Nam, Gao, and York also computed the PMF for methyl phosphate, which is the
simplest example of a phosphoryl in a dissociative phosphoryl transfer mechanism.
Once again a cut-off shows the incorrect long range behavior; however, there is an
accuracy issue as well. In their paper the author’s state that the free energy calculated

from this PMF profile produces a reaction free energy that is in error by as much
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Figure 1.4: The potential of mean force (PMF) for methyl phosphate with 1034
TIP3P water molecules. This figure is reproduced from ref.2.

as 10 kcal/mol. The authors suggest that better semi-emperical methods or better
parametrization are needed. In reality, these measures are not required if one could
actually use a Hartree-Fock based method.

Nam et al.? implemented their Ewald method by using Mulliken atomic charges
to represent the periodic images of the QM wave function. With an appropriate
correction to the Fock matrix, the self-consistent field (SCF) procedure remains vari-
ational in these periodic QM/MM simulations.? The method in Ref. 2 was designed
for semi-empirical QM calculations in minimal basis sets, for which Mulliken charges
are well-behaved, but experiences serious convergence problems in larger basis sets.?
To circumvent this problem, and to facilitate periodic QM /MM calculations in arbi-
trary basis sets, we recently reformulated the QM /MM-Ewald method of Ref. 2 to use

charges derived from the electrostatic potential? (ChEIPG) to represent the image



wave functions.?

ChEIPG charges are more expensive to compute than Mulliken charges, and their
derivatives even more so. The derivatives originally posed a problem because they
were overly expensive and the bottleneck of the calculation. Originally an attempt
was made to use Lebedev centered atomic grids (as opposed to the convention rect-
angular grids) to reduce the cost of the ChEIPG density derivatives which are needed
for single point energy calculations. Lebedev grids did reduce the computation time
as compared to the rectangular grids; however, they did not eliminate the bottleneck.
Upon development of the gradients, it was discovered that the bottleneck in these
calculations were unsurprisingly found to be the ChEIPG position derivatives. Un-
fortunately, due to the non-analytical weighting scheme of the Lebedev algorithm,
position gradients are not possible for these charges. This meant that the gradients
must be computed with the rectangular grid. At that point rewriting of the inte-
gral digestion routine was investigated. This new digestion routine for both density
derivatives and position derivatives of ChEIPG charges sped up these routine to the
point where they were no longer the bottlenecks of the calculation.

In this document, a derivation of the analytical expression of the QM /MM Ewald
method for energies and gradients is presented. Their performance is then docu-
mented with timing breakdowns, parallelization across multiple processors, and a

discussion of the optimal user-selected Ewald parameters.



CHAPTER 2

Ewald Summation Theory

2.1 Electrostatic Energy

Charge-—charge interactions decay very slowly with distance and may not become
negligible in a calculation until the distance is on the order of hundreds of nanometers.
As such, the pairwise sum over such interactions is slowly convergent. In fact, it is
only conditionally convergent in a periodically-replicated simulation cell,® shown in
fig. 2.1, which is the problem that Ewald summation is designed to overcome. This
section provides a brief overview of the Ewald summation technique, which also serves
to introduce the notation that we will use.

Traditional charge-charge Ewald summation splits the pairwise summation into
two parts: a real-space portion, based on a short-range interaction potential whose
pairwise sum converges quickly; and a long-range portion based on a slowly-varying
interaction potential whose pairwise sum converges relatively quickly in reciprocal
space. The Coulomb potential is partitioned using the error function (erf) and com-

plementary error function (erfc), according to

1 erf(nr) N erfe(nr) ' (2.1)
r r r




S S S g S
RS T S
,; ',y.'-'”. ; ";_- o _'1.?
NEIH SRS ERTa Aade iATe: AT

RN
RS AR RS AR

Figure 2.1: A figure showing periodic replication.

Note that erfc(z) = 1 — erf(z). The Ewald parameter n controls the length scale
(~ n~1) on which the short-range function erfc(nr)/r decays, and thus controls how
much of the pairwise Coulomb sum is performed in real space. As 7 increases, more
of the summation is performed in reciprocal space, whereas setting n = 0 is the same
as performing the pairwise sum entirely in real space.

In the context of Ewald summation, the Coulomb energy in the simulation cell,

E.ean, is traditionally partitioned as

Ecell - Ereal + Eself + Erecip + Echarge + Edipole . (22)

The energy components include the real-space energy,

Nyvm Nvm

erfc (n|rj +nL|)
Erea = i 2.
DI TE L 23

J o k>j

(where r;, = r; —1;), the Coulomb self-energy,

Ui
Eself = _ﬁ Z qJ2 ) (24)
J
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and the reciprocal-space energy,

—7r2\m!2>
Ereci . 2.5
P Z 2L7T |m| ( n2L2 (2:5)

In these expressions, L denotes the length of the (cubic) simulation cell, and n and
m are real-space and reciprocal-space lattice vectors, respectively, sums over which
extend to infinity. The quantity S(m) in Eq. (2.17) is known as the structure factor,®
and is discussed below. The quantities ¢; and g, are point charges, the total number
of which is denoted Nyp. For brevity, we have presented these equations for the
case that the unit cell is cubic. This is not a fundamental limitation of the Ewald
formalism, but the non-cubic case would require, splitting the sum over lattice vectors
n in Eq. (2.13) into separate sums over n,, n,, and n,, with lengths L,, L,, and L,
for each side of the simulation cell.

The final two terms in Eq. (2.2) warrant some additional comments. The quantity

Q%otﬂ.
Echarge = _2L3772 ) (26)
is known as the surface charge term, where
Nyim

Qtot = Z 4a; (2.7)

represents the total charge of the simulation cell. Since the Coulomb energy is diver-
gent if Qir # 0, Ewald summation can only be used to compute the Coulomb energy
for a neutral simulation cell, and Egparge represents the energy required to surround a
charged cell with a charge-compensating membrane of opposite charge. (If the cell is
electrically neutral, then Egpaee = 0.) Artifacts due to Ewald simulation of a charged

unit cell have been noted,” but will not concern us here.



The final component of E is the surface dipole term,*°
T Nyvim
Edipole = —m Z C]jqk|rjk|2 ) (2.8)
ik

If Qior = 0 (which is often assumed when this term is discussed in the literature, as
for example in Ref. 11), the Eqipole is proportional to the square of the dipole moment
of the simulation cell. In Eq. (2.8), we imagine placing the supercell (the simulation
cell along with all of its periodic images) into a dielectric medium, whose dielectric
constant is denoted by € in Eq. (2.8).>1%12 Often, one assumes “tin foil” boundary
conditions (¢ = oo, corresponding to placing the supercell inside of a conductor), in
which case Egipole = 0.
The last bit of notation to explain is the quantity |S(m)|? in Eq. (2.9). In its most
general form, this quantity is defined as
y i
S =S g cxp (Tan : rj,g) . 29)
j.k
Despite the appearance of i = /—1, the quantity |S(m)|? is real, as the squared-
modulus notation indicates, and can be rewritten in a way that makes the real value

obvious:

Nyim
2
|S(m)|? = Z q;qy, €08 (f(m . rjk)> : (2.10)
gk

More often, this quantity is further simplified by separating r; and r;, which allows
the double summation to be recast as two identical single summations, with the

result®

S(m)f? = [NZ o0 (5 m- rj>>r . (211)
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The latter form requires fewer operations to compute, and is therefore preferred. For
QM /MM applications, however, some of the r; vectors correspond to QM atoms and
sum to MM atoms, hence the simplifications leading to Eq. (2.11) will not be possible

and Eq. (2.10) must be used instead.

2.2 Gradients

In the presence of long-range Ewald summation, the mutual Coulomb interaction of
the simulation cell with itself and its periodic images can be partitioned into five
terms. Letting @k denote the nuclear gradient operator with respect to atom k, we

have

6]gE1cell = 6k (Ereal + Eself + Erecip + Echarge + Edipole)
(2.12)

= ﬁk (Ereal + Erecip + Edipole) .
The second equality follows because @kEself =0= @kECharge, since neither Fy nor
Echarge depends on the atomic positions.

The real space energy is?

Ny Nviv erfc 77|er =+ l’lL’)

Ereal = Z Z Z 459k ~+nl| ) (2.13)

J o k>j

where r;;, = |r; —r;|. The derivative of this energy is

(2.14)

n ) 9 rjk+nL
+ — — o +nl _—
exp( n ‘rjk n | )) ‘rjk+nL|2

The restriction that j # k arises from the fact that the case j = k is already excluded

for n = 0 (lest we count an atom’s Coulomb interaction with itself), and for n # 0

11



and j = k the distance r;; = nL, which is no longer dependent on 1, hence its

gradient in Eq. (2.14) vanishes.

The dipole energy is®

Nym

_ 4 2
FEdipole = TR0 IP ]Zk ;01T 1

and its gradient is
Ny
4

V, Edipole = m Z 45495Y 5, -
i#k

(2.15)

(2.16)

Both the dipole energy and its gradient vanish under tin-foil boundary conditions

(e = 0).

The final term in Eq. (2.12) is @kErecip. The quantity Ejecip can be written in the

compact form?

§ 2
rec1p U) m

m;éO

(m) — 12 —72m]?
v -\ Vrjm|? P n?L?

is independent of the atomic positions but

211
Zq]qk exp —m L

depends on the atomic positions via r;,. Therefore

where

A 1 A

Vi Freip = 5 3 w(m) Y, S(m)
m#0

The gradient of the structure factor in this equation is

Nym
- dnq;q, . (27
V,.|S(m)|* = E —L] sin (_L m - rjk> m

J

12

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



The restriction j # k does not appear because this derivative vanishes identically for
j=k.

The form of the gradient in Eq. (2.21) can always be used, i.e., regardless of
whether ¢, is an MM point charge or an atomic point charge representing the image
of the QM wave function. If the indices j and k are both MM point charges (so
that summations over these indices run over the same set of atoms, then a more

computationally efficient form of Eq. (2.21) is

V,[S(m)[? 4%{ []%4 g; sin ( )] cos(%rm : I“k)
[% q; cos <2L7Tm r )] sin(%ﬂm . rk>} m (2.22)

The terms in square brackets are sums over all MM atoms and have no dependence

on r,. These sums can be computed once and stored, eliminating the need for a
double sum over atomic indices. This makes Eq. (2.22) preferable to Eq. (2.21) for
MM /MM interactions. For the interactions between a QM atom & and all MM atoms

J, Eq. (2.21) will be used instead.
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CHAPTER 3

QM /MM and PBC

The QM/MM-Ewald technique introduced by Nam et al.? is based upon the reason-
able assumption that the simulation cell is large compared to the spatial extent of
the QM wave function. As such, a large MM “buffer” screens the interaction between
the electron density and its periodic images, so collapsing this density onto point
charges for the purpose of computing these long-range Coulomb interactions should
not engender serious error. Once the density is reduced to point charges, classical
Ewald summation can be applied. In this section, we describe the basic theory behind
obtaining PBC corrections to the SCF energy and Fock matrix. In developing this
theory, we are concerned only with electrostatic interactions, as other QM/MM in-
teractions such as non-bonded Lennard-Jones interactions operate on shorter length
scales and PBC implementations based on smooth cutoffs should be fine. Thus, “to-
tal” energy will refer to the QM electronic structure energy plus all MM and QM/
MM electrostatic interactions; other MM interactions can simply be tacked on to the

formulas appearing below.
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3.1 Energy corrections

We first write the total QM /MM supersystem (SS) energy, which includes the inter-

actions between all periodic images, as
SS SS SS
Etotal = EQM—QM + EQM—MM + EMM—MM . (3].)

The final term, E3 .\, can be evaluated using a standard, classical Ewald summa-
tion and need not be discussed further. It is helpful to partition the other two terms
into interactions between atoms in the simulation cell with other atoms in the simu-
lation cell, which we will call the real-space (RS) interactions, and also interactions
between the simulation cell and atoms contained in the periodic images (PI). The SS
energies in Eq. (3.1) can thus be broken down into RS and PI parts, shown pictorially

in fig. 3.1:

Etotal = E(%l%/[_QM + AE’g{\/I-QM + E(%E/I—MM

+ AEGua + Exivan - (3.2)

The term Efy gy (interaction between QM atoms in the simulation cell with other
QM atoms in the simulation cell) is simply the result of some QM electronic structure
calculation. The term E&%[MM results from some QM/MM interaction scheme; note
that Eq. (3.1) tacitly assumes an “additive” QM /MM scheme, as opposed to a “sub-
tractive” scheme such as ONIOM.!3 For the latter, there are no QM periodic images

so Ewald summation involves the MM system only, and is therefore straightforward.
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Figure 3.1: A color coded pictorial representation, where the orange oval represents
the QM region, for all interactions included in Elyy)-

The remaining terms in Eq. (3.2) are calculated as differences between a SS cal-

culation and a RS calculation,
AE™ = E% — ER (3.3)

In particular, AE{} ypy is obtained using a QM region embedded in a periodically-
replicated supercell of MM regions, but without replication of the QM region. This
interaction energy can be decomposed into real- and reciprocal-space parts, the latter
of which will involve only MM atoms provided that the QM region is fully enveloped
by the short-range part of the Coulomb potential in Eq. (2.1). The term AEqy qu
in Eq. (3.2) is obtained from a periodic array point charges obtained from collapsing
the QM electron density onto atom-centered charges, as described below and shown

in fig. 3.2.
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Figure 3.2: A pictorial representation of a replicated QM /MM simulation cell,
where the blue oval represents the QM region (second image), and its collapse onto
point charges (third image). Note that any circle not surrounded by the QM region

is a point charge.

Applying the fundamental assumption that the QM images are far apart and
screened by a wide buffer of MM charges, the calculation effectively reduces to a
series of pairwise Coulomb interactions between the atoms in the simulation cell and
those contained in the periodic images. It is therefore expected that AE&\/I_QM and

AEQy vy Will have similar forms:

Nqowm
1

ABGQuaqu =5 ) QaQp w(ry) (3.4)

o,

and
Nom Ny

AEG v = Z Z Qag; w(ry;) - (3.5)

a g

For clarity, we use @, to denote the partial charge on a QM atom and ¢, to denote the
partial charge on an MM atom. As in standard Ewald summation, both quantities

can be described by a potential function, w(r). For a neutral simulation cell (Qtor = 0)

17



with tin-foil boundary conditions (¢ = 00), this potential is

—72|m|? /n?L? 9
e T
w(raﬂ) = Z W COS (f(m . raﬂ)) (36)
m#0
o3 el k) erf ()
2™ Tty + 0L ros]

In obtaining this result, the form of |S(m)[* in Eq. (2.10) has been used in the
reciprocal (first) term in Eq. (3.6). The reason to prefer this form, as opposed to that
in Eq. (2.11), is that the latter requires that each of the indices runs over the same
sum, which is not the case for QM/MM interactions where one of the summation
indices in Eq. (2.9) represents QM atoms while the other represents MM atoms.
The potential in Eq. (3.6) warrants some comments. First, the term containing a
sum over m # 0 is directly analogous to the reciprocal term in Eq. (2.17), whereas
the erf and erfc terms are analogous to the real space term in Eq. (2.13). The different
appearance of the erf term (representing the n = 0 vector) is due to the fact that
an energy ERS . with a Coulomb potential of 1/r, has been subtracted out of E53

real’ real

with a Coulomb potential of erfc(nr)/r, to afford AEF!

reals With a Coulomb potential

of —erf(nr)/r.
It should also be noted that nothing analogous to the self-energy is immediately
apparent in Eq. (3.6). In the QM-QM PI correction [Eq. (3.4)], there is no restriction

on the sum and so oo = (3 is allowed. For a = (3, the Coulomb interaction is given by

lim <L) _ 20 (3.7)

r—0 r \/7_1' ’

which is in fact the self term. Furthermore, there is no self energy corresponding to

the QM-MM PI correction [Eq. (3.5)], since the atom types in the two summations

18



are different.

Finally, it is worth noting that the potential in Eq. (3.6) differs from the Ewald
potential given by Nam et al.,? insofar as the term in Eq. (3.6) containing the sum
over n # 0 is absent in Ref. 2. The authors of Ref. 2 assume that the Ewald parameter
1 has been chosen such that only the simulation cell must be considered in the real-
space portion of the Ewald sum. This is a reasonable assumption but is not assumed
a priori in this work, on the basis that cost considerations for more general QM /MM
calculations might favor a different partition of the effort. In the case of a charged
system, the charge term [Eq. (2.6)] is included in the MM Ewald summation. We
henceforth assume tin-foil boundary conditions and therefore omit the dipole term in

Eq. (2.2).
3.2 Fock matrix corrections

The corrections above must now be incorporated into the Fock matrix, which is
computed by taking the derivative of the energy with respect to the density matrix.

Using the chain rule, this correction can be expressed as

apri = OAETT SN OAEF 90,
W P 2 0Q. 0P

(3.8)

where AE™T = Ef\ o + EQviavg: The energy derivative with respect to an atomic

point charge can be evaluated directly from Egs. (3.4) and (3.5):

OAEFT Nawm Nyvm

0. = ZB: Qs w(r,) + ZJ: ¢, wir,,) . (3.9)

The cost of evaluating Eq. (3.9) can be significantly reduced by recognizing that

the Ewald potential depends upon the positions of the atoms (both QM and MM),

19



but not on any details of the electronic structure. Those details are encoded into
the QM charges (3, which are the only quantities in Eq. (3.9) that change from one
SCF cycle to the next. Thus, we can pre-compute the Ewald potential at the relevant
interatomic distances prior to entering the SCF iterations. In anticipation of doing

this, let us define a column vector

o = [6ra) ) o Glang) TPV e,)] . (310)

The final entry in this vector is identical to the second term in Eq. (3.9). Next, define

another column vector

Q=[Q1 @ - Qg 1}T- (3.11)

(Save for the final entry, the vector Q consists simply of the QM atomic charges.)

Using this new notation, we can rewrite Eq. (3.9) as

Nom

9Qa
" OF,,

AF,) = Q'w, . (3.12)

It remains to evaluate the charge derivatives 0Q,/0P,,. The form of these deriva-
tives depends upon the charge scheme that is used (Mulliken, Lowdin, ChEIPG?,
etc.). For Mulliken or Lowdin charges, these derivatives are quite simple. The Mul-
liken atomic charges, for example, are defined as

Qo =Za— > PuSu . (3.13)
nea
hence the requisite derivatives are nothing more than overlap matrix elements:

9Qa
OP,,

== —SNV 6,11606 . <314)
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Here, 0,4 is a Kronecker delta-type symbol signifying that both atomic orbital (AO)
basis function ¢ must be centered on atom «;, else the derivative is zero by definition.
It is not terribly surprising to discover that the Mulliken charges are unstable in
extended basis sets, and because in this context these charges make their way into
the Fock matrix, we find that the Mulliken-based QM /MM-Ewald scheme is difficult
or impossible to converge in extended basis sets. (Data to this effect are provided in
Section 6; we encounter similar difficulties in attempting to use Mulliken or Lowdin
charges in the context of the self-consistent XPol charge-embedding procedure.!?)
ChEIPG charges (shown in Chapter 5), on the other hand, appear to be stable and
robust, but the derivatives 0Q,/0P,, are far more costly in the ChEIPG case. These
derivatives will be given explicitly below, following a discussion of the basic theory

behind ChEIPG charges.

3.3 Position derivative of the Ewald energy and potential
The energy of a periodically replicated QM /MM system can be expressed as?
Etotal = ESE/I-QM + E(%EAMM + EE/ISM-MM + AE™ (3-15)

where E, ., is total energy of the simulation cell, E&%/[_QM and E&%/[MM are the simu-
lation cell QM and QM /MM energies, respectively, in real space (RS), and E{S a1
the MM energy for the supersystem (SS), meaning the simulation cell and its periodic
images. Lastly, AET! is the energy of interaction between the simulation cell and the

periodic images. Assuming a neutral system with tin-foil boundary conditions, this
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final term can be written

Naom NQM Nam
AE™ = Z Qa Z Qp w(res) + Z q; W(Tay) (3.16)
where @, is the charge on a QM atom and ¢; is the charge on an MM atom. This
results in a Fock matrix correction, AF}) = d(AE™)/dP,,. This correction is*?

Nom 8@ Naom Nym
o

AFM = Z Qs Wap + Z 4 Waj | - (3.17)

The quantity war = w(rar) is the real-space Ewald potential,?

COS(2T @ * Tak) _r2ja, 2/n2
w(rar) = Z Valar e~ laml*/n
an 70 (3.18)
4 Z erfc (1 |rar + bal) _ erf(n |rax|)
bn£0 ’rak + bn‘ ‘rak’

The gradient of AETT with respect to a nuclear displacement is different depending
upon whether it is a QM or an MM atom that is displaced. We first consider a
displacement, x.,. Note that the MM charges are fixed but the QM charges are not,

and we have

N % Nqm
OAEPT XN Owa M Ow 2 aQa
8x Z Qa Qv ’Y - a'y/2 + Z qj QV o Z B Wap
Y a 'Y
Nym NQM

+ZZ Ja % i - (3.19)

In practice, we can eliminate the 6, term since the dependence on nuclear coordinates

vanishes for a = =, since r,, = 0. Thus
Nowm Nyvm

D Qswap+ D Gjtvag
5 J

(3.20)

Naowm

t2 5

Nowm Nyvm

OAE™ awa ow 0Q.,
Oz =2 QaQy g~ + Z G5 5 Q
v a

22



To obtain the derivative of AEP! with respect to an MM coordinate xj, the MM
charges come from a force field and are independent of the atom position. The QM
charges are dependent on the MM atom positions because the charges are dependent

on the density matrix. Thus, yielding

Nawm Nym

> Qswas+ Y qiwag | - (3.21)
B J

Nam Nqom

-3 Qo + DI

Expressions for the charge derivatives 0Q),/0x., are not universal and depend upon

8AEPI 8Qa

how the QM charges are obtained from the wave function. These derivatives will be

discussed later. The derivative of the Ewald potential is universal, and we have

. erf (n|ryk]) 20 21 2] Tok
V., W = {—7 _ e o w(ayy,) sin(2m ay, « rx) an
(i R DA P :

oy (erfc(77|r7k+bn|) +2_n€_n2yr7k+bnf) okt ba g 99)
b, #0 Ty + by VT [t + by

where we have opted for the use of Eq. (2.21) in the reciprocal term. The derivative

with respect to a MM nuclear coordinate is obtained easily by recognizing that
67 Wk = —6k Wik - (323)
3.4 Position derivative of the SCF energy

The derivative of the Hartree-Fock energy ey is

8€HF an, 8Vnuc aP,w
5 :% Z PM — (uv|po) + =~ +§ S F (324)

pqu

where the Fock matrix elements are

Bl :HAW+Z<NVH)‘U> Py (3.25)

Ao
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and P,, represents a density matrix. Equation (3.24) is adaptable to DFT in a
straightforward way, so for brevity we do not include the exchange-correlation term
in the derivation that follows. As shown long ago,’® Eq. (3.24) is needlessly expensive
because the density matrix derivatives 0P, /0r can be eliminated in favor of the

energy-weighted density matrix,

W, = Z €i Cy Cui (3.26)

so that

a€HF Z

This transformation relies on two facts:

Z F;wcl/i = Z giS/,LUCVi (328>

Z PAU ,lW||>\U Vi ZWW ”. (3.27)

uqu

and
Z C;LSMVCV]' = 51’]’ . (329)

Let us use the chain rule to write the charge derivatives 0Q,/0z, as

aQa Z aQa aP;U/ aQa 8_M

9P,, 0z, | 2~ M oz, (3:30)

Here, M represents any quantity on which @), depends, save for the density matrix.
Mulliken charges, for example, depend on the overlap matrix elements S,,, hence
M = S,, in that case. These “M-derivatives” will be evaluated below, for both

Mulliken and ChEIPG chargs. In the general case, we can use Eq. (3.30) to rewrite
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Eq. (3.20) as

OAEPL Dy, Nt g & 90, 0P, [ &
oz, Z QO‘QV o Z qJQW Ww g Z 0P, (9;, % (@seas

«

Ny Nqom OQ oM Nqom Nyim
3 )+ L TS Gt Y| - 030
j a M Ty B8 J
Note that the third term in this equation looks like the Ewald Fock matrix correction
[Eq. (3.17)] contracted with the density matrix derivative 0P, /0z.:

Nqom Nqom NuvMm

0Qa 0L P, PI
; Z OP,, 0z, ; Qpwas + ; qjWaj | = o, AF,, . (3.32)

%

In the gradient of the total energy, d(eyp + AE'!)/0x.,, this term is simply added
to the final term in Eq. (3.24), and is eventually folded into the term containing the
energy-weighted density matrix, since the Fock matrix for the periodic calculations
has matrix elements F),, + AF, IE,I Therefore, the final gradient expression is obtained

by combining Egs. (3.24) and (3.31) and using Eq. (3.32):

(‘3 (€HF + AEPI) avnuc
Oz, =2 P Z PAU ,ul/||)\a> T
v uyka
Nom Ow Nuwm

ZWHV # Z QaQ'y 7 Z jQ»y a
J

NQM Nqum Namat

0Qq OM
; %; M Oz, ; Qpwap + ; qjWaj | - (3.33)

There are three extra terms as compared to the traditional Hartree-Fock gradient.
Derivatives of the Ewald potential can be evaluated analytically [Eq. (3.22)]. Deriva-

tives of the QM atomic charges, which appear in the final term, are discussed below.
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The MM derivative is simpler. When an MM atomic coordinate x, is displaced,

the analogue of Eq. (3.30) for the QM charge derivatives reads

0Qa  ~— 9Qq 0P,
or, " 0P, Ox,

(3.34)

The “M-derivative” term in Eq. (3.30) is absent, because quantities such as S, (and
other quantities required to evaluate the ChEIPG charges) do not depend on the MM
atomic positions. Displacement of x, appears in deyp/dz,, in the form dH,, /dz, [see

Eq. (3.27)] This results in a derivative

0 (enr + AE™) OH, Ve
8:1% —ZPHV 8xk + aCL’k

1%

3.5 Mulliken Charge Derivatives

Mulliken atomic charges were used in the original, minimal-basis QM/MM-Ewald
method of Ref. 2, but perform poorly (sometimes leading to SCF convergence failure)
in larger basis sets, or large QM regions.® For completeness, however, we consider the
Mulliken case here, as it provides a gentle introduction to the more difficult ChEIPG
case that is considered in Section 5.4.

What is needed is to evaluate the “M-derivatives” Y, (0Qq/IM)(OM /0x.), for
all independent variables upon which ), depends except P,,, as that dependence is
already folded into the energy-weighted density matrix. Mulliken charges are defined

as

ch =Zo — ZP/J,VS,LW ) (336)

pnea
v
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so the independent variables are the P,, and the S,,. Therefore the M-derivative is

Z aQaa_M o Z aQa aS,u,z/
oM Ox, N 0S,, Oz,

M nv

(3.37)

0S,u
:_ZP“”O—Q;/;'

pneEQ
14
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CHAPTER 4

Parameters for the Ewald sums

In addition to the charge scheme, the user-controlled Ewald parameter, n, can greatly
influence the calculation time. This parameter controls how much of the pairwise
sum is performed in real space, and thus controls how many vectors are required to
converge the vector summations in the real-space term [Eq. (2.13)] and the reciprocal-
space term [Eq. (2.17)]. Both summations converge as Gaussian functions.® Following
Ref. 5, we thus choose a constant, C', such that exp(C?) is within a specified conver-
gence threshold. We take this to be the same as the threshold (drop tolerance) used

for the one- and two-electron integrals,

C' = \/—In (Integral Threshhold) . (4.1)

Unless otherwise stated, the integral threshhold will be set to 10~ here, the default
integral threshhold for a single point energy calculation in Q-Chem.
In real space, the argument of the complimentary error function [see Eq. (2.13)]

controls the convergence, hence we want

exp(C?) < exp(n®|ras + Ny L]?) | (4.2)
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where the vector n,, = (n

X

max> 05 0) specifies how many periodic boxes one must use
in the calculation to achieve a required level of accuracy. This is equivalent to figuring

out how far away two atoms must be before their pairwise interaction contributes less

than the integral threshold. Thus we obtain

C < 77|I'a5 +n,. L. (4.3)

max

Each of the components of r,3 must be less than the box length, L. Replacingn,, +1

with n . for convenience, one obtains

C <nn,. Ll =nng..L (4.4)

max max

and therefore

Nyax = ceiling (%) . (4.5)

Ui

Equation (4.5) specifies the largest vector that must be included in the real-space
sum in order to achieve a certain drop tolerance. If the integers n,, n,, n, are run

from —n . ton however, there are unnecessary vectors that are included in this

max
“supercube”. The farthest distance that needs to be considered is actually |n,, |,
so we need include only those lattice vectors satisfying the condition |n| < |n,_|.
Enforcing the condition creates a “supersphere” where some lattice vectors from the
corners of the supercube have been excluded. Note from Eq. (4.5) that n . = 0
when C'/nL < 1/2. This condition leads to a cutoff radius, R. = C'/n < L/2, so that
all significant interactions are included using the minimum-image convention (cutoff

at half the box length) in the real-space sum. In this case, the real-space sum is

calculated only within the simulation cell, with the result that the n # 0 term in
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Eq. (3.6) is zero. This is in accordance with the assumption made by Nam et al.?
and is often the case for large simulation cells.

The requisite number of reciprocal-space vectors m is calculated in the same
manner. Since the argument of the exponential function in Eq. (2.17) is 72|m|*/n*L?,
this quantity replaces (1 |rns + n,,. L|)* in an inequality similar to Eq. (4.2), with
the result

M. = ceiling (@) . (4.6)
Each of the elements in m runs from —m,_ . to m_,. with 0 excluded and subject to
a constraint that lm| < |m, |

Now it is possible to determine the exact number of vectors that will be needed
for the calculation, given a particular value of . The number of total vectors in the
supercube is

3

Vtot, = (anax + 1) + (Qmmax + 1)3 : (47)

The number of total vectors that satisfy the constraints (i.e., the supersphere) is not
so easily computed but can be determined through recursion relations. In order to
find these numbers the reader should consult Sloane’s handbook of integer sequences,
(specifically, series A000605).16:17

In this work, we employ standard Ewald summation as opposed to the particle-
mesh Ewald technique!®' that is more common in strictly classical simulations. As
such, the cost of both the real- and reciprocal-space sums scales quadratically with

the number of vectors. As such, the minimum number of vectors leads to the fastest
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calculation and the value of n that affords this minimum is the optimal Ewald pa-

rameter. This value can be determined by numerical solution of the equation

20L3773 N L2772
V3 VT

Alternatively, one may build a table where one finds the number of total vectors in

—Lnp—2C=0. (4.8)

the supercube and then chooses the 1 value corresponding to the smallest number of

vectors.
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CHAPTER 5

ChEIPG charges

5.1 Basic theory

By construction, the ChEIPG atomic charges minimize, in a least-squares sense, the
difference between the QM electrostatic potential (evaluated on a grid) and the elec-
trostatic potential derived from a set of atom-centered point charges (evaluated on
the same grid), subject to the constraint that the atomic charges must sum to the
molecular charge.* A complete discussion of the ChEIPG formalism, using the same

notation that is used here, can be found in Ref. 20. Briefly, the ChEIPG charges are

given by
Nym
Qu=)_e(G)y, (5.1)
B
Ny L
a €p (G_ )BC - Qtot Nuwm
B -1
B Ny Z (G )BA
> (G e B
BC
where
Ngria Wi Nuvm 7, Npasis
eB_Z|r —r |<Z r, —r,| Z(Ik)“ypw) (5:2)
r—Tp kT o
and

W

|rk — 1, |rk: —TIp .
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The indices A, B, ... index nuclei and k indexes the grid points on which the elec-
trostatic potential is evaluated; the quantity wj is the weight assigned to the kth
grid point. We have previously introduced a weighting scheme that ensures that the
charges are continuous functions of the atomic coordinates,'*?? although a differ-
ent weighting scheme, a first attempt at a speedup, will be used in this section, as

described below. Finally, the quantity

1
r — 1

(T ) = <M

V>r (5.4)

is a charge—density Coulomb integral. (The subscript r indicates that the electron
coordinate r is the integration variable.)

Historically, the nature of the grid on which to evaluate the electrostatic potential
was a source of debate, with various incarnations of the least-square fitting algorithm
using different types of grids. One early algorithm?! (originally called “ChEIP”) used
a set of concentric, atom-centered spherical grids. However, the charges thus obtained
from were shown to be sensitive to molecular conformation,* which was problematic
because a main goal was to use ChEIP charges to parameterize force fields. The
ChEIPG algorithm? (so called to distinguish it from ChEIP) consists of replacing
these spherical grids with a Cartesian grid, deleting points within the van der Waals
region in order to fit to the long-range parts of the electrostatic potential. Although
this reduced the conformational dependence of the charges, it was later demonstrated
that atom-centered grids (including those with icosahedral symmetry) lead to far

better rotational invariance of the charges, as compared to Cartesian grids.?
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In the present context, contraction of the integrals (Iy),, with certain quantities
that arise in the construction of 0Q,/0P,, proves to be a serious bottleneck, and it
therefore behooves us to reduce the number of grid points (Ngiq) as much as possible.
Since atom-centered Lebedev grids of octahedral symmetry are already ubiquitous in

Gaussian-orbital-based DFT codes, this was the natural choice to explore.

5.2 Lebedev grid implementation

This section documents our implementation of Eq. (5.1) using atom-centered Lebedev
grids. (Once the grid is constructed, this works like any other ChEIPG algorithm,
but there are some numerical aspects worthy of discussion.) It could be argued
that the charges thus obtained should no longer be called “ChEIPG” charges, since
the only difference between the ChEIP and ChEIPG algorithms is how the grid is
constructed. However, the ChEIPG acronym is widely known and emphasizes the fact
that there is a grid-based aspect to the calculation. Thus, we refer to our algorithm
as a Lebedev grid-based implementation of the ChEIPG charges. We will retain some
of the terminology from the original paper on ChEIPG charges.? Namely, the head
space refers to the distance from the van der Waals (vdW) surface to the outermost
radial shells that constitute the grid. (There are no points within the vdW surface.)
Also, let Ax denote the spacing between radial shells. These two parameters, along
with the number of Lebedev points per shell (N,), serve to define the ChEIPG grid.

The Lebedev grid with IV, points on the unit sphere is constructed on each atom and
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(b) Unweighted

(c) Weighted

Figure 5.1: Plot of the Lebedev grid for Hy in plane containing the internuclear axis.
(a) Actual grid using N, = 302 points per radial shell and nine shells per atom. (b)
Number of grid points contained in each 0.25 A x 0.25 A cell, equivalent to the
contribution of each cell to the least-squares fit when all the weights w;, are identical.
(c) Each cell’s contribution when a simple weighting scheme (wy, = 1/ny) is used.

then its radius is scaled by a factor

for the ¢th shell. Radial shells are constructed from r 4 out to the head space
distance. Aside from the symmetry of the grids, this procedure is similar to that used
by Spackman?? to evaluate Cartesian versus atom-centered grids, and also to one of
the original ChEIP algorithms.?!

Although it is possible to perform a weighted least squares fit of the electrostatic
potential using the weights wy, in Eq. (5.1), the original ChEIPG paper of Breneman
and Wiberg? sets all w, = 1, and the authors in fact emphasize the importance of
using an isotropic grid to reduce conformational dependence of the charges. The use

of atom-centered Lebedev grids leads to a highly anisotropic coverage of real space, as

35



is evident from the Lebedev grid for Hy, which is shown in Fig. 5.1(a). In Fig. 5.1(b),
we plot the number of grid points contained in each 0.25 A x 0.25 A cell, which
shows how each such cell contributes to the ChEIPG fit when all w;, = 1. Given the
cylindrical nature of the point density we expect radial anisotropy, which is readily
apparent in Fig. 5.1(b), but what is perhaps less intuitive is the fact that there is also
anisotropy orthogonal to the bonding plane. The latter arises from the presence of
“seams” where the two atom-centered grids meet.

To ameliorate this anisotropy, we propose a simple weighting scheme in which
wg = 1/ng, where ny is the number of grid points contained within the cell where
the point k resides. Figure 5.1(c) shows that this scheme significantly reduces the

anisotropy of the grid.

5.3 Density derivative of the charges

As compared to the Mulliken or Léwdin charge scheme, the derivatives 0Q,/0P,,
are significantly more complicated in the case that ), is a ChEIPG atomic charge.
To evaluate these derivatives in the ChEIPG case, note that ey is the only quantity

in Eq. (5.1) that is dependent on P,,. Using the notation of Herbert et al.,*

TR 1T S 5.6)
OB 5 BA . vy — 15 - '

NI\IM Ngrid

_ w
74 Z (G 1)CB Z |r_—kr| (Ix) .
BC k k c
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where
Nym

> (G g4
Ya = ]VI\,B/H\/[— ) (5.7)

> (G e

BC
The quantity (Ix),, in Eq. (5.6) contains the integrals in this derivative; therefore, it
is desirable to rearrange the derivative in such a way so that it needs to be calculated

only once for each atom. Defining

\ B Nyvm Gil Wy -
we= 2 (G =t (5.8)
B
we obtain the following compact result:
Nyim
oQ
2 = Z (25),, (Ya — 9Ba) - (5.9)
0P, =
The quantity
Ngrid
() = > Ape(i)w (5.10)
k

consists of charge-density integrals in the AO basis, with “charges” Apj located at
points rx. Combining this with Eq. (3.12) and rearraning the order of summations,
one obtains a correction to the Fock matrix in which (Qp),, is evaluated just once

for each B, and thus the integrals (I;),, are calculated exactly once per QM atom.

5.4 Position derivatives of ChEIPG Charges

The ChEIPG charge derivatives are much more complicated. Instead of finding the M-
derivative directly as we did for Mulliken charges, it is easier to find the full derivative

of the ChEIPG charges, and then subtract out the density derivative term. The
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ChEIPG charges can be expressed as?
;{eF (G_l)FH - Q
= I G, . 11
qa 23:63 (G )BA S (G Yep Z ( )BA (5.11)

CD B

In this representation, uppercase Roman letters stand for QM atoms, the index k
will stand for grid points, () is the total charge on the system. Therefore, ¢4 in this
section is equivalent to @), in other sections. The matrix G is defined by

Wy

Gep = (5.12)

. It —rel [y —rp

where w,, is a weight for the kth grid point, and

c = g mlﬁ—krd (; ﬁ - Z(HR)WPW> . (5.13)

nv
Here

1
r — 1|

(Tx) = <M

u>r (5.14)

is a one-electron charge—density integral. (The subscript “r” is intended to indicate
that this is the integration variable.)
The ChEIPG charge derivatives can be expressed in a relatively compact form:

0¥ =Y [N (G +ew (G +E (G| Gve —70) . (5.15)

Here we have switched to a superscript notation to make the equations easier to read;
however, it is important to remember that every derivative is still taken with respect
to a nuclear coordinate, even though this is omitted from the notation for brevity.

This equation introduces the notation

(1]

Q=Y krex(G ke
= ZCD(G_I)CD (5.16)
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and

= > 5(G s
> ep(GHep
\Y

Equation (5.15) is deceptively compact, because although both (G™1)Y,5 and e}, can

(5.17)

be expressed in analytic form, these derivatives are fairly involved. One complexity is
the appearance of the grid points ry, which may be independent of x., in the case of
a regular Cartesian grid (as in the original formulation of the ChEIPG algorithm?),
or they might depend upon the nuclear positions (as in our Lebedev grid-based for-
mulation®). Each of these cases will be examined in turn. Before doing so, note
that

(GT)Y = (GGG, (5.18)

which follows by differentiating the condition GG™! = 1. In view of this, the deriva-
tive (G™1)V in Eq. (5.15) is readily obtained once GV is known, so we will only

discuss the latter.
5.4.1 Atom-independent grids

In this section, we limit our discussion to the case where the positions of the ChEIPG
grid points are independent of the positions of the nuclei. (Most such implementations
use a rectangular grid, but the gradient formalism presented below does not require
this.) Some implementations use a uniform weighting scheme (w, = 1), in which case
the derivatives of w, vanishes. A non-uniform weighting function, intended to insure
smoothness despite the use of a fixed Cartesian grid, was introduced in our previous

implementation of ChEIPG charges,?® and will be discussed below.
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The derivative of the G matrix with respect to a nuclear coordinate on atom A is

Z T}, — rc’ ’rk —1p|
wy, 50,4 Wy, dpa
"‘Z(% —Try) 3 + PP (5.19)
k A

lr), =1y v, —rp| v, =1t —

This part of the gradient has a simple analytic form that is easy to program.
The derivative of e, is more complicated and we will break it into pieces for
convenience, writing

et = RoA 4 SpA + TYA + UYA (5.20)

where

R = Z (L) [Z o rJ| Z (Tt) ., P (5.21)

—~ \[r, —r¢| P

Va
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S = 5.22
Z |rk—rc| (Z |rk_rJ‘> ( )
oA ==>" !rk— > (W)ys P (5.23)
k v

—rg B
w
—§ ok § (L) P (5.24)
T, — 1ol
k pv

The RZA and Sg“‘ terms are straightforward to derive and inexpensive to evaluate:

Va
w wy (r, —r
R = AL Sk Y B (L)L | (5.25)
¢ Zk: <‘rk_r0’ vy — 1yl Z ‘rk_rJ’ %V: e
ST = Wy Za(Te = Ta) (5.26)

P Ty —rel oy —u*

The TgA term is the most difficult and time-consuming part of the ChEIPG M-

pVA >> (5.27)

derivative, as it involves derivatives of one-electron integrals:

w
TVA . § k E P . Va
¢ |I'k - I‘C’ 8 <<,U V> <M
k puv r

|I'_rk| |r_rk‘
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There is no derivative over the distance because the grid point is independent of the

atom position. Finally,

0c pv, (5.28)

Va __
Ue" = oP,, M
iz nv

If the term UCVA is excluded from the gradient, the charge derivative is identical

to the M-derivative. With this in mind, define
e =edh — UM (5.29)

The M-derivative then assumes the form

9Qc OM _ h 0Qc pv,
v, oM (%A ¢ - ap;w 4
= [@7/‘ (G0 Fen (GT)TA + 5 (G*l)YWAN} (xe — 0)
MN

(5.30)
Using Egs. (5.19), (5.25), (5.26), (5.27), and (5.30), one can assemble the appropriate

M-derivative to be used in Eq. (3.33).

5.4.2 Atom-dependent grids

Atom-dependent grids add a new level of complexity to the derivatives. We assume,
as in our previous Lebedev grid-based implementation of ChEIPG,? that such grids
consist of atom-centered radial shells. In such a case, the locations of the grid points
can be expressed as

r,=r,+r,,, (5.31)

where the vector ry,, depends upon the radial spacing (d) and the number of angular

grid points (n). Thus, we assume in what follows that the grid point locations (r})
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depend linearly on the atomic positions (r,). Equations (5.19), (5.25), (5.26), and
(5.27) derived above are thereby replaced by Eqs. (5.32)-(5.35) that are presented
below, and used to assemble the derivatives in Eq. (5.30). Contained inside each
of Egs. (5.32)-(5.35) is an analogous equation, introduced above for the case of an
atom-independent grid.

The new gradient equations are

v
Cob = Z vy —

rc| |rk —1p|
+Z ( wy, 0cA N wy, pa )
kA v, = ralPlry —rp| [ — o] [r — 1P

wy, (1 —dcp) ((rk —1c)ca | (v, —Tp)0pa
r), — 1o/ r), —1p)?

) (5.32)
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5.4.3 Weights of rectangular ChEIPG charges

In Q-Chem’s implementation of the ChEIPG charges,?® the weights
Natoms
wy(ry, {ra}) = wytt(ry, {ra}) H Afl(ry,ry) (5.36)
J

associated with the grid points are chosen to consist of a long-range weighting func-
tion, wi®, and a product of atomic switching functions A{. The aim of this approach
is to ensure that the ChEIPG charges are smooth, continuous functions of the nuclear
coordinates, despite the use of a fixed Cartesian grid to evaluate the electrostatic

potential. Gradients of Eq. (5.36) are straightforward:

Natoms Natoms
Viw, = (Viwk® H AL+ wt (VoA T AL (5.37)
JAL

The gradient ?ka goes to zero if grid point £ is not in the region where the switching

functions are significant.

43



CHAPTER 6

Results

The Lebedev ChEIPG method and the QM /MM-Ewald method described above have
been implemented in a locally-modified version of Q-CHEM v. 4.0.2324 Here, we de-
scribe various numerical tests designed to evaluate the numerical performance of the

method.

6.1 Charge schemes

In attempting to implement the algorithm in Ref. 2, we encountered serious SCF
convergence problems that we suspected were due to the use of extended basis sets in
conjunction with Mulliken image charges. Since no such difficulties have been reported
in previous minimal-basis implementations of the algorithm,??® we first wanted to
verify that the Mulliken version [with charge derivatives given in Eq. (3.14)] does
indeed work in a minimal basis set. To test this, calculations were run at the QM
= Hartree-Fock (HF)/STO-3G level of theory, for a single QM water molecule in a
box of 215 TIP3P water molecules,?0 with L = 18.643 A corresponding to ambient
liquid density. This calculation converged rapidly using Mulliken charges, and in

comparison to the corresponding calculation using a Cartesian ChEIPG grid (head
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Figure 6.1: Converged partial charges for the oxygen atom of a single QM water
molecule in an MM water box, plotted against the number of basis functions used to
describe the QM region, for 6-31(x+,y+)G* and 6-311(z+,y+)G™ basis sets. In (a),

the QM /MM-Ewald method uses Mulliken image charges whereas in (b) it uses

ChEIPG image charges. In the latter case, Mulliken charges were also computed

upon SCF convergence.

spacing of 5 A and Az = 1 A), essentially the same energy is obtained. Moreover,
if we compute Mulliken charges using the density matrix obtained from the ChEIPG
Ewald calculation, we obtain values within 0.003 a.u. of the Mulliken charges obtained
from the Mulliken Ewald calculation. This confirms that various charge schemes work
equally well in minimal basis sets.

In order to test extended basis sets, the same calculation was preformed using the
6-31(z+,y+)G* and 6-311(z+,y+)G™ basis sets, where x and y range from 0 to 3,

except that the 6-31(3+,+)G*, 6-31(3+,2+)G*, and 6-311(3+,+)G™* basis sets were
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excluded because in these cases the Mulliken-based Ewald procedure fails to converge
after 50 SCF cycles. Figure 6.1 shows the final, converged point charge on the oxygen
atom of the QM water molecule as a function of basis set size. We converge the SCF
Ewald calculation using either Mulliken image charges [Fig. 6.1(a)] or else ChEIPG
image charges [Fig. 6.1(b)], and in the latter case we also compute Mulliken charges
using the final, converged SCF density matrix. From panel (a) we see that the use
of Mulliken image charges—when the calculation can be converged—often leads to
a positive partial charge on the oxygen atom in larger basis sets. Not only is this
behavior not observed with ChEIPG charges, but if we use ChEIPG image charges
to converge the SCF calculation (i.e., the ChEIPG charges are used to construct the
Fock matrix correction AF) EVI), then the Mulliken charges obtained upon convergence
are reasonable [see Fig. 6.1(b)]. This suggests that the problem lies with instabilities
in the Mulliken charge derivatives as the basis set is expanded, which are exacerbated
when these charges are included as part of the self-consistent iteration procedure.
These instabilities are borne out by the SCF energies, plotted as a function of
basis size in Fig. 6.2. When Mulliken image charges are employed, the correct SCF
energy of =~ —76 hartree is obtained only in small basis sets; in larger basis sets,
the “converged” SCF energy differs from this value by as much as 1.5 hartree. For
ChEIPG image charges, the SCF energy is stable with respect to basis-set expansion.
Clearly, Mulliken charges cannot be used for QM /MM-Ewald calculations in non-
minimal basis sets. The remainder of this work explores the use of ChEIPG images

charges. In that case, one must determine electrostatic grid parameters to ensure that
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Figure 6.2: Total SCF energy versus the number of basis functions, for a single QM
water molecule in a box of MM water molecules, using either (a) Mulliken image
charges or (b) ChEIPG image charges.
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the charges are converged. Tests of how the ChEIPG charges converge with respect

to grid parameters are presented in the next section.

6.2 Lebedev ChEIPG charges

6.2.1 Gas phase

Our Lebedev grid-based implementation of the ChEIPG algorithm is new, and here
we seek to test it against the original Cartesian grid-based version of Breneman and
Wiberg.* The Lebedev version is inherently much more efficient, as it uses far fewer
grid points for the same head space and grid spacing, so we seek to understand how
sparse we can make the Lebedev grid without adversely affecting the charges that are
obtained. In these tests, we leave the head space set to 2.8 A (the value recommended
by Breneman and Wiberg?), and use Bondi radii®” to define the vdW surface. Atom-
centered radial Lebedev shells with N, = 590 points per shell extend from the atomic
Bondi radius out to 2.8 A away from that surface, in radial increments of Az. (The
value of N, has previously been shown to provide good rotational invariance, in
the context of polarizable continuum model calculations where the vdW cavity is
discretized with atom-centered Lebedev grids.?®) Choosing bins of volume (Ax)3,
this leaves only Az as a parameter to test convergence of the ChEIPG charges.

We first aim to determine whether the Lebedev ChEIPG charges provided are a
reasonable representation of the electrostatic potential. To that end, we first examine

the convergence behavior of the Cartesian ChEIPG charges, in order to establish a
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Figure 6.3: Convergence of the Cartesian ChEIPG charges (atomic units) computed

at the HF /aug-cc-pVDZ level, as a function of the Cartesian grid spacing Axz. The

reference values were computed using Az = 0.05 A. The vertical axis plots the mean
unsigned error (MUE) for all of the charges in the molecule.

baseline. Note that the Cartesian ChEIPG charges provide the best possible rep-
resentation of the electrostatic potential, in a least-squares sense, in the limit that
Az — 0, and we will take Cartesian ChEIPG charges computed using Az = 0.05 A to
be the “true” ChEIPG charges. (This choice is justified by the fact that the charges
change by only ~ 107% a.u. when Az is increased to 0.10 A.) Convergence of the
Cartesian ChEIPG charges towards these “true” values, as a function of Az, is plot-
ted in Fig. 6.3 for several small molecules. Even for Az = 0.5 A, the charges are
already converged to about two decimal places.

The convergence of the weighted and unweighted Lebedev ChEIPG charges, as a
function of Az, is shown in Fig. 6.4. Use of the weighting scheme tends to afford
better agreement with the Cartesian ChEIPG charges, suggesting that an approxi-

mately isotropic grid is indeed important for reproducing Cartesian ChEIPG charges.
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Figure 6.4: Convergence of the Lebedev ChEIPG charges (atomic units) computed

at the HF /aug-cc-pVDZ level, as a function of the grid spacing Az. The reference

values were computed using a Cartesian grid with Az = 0.05 A. The vertical axis

plots the mean unsigned error (MUE) for all of the charges in the molecule. In (a),

the weighting scheme discussed in Section 5.2 is employed (wy = 1/ny), whereas in
(b) the weights are all equal.

Interestingly, the slope of errors with respect to Az is about the same regardless of
whether the weighting scheme is used or not. We take this to mean that the charges
converge at about the same rate with respect to Az, but converge to different values
depending on whether the weighting is used. The data in Fig. 6.4 suggest that it is
reasonable to expect errors of the same order of magnitude, or maybe only slightly
larger, as those seen for Cartesian ChEIPG charges when using Lebedev ChEIPG
charges.

Given that we can converge the Lebedev ChEIPG charges to about the same
values as their Cartesian counterparts, we now turn our attention to the rotational
invariance of the ChEIPGcharges. To this end, we have computed the HF /6-31G*

ChEIPG charges of a glycine molecule in the standard nuclear orientation (principle
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Figure 6.5: Rotational invariance (a.u.) of the Lebedev and Cartesian ChEIPG
charges on the hydroxyl oxygen of glycine as the molecule is rotated by 180° about
an axis. Charges are computed at the HF/6-31G* level of theory.

axes of nuclear charge) and also after rotation around the x axis from 0 to 7 radians,
in increments of 7/12 radians. We examine the ChEIPG charge on the hydroxyl
oxygen atom as a function of this rotation angle, as compared to the value obtained
at 0°. The mean unsigned error (MUE), which is a measure of rotational invariance,
is plotted in Fig. 6.5 as a function of Ax.

For comparison, the actual ChEIPG charge on the hydroxyl oxygen ranges from
—0.78 to —0.80 a.u., whereas the data in Fig. 6.5 suggest that both the Cartesian
and Lebedev grids afford charges that are rotationally invariant to within 0.01 a.u. or
better, even for Az = 0.5 A. For grid spacings Az < 0.15 A, no further improvement
in the rotational invariance is observed. One interesting point is that the Lebedev grid
exhibits better rotational invariance when Az is large, but (slightly) worse invariance
when Az is small. This is seemingly at odds with Spackmans’s results for spheri-

cal and icosahedral grids.?? However, Spackman took care to only compare grids of
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relatively the same density.

In this particular glycine example, the Cartesian grid has sides of ~ 21 A, meaning
the Cartesian grids occupy a volume of =~ 9300 A® and the Lebedev grid (assuming
it is constructed from spheres) has a volume of ~ 4800 A3 At Az = 0.5 A, the
Cartesian grid contains about 15,800 points and the Lebedev grid about 9,000 grid
points, or point densities of 1.7 A=3 and 1.9 A~3, respectively. On the other hand, at
Az = 0.05 A the Cartesian grid has about 1.5 x 107 points for a point density of about
1,600 A=3, while the Lebedev grid has 84,000 points for a density of 17.5 A=3. In other
words, the Cartesian grid is about 100 times more dense than the Lebedev grid for
Az = 0.05 A. We conclude that for Lebedev and Cartesian grids of similar densities
(e.g., the Az = 0.5 A case), the Lebedev grids exhibit better rotational invariance.
For cases where the point densities are very different (e.g., the Az = 0.5 Acase),
the more dense grid exhibits the better rotational invariance. This is consistent with

Spackman’s results.??

6.2.2 Condensed phase

The results above show that use of weighted Lebedev grids affords ChEIPG charges
that are nearly identical to those obtained using Cartesian grids, but can do so with
far fewer grid points. However, the benchmarks above use N, = 590 points per radial
shell, which will be expensive in calculations with larger QM regions. Reducing this
number to N, = 50, we have tested the rotational invariance of the ChEIPG charges
in the context of a QM/MM-Ewald calculation, taking as a test system a QM region

composed of five water molecules (B3LYP /6-314+G* level) in a periodic cell containing
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211 MM water molecules (L = 18.643 A).The ChEIPG charges were computed using a
head space of 3.0 A with Az = 0.5 A. We carried out single-point energy calculations
after rotating the entire simulation cell in increments of 90°, leaving fixed the axis
system that defines the ChEIPG unit spheres. (That is, the axes of the simulation

cell are rotated with respect to the axes that define the grid.)
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0° 90° 180° 270° A meoernin]
Escr/aw.  —382.2489807663 —382.2480808032 —382.2480806988 —382.2489807549  0.000000

€HOMO/ 8- U. —0.300498 —0.300498 —0.300498 —0.300498  0.000000
Qoxy/a.u. —1.026878 —1.030694 —1.035725 —1.027292  0.008847
Qhyd1/a.u. 0.465895 0.468642 0.467734 0.466975  0.001839
Qhydz/a.u. 0.559032 0.560517 0.564779 0.557386  0.007393

Table 6.1: SCF energies and Lebedev ChEIPG charges as the simulation cell (containing 5 QM and 211 MM
water molecules) is rotated with respect to the axes that define the Lebedev unit spheres. The final column is
the difference between the maximum and minimum values for the various quantities in each row. The SCF
convergence threshold was set to 107° hartree.

force / a.u.
0° 90° 180° 270° PN
|Fotal 0.0318286779 0.0318296463 0.0318290238 0.0318289497 0.0000010
[Fomvm|  0.0318488287  0.0318484627 0.0318490519  0.0318486728  0.0000006
|F Ewald| 0.0000201508 0.0000188163 0.0000200282 0.0000197231 0.0000013

Table 6.2: Magnitude of the force on a single oxygen atom as the simulation cell (containing 5 QM and 211 MM
water molecules) is rotated with respect to the axes that define the Lebedev unit spheres. The final column is
the difference between the maximum and minimum values for the various quantities in each row. The SCF
convergence threshold was set to 107 hartree and the integral threshold to 1071 with the corresponding value
of C' determined from Eq. (4.1).



The results, which are summarized in Tables 6.1 and 6.2, use a sparser grid than
was used for the gas-phase calculations, yet good rotational invariance of both en-
ergies (Table 6.1) and forces (Table 6.2) is observed. The variation in the SCF en-
ergy as a function of rotation angle is smaller than the SCF convergence threshold
(107 hartree, for the calculations in Table 6.1). The convergence threshold was
tightened to 10~7 hartree for the gradient calculations (Table 6.2), yet the variation
in different components of the force is no larger that 1.3 x 10~7 a.u. These results
suggest rotational invariance can be achieved in condensed-phase systems using grids

that are far sparser than those used in the gas-phase calculations presented above.
6.3 Timings

One drawback to the use of ChEIPG charges is the expense associated with computing
the charge derivatives 0Q),/0P,,, especially the tensor Qp in Eq. (5.10). The choice
of the Ewald parameter n can also make a large difference in calculation time, as it
controls the number of vectors used in the real- and reciprocal-space sums. A poor
choice for n can double the calculation time, in our experience.

To understand how the Ewald parameter affects the calculation time, two systems
were analyzed. The first is intended to be indicative of a fairly small QM region,
consisting of 11 QM water molecules (B3LYP/6-314-G* level of theory, for a total of
253 basis functions) in a L = 18.643 A simulation cell containing 205 TIP3P water
molecules.? The second calculation is much larger, and consists of a QM region

containing an aqueous cytidine molecule and all 27 water molecules that reside within
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Figure 6.6: The total CPU time required to calculate 9AE™! /0Q, [Eq. (3.9)] for (a)
11 QM water molecules in a large MM water box, and (b) 27 water molecules plus
cytidine in the QM region, surrounded by a larger box of MM water molecules.

6 A of the cytidine molecule. The QM region is described at the B3LYP/6-314+G*
level (970 basis functions) and placed in a L = 50.0 A simulation cell containing 4,122
TIP3P water molecules. In both cases, the ChEIPG parameters are set to 3.0 A for
the head space, N, = 50, and Az = 0.5 A, since these values afford good rotational
invariance for the test case in Section 6.2.2. We compute the SCF energy of both
systems as a function of 7. For the first system, all values of 1 afford the same energy
to within 107!° hartree, while for the larger system the variation is no greater than
2 x 1077 hartree. This implies that we have indeed converged both the real- and the
reciprocal-space sums for each value of 7, which should be the case if one follows the

recommendations in Section 4.
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Figure 6.6 shows the CPU time required to compute the 9AET!/0Q,, [Eq. (3.9)],
as a function of 7, for these two test systems. Note that in a single-point calculation,
this is essentially a one-time cost insofar as the main cost is in calculating the Ewald
potential, which is done outside of the SCF iterations. Unless the Ewald parameter
is chosen poorly, the cost of this step is small in comparison to the time required
to compute the ChEIPG charge derivatives, 0Q,/0P,,. This is demonstrated in
Fig. 6.7, where we compare (as a function of 1) the fraction of the total job time
that is consumed in computing derivatives JAEY/0Q,, versus the fraction required
to compute the derivatives 0Q,/0F,,. Note that all of these calculations are exact
(within the integral drop tolerance), insofar as we use the criteria given in Section 4
to decide how many vectors are necessary to converge the real- and reciprocal-space
sums.

As can be seen in Figs. 6.6 and 6.7, a poor choice for n can make a large difference
in the calculation time. This issue is less important in smaller systems where the
time to compute the Ewald potential is small; however, in a large system (such as
cytidine in 27 QM water molecules), this step can become the bottleneck if 7 is chosen
too large. This point has not been emphasized previously in the context of Ewald
summation for QM /MM calculations.

Most classical implementations of Ewald summation are based on the particle-

18,19
d,

mesh Ewald metho in which the reciprocal-space summation is faster (scaling

with respect to the number of reciprocal lattice vectors, N,..) than

vec

as N, log N,

C

the real-space summation (which scales as NZ,; with respect to the number of point
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Figure 6.7: Percentage of the total single-point energy calculation time that is spent
in calculating derivates OAE™/0Q,, and 0Q,/IP,,, for a water test system (small
QM region) (top graph) and an aqueous cytidine test system (large QM region)
(bottom graph). The time required to calculate 0Q,/dP,, is independent of n but
becomes a smaller percentage as the time to compute JAET!/9Q,, increases.
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Lebedev Cartesian

One-electron integrals 6.4 6.4
Ewald potential (OAE™/9Q.,,) 31.5 31.4
Two-electron integrals 176  12.2 177 124
ChEIPG charges 04 04 3.9 3.8
0Qu/O0P,, 16.2  16.1 176.4 176.2
Other 6.1 4.8 6.1 4.7
Total Fock build 71.7 334 235.4 197.1
Total SCF 348.6 1658.9

Table 6.3: Timings (in seconds) for a single-point QM /MM calculation of cytidine
(QM) in water (MM), with periodic boundary conditions using n = 0.04 A=, The
QM region consists of 30 atoms and 349 basis functions (B3LYP/6-31+G*) and the
MM region consists of 12,840 point charges (4,160 TIP3P water molecules). The
Lebedev and Cartesian ChEIPG grids consist of 885 and 32,598 points, respectively.
For the steps that must be repeated at each SCF calculation, two columns of timing
data are provided, corresponding to the second (left column) and ninth (right
column) SCF cycles. The row labeled “other” includes the XC quadrature step and
any remaining overhead associated with the Fock build.

charges). For this reason, a larger Ewald parameter is generally selected, in order to
perform more of the summation in reciprocal space, which may not be an effective
strategy for the present implementation, where the cost of the reciprocal-space sum
scales as N2,.. Although a particle-mesh implementation of QM/MM-Ewald may
be interesting to consider (especially in view of the recent quantum Ewald mesh for
evaluation of electron repulsion integrals?’), at present the 9AEY!/0Q,, term is often
not the bottleneck of the calculation, as can be seen in Fig. 6.7. As such, there seems
to be little need to accelerate this part of the calculation at present.

It is beneficial to analyze the complete timings of the QM /MM-Ewald calculations,
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and we will present timings for a variety of aqueous cytidine calculations performed
at the B3LYP/6-31+G* level, using ChEIPG charges with a head space of 3.0 A,
N, =26, and Az = 0.5 A. (Although the convergence tests of the ChEIPG charges
reported in Section 6.2.1 used a much larger number of Lebedev grid points, numerical
tests of QM/MM-Ewald calculations, comparing N, = 26 to N, = 590, demonstrate
that the converged SCF energies differ by less than the convergence threshold of
107° hartree.) Table 6.3 compares timing data for Lebedev and Cartesian ChEIPG
grids in the QM/MM-Ewald procedure, for a calculation in which only the cytidine
molecule is treated at a QM level. The use of Lebedev grids reduces the number
of grid points from 32,598 points to just 885 points, which substantially reduces the
cost of computing the charge derivatives 0Q,/0P,,. At the same time, the difference
between the SCF energies in the two calculations is only 6.663 x 1076 hartree, which is
smaller than the SCF convergence threshold of 10~ hartree, so there is every reason

to prefer the Lebedev-based approach.
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R=6A R=TA R=8A R=9A
No. QM atoms 108 174 249 345
No. MM atoms 12,402 12,336 12,231 12,165
No. basis functions 947 1,453 2,028 2,764
No. ChEIPG grid points 2,700 4,194 5,683 7,642
One-electron integrals 27 44 67 93
Ewald potential (OAE™!/0Q).,,) 104 166 236 324
Two-electron integrals 291 122 943 317 2,169 735 4,546 1,288
ChEIPG charges 4 4 11 11 24 24 48 47
0Qu/O0P,, 762 763 3,476 3,477 10,761 10,767 29,930 29,925
Other 45 29 85 63 137 102 207 153
Total Fock build 1,206 917 4,681 3,868 13,327 11,629 35,054 31,417
Total SCF 8,363 29,795 86,921 231,248

Table 6.4: Timing data (rounded to the nearest second) for QM /MM calculations of aqueous cytidine in which
the QM region consists of a region of specified radius, R, around the cytidine molecule, described at the
B3LYP/6-31+G* level. All calculations were performed with periodic boundary conditions using n = 0.04 At
and ChEIPG charges. For the steps that must be repeated at each SCF calculation, two columns of timing data
are provided, corresponding to the second (left column) and ninth (right column) SCF cycles. Timings labeled
“other” includes the XC quadrature step and any remaining overhead associated with the Fock build. All
calculations were run in serial on a single Intel Xeon x5650 processor with 48 GB RAM with no competing
processes on the node.



Timing data are provided in Table 6.4 for a sequence of related calculations
in which the QM region consists of the cytidine molecule plus all water molecules
containing an atom within some specified distance, R, of the glycosidic nitrogen.
(All calculations contained 4,160 QM + MM water molecules in the simulation cell.)
These calculations were performed at the B3LYP/6-31+G* level with n = 0.04 A"
ChEIPG grid parameters are the same as those for the cytidine-only QM region dis-
cussed above.

The data in Table 6.4 reveal that the time needed to calculate the one-electron
integrals is almost negligible. (Note that the one-electron integral timings quoted the
table includes only the QM-MM interactions within the simulation cell. The time
required to calculate the QM-MM image interactions is included in the OAE'/0Q,,
term.) Given the data in Table 6.4, it seems that there is little motivation at this point
to work on accelerating the one-electron integral evaluation, e.g., using asymptotic
expansions. 3

The data also reveal that the cost of computing OAET'/0Q, is an order-of-
magnitude less than the cost of computing electron repulsion integrals, except for
the smallest QM regions. As such, the particle-mesh Ewald technique,!'® which is
generally regarded as the method of choice for implementing PBC in classical simu-
lations, does not appear to be a promising way forward in the present context, since
the most expensive step in our QM/MM-Ewald algorithm (by a very wide margin,
especially for large QM regions) is calculation of the charge derivatives 0Q,/0F,,. In

particular, the matrix 25 in Eq. (5.10) must be computed Ny times (once for each
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QM atom, B) in order to calculate the charge derivatives 0Q,/0F,,. Each of the
(25 matrices is independent of one another so this step can be trivially parallelized
across Ny processors, and further parallelism will be as good as the parallelization
of the one-electron integrals (Ix),, [Eq. (5.4)]. Even a factor of two reduction in the
time to calculate 0Q,/0P,, would reduce the total SCF time for the calculations in
Table 6.4 by a minimum of 45%, and by 70% in the case of the smallest (R = 6 A)

QM region.
6.4 A new digestion routine

Upon examination of the results from the energy calculations and the derivative calcu-
lations, the time required by the 0Q,/0F,, and 0Q,/0x., were deemed unacceptable.
Reason tells us that two electron integrals should dominate the calculation except in
specific cases. The number of two electrons integrals scales as O (N, ), nominally.
In practice, a screening procedure is used to determine pairs of basis functions that
are significant. These are known as functions pairs. In reality, the number of two
electron integrals scales as O (N?p), where Ny, is the number of function pairs.

In the case of ChEIPG density derivatives, there are N, NgriaNatoms integrals that
need to be computed. The Nyms dependence arises because of the weights on the
charge-density integrals and the sum over the number of grid points, see eqns. 5.9 and
5.10. Normally when integrals are computed they are combined with density matrix
using a routine known as a digestion routine. The digestion routine performs a sum

over the index of the coordinates. This sum keeps the arrays in memory to a small
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size, namely Ny,. In the ChEIPG charges there is an outer sum over the number of
atoms causes us to recompute Ng, Ny,piq integrals Noygoms times if the digestion routine
is to be used. If we do not use the conventional digestion routine, a new routine
can be written that will perform N, Ny,.q integrals and store them in core memory.
These integrals can then be combined with the NyiomsNgria weights. By doing this
new routine, the number of integrals computed can be reduced by a factor of Nyzoms;
therefore, we expect a roughly Ngioms speedup in the computation of this term.

In a 15.0 A cubic box containing one cytidine molecule (30 atoms) as the QM
region at the HF/6-31G level (Npsis = 179 and Ny, = 13329) and 110 TIP3P MM
waters using a rectangular grid from ChEIPG charges with Az = 0.754 and the head
space being 2.8 A, there is a significant speedup in the amount of time spent in the
0Q4/0P,, and 0Q,/0z., terms. The results can be seen in table 6.5. The classic
routine consists of doing the digestion routine with the sum over grid points done
internally. The new routine consists of doing the digestion using the new scheme
described earlier in this section. It is obvious that the charge derivatives are the
bottlenecks for both the energy and the gradient calculations. The new routine no
longer makes the ChEIPG derivatives the bottleneck on one processor. The speed
up between the new routine and the classic routine is a factor of Nyyoms/2 for this
calculation. While this is not as high as the value predicted, it is expected that the
speed up will approach Ngms when the system becomes large because there is a
larger difference between the time to computer the number of integrals and the linear

algebra routine needed to combine the integral values with the weights.
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On one processor the computation of the two-electron integrals is the bottleneck
process. The reader will note that the computation of ChEIPG charges are also a large
portion of the calculation. There are three terms that are unique to a QM /MM Ewald
calculation: ChEIPG charges, Ewald potential, and 0Q),/0F,,. The computation of
the ChEIPG charges is the dominant term because the charges must be recomputed
at every SCF cycle in order to respond to the change in the density matrix. The
Ewald potential and 0Q,/0F,, are both only dependent on the position of the nuclei
and not on the density matrix, so these terms only have to be calculated once per
geometry.

Table 6.5 also showcases the speed up of the calculations across multiple pro-
cessors using OpenMP. The best speed up is shown in the two-electron parts of the
calculation. The most significant speed up for all terms is between 1 and 5 processors.
Very little speed up is obtained going from 5 processors to 20 processors. This tells
us that this job is not appropriate to look at parallel speed up because the overhead

is a significant portion of the calculation.

6.5 Gradient results

If the gradient for a calculation is correct, an NVE AIMD simulation should show a
conservation of energy. Such behavior is shown in figure 6.8. This figure hides the
fact that there is an upward trent in the total energy. This is believed to be caused
by a flaw in the algorithm when the AIMD calculation is restarted. When running an

AIMD simulation over long time periods, the total calculation for all time steps must
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No. of Processors 1 5 10 15 20

One-electron integrals 02 01 01 01 0.1
Two-electron integrals 199 45 26 22 24
ChEIPG charges 174 53 50 48 5.0
Ewald potential 14 06 06 06 0.6
0Qu/0P,, (New routine) 22 21 26 36 4.4
0Qu/0P,, (Classic routine) 334 89 84 79 80
Derivative of one-electron integrals 05 01 01 01 0.1
Derivative of two-electron integrals 75 15 15 14 14
Derivative of Ewald potential 04 06 10 15 80
Derivative of ChEIPG charges (New routine) 73 23 27 33 38

Derivative of ChEIPG charges (Classic routine) 127.7 34.0 37.6 40.2 40.7

Table 6.5: Timing data (rounded to the nearest tenth of a second) for QM/MM
calculations of aqueous cytidine in which the QM region consists of a region of the
cytidine molecule, described at the HF /6-31G level. All calculations were performed
with periodic boundary conditions using 7 = 0.12 A~' and ChEIPG charges. All
calculations were run in serial on a single Intel Xeon x5650 processor with 48 GB
RAM with no competing processes on the node.
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Figure 6.8: Conservation of energy for QM /MM calculations of aqueous cytidine in

which the QM region consists of a region of the cytidine molecule, described at the

HF/6-31G level. The y-axis is the energy of the time step minus the average energy
over the last 100 time steps.

be split into a series of calculations over some of the time steps. After one calculation
with a fraction of the total time steps is completed a new calculation is started from
the scratch files (coordinates and velocities) of the previous AIMD calculation in order
to calculate time steps.

The analytical gradients agree with a three point finite difference routine with a
step size of 1072 A to 107% for QM gradients and 1078 for MM gradients. Thus,
it is expected that force calculations are correct and that the problem solely comes
from the AIMD portion of the calculation. There are two routines that are important

only in dynamics calculations. The first is a routine that enforces periodic boundary
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conditions. When a periodic boundary condition is employed, it is expected that
there are no molecules outside of the simulation cell. In a dynamics simulation it
is not unreasonable for a force to be applied to a molecule that causes the molecule
to be outside the edge of the simulation cell. In order the keep the simulation cell
“Intacted”, the molecule must be translated by the cell length (in the appropriate
direction) so that it “enter” from the opposite edge of the cell. One complexity is
that the connectivity information must be known and stored so that all atoms in a
molecule are translated together. Currently this is done based on the position of the
center of mass of the molecule.

The other routine that must be done is to center the simulation cell. In order
to tell if a molecule has strayed past the edge of the simulation cell, it is necessary
to know where the center of the simulation cell is. Currently, this is taken care of
at the beginning of the simulation by measuring the minimum and maximum atom
coordinates and subtracting to find the center of the simulation cell as input by the
user. All atoms are then translated so that the center of the cell occurs at the origin.
While this routine makes sense for a large group of small molecules, such as a water
box, it may not prove to be the best method for a large solute molecule in a solvent.
In this case it may be better to recenter the box at every time step where the center
of the simulation cell is the center of mass of the solute molecule. The reason for
this is because one can imagine a large solute molecule, which still has it center of
mass inside the simulation cell, but where a significant portion of the molecule is

outside of the edge of the cell. In this case, the simulation cell may not provide a
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good representation of the solvation of the solute molecule.
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CHAPTER 7

Conclusion

Although the theory of Ewald summation for QM/MM calculations has been de-

scribed before, %2

in the context of semi-empirical QM methods, we have provided a
robust and general way to extend this technique to extended basis sets, where ear-
lier implementations based on Mulliken image charges for the QM electron density
experience stability problems. These are alleviated by using ChEIPG image charges
instead, and the relatively high cost of computing such charges is mitigated somewhat
by an implementation of the ChEIPG algorithm using atom-centered Lebedev grids
for evaluation of the QM electrostatic potential. These Lebedev ChEIPG charges
exhibit good rotational invariance and reproduce the QM/MM-Ewald results using
traditional ChEIPG charges, even for very sparse grids. This is important, because
for large QM regions the cost of evaluating derivatives of the ChEIPG charges with
respect to the density matrix becomes the overwhelming bottleneck in the calculation.
(For a more realistic QM region of 349 basis functions, this cost is comparable to the
cost of building the Coulomb and exchange matrices for a hybrid density functional.)

After gradients were implemented, new integral digestion routines were specifically

written for ChEIPG charge derivatives, so as to minimize the number of integrals
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computed. These routines decrease the time needed to compute derivatives by at
least an order of magnitude for small systems. These new routines have eliminated
the need to use Lebedev grids and have sped up the use of these routines to the
point where the QM /MM-Ewald part of the calculation is no longer the bottle neck
of the calculation. This allows one to add long range effects to QM /MMecalculations
and has led to a QM/MM-Ewald procedure that is a promising way to perform
periodic QM/MM calculations in a Gaussian-orbital-based SCF electronic structure
code. The method works for both HF and DFT calculations, including functionals
of arbitrary complexity. Post-HF correlated wave functions can be built upon HF
molecular orbitals and eigenvalues that are polarized by the PBC, and the fact that
large basis sets can be used means that QM /MM calculations with correlated wave
functions are possible.

This document shows the method required to acheive long-range electrostatics
in QM /MM calculations for non-minimal basis sets using the Hartree-Fock method.
The theory for this method is developed in a general way so that if desired, it could

be implemented for post-HF methods and any charge scheme the user desires.
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APPENDIX A

Ewald Summation

Note:

erfc (z) = % /00 e da (A.3)

o is introduced because of a singularity at 0
The prime on the ij sum denotes that ¢ # j iff n =0
Definitions: b, = nL; a,, = 7; V is Volume; D is the number of Dimensions of

replication

A.1 Transformation
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A.3 Ereal
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A4 Erecip and Eself
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1 Q’Lq] /’,7 -2 ,ﬁ 2 om e
Ereein| s==,D = t e & AmetmAMTI (]t A.34
(smgD=3) - Xy, (A.34)

am#0 ij

Let: v =T m'dv—ﬂamdt t2dt = ﬂag
—n?a2
1 q:q w2 ; g
Ereci S= = = = ev€27rzam~r” dv A.35
( 2" ) ZZ2V7r|am| 3
am#0 ij
77"2a2n
1 4iq — n?
Ereci S=Z = 27rzam-r” e’ A.36
(-30=8) - B S e A0
ij

7



1 Sy o
Erecip (3 =—-,D= 3) = A TE p2miam T
2 2
am#0 ij 2Vm |am’
_ﬂ2‘3m|2

Let: w(a,,) =

-5 €
VraZ,

2 and [S (a)| = D qigje” ATy
ij

1 1 ,
Erecz'p (S = §7D = 3) = 5 Z w(am) |S(am)|

am#0

‘S (am)’2 — Zqiqje%riam.(ri_rj)

ij

S (am)|2 = Z g€ A Yie T FriAm

ij

|S (am)|2 = Z inQﬂiam'ri Z qje—Qmam-rj
: j

|S (am) ’2 — Z qi627riam-ri Z qief2m'am-ri
g i

2
S (@n)* = Y g
2
1S (am)|* = Z g; [cos (2may, - 1;) + isin (2ray, - ;)]
2 2
1S (an,)]” = [Z g; cos (2may, -r;)| + Z ¢; sin (27a,, - rz)]
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)



A.5 Edipole

2

. 1 qiq; W% K st g2 ot 2 o« Ui =1 p;
Eother = lim (Samo E = — 5 € ije ottlije” ‘7+t 6 m “ It

- 20 (s) V o+1)
(A.46)
1 qlqj A ot 2
Eother = hmZ— — — e 123 0~ xe i dt (A.47)
2T 0 (0+1)2
lim £ = #71-3 if 5 + % > 1 then there is a divergence at t = 0
=0 (o+t)2

2

D
1 qq 72 | [T 51 P sl
Boner = lim >~ >0 2 / N dt+/ T D [e_tzwe st — 1| dt

0621 (s) V o+t o+t)
E‘dri’u Ec;;:)le

(A.48)

D
1 qq; 7= [ ¢! -
True Form: Eyjpoe = lim = 44, E/ — [e*tzfje_ﬁp?j — 1] dt (A.49)
T 0o (c+1t)2

1 n t_% ot .2
Edipole (3 =5,D= 3> =1lim » = —/ — [e_thrij — 1] dt (A.50)
’ 2 T2V o (o412

(2 (k) a won



1 qu7r0' I‘ n
F . S i ¢ 1 _(¢43
dipole <8 5D )—[lflr% E E vl 2 (1) /O 175 (o + 1) (73) g
ij

(A.53)
c+1 bm)d ad
Use: /xca+bxdd;p:x (a+ c d—1
( ) crdo1 +c—|—d—|—1 ¢ (a+bx)" " dx
1
_ | — c+1 d+1
a(d—l—l)[ v (a+br)
—l—(c%—d—i—Q)/xc (a—i—ba:)dﬂ} dx (A.54)
Let: a=o;b=1c=¢(—Lid=—(£+2); 2=t
1 ofrt
Edipole | 5 = = — Gq;T oYy e
dipo! (8 2’ ) }JL%ZZ 2V ¢l (1)
iy &=1
_1 [ 1 r]2
— = [t o+ 1) (€13 4] A55
o(€+)) oy
Eiipole <8= 1, = ) = hmzzq’qﬂ al 1rf]5 (_1)£+2 n2g+1 (U+n2)—(§+%)
2 o—>0”£12V€|5+)
(A.56)
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The only term that survives is £ =1

ij

1 ™ 2
FEaipote (S = §,D = 3) = 37 %:%"Jj |r; — T

1 ™ 2 2
Eiipole (3 = §,D = 3) = 37 %:Qi%' [|rz| —2r; - + |1 }

D=3)=-"—
’ ) 3V

N | —

Edipole (S =

gl a =Y 2qimi 1

"‘Z%’ ;" Z%]
j i

QZQ@ |I'i|2 - Z%ri : Z%’I’j]
i i j

1 2T
Eipote <8 = §7D = 3> =37

2
1 27'[' 2
Eaipole (S = §7D = 3) =3 in:%‘ 1" — (2; QM)
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(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)



A.6 Echarge

1 qiq; 71'2 /77 151
True Form: Ey, = hm E — ——dt (A.65)
ij (5) Vv 0 (U —+ t)%
E Lp_3) - B4 /ng 2 (o +1)72 dt (A.66)
. = — = = 11m —_— .
div | S 27 o0 o 0 g

ij

Replicated /Image Charge Density (charge density of macrosystem (JR) minus

charge density of simulation cell):

Energy of Simulation Cell:

</

(A.67)

Note: Term in brackets removes self interactions. N = the total number of cells.

E.n = % // % [1—6(r—1')] drdr (A.68)
%"

1-0(r—1)
cell QN// I‘—I'/| ZZ QzQJ I‘—I‘Z—b)(S(I‘,—I'j—b;)

iy b, bl

20Q) Q?
— YD ad e —ri—by) + 5| drdr (A69)
i b,

4iq;
ey |rz—rj+l]an—b;|

ij b, bl

qll— (r—r;—b,) 1@2//1— —
- == — ) e’ (A,
zz/ Sy o [ e (ao)
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Let: ¢, =b, — b/,

Redefine: 2nd Term: r =r —r; — b,, and 3rd Term: r =r — r’

4i4; 1-0
cell 2NZZ ’I'z—I'J]—FCn| N Z%Z/

ij cpbl,

4i4; 1—0
cell _ZZ; —I']j—{—Cn| NVQ / | | dr

2N V2

d(r)=0aslongas D >1

IR Y
Bear = 3 ZZ r,—r;+c,| 2V | |r| '
Cn | R
—_——
Etotul Epe'riod

1 2 1—96
Q/NV ] dr
r

(AT

(A.72)

(A.73)

FEiotar is the energy of the macrosystem and E.,oq is the energy of periodic images

Ecell = Etotal - Eperiod
Ecell - Ereal + Erecip + Eself + Ed’ipole + Ediv
Etotal - Ereal + Erecip + Eself + Edipole + Echarge

Echarge = Ediv + Epem’od
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(A.74)
(A.75)
(A.76)

(A77)



Back Transform using r =r — r;:

1 —2s
Epem’od:_égz%j/|r—ri| 2 dr (A?S)

2

1 ; n ts_l
charge—hmz qq] E —dt———Zq,/|r—rz 2 dr (A.79)
0 (0+1)2

1 QZ 7T§ 772 ts—l )
Echarge = lim = - —dt—l _x ; _ S —a\r rif?
= o M L S B MY L B
(A.80)
D 2

D 2
5 n tsfl
Echzzrge hm Q Qﬂ- i / dt
—Zqz / / el ookl gr gy | (AL82)
. Q Qﬂ'% /772 51 1 /00/ L i
Eoarge = lim — dt — 2 5 (o+t)|r—r;] dr dt
harg =02V | T S) 0 (O'—i-t)% F(S) Z:q 0 ¢ r

! (A.83)

Use: [ ae™ Pt/ dx — q|¢[P n7
R

Let: a =" and ¢ = (o 4 t)/?
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. Q Qfg/nz -1 -
Echarge = lim — t* t) 2 dt
e = oV 1Ty Sy Y

1 e _D D
— E ) $ 2
F(S) i ql/o ! (U+t) T

2

. QZW% /’7
Ec arge — 1 ST N
harge = JE02VT (s) |/,

B — lim = 7% /OO o+ )72 dt
charge — ali}%) 2VF (S) 2 o
Q> [*  ip
True Form: Eparge 2T (3] ; 1=F dt
Q*r3

1 Q*r [,
Ecare —_,D:3 = T t 2 dt
harg (S 2 ) oV /nQ
E =3 C227T( ) N
charge | S ) - = T iy r
harg 2 2V 2
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s—1 — . > s—1 -D
T (o+t) 2 dt 7 (o+1t) 2 dt
0

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)



A.7 Ecorr

This is a correction term that is needed to remove double counting when performing
MD on bonded systems. Eq. A.92 is the equation for E..; when Ewald summation is
used only to include non-1-2, non-1-3, and non-1-4 interactions; hence, a correction
term is needed. Eq. A.93 states that the energy from the complete Ewald summation

is the energy of the cell.

Ecell = Ebond + Eangle + Etorsion + Eewald + Ecorr (A92)
Ecell = Eewald (AQS)
_Ecm"r = Ebond + Eangle + Etorsion <A94>
By == 3 Yty L5~ gy (A.95)
icl [t i#5€1,2,3,4 [t
j€2,34

The sums are to indicate that all 1-2, 1-3, and 1-4 interactions should be excluded.
Note that for certain force fields 1-5 interactions should also be included. w;; is a
weight that is used in some force fields wyo and w3 are often 1, but wyy is usually

smaller, something around 0.5.
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L8

A.8 Orthorhombic Boxes vs Cubic Boxes

e For a primitive cubic cell: a =b=c, a = =~ =90, L will be used for the box length

e For a primitive orthorombic cell: a # b # ¢, a = =~ = 90, [LI L, LZ] will be used as the box length

vector

’ Variables \ P-Cubic Definition \ P-Orthorhombic Definition \ Energies Affected ‘

b, [nxL Ny L nzL} [nxLx Ny Ly, nZLZ} Erea
Am [ LL L Lz} Ly Ly, L. Erec%p
3
V L LzLyLz Erecipa Edipolm Echm"ge




Note:

B.1

APPENDIX B

Ewald Derivatives

r;;
Vif (Irigl) = f' (Irss)) ﬁ = =V, f (Iri])
ij
f/ Ty " TijTij f/ T
0, () = (L) — oy ) Ety - L0
rij |15 rij
_ ;i
Vilry| T = —ﬁ
ij

1 r;,;r;;
ViVif (Iry]) = 3 (1 - g)

\I‘z’j\ \rz’j\

Further Energies

Bl = Zﬂi Vi ZQJ s+ by
i b,
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)



1 / _
=3 D iy ViV Y e by (B.7)
17 b,
B.2 Charge-Charge Gradients

Fors:%andD:Z%

erfe ( 77\1‘” +b,|)
Erea B.8
= Z 2w (B3)
self __Zqz (Bg)
I
recz vy n2 " e2mam’ri7’ B.10
P — 20 Z oV |am| ( )
am 7]
dzpole = 3‘/ Z q:4;T U <B11>
Q*r
Echar e — — B.12
g 2V n? ( )
W;;jq:q;
Ecorr = —= B.13
Z T ( )
€1
j€2,3,4
B.2.1 VkEself and vk:Echarge
ViEery =0 (B.14)
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Vk:Echarge =0 (B15)
B.2.2  V;Eiiol

VkEldipole = __vk ZQZQJ z] <B16>

Vi Edipote = ——Vk Z%QJI‘U + quQJrk] (B.17)
z;ék

Vi Edipole = ——Vk <Z vy + Z QgTh; + Z G, + rikk) (B.18)

ij#k j#k 1#k

VieEdipote = —va (Z WaTh + Y Qiri?k> (B.19)

4k itk

Vi Edipole = ——Vk Z GigkT3, (B.20)
i#k
47
Vi Edipole = 37 Z qiqkTik (B.21)
itk
_erfe(n|r;;+bnl)
T e
1 /
vkEreal - 5 bz vk Z qiq;Tij <B22)
n ()
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VkEreal Z vk Z qiq; T + Z qr4iTk; (B23)

z;ék:

ViErea = ka (Z G+ D GiThy + Z%%@xzk) +% > Vidkern

ij£k ik ik b0
(B.24)
1
ViErea = Z Vi Z 4iqkTik + 3 Z VieQe Qe Tik (B.25)
bn ik bn£0
erfc ( \rlk +b, | erfe ( |b )
ViErea = Z Vi ZQZ Z Vigkgp—————  (B.26)
erfe ( n\rm +b,|)
E = .
ViErea = Y Y itV R (B.27)
b, i#k
erfc (7|t + b)) 2n e IRt p 4 b
vkEreal qiqk + ——F B28
22 | T e T VR ol |t B2

erfc (e +bn|) 20 _ o 2] 1Ty + b,
ViErea ; SLemmlratbalT) T R (B.29
k = ;; iJk [ ity + by + ﬁe ‘rik+bn’2 ( )

B.2.4 VB

1 —n2a2
ViErecip = ——e * V 1 €T i B.30
k p az;éo 2V7T\am] kzqu ( )

tj
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1 77"237211

ViBrecp = ) 2V [an® VR Gigpe T (B.31)
am#0 m ]
1 —m2ag, ; . i@, Trs
VkErecip = Z 3¢ n? vk‘ ZQin€2mam'r” +ZQij€2W mok (B32)
2V |ay,| . ,
am#0 z;ék: J
J

vkErecip = Z 2‘/—|‘26 7 Vi (Z qiqje%lam Tij | Z Qz’Qk(meam rik
an£0 7 T [Am ij#k ik

+) qugie”™ T 4 Qiemam'rkk) (B.33)
J#k

1 —n2a2 — e
ViErecip = Z 2V—||26 ? Vi <Z qiqre*™ e ik 4 Z qrg;e*mm r’”) (B.34)
am#0 2V T 18m i+k £k

vk‘E'r‘ecip = Z —26 n2 Vk: Z qiqk627rlam~1‘u€ + Z QilezﬂzamA_rik
2V |y, o g
(B.35)

1 —n?af, . 4
V Ereci — I n2 V ; 62mam-rik +e*2ﬁzam-rik B36
k P Z 2V7r\am|2 kZQQk( ) ( )
am#0 i#k
1 —n2a2,
ViErecin = ——¢ * V G2 cos (2ma,, - r; B.37
k P aZ;O 2V7T\am]2 k#qu(_Ikz ( k) ( )
1 7%232,1
ViErecin = ——e¢ 2 GV cos (2ma,, - r; B.38
k p ago Vr |am|2 ;C] 4k Vk ( k) ( )
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1 —n2a2,
vkErecip = Z — 3¢ n? Z qiqr *+ — sin (2'/Ta—m : rik) : —27ram <B39)
itk

Note: the restriction is removed because ry;, = 0 which will cause the argument

of the sine function to be 0 and therefore the sine function itself to be 0.

2qiqy T
ViErecip = Z Zme 2 sin (27ay, - Ti) an, (B.40)
am#0 1 m
OR

2
SV e [Z q; cos (2ma,, - rz)]

+

Zqi sin (2ra,, - r,)] (B.41)

1 _7"2|a7n‘2

2
SVl e 2 Vi [Z qi cos (2may, - rz)]
raZ, -

vkErecip = Z

am#0

+

Z ¢; sin (2ma,, - rl)] (B.42)

]_ —7"2|3m‘2
ViErecip = Z Sz € n? <2 [Z g; cos (2may, - rl)]
am#0 m i
Z g; sin (2ma,, - rl)] )

(B.43)

Vi +2 Vi

Z gi cos (2may, - r;)

Z ¢i sin (2ma,, - r;)
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1 —7"2|am\2
vkErecip = Z oV ra e (2 [Z q; COS (27ram : I'Z)]

am

[—qk sin (21, - rg)27a,,| + 2

Z g; sin (2ma,, - rl)] [qx, cos (2ay, - rk)27ram]>

(B.44)

4 rPlaml? ]
ViErecip = Z TV ral e < [Z gi cos (2may, - rl)] [—qk sin (2ma,, - 1)

am#0

Z g sin (2may,, - I‘Z)] [qx cos (2may, - rk)]> a, (B.45)

- |am\

reczp V 2 n? < [Z qi sin 27Tam I'l)] [qk COs (27ram . I'k)]
a,,

am#0

- [Z q; COS (27Tam ’ rz)] [qk sin (27ram . I‘k)]> a,, <B46)

B.2.5 ViEer

vkEcorr - vk Z M (B47)
i€l |rij|
j€2,3,4

Wi;4:49;

1
ViEeorr = ==V B.48
i#j€1,2,3,4
1 W;i;4:9; Wi qLq;
ViBerr = =5V | D |J?|% + Y rﬂq’fﬂ (B.49)
124 T jikerzaa Tk
Q7]
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1 Wi;4iq; Wik i Gk
vkEcorr = __vk Z —I2 + Z
2 . 1] , T
£k 1#k€1,2,3,4
i£j€1,2,3,4
J#k

Wikqiqk
vkEcm'r - _vk E |I" ’
i#£ke1,2,3,4 ik
Wik q:iqk
ViEeorr = E 3 Tik
Tk

i£k€1,2,3,4
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i Z Wi;qkq;
) ) |rkj|
j#£k€1,2,3,4
(B.50)
(B.51)
(B.52)



APPENDIX C

MM Dynamics

Note: 0;; = o0; + 0; and €;; = /6;;. Usually these are true; however, different

conventions can be used.

C.1 van der Waal’s Energy

C.1.1 vdW Energy

6 6
vdW _ (i Tij ) _
5 —613(‘%‘) [(lriﬂ) 2] €3

C.1.2 Switching Function

2
(Jrij| —re)” (Bre —ry — 2ry])

(11— T0)3

f(Jri]) = (C.4)

Note: r. is a cutoff radius that can be set to anything. In Q-Chem, if it is not

user-defined, then the default is 7. = 50;;. r1 = 0.97, for the default r; = 4.50;;.
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(i = 5035)" (15035 — 45035 — 2|ry)

f(ry)) = (1500 —5oy)’ (C.5)
) — (Jri;| — 5Uij)2 (1050, — 2|ri;])
flri)) = (—0500) (C.6)
-8
[ (ryl) = o3 [(‘rij‘Q — 100y |ry;| + 25 O'Z'j) (10.50; — 2 |r”|)] (C.7)

-8 2 3
f(ry]) = — [10.5 035 [r35]" — 10507, [r35] + 262.5 07 — 2|y

v

+20 Oij |rij|2 — 50 O—i2j ’rij’] (08)

—8
f <|I'U|) = 0_—3 [—2 |rij|3 + 30.5 Oij |rij|2 — 155 Ui2j |rz’j| + 262.5 O'zsj] (Cg)
j
—8
f(rigl) = — [-2 v+ 30.5 05 |1y — 155 07, |135] + 262.5 07 (C.10)
]

)

3 2
f|rs;]) =16 ('Z—”) — 244 (M) + 1240 (M) — 2100 (C.11)

Uij gij

C.1.3 Smooth Energy

EvawW if |ri| <nr
1 wdVW P
Euaw = 3 S EMf(leyl) i < oyl < (C.12)
i#£] 0 if ’rij’ > Te

97



C.2 wvan der Waal’s Gradient

C.2.1 vdW Gradient

Vk‘E’UdW =V, 1 Z vdW 4= Z EvdW

1 vdW vdW
ViEuaw = Vi |5 N B4 Z By
iZh i

_ 1 vdW 1 vdW 1 vdW
ViEvaw = Vi 5 Z ET + 3 Z BT+ 3 Z B
,ﬁyk Jj#k i#k
ij

ViEyaw = Vi Z B
itk

12 6
ViEG"Y = Vien, (%) -2 (%)
Tk T |
vdW 1 1
VkEzk = Eik zk Vk 202kvk T 6
e |rik|

1 1
VB = ey, {_1203£W g (|ran]) =2 =605, —— ol (|rzk|):|
ik ik

6

Vi EZW = ey [—12 ik =+ 12

’ zk’

o8, [_ gfkﬁ +1] T
|rzk| vk | [T
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L] il

’rzk’

VBV = 12¢

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)



VLB —19e, Tk [ Tk ] (C.22)
ke — Zk|1‘4k|8 |['-k,|6 973 .

C.2.2 Derivative of Switching Function

(I — 7¢)* (Bre — 11 — 2 |ra)

(r1 — TC)S

Vif (lrir]) = Vi

(C.23)

ka (‘rzk‘) = mvk (‘rzk‘ — 7"0)2 (37’0 — 71— 2 ‘rzk‘) (024)

1
Vif (lrie]) = o [(Bre = r1 = 2ri]) Vi (|ris] — )
1~ ¢
+ (] — 7e)? Vi (310 — 11 — 2 |ra])]  (C.25)
1
Vi f (rix]) = o) [((3re = r1 = 2{ra]) 2 (|ra| — re) Vi [T
1 — Te¢
+ (i) —re)? - =2V rir]]  (C.26)
2 2
Vi f (lri]) = ) [(Bre =71 = 2[rar]) (Jrin] —7e) = ([rin] = 7¢)°] Vi [ri]
1~ e
(C.27)
2 9 9
Vif (Jra]) = m [(37“0 k| — 71 [va| — 2[rip]” — 3 +rire + 21, |rzk‘>
1~ Ie¢

— (ral? = 20 v +72)] |1‘:?:| (C.28)
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2 Tk
Vif (Iri]) = ) [3re [ea] — 71 [rie] = 3 |eae|* — 417 + ra7e] |r_lk|
1~ Te¢ 2

Using the substitution in the Note.

3 2
0 (1220)" g (10 g (1)) - ]
Oik Oik ik

Vif (’rzk’) = Vi

16 . 244 1240
Vil (Itin]) = =5 Vi [ran]® — = Vi |ral* + Vi |rix]
Tik Tik ik
16 244 1240
Vi (Jrl) = [—33 ral? = 22 el + } AN
Oik Ok ik
48, 488 12407 1y
\Y ikl) = | = ITik|” — —5 ITi — |
() = | 5 = O I+ 20|
48 |r; 488 1240
Vif (Irix]) = { ’3 Jg — t 1 Tk
Ok Oik Oik |rik|

C.2.3 Smooth vdW Gradient

VkEZdeW if ‘rzk‘ S 1
ViBuaw =Y 3 f(Irgl) VRERY + EZWVf (leal) i r1 < [ra] <7
i#k | O if vyl > re

C.3 Minimum Image Convention

This is done in the ndistance routine. w is a place holder for z, y, and z.
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(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)



Take r'7 and break it down into components 7, r, r2.

If |rid| < £, do nothing.

If |rid| > LTW

— If 7% > 0 then r¥d =y — [,

— If vy < 0 then r" = r¥% 4 L,
e Then, if needed, add the appropriate box vector, [nxLx Ny Ly nsz].

C.4 Confining Potential

Vionfine = Z Vo (1 + tanh [¢. (|r;| — r.)]) (C.36)

2V} is the maximum value of the function. Note that this will be in kcal/mol. Tt
will get turned into hartree by the code. 7. is the cutoff radius. ¢, is the width of the
function. 4//. is the approximate width that it takes for the function to go from 0 to
2V, which is centered around r.. 7 is the set of atoms whose original positions, r;, are

within the cutoff sphere, i.e. |r;(t = 0)| < r..
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2V,

- Vo(1+tanh[£ *(x-1.)])

Vo

bl

Ie

Figure C.1: Graph of the hyperbolic tangent function with parameters of interest
shown.
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Vole

vk‘/confine - | | SGChQ [EC (|rk| - TC)] Ty (037)
ry
Note:
tanhz = ZZE:
dtz;r;hz — % <€Z _ efz) (€Z + e—z)*l

s = (o) (@ —e) H (e —e) L e

dtanhz __ <€z + e—z)_l (ez + e—z) _ (ez _ e—z)2 (ez + 6_2)_2

dz
2
dtanhz __ 1 — ef—e”*
dz e*+e%
z —z)2 z —2\2
dtanhz __ (e te ) —(e —€ )
dz - (ez-‘,-e*Z)Q
dtanhz __ e2#424e 22224222
dz (e*+e—2)?
dtanhz __ 4
dz (ez+efz)2
dtanhz _ ( 2 )2
dz e*+e~?
dtz;nhz — SeCh2Z
z
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APPENDIX D

Ewald Energy Correction

Note: SS = supersystem (simulation cell plus images) aka PB (periodic bound); RS
= real space (simulation cell only); PI (periodic images only) aka PBC (periodic

boundary correction)

Efpy = ES%/QM + ES%/MM + EJ%SM/MM (D.1)
Eppy = ESJ\SJ/QM + AEéQDJI\J/QM + Ec}g%}a/MM + Al*jggazﬁ/z\mw + EdeSM/MM (D.2)

Ef/ISM MM is the term for normal MM Ewald
ES% s 18 some flavor of electronic structure

ESJ?J/MM is some flavor of QM /MM scheme such as Janus or ONIOM

PI
D.1 AED, o

PI o SS RS
AEGnom = Eguyom — EQrou (D.3)
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Assume Y q; =0
T

Assume a tin-foil boundary or use enough boxes to reach a desired convergence so

Edipole =0
QM/QM QM/QM QM/QM
AEWQM/QM Ereal/ + Erecz]{ + Eself/ SJA?/[/QM (D4)

1y erfc (0 |ras + by|)
af n
AEGijqu = Z Qalp { [Z Ty + b (1 = dagdb,o0) | +
771' a2 /r] ) 9 NQM
2miam, T Ui 045
D= EINE) T

Note: In the reciprocal term, |S (a,,)|* or S (ay,)|?

can be used. The primed
quantity is defined in the next section. The latter is currently implemented so the

same function can be used for QM/QM and QM /MM evaluation.

NQM
Z @aQﬂ{
am#0

[Z el"fC (77 |ra,8 + bn|) (1 o (501/3(5[)”0)] _ 2_776(1,8 _ ﬂ} (D6)

o [rap byl

QM/QM— [Z w () |S (an)]

NQM
Z @aQﬂ{

1 —erf (n|ras + byl 2n 1 — 0ap
1 — 9,530 — —0,80p.0 — ————0 D.7
[; ’raﬁ + bn‘ ( B bn0> ﬁ 8Yb,0 ‘ aﬁ‘ b,0 ( )

QM/QM_ [Z w (am) |5 (am)]

am#0
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AEQM/QM— [Z (an) S (an)]

am#0

NQM

Z QQQB{ ) (D.5)

1 erf(nlrag+byl) 5a55bno erf (1 [ras + bul) dasdb,.0
rap + byl |ra6+bn| |ra,3+bn| |ra6+bn|
(D.9)
2n b0 0a40b,,0 }
— —008%b..0 — z n D.10
V0 T e b e + bl (B10)
NQM
AEQM/QM = Z (am) S (am)] Z QaQB{ Z
am#0
1 —6p,0  erf(n|ras +byl) el“f( Tas + bn!) 0ap0b,0 21
— —— 7 (D.11)
|raﬁ + by, |rozﬁ + by, |ra5 + by, VT
Note: lim —erf;m) = \2/—’%
NQM 5
bn
am#0 af
_erf (7] |raﬁ + bn|) } (D.12)
Tas + bul

AEQM/QM = [Z w (a,) |S (am)|
am#0

_erf (rag +bal)  erf(nrag|)

NQM

1
ZQaQﬂ{gm

} (D.13)

[ras + bl Tag]



NZ 0.0, {01

|ra ’

S erfc(n\rag+bn|)} (.14

bn#£0 |r04/8 + bn‘

AES om = [Z w (an) |S (an)|

am#0

NQM

erfe (0 |ras + byl)
AEGijqu = [Z (am) |5 (am)] Z QuQs ) s + by
amA0 br£0 of n
L& e (n]ras)) n X
QaQ P - | —= ) Q2| (D.15)
NI e R DY
D.2 AEQM/MM
AEQM/MM = EQM/MM ESE\Z/MM (D.16)
Nom N

Assume Y Q,=0and > ¢; =0. " j # a there is no self term or primes on
a J

suims.

AE‘QM/MM Ereal + Erecip + Echarge - Eg]k?/[/MM (Dl?)

D.2.1 Real Space Term

Nowm Ny T

RS _ erfc (1 |ra; + bal) Qag;
Ereal - EQM/MM = Z Z Qan Z |raj + bn|
(e J - bﬂ/

Tyl

(D.18)

o B erfc (1 |rq; + by|)
Ereat — EQM/MM - ZQanj { Z |raj + bn‘
[e% J

Lbr,#0

N erfe (n|re ) 1
Tl Tyl

(D.19)
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RS _ erfc (1 |ra; + byl)
Brea = Egipn = 2_Qa ) 0 { [Z oy + o]

|raj|

j by 70

D.2.2 Reciprocal Term

reczp

reczp

reczp

Erecip=)_ >, ) W

[0}

J am#0

2.2

m 2 . X
26 2z e Tiam Tja

S22 n 2y

7 am0 |am|

27rza T
reczp E § E am QaQJ e

a j am#0

2 E 2 am Qaq] 27rzam-rje—27r7,am~ra

a 7 am#0

Let: x = 2ma,, -r; and y = 27a,, - r,

rec'Lp ZZ Z w am QQQJe € W

a j an#0

ZZ Z w(a, Qaqj (e + e"e]
« J am#0
(am, Qaqj 5 [(cosx + isinz) (cosy — isiny)

+ (cosx —isinx) (cosy + isiny)]
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(D.21)

(D.22)

(D.23)

(D.24)
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Erecip = Z Z Z w (a, Qaqj [(cosxcosy —icosxsiny + isinz cosy

« 7 am#0
+sinzsiny) + (cosx cosy +icoszsiny —isinz cosy + sinxsiny)|] (D.27)

Erecip = Z Z Z () Qagj [(coszcosy + sinz siny)] (D.28)

« 7 am#0

reczp Z Z Z am QQQJ COS (.CE - y)] (D29)

a j an#0

reczp ZZ Z w am QQQJ COS (27Tam r]a)] <D30>

a j an#0

Let: [S' (a,)]" =3 >~ Qagj [cos (2may, - 1jq)]

erfc (0 |ra; + byl)
AES&/MM - ZQaZQj { [Z |raj +]bn|

b £0

I

a j an#0

_erf(n|ry)
|raj|
2

— T
——e 7

2
mQaqj [cos (2may, - rj,)] (D.31)
Vﬂ]am|

D.3 Forming Pair Potential

NQM

erfc (1 |ras + by|)
QM/QM_ [Z w am ‘S/ am Z QQQB Z |I‘ +b |
am£0 b, £0 af T Fn
N
2 = | il
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Note: The self term can be added back into the erf term to remove the restriction

on the sum.

NQM

erfe (0 |ras + byl)
Z QQ’Q Z |I‘Oé,3+b |

by #0

N | —

PI _
AEGyjgm =

[Z (am) S (am)]

am#0

NQM

Z 0.0, 20|

Nowm N

erfe (9 |ra; + bal)
S 3 i

j bn#0

AES mim = [Z w (a,) |5 (anm)|
am#0

NQM Ny

Z Qa Z jerf (IT']|I‘0¢J|> (D34)

oyl

AES Jou and AELY, Jarar have the same forms, if we invoke tin-foil boundary

conditions to remove the dipole terms, we can define a pair potential w (r).

AE™ = AES 1 j0m + AESN (D.35)
NQM Nom  Nuwm
1 ey erfc (1 [rax + byl)
w(ran) = Z e 7 cos(27man, s Tan) | + Z

am#0 Vmay, b, #0 [rax + b

f(n|ra
LI

Tax]
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D.4 Maximum Vectors and Timings

Both the real space sum and the reciprocal space sum converge as Gaussians. A
constant is chosen such that eC is small. In the case of an SCF convergence the

sum must converge to a value that is equal to or less than the threshhold.

.. C'= /—In (SCF Threshhold) (D.38)

Every vector is subject to the constraint that it’s distance must be less than the
distance of the max vectors, |n| < |npae| or [m| < [Mpee|. Setting the maximum
value of each direction to the max value yields a supercube (SC). Adding in the
constraint yields a supersphere (SS). The code creates the supercube and makes each
vector subject to the constraint so that a supersphere is obtained. The total vectors
for both SC and SS are shown; however, SS is non-trivial. The derivation of the

equation is shown in appendix I.

D.4.1 Real Space

Note:
Nomax 0 0
Nypar = 0 = | Mmaz | = 0
0 0 Nomaz

1
1= |:1

1
Tuotal 1S the total number of n’s used.

C<nlrax+b (D.39)

Nmax |
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C <nlrax + Ny L (D.40)

L ran < L1 (D.41)

Redefine n,,,; so it includes the extra 1

C < nnype. Ll (D.42)
o I (D.43)

77% < Nnaz (D.44)
Nmaz = ceiling (77%) (D.45)

If 77% < % then r, < % and N, = 0, assuming Minimum Image Convention is

used.

Nior = (2N + 1) (D.46)
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nmaz

niﬁal = N(ga nmaz)

o

33

123

257

o915

925

1419

2109

O 0| | OO = W N+~

3071

—_
@)

4169

D.4.2 Reciprocal Space

Notes are the same as for previous subsection.

Mynae = ceiling (T

™ |mmax|

C <
S TL

CLn)

mgy?al = (2Mmaz + 1)3
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The above equation should technically be (2m,q, + 1)3 — 1 because 0 is not in-

cluded; however, since the program must still go through the if loops for the 0 vector,

the —1 has been dropped. Conversion from SC to SS uses the same chart as above.

D.4.3 Finding 7.,

0
o L) + (i)’

o [+ D" @t 17, =0

2 ammax

a/r’ :| |77:77min - 0

2 anmax

on

2C > C 2C Lijmin *CL
1) - 1) == =0
(nminL * ) z L * ( ™ - > m

nmin

+ 6 (2mpmez + 1)

{6 (2Nmaz + 1)

2C Lijin +7\° CL _ (2C +npinl\® C
™ ™ Nmin L 7772m'nL

L 1

min

4

4
L
(2C Lijnin + 7)° Mhnint

7T3 = (20 + nmmL)2

2 L2

Ve
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(D.55)

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)



20L3 3 2 L2
nmm + nmm

/T VT
D.4.4 Orthorhombic Cells

Real and Reciprocal Spaces

— NminL —2C =0 (D.61)

L., will be used to represent L,, L,, and L,
The equations do not change; however, the maxes are not the same in each of the

three directions.

n® = ceiling (%) (D.62)

w

max

m,, " = ceiling <

Ci“’”) (D.63)

Similar to cubic cells, the vectors are still subject to the constraint that |n| <

max

|n™%|: however, n is now defined as the maximum of n"** nm** or n**, Like-

z 'y z
wise, the same process holds for m™** as well.
max 3 max max max max
[n] 0 0] if np"* > ng " Un® >
™ =g |0 0y 0] if pT > e ypier > prer (D.64)
max 3 max max max max
0 0 npor| if ' > np* Unl > ny

Finding 7,

uick Way: Construct a cubic box using n™% and m™**. Note: L,,ax and L,,in
Yy g

will stand for the maximum and minimum components, respectively, of L,, L,, and

Yo

L,.

115



9 8nmax

on

a max
5 Om } =0
a/r] N="min

+6/(2m™e 4 1)

{6 (27mas + 1)

2 2 2CL : 0L

2
Nmin Lmzn nmlanzn ™ ™

20Lma:vnmin + 1 2 CLmaz . C 2C 4 1 2
7T T B nganmm nmianin
QCLma:rnmin + 7 ? Lma;t o 1 20 + nmianin 2
L 1
2 Lmax 2
(QOLma:vnmm + 7T) 3 - 774 ‘ L3 4 (20 + nmianin)

4 3
2 Mmin Lmzn Lma$

2
(ZCLmaxnmzn + 7T> 3 - (20 + nmanmzn)
2 L’I?”ILZTLLmax
(2CLmaacnmzn + 7T) Nin T =2C + nmanmzn
L3 . Lmaz

20Lma$<777?;1m + WCWEm'n - menmm —2C =0
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(D.70)
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(D.73)



z%ﬁm@”+npmy%TM+mgM+m@M+n

+ (2m 4 1) (dmy e mI 4+ 2mp 4+ 2ml T+ )]| =0 (D.75)

x y z

%)
_— |:<8nZLa$nZLGJ?nZLGJ? + 4ngmaxnzmax + 4,’,1/27/&33”7;1&33 + Qn;nax + 4n;naxn2nax
on
_|_2n;na:t + Qn;nax _'_ 1) (8mmaxmmammmax _|_ 4mmaxmmam + 4mmamm;nax
F2mIT + Amr I+ 2m 4 2ml e + )] =0 (D.76)
N="Nmin
0
28_77 [(4nmaasngwa;n7znaa; —I'_ Qnmaxn;na;c + QTLZLCL&?”?ZTLCL&? _|_ Zn?axnrznaz + nrznaw + n;na;r

_i_n;nax) _"_ (4mmaxmmaxmma:c _"_ Qmma:cmmax + Qmmaxmmax _"_ 2mmaxmmaaz

+m?aw + m;mmj + mznaf)] |n*77mm - O (D77)

0 403 +2C’2 1 N 1 L 1 +C . 1 . 1

on |m3LyL,L., n* \L,L, L,L., L,L, n L L, L
+4C?’LxLyLZ773 n 20%n? Cn
7r

5 (LyLy+ L,L,+ L,L,)+ =0

- (Ly+ Ly, + L) }
m T

N="min

(D.78)
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—120° 4’/ 1 1 C(1 1,1
WL, L,L. n3 L.L, L,L. L,L.) w\L. L, L.

12C3L, L, L.n? 402 C
+ vl TL,L,+ L,L.+L,L.)+ (Lx+Ly+Lz)} ~0
T T
N="Nmin
(D.79)
12C%L, L, L.n%,,  4CNmin 1
7T3y + 3 (LyL,+ L,L,+ L,L,)+ —~ (Ly +L,+ L)
1202 4C 1 1 1 1 1 1 1
= — 4 —+ — D.80
Let: V=L,L,L,, Ly =L, +L,+ L., L, = L—Z—I—Liy—i—i,
A= LoLy+ Lo Ly + L,L., and A, = 4+ 4+ 4
12C?Vn? . 4C1minAs Ly 12C? 4C A L
Tonin | 2 + == + ==+ 55 (D.81)
7T3 7T2 m nmmv Mnin Minin

120?208 . 4CVRS . Ay LVnh.
nmm nmzn + nmzn = 1202 + 40Apv77mzn + vangmn (D82)
3 2 ™
12C°V 115, + ACVTS i Autt + LV = 12C°7% + 4C AV i + LV 12,7

(D.83)

Note: L,V = A, and A,V = L,

1202V 25

Nmin

+4CV77211-”A57T—|—L5V777A;LM7T2 = 12027r3+4CLsnmm7r3+As17im7r3 (D.84)
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3 2_3 __
1202\/2775;1»” + 4C’VAS7rnfnm + LSVWQUim — Asw%,%m —AC' Ly nppin — 12C =0

(D.85)
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APPENDIX E

Ewald Fock Matrix Correction

Note: Greek letters are QM atoms; Roman letters are MM atoms; Hebrew letters

are QM or MM atoms

OAET!
F = 1
AFf = (®.1)
OAEPT 9Q
AF,, = = E.2
W =2 50, apy (E.2)
Nowm Nowm Ny
0Q., 0 1
FPI Z 8P7 3G Z QaQpw ( rag + Z Qa Z qjw ra] ] (E.3)
pr Oy op
Nowm NQM
0Q, 0 |1
AF, = Z 9P 00, |2 D QuQsw (rap) + Z QyQpw (ryp)
" 7 ay
B
Nom N N
+ Z QO‘ Z q; W ra] + QW Z q;w r"/j (E4)
oy J
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Nowm NQM

0 0 1
AFP! = Z ag; 50 az@a@ﬁw ras) 45 D Qa0 (rar)

a#”/
B#v
NQM Nowm Ny Ny
+5 ZQWQ/J’W (rys) + Q w (Tyy) +ZQanJ (Tay +Q’YZQJ (r;)
55’5’7 aFy
(E.5)
8@ NQM NQM
AF:;[ - apﬂY Z Qaw (Tay) + Z Qaw (rys) + Qyw (ryy)
v i asﬁv B#v

Nym

+qu rW] (E.6)

Nowm Ny
oQ
AR =) 5p [Z Quw (Yay) + Qqw (133) + 3 quw)] (E7)
v v

aFy J

8@ Nowm Nuywm
AF;Z[ —X Z Qo w (Tay) + Z q; w (Ty;) (E.8)
oQ
AFP] BP,Z, ZQNW I‘zw] (E.9)
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APPENDIX F

Spatial Derivatives

F.1 Normal HF Derivative

enr =Y PuHu + 5 Z Py Pro (|| A0) + Vi (F.1)

uy MVAU

dilI;F Z W Hu Z WJFZdPWPAa (nv||Aa)

nuv uu o
d AViue
+ = ZPWPM (| + (F.2)
ﬂVAU
d€Hf‘ d‘%uc d[LV
dx :Z W— Z P)‘U 'MVH)\U) dx +Z dx Hyu
\uu MVAU | nv
Ep
dP,,
+) 2Py (|| M) (F.3)
12X
dgHF szz
=F P H P, F.4
dl’ D + " dl’ < 122 + %: Ao <MVH)\O->> ( )
dEHF dPu
=F ——— F.5
dx D+%; de " (F-5)
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dgHF dC;k " de'
B+ Y { I Fys+ Py (F.6)
72 2 )
Aside:
Z Fuucyi = Z EiS,uVCVi
Z C;‘MFMV = Z CIMEiSpV
w w
denr dc; N dey;
— ED + Z Z [d—;EiSMVCW' + CWSiSMV%} (F?)
uro1
denr dc; % dey;
= ED + Z & Z |:d—;SN,/CW' + Ci,usw/% <F8)
A puv

Aside:

2 S Cui = 1
1%

dcj ds
n * pv Cui | —
> [WS vCui + Ch T Cyi 4 €S, =0

KV dx
uv
dc} . ds,
u ) i Cui _ * Dopy
Z [ az P Cui + CmSW d;} ZCW dz Cvi
%
d{fHF — B « dS;u/
= Fp — E E; E Ciuﬂcyi
7 1%
dEHF
- ED - E E €ZC Cuz
dx ,
ﬁ,—/
Wuw
dEHF dV,
uu nuc
= g + g P,\U ;w||)\0)
dx
yVAU
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(F.9)

(F.10)

ds
- w,—* (F.11
%V: 12 dl’ ( )



F.2 Ewald HF Derivative

Note: « and 8 are over QM atoms, i is over MM atoms, N is over all (QM+MM)

atoms, and w,, is an abbreviation for w (ry,).

F.2.1 w.r.t. QM Atom Position

Eyp = Z P
puv

Egp = ZP
uv

EHF = E

Exp = ZP
g

V+ Z P)\o MV||)‘0>+Vnuc+ ZQQ BWQB+ZZQZ aWai

MVAJ

(F.12)

1/+ Z P;WP)\J ,UVH)‘O->+Vnuc+ Z QaQﬂwaﬂ—'— Z QwQBwvﬁ

/u/)\a a;,é—y

) GiQawai + Z Q- w; (F.13)

i aFy

y"‘ Z P)\O’ MV||/\J>+Vnuc+ ZQaQﬁwaﬂ+ ZQ&QWWOW

;w)\a a#v aFEy
B#Y

T3 Z QyQpwrp + Q 2wy + ) 4iQatwai + Z G:Qwy;  (F.14)

B#v i aty

uv + - Z P)\o ,U/V’ |)\0> + Vnuc + = Z QaQBwaﬁ + Z QaQ'ywaw

,uzz)\a a;éy aFy
BF#Y
+ Q W'y'y + Z Z quozwon + Z QlQ’YW’W F 15)
i aFEy
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0¢ aPV 0P,,
— = “ Hy Z + Y =Py (uv||Ao)

ox ox
v UVAC Ly

t3 Z PAJ MV||/\J> oz + 2 oz @pas
v v

uu)\a a#y
B#Y
a Owa
a Z Qa Waﬁ + Z 8 vaa'y + Z Qa Wom/ + Z QO&Q’Y 6 =
aty T ay T
6#7
# Qg 4 4@ S e+ D
78 Y L i ai 8
Own;
+ Z 6Qy (F.16)
Ofgr OPW 0P,
= v Pu—-—= Py (uv|[Ac)
aVnuC 8 (0%
+ = Z P,\U ,uy||)\0> pe + Z Q Q@waf;
VAo Ty
M B#v
a « awa 80.)
P QywwﬂrZQa Yy Y0 Qu@, 2 Qwa”
a#'y T ay
00, Owx;
+ zzqi—a@ i+ 3 01052 (F.17)
: Ty , .,
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85]{}7‘ HV a a nuc awa’y
ZPW + = Z PuPro g (|| Aoy + = S > Qa5
ul/)\a | aFy
&uw &uw OP,, 0P,
#3023 G R (i)
n% 2N,
° o Qw 0Qa
+Z@ ﬁwaﬂ"‘za Qqw OM/"'ZQ& 7+quz Wai
a#y a#y
B#y
(F.18)
OfHF Ow Ow O oP
=F a'y 277 ) 24 IU/F L
o, D*;Q“QW T +Z%Q7 oz, +§ oz, "
O{ (0% aQa
+ 3 S0+ 3 50+ 05+ 3
aFy aFy i 7
B#y
(F.19)

85 awa @ aw i ap l/
a;F_ED+ZQan 7(1——7)+Z GiQv 5 Z b
v

Z aQa Q@waﬂ + Z Qa wm + Z Z gi—= aQO‘ wai  (F.20)

a#v

O, 2

~ J/
~~

Ep

0€ Ow ) OP 1/ ) a
HF_ED“LZQNQ” M( _ﬁ)+ T V+Z Q Qpwap
uv

YN qi%wai (F.21)
7 a v

OZur _ - OPu 1, Q.
(9:1;7 B ED T Z . l“’ + Za: aI«/ ZN: QNWQN (F22)
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Oz . 8PV 0Qq 0BT
LU D*Z u W+Z © (F.23)

0. 01, 0Qq
Note: 402 — 8t 10
", % = > g—ﬂz%—ﬂf, where M are all functions of f that depend on z.

Oéyr = oP 0Q, OET! 0Qq OETT
- B HV , nv o a
or. D+Za Eu Z Zapwacga Zaxv;aM 20
(F.24)
Note: In this derivation, M will be all variables (and the appropriate sums) needed
to take a complete derivative of @), excluding P,,. See section H.5 for what these

particular derivatives are.

85HF ~ g uv PI oM a@a OEFT
y AF F.25
Za Eu Za wt 2 ge 2o ag, )
M «a
~ M EPI
8€HF Z ,uu 0 Z (’9@& 0 (F26)
Oz, i oz, ~ oM 0Q,
Continue from equation F.5 of section F.1 to finish the derivation to achieve the
result:
Oy Ve 95
= —— 4+ = P oo A — W, ——
oz, Z Z P A “VH o) + ., Z " B,

nv ,uzz)\o %

amw 0Q, OETT
JFZQNQ7 ( ) Z o Z ot oo, F20)
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F.2.2 w.r.t. MM Atom Position

5HF—Z Hy+ Z

P)\a /U/| ’)\0—> + Vnuc + = Z QaQﬁwaﬁ + Z Z %Qawm

pVAU
(F.28)
Oeur  ~— (OP,, OH,,
85['] N Z ( (%cj HMV P'Lw 8xj
1 0P, 9 (pv||Ao) Wnue
- 22— P, A P, P
+ 2 396]- A <HV|| 0> + s A 896]- + (9.1'3‘
Ko —_——
=0
1 aQa Owe
+ 5 Qﬁwaﬁ + Qa@ﬁ ?
af \/—/
=0
8ql 0Q OWai
+ Z Z Qoz Wai + i — O Wai + QiQaa_xjéij (F29)
7 a - L

=0

Oy p OP,, OH,, oP,, Wi
H,+P,—— Py
Oz; %: ( Oz; " i i Z i)+

2 o
€T 0 ox;
j o J j

0Q, 0Q O,y
+ gﬁ: oz, Qpap + z; zo; Qia_xjwai + Za: Q0 5;:; (F.30)

OSur GPW

e = Gt S B+ 3 GRS B i) +
J uv
DM 9. D Q + 3G 0 EPNIEYDS Q%

(F.31)
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Oy dP,, OH,, OV
_ H , P . , n nuc
8[Ej ) 6xj K + g A <MV| |/\0> + #ZU P'u @x : T al’j

J

9Qq Oy
+ ; (%zzj ; Qﬁwa}t + q; ; Qa (;;jj (F32)

Denp ap,w A 8Qa aEPf
ot = e S e e S G 0 TG
O€nr 0H,, ow 8P 0Q, OE"!
_ P ”w nuc aj ;w «
Oz, Z e 396]- ZQa ; Z Oz; 0Q,
pv J
E;

0Q OB
Z O Z o og, 3

0¢ ~ v (9P,, 0Q, OET oM o OETT
€HF:ED+Z M' ' Z I Q ‘I‘Z a@ 0

Ox; p” ~ OP,, 0Q, oM 0Q),
(F.35)
agHF - ;,Ll/ 8@04 aEPI
Z o Z 3it 90, (F.36)
Using the second aside in section F.1:
85HF ~ #y 8Qa 8EPI
Z o W + Z ; RN (F.37)

S
But 8—“ =0 so
Ty
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j2%

Ocpp OHy, | Wi awa]
= P ,— + E o
81']' Z H 81']' Q

0Q, OEFT

F.2.3 Derivative of the Pair Potential

M
Z Z aM 9Q.,

7”282 erfe (1 |tn + b)) |
r'yN V 5 ,,2m oS (27ram ) I'»YN) + Z (77| “{Nb n‘)
Lanzo " Tm bogo  TwEbal
v - ~ vV
recip realrest
N {erf (7 |ryx)
T
real0
_r a%n
Vv v Wrecip r’YN V7Ta2 “n? cos (27ram . r’yN)]
am#0
_x’ay,
\4 v Wrecip r'yN V7Ta2 7 V»y CcOoS (27ram : rwN)
am#0
\% v Wrecip r'yN V7Ta2 n? [— sin (27Tam r'yN) \V4 (27I'am r’YN)]
am#0
1 _ w2a2,

Vo Wrecip (Tar) = Z Va2 e 7 [—sin(27a,, - ry) (27a,)]

am#0

Vo Wrecip (Tyx) = Z —27w (a,) sin (27a,, - rx) an,

am#0

v’y Wreald (r'yN) = _V'y |:
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erf (n|rx|)

’r’yN‘

|

(F.38)

(F.39)

(F.40)

(F.41)

(F.42)

(F.43)

(F.44)

(F.45)



1 1
V,— 4+ —V,erf (n |r7N|)} (F.46)

V. Wrealo (Tyx) = — [erf (7 r-) Tl e
v ™

V. Wreato (Tyx) erf (n|rn]) —=5 Bl . NI /77|rw| o (F.47)
real0 N) = — R dx .
! ! T e’ lrv G

R 1 2 rl?
Vs Wreato (Tyn) = erf <n|r’YN|>W o] V7° Pl e (F.48)
Ty
Vet () = exf (o) 2y — el I (F.49)
| 'le |r'yN‘ VT |r7N’
r, 2
Vo Wreato () = exf (n[e]) — — 20 npfe]” TR (F.50)
r WN’ VT ‘rWN’
erf (n|rx]) 20 o ?] T
\Y Wreal0 (I‘ N) = |:—’Y — —=€ " |r7N’ 7 F.51
! ! x| e ] ( )
v wrealrest I"YN v Z |:el"fC n‘r'yN +bn|) (F52)
b, #0 |r’YN + bn’
1
v'y Wrealrest (r'yN) = Z [erfc (77 |r'yN + bn|) V’Y—
b, #0 |r’YN + bn’
1
—I—mvverfc (n v + bn|)} (F.53)
~ n
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— (tx +by)

g n

br#0

1 2 [~ 2
+———V —/ e dr| (F.b4)
[Tox + by RvZs 7| ryx+ba| ]

—(tx +ba)

V., Wreatrest (Tyr) = erfc (n|rn + b,
5 Wreatrest (Tax) Z[ (1 |rox + bal) et bl

b #0

1 2 2 2
e [y vl ]| )
~y n

rx+b,
v’y Wrealrest (r'yN) = - Z [erfc (7] ‘I‘,YN + bn|) ('YN—?))
b0 Tyx + by
1 2 _p ’n (I‘ X+ bn)
el [LER T O] 56
AN otk | 09
(r'yN + bn)
v’y Wrealrest (r'yN) = - Z erfc (77 ‘I‘,YN + bn|) —
b A0 Tyx + by
21 a2 feperba [ (Tn + Ba) b")z (F.57)
T |r'yN + bn’

V'\/ Wrealrest (r’yN) == Z

Herfc (7 ]rax + byl) N 2_776—772|rw+bn|2} (ryx +by)
b, £0

|r7N + bn| ﬁ |r7N + b'ﬂ|2
(F.58)
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\V/ = |0
et [ NI
Hf (e +bul) | 20 ||} (x + ba)

T |2
am#0

bgo [Tyx + by VT |T7N+bn|2
(F.59)
F.3 Logistics in Q-Chem
F.3.1 Outputs and Relationships
Q-Chem Output
Energy \ Derivative
QM

SCF Escr SCF Gscr

Kinetic Er Overlap and Kinetic Grg

Nuclear Attraction Ey Nuclear Attraction Gv
Coulomb E; Coulomb and Exchange | Ga.

Exchange Fyo, Eys
Nuclear Repulsion Enn Nuclear-Nuclear GnynN
QM /MM

QM/MM Energy (E_gqmmm) E; total grad after. .. Giot
External Charge (E) Ggr

External Charge (N) Gon
MM Energy (Etot) Eviv MM energy gradient | Guaw

QM /MM Ewald
Ewald QM/MM Eewald Ewald Potential Gy
Ewald Charge G
E\.=Er+ Ey (+E7) (F.60)
Ese = Ej+ Exa + Egs (F.61)
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Escr = Eie + Eoe + Enn (+Eewala)
Eiot = Escr + Eyum
Go = Gos + Gox
Gscr = Grs + Goe + Gy + Gyn (+Go + Gy + G )

Giot = Gscr + Guaw

F.3.2 QM Derivatives

ESCF:ZPHVTMV+Z Vuu_’_ Z P)\O' MV||)\U>+VNN
uv

;U/)\O' ENN

J/

Er Ev E2e:§ ZPMV(JMV+KHV)
j72%

AE oP,,
AxT :Zﬁ—;Tw—i_;P

AFE oP,,
Axv :Za—;V“V+Z

jn%

AEQ@ 8P;w 1
= 2Py (| Ao) + 5 > PPy

12X 2N

9 (uv||\o)
ox

(. J/

-~

T
GQG
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(F.63)

(F.64)

(F.65)

(F.66)

(F.67)

(F.68)

(F.69)

(F.70)



Ax ox (F.71)
—
GRN
) o, 95
TS — Z PHV a; - Z W/,LI/ a; (F72)
% uv

S, OP,, dP,, 0P,
_ZWW@_; => -k T+ SV + > 5Py (uv|Ao) - (F.73)

T aTV aPV aPV 8PV
Ts = %:Hwa—;+z ST+ Y S+ Y Py (wlAa) (F.74)

ny pv 2o
g N 7
Vv Vv TV
AETp AEy T AEg. -
Ax Az 7GV Az _GQS

F.3.3 QM/MM Derivatives

ESCF += Z P,uuZ,uzl +ZNN (F75)
1%
Ez
Note: FEr in the output is calculated by taking F;. — Ey. This leads to an
incorrect value for Er in QM/MM jobs because Ey. — Ey = Ep + E5 because H,, =

Ty + Vi + Z,. In order to get the proper Ep use Tr(TP).

AZNN

= G* F.76
Al’ N ( )
AE, P, 07,
— Y7 pP,— F.77
Ax ox M + Z " ox ( )
in G2 G p
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F.3.4 QM/MM Ewald Derivatives

Esor += Z (% Z ngaﬁ + Z (]jwaj> (F.78)
« B J

~
Eﬁwald

A-Eewald awaN oF, v 8@&
Ar ;Qa;QNW—F; 8; a ap,, ;QNWQN

-~

GE, in G
oM 0Q,
+§ e Za: it ZN: QN%NJ (F.79)
F.3.5 Scratch Files
Q-Chem Scratch Files
Variable | File # Notes
F 58 Stored unvectorized
J 55 Not normally stored
K 26 Not normally stored
S 320 Not normally stored
S* 23 Stored vectorized
F* 24
P 54 Stored unvectorized
H,, 51 Stored vectorized
Vv 57 Temporary file number
\\% 111 | Temporary file number
T 100 | Temporary file number
cand € 53 See Note

Note: File 53.0 (FILE.MO_COEFS) is stored in the following way (variable
followed by number of entries): ¢, (Nbasis X Norbs), cf# (Nbasis X Noros)s €F (Norps),

Eiﬁ (Norbs)
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Entries for FILE_ ENERGY (99.0), scfman.C lines 4230-4263
Entry # | Variable Name of Energy

0 Escr SCF (see note)

1 Ei. One-Electron

2 Ey Total Coulomb

3 Exa Alpha Exchange

4 Eys Beta Exchange

) Ex DFT Exchange

6 Eqo DFT Correlation

7 Er Kinetic

8 Enn Nuclear Repu.

9 Eyv Nuclear Attr.

11 Ei Total (with MM energy, if included)

25 Eviv MM

26 Eewald Ewald QM/MM

F.3.6 Outline of Code for Computing AATE Directly

e Define and zero variables
e Call GetH

e Unvectorize jHv

e Load P from file

e Modify so that you have jPv (vectorized total density), jPA and jPB (unvec-

torized alpha & beta densities)
e Call MakeJK
e Unvectorize jJv

o for p
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— for v

*

Load P from file (need unvectorized)

*

Add/Subtract 0P,

*

Compute Ewald energy (use new density for charges)

x Take trace of density matrix with jH, jJ, & jK

*

Add and store energies in the appropriate energy vector

e Take the negative of the negative energy vector

e Add the positive and negative energy vectors

e Scale by 1 (4 if you added 6P, to jPA then doubled to get jP)

4 x stepsize
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APPENDIX G

Charge Schemes

G.1 Mulliken

Qo = Zo — Tr, (PS)

Qo = Zo = Z (PS)¢

(Ea

Qa = Za _ZPCESEC

(Ea
£
Note: Sgc is Hermitian so Sge = See
Nbasis
Qo =Za— Y PeeSce
(ca

3

G.2 QM Potential at a Grid Point

VW:/“%“

v —

OED I WAACLRN
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Zs@u ¢, ()P, (G.7)

e (r) g, (r) -
Z/ |r - rk| P, d (G.8)

V=3 (n

2

V>r P., (G.9)

v — 1y

V() => (W), Puw (G.10)

2

G.3 ChEIP-G

Let: N, = the number of grid points, N, = the number of atoms; /V, = the number
of basis functions; wy, = a weighting function; () = charge of system

1
[r—rp|

N Ng z Ny
V>a ¢k = ; |1.kq,—JrJ‘7 ¢k = ; |rk7JrJ‘ - Z (Hk>uy PNV

pv

Note: (Ix),, = <,u

G.3.1 Charges

ChEIPG charges are the charges that minimize the difference, in a least squares
fashion, between a static potential and the potential constructed from the density

matrix subject to the constraint that the charges sum to the total system charge.

L= Zwk; (Pr — dr)* — (Q ZQ}) (G.11)
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N
oL J Oy,
O 0= S 2w (@ — ) (=225 ) 4
9in zk: wy (P cbk)( an) +
. O0d 1
Note: aq—: = ora]
A= 2wy (T — ¢r) !
p [t — ral
_ wy, P
Let €A Zk: \I‘kk—ri\
WE Pk
A= 2e 2
A Z rp — 14l

W
[rg—rallrg—r;

Let: Gja =) mm——b—r
k

A=2ey— QZC]JGJA
7
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(G.13)

(G.14)

(G.15)

(G.16)

(G.17)

(G.18)



A= 26A -2 (Gq)A (Glg)

A
ea=(Ga)y+ 5 (G.20)
Begin Sidenote
Let: N =N,
_61 | _Q1 |
€2 q2
e/ e q, =
EN qn
| @] | A
Gn Gig ce Gin %
e G Gao s Gan %
1 1 o 1 0
. e/ — G/q/
End Sidenote
A
ea = (Gq), + 5 (G.21)
1
1
Construct N, eqns Note: + = | .| that is an N, x 1 vector
1
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A
Gq=e— 5}
(e
q=G (e 2%)
-1 A
QA:<G e)A_i(G })A
Ng A Ng
94 = ZGB (Gil)BA 9 Z (Gil)BA
B B
Nq
Q=> q
C
e A
Q= 263 (G_l)BC 9 Z (G_l)BC
BC CB
PR N,
9 Z (G_I)BC = 263 (G_I)BC -Q
BC BC
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(G.23)

(G.24)

(G.25)

(G.26)

(G.27)

(G.28)

(G.29)

(G.30)



Na
> e (G g —Q
BC

Ng

> (G_I)BC

BC
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APPENDIX H

Charge Derivatives

H.1 Density Derivative for Mulliken Charges

H.1.1 Non-Symmetric Form

Nbasis
Qo =Zo— Y PeeSee
(ea
£
N oo
aQa a basis
= - PreSce
£
0Qq
oP = _S;w(sae,u
uv
H.1.2 Symmetric Form
Nbasis
Qo =Zo— Y PeeSce
(ea

3

Note: X, = 5 (X, + X,,) iff X is Hermitian.

1
2

1 Nyasis Nyasis
Qo =Za—35 D PeSee+ D PecSe
(ea fea
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aQa a 1 Nyasis Nyasis

5 — 9P | 3 > PeSce+ Y PecSec (H.6)
wy g (Ea (ea
¢ ¢
00, 1
OP = _5 (Sw/(soae;x + Su,uéoch) (H7)
(1%

The symmetric form must be used in Q-Chem because the diagonalization of the
Fock matrix (which occurs in another step) is dependent upon the Fock matrix being

Hermitian.

H.2 Density Derivative for ChEIP-G Charges

Co(e™) 0Q
Note: 8P<§BA = zk: P =

863 W aq)k
5 7k 7R H.8
OF¢e 2 v — 1| OFce 1)
Oep _ G =3 U () (H.9)
8P<£ 3 3 ‘I‘k —I‘B| c&
Na
dqa al %B(ZB)C&(GA)BA Na
—_ —1 -1
P, (AB)CS - _Z (:B)CE (G )BA + N, Z (G )BA (H.10)
“ E (G, P
AB

H.2.1 Simplification of Derivative

(G )y
E) T w2 (G y B, (HID)

=
<
=
<
I
|
-
“
<
h
(]
@
<
h
=



- Z (Gil)ML Z ﬁ (Hk)w/

O B
+W;(G )LN;M(Hk)MV (H.12)

Let T'=3"(G ') and apry = (G71) m#m
IJ

1
(M), = =D aware (W) + 1 D (GT1) ) D anw (), (H.13)
kL J

kLN

Let ka = Z@kNL
L

(Anr) == Z biar (L), + % Z (G_l)MJ Z brr (I) (H.14)

J

Let Cp = ZbkL
L

(Anr) = = b (1), + % S (@), e, (H.15)

(M) = =D biar (I), + > diar (I, (H.16)
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Let fonr = diar — bens

(Anr)y = D Frnr (I),,

IV

So funr = =2 (G 21 + Sy, 2 (G )y e
IJ

L VoLN

H.2.2 Alternate Simplification of Derivative

(A = =32 (G )s 3o oy (W
> (G )y

J -1 Wk
+ —Z (G_l)]u ; (G )LNg ’I'k _ rN| (Lc);w

IJ

(M) == > Mear (Te) +90r DD N (T)
k N k

Let (Quar),, = 22 A (It)
k

(Aar),, = — (), + 7m0 Z (On)

(M) = D (), (var — Sarw)
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(H.19)
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H.2.3 Application of Derivative to Fock Matrix

AFMV:Z QN/“,Z ’VJ_éJN

H.3 Spatial Derivative for ChEIP-G Charges

(H.22)

(H.23)

(H.24)

Note: All sums are over the total number of (QM) atoms. Note: In all cases in this

section V. = Vg, (where F' is an arbitrary atom) but the subscript atom will be

omitted for clarity.

p;{eF (G py — @
94 = Z €B (G_I)BA - S (G Vep Z (G_l)IA

CD

v[qA;;(G—l)CD =V ;;(G—l)CDXB:eB (G,
Y (67, (6, + QY (@),

(H.27)



7> (G + q,%; (G e =2 (G )op > en

CcD

(G pas

+ ; (G en Z ey (G gyt ; (G e Z €B (G_l)ZA

- ; er (G7) py ; (G- ; er (G5, 2 (G,

B ()= | Ten (60 (e,

CD B CD

=2 er (G )y ; (G, +Q ; (

G

(H.28)

+ ; (G ep § e} (G ) pat ; (G ep Z €B (Gil)ZA

- ; ey (G_l)FH ; (G_l)]A - Z er
- [Z €r (G_I)FH - Q] Z (G_I)IVA

FH 1

B (60~ [T ()0 -0a| T,

B CD

~
term 1

CD CD

. J/ .

(G n ; (G

ia

(H.29)

+ Z (G_l)CD Z ep (G_l)BA + Z (G_l)CD Z €B (G_l)ZA

J

~
term 2

- ; er (G pn ZI: (G )= er (G D (G,

~
term 3

S

~
term 4

[z @)y -0 T (],

J

~~

term 6
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H.3.1 Simplify Terms 1 and 6

= [Sen (€, (6%, [Ter (67,0 e,
B D FH I (H31)
Ths = 263 (G 1)BA - ZeJ <G71)JA
KZLGK (Gil)KL_Q v
+ S (G )y (G_l)m Z (G_I)CD
o [Z €r (G_l)FH - Q] Z (G_1>IVA (H.32)
KZLGK (G g — @ B v
The = ]\%V(G_I)MN ZI: (G ;D: (G)en
-1 -1\V J\;\T(G )MN
- [;}; €F (G )FH - Q] z]: (G )IA ) W (H.33)
%eK (G gL —@Q L L
T = A;V (G ) 1rx [; (G )IA ; (G )CD
=D (G (G | (H3)
%eK (G_I)KL - Q _1 v
N Z (Gil)ZS 054 Z (Gil)PQ (H.35)
RS PQ
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KZLGK (Gil)KL - Q 1\ B »
e DAL SR NI L
(H.37)
1 R DI (o T R DL P
Te = ;GK (G )KL_Q]%;(G s ]\;(G’l)MN 5SA]\%:V(G D
(H.38)
2(67),4
Let: 74 = St
To= Y ex (@), - @] S (G0 (139)
KL RS

H.3.2 Terms 2 and 4

Tos = Z (G e Z e (G) g — Z er (G) oy Z (G4 (H.40)

CD

Ty = Z (G_I)PQ ; eX (G_I)RS O5A — Z eg (G_I)Rs Z (G_I)PA (H.41)

PQ RS P

Ty = Zsez (Gil)Rs 054 ZQ (Gil)PQ N Z (Gil)PA (H.42)
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H.3.3 Terms 3 and 5

Tss = Z (G ep 263 (G_l)ZA - ZeF (G_l)ZH Z (G™) 14 (H.43)

CD B FH 1

T3 = Z PQ Z er ( RS - Z €R (G_I)Zs Z (G)p, (HA44)

PQ RS P

Iy = %S: €R (GA)ZS X ;g: (Gil)PQ - Z (G71>PA (H.45)

H.3.4 Recombine

0 Z (G™Y)p = Tig + Tos + T (H.46)
cD

- Z €K (Gil)KL - Q] Z (Gil)ZS (V4 — 054

CD RS
IWACUPNERD SN SCRM
+ Z ew ( wx 19xa ) (G py — > (G—l)PA] (H.47)
L PQ P
o %61( (G_I)KL_Q v
qa = Z (G Vo ; (G™) jig [74 — 054]
+Z€M - MN [OnA — 74l +Z€W I)XVX [0x4 — 4] (H.48)
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>oex (G, — @

9a = Cz[:) (G Vep % (G™) pg 4 — 054
™ Z [ef\v/f (G_I)MN +em (G_I)J\V/[N] [Ona —va] (H.49)

3= > (G7) iy owa =l

3 [T (€7 e (G7)5] a =) (150

> (G YHep
X - EZ MN [Ona —yal + Z [GM _I)MN +eum (G_I)MN] [Ona —74]
MN MN
(H.51)
= Z |:€]\v/[ (Gil)MN +enm (Gil)]\vﬂv += (Gil)]\vﬁv} [6NA — ’YA] <H52)
MN

H.3.5 Alternate Derivation

Let:
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ga=ga+ Ozz (G™) 45 (H.53)

Q- ;gc §
qa=ga+ (%@—1)%) XB: (G s (H.54)

qa Z (G pp=9a Z (G™) oy + (Q - ch) ZB: (G™) 1s (H.55)

Y Y (E ), (@—ng) S (67, (s

DE FH N .
Termz & 3 T rm;rél &5
Ty (G —aay (G, + (Q - Zw) S (G, (H57)
KL 1J R M N
Te?rrn 1 Te?rrnﬁ
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- O‘Z (G ap Z (Gil)zvj + (Q - ZQM> Z (Gfl)zN (H.59)

o) (G)pp=91) (G )y — Zgg Z (G™)an
DE FH C B
Q@ —>9q
N - . - gu G)Y, (H60
%(GI)RSXP:(G )AP;(G >”+ (Q %:g >2N:< )AN ( )
FZ (G ey v§ (G ap
oA DE (G Y)pp - Zc: Je :;] (G Yy
Q—> 90 . (Q_%QM> ]
B . 2 Z (G_l)AP Z (G_l)u + Z (Gil)vw Z (G_l)AN (H.Gl)
{ <G1)RS} F L7 VW N
RS
$(G7) 4p _ Q*%QAI
Let: YA fZU(Gil)TU nd = = V(ZW(Gl)vz/
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g 2 (G (G )y (H63)

da = 9a — EC:QC'VA + RZ (Gfl)RS <; (G_ )AN s (G_ )FH
Y@,y <G1>Z) (160

MN

QX = Z (gg(SCA - gg’)/A) + ﬁ (Z (G*l)EN (5MA Z (Gil)FH
¢ RS RS FH

=D (G ppdan ) (G‘I)Z,> (H.65)
PQ IJ

0y =Y g5 (dca—ya) + Z(G; <Z (G™) 3w Oara % (G™) g

- Z (G_l)PQ 0QA Z (G_l)]\V/IN) (H.66)
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0y => 95 6ca—7a)+EY (G_l)]\vm (Ora —v4) (H.68)
C

v
QX - Z <Z €D (G_I)Dc> (6ca —ya) + EZ (G_l)AV/IN (Oara —va)  (H.69)
C

0% =D (N (G +en (G0 +2(GT) ) Gua—7a)  (HT2)

MN

H.3.6 Programmed Versions

(05 ase = D |50 (G )y e (G + 2 (G ] i =] (173)

MN

Y [ TGy e (G ) (H.74)



H.4 Needed Derivatives for qX

Va

H.4.1 (G).;

Begin Sidenote AA~! =1
V(AAY) = VI

(A)VA T+ A A =0

End Sidenote

w
G = Va (Z PRI ) (HL.75)
k

c| |I'k - I‘D|

Va
w —w I'n. — T
Gep =3 k +) k(15— rc) YV (r, —10)
—~ |[rx —re|[re —rp

3
o |tk — rel” [re — Tp
— Wy, (I‘k - I‘D)

+ 3
& [ty —rol||ry —1p|

VA (I‘k — I‘D) <H76)

Fixed Grid Points

Does not require the weight derivative term.

Va(rg —rx)
X=A -1
XZA 0
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GYA (Last two terms)

C=A|D=A %{(I‘k—rA)
C=A| DAY p i (T~ 1a)
CAAI D=4\ 2 i (Tr —Ta)
CAA|D#£A 0

Dynamic Grid Points

Requires the weight derivative term.

Va(ry —ry)
keA| X =A 0
k¢ Al X=A -1
ke Al X#A 1
kg Al X#A 0
GYA (Last two terms)
keA|C=A|D=A 0
k¢ A|C=A|D=A S 2% (r), —14)
nga Al
keA|C=A D#A E_—w’“?,(rk—rD)
o [rk—rallry—rp|
kg A|C=A|D#A ——k——— (rp —r4)
) [rp—ral”|rp—rp]
ke A C%A D=A Z+”“(rk—rc)
o Irk—rol e —ral
hga e k—
(rp—rc) (re—rp)
keA O%A D#A Z rs,— 1‘C||1‘k rp] |1f‘k—1'cc|2 lrp—rpl*
k¢ A|C#A| D#A 0
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) (H.77)

k |t —rc| — 1y —
te;'rrnl
Wi ZJ W,

AR e T Y 1) . P
Zk:|r’“_rc| A<EJ:|rk—rJ|) Zk:|rk—rc| [ A(%;(’“)W M)
te;er term3:term4

(H.78)
Wy ZJ
terml = \V4 _ I P Ho
zk: A(‘rk_rc") [Z,: |t — 1y %;(’“)W [ ( )
terml = 1 P
Z re — FO\ [Z Ty, — I‘J| ;( #) L
_wk rk; - I'C
" (Ix),, P | (H.80)

term2 = Z |r;C - rc| g VA (Z rr — rj\> (H.81)

W, —Zj (v —ry)
term2 = Z It — ro| Z 5= Va(ry—ry) (H.82)
k

T — 1]

term3 + term4d = Z \r_—wl;dvA (Z (Lk) 0 PW> (H.83)
L —
k

1%
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term3 + term4 = Z ’r——w;;| Z Va ((]Ik)m,) P,
W Tk = Tal =

N J/

TV
term3

’ ; m%wl;d > (1), Va(Bu) (H84)

J/

-~

term4d
termd is taken care of by WS* term.
term3 = Zk: m %}: VA <<]Ik>l“’) Pp,z/ <H85)
term3 = Z ok ZVA (<u ! u>) P, (H.86)
p v, — rc - v — 1y

1

v — 1y

t = _
erms3 Ek E— ;V <<VAM

Yol

+ <u L VAV>) P, (H.87)

|r — rg

Fixed Grid Points

Does not require weight derivatives

Va(ry —rx)
X=A -1
XZA 0

term1 (Last term only)

C=A ; wi(rg—ra) ; |rk{JrJ\ _ Z (Hk)/w PMV

o 3
|rp—ral )

C+A 0
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J=A ij‘rkw Zalre=ra)

J#A 0
term3
pweA|lveA ; |r;”r"é| Z << r rk‘ 1/> + <u |r_1rk| ]/VA>> P,
peAlvga St S (4 ) P
pwgEAlveA Z\r;wfc|z< \rlrk\ VA>PM/
ugEAlve A 0

For term3, Integral Job # -111 is

J—111:§§<<MVA V>+<M

C because b, = ﬁch‘ Thus, J, 11is dependent on C, so there are C' integral calls.

b
[r—rg|

b
[r—ry|

I/VA>> P,,. by will have a dependence on

Dynamic Grid Points

Requires weight derivatives

Vi (ry —ry)

ke Al X=A 0

k¢ Al X=A -1

ke Al X#A 1

k¢ Al X#A 0

terml1 (Last term only)
keA|C=A 0
k ¢ A C - A Z wk T r?) |:Z |r r ‘ Z (Hk)uy PHV:|
=y [rp—ral k—TJ w
—wg(rx—rc)

ke A|C#A kgA r— [Z ] ;(Hk)wm}
k¢ Al C#A 0
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ke A|J=A 0
N wi  Za(rg—ra)
k ¢ A J — A k% ‘I‘k—krc‘ |rk_rA|3
—w Zy(rg—ry)
bed|J£A| S gy A
k¢ Al J+A 0

)

term3 = J. 1 +Z |1“k _rC| Z<

keA

(H.88)

I'm not sure what this second term is in terms of integral calls. Possibly 1127

H.5 M Derivatives

This section is the derivation of the derivatives ) 8—M S 2 9B £ QM atoms and
M «

oM 90

9Qq OEF!
Z o M 8?\4 20 for MM atoms.
«

Remember that in the M sum, P, is excluded.

H.5.1 Mulliken Charges
w.r.t. QM Atoms

M = Q. OEP! 85, < 0Q. OETT
2 oM Q. Z 5 Zas,“, 90,

OM = 0Q, OEF! 0S5, 0Qq
295, 2Tl 90 =22 5u 75, 2 A
M 7« « o  uv v HYoR

OM <~ 0Qq OE™! 95,
Oz, Z oM 0Q, Z Z 5 (= Puduca) EN: QrWra
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oM 0Q, OEF!
oz, 2&: oM 0Q, Z ZQNWM > Pu (H.92)

MEa

w.r.t. MM Atoms
oM 0Q, OET! as,w 0Q, OB
% oz, ; oM 0Q, Z Z 0S8, 0Qq (H.93)
:0
0Q, 8EPI
Z 0z; ; oM 0Q., (H.94)
H.5.2 ChEIP-G Charges

w.r.t. QM Atoms

S 0Q. OETT S OM = 9Q, OEFT Z ap,w 8Q,, dEFT
0r, 0Q. oM 90, — 9P, 0Q.

(H.95)

OM <~ 0Qu OE" = 0Qa OB~ 0P = 0Qu OB
%: o, Za: OM 0Q. Za: 01, 9Qu Z 3 Z 0P, 0G.

0Q, OET! 0Q. OP,, 0Q,
— H.
Z oz, ; oM 0Q, Z 8Qa (83:7 ; 0x 0P, (H.97)
Switch indicies from v to (. Remember that a8 will be QM atoms and pvr will be

basis functions.

0Q, OET! OETT [0Q, 0P, 0Qq
Z O0x¢ Z oM 0Q), Z ((%UC a %; Ox; OP,, (H.98)
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0Qa OE™  ~0B™ [0Qa = 0P
Z 8I< oM aQa B Z a 81‘( Z 8I< Z <Qﬁ)p,z/ (/ya - 5a,6’>
ey w 3
(H.99)

0Qq OE™! OEPT (0Q,
Zax< Z OM 0Q, :ZT% <8$<

= 31;,? Z i)Y

w — |1y, — 1]

]Ik),w> (H.100)

0Qq OE™! OEF!
Z 8$< Z oM aQ Z 8@@

oP,,
(0ap — Vo) +Z Bqﬁ OaB — Vo) Z |rk_r¢| Z a;g

z( (G ™), +e0 (G5, +2(GT)])

(H.101)

0Qu DE™ _ < OE" o .

= opr,,
+= (G 6(252 |I'k: _ I‘¢| Z axi_

(H.102)

0Qq OE™! OB
Z(’?mCZaM aQ Z aQa Z 043_%1)

8PV . Y
<e¢+z|rk_r¢|z 8;2 ) (G )B¢+e¢(G >6¢>+“(G )qu]

(H.103)
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Begin Sidenote:

0P,
Let: &y —e¢+z > am“c( k)

Looking at equation H.84, e¢ is exactly the position derivative of edv) excluding the

|I’k l‘¢|

position derivative of the density matrix term.

End Sidenote

0Qn OEPT <~ OE™!
Zaxc 290 0a. ~ 2=0G.
(0as = o) [éZ (G™) g teo (G—l);s +E (G‘I)ZA (H.104)

w.r.t. MM Atoms

0Qq OB
— H.1
Z o1 za: oM 0Q, " (H.105)

H.6 ChEIPG Rectangular Weights
H.6.1 ChEIPG Weighting Scheme

Note:

h is the headspace, d is the distance between grid points (dx), R is the vdW radius
of atom ¢

yr. is a long-range weighting function, A7 is an atomic switching function

subscript ¢ stand for cutoff, superscript s stands for short, superscript ¢ stands for long
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RS ;= Ry — 300 RY" =R, +0.1 (H.106)
R = h+2%0 R\ =R —01 Rpin — min [R; — Ry| — R (H.107)
Natoms
wp =y [[ A7 (H.108)
J

0 if |Rx—Ry|<R:,
Al =¢ 7(Ry—Ry|;R: s R?) i RS, < |Ri—Ry| <Ry (H.109)

1 if ‘Rk_RJl >R3n

1 if R < RY
yp = 1—7 (R RGRYT)if RL < RP™ < RO (H.110)
0 if Rn > Rel/

R—R.)’>(3R, — R, — 2R

T(R; R, R,) = ( ) 3 ) (H.111)
(Ro - RC)
H.6.2 Weight Derivatives
Natoms Natoms
J#L
0 if ’Rk_RLl <RiL
ViAp =< 7 (R —Re|[; RS ;R if RS, < |Ry —Ry| < Ry (H.113)
0 if |Rk_RJ|>R%n
0 if Rmin < RY
oo = ) T (RERGRIT) i Ry < B < BT and R = Ry — Ry
=190 if R! < Rmin < Roff and R™" £ |Ry, — Ry
0 if Rypm > RoIS

(H.114)
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(R—R.)*(3R, — R. — 2R)

T(R; RC;RO) = (Ro _ RC)3

2(R — R,) R* (3R, — R. — 2R) — 2R* (R — R,)”
(Ro - RC)S

T/ (R7 Rc; Ro) -

(SRO - Rc - 2R) — (R B Rc)
(Ro - Rc)3

7 (R;R;; R,) =2(R — R.) R*

2(R— R.) (3R, = 3R) .,

! R;RC;RO =
T ( ) (RO_RC)g

(IRy —Rz| — R.) (R, — R, —Ry|) Ry — Ry

6
T’(|Rk—RL|;Rc§RO): (R _R)3 |Rk_RL|
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APPENDIX I

Vectors Inside a Supersphere

The number of vectors are computed by use of a recursion formula. F' stands for the
floor function. This process need not be done with integers. It will work for any real

numbers. n is the number of dimensions and r is the radius of interest.

I.1 All Vectors Inside a Supersphere, NV

F(r)
N(n,r):N(n—l,r)+22N<n—1,\/r2—k2> (L.1)
k=1
.11 n=0
N(0,r) =1 (L.2)
I1.1.2 n=1
F(r)
N(r)=1+2Y N (o, ViZ = k2> (L3)
F(r)
N(1r)=1+2)"1 (1.4)
k=1
N (1,r)=1+2F(r) (L5)
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1.1.3 n=2

£(r)

N(2,r) =1+ 2F(r +2ZN<1\/71<:2> (L6)
N(2,r) =1+ 2F(r) +2£[1+2F<\/7k?>} (L7)
N(2,7)=1+4F(r +4§F<\/7k:2) (L8)

.14 n=3
N (3,7) =1+ 4F(r) +4%F( k2>+2ZN( ViE= ) (L9)

F(r)

N (3,r) =1+ 4F(r) +4ZF(\/7152>

F(r)

+2Z 1+4F<ﬁ>+4ZF(\/m )] (1.10)

F(r) (r)

N@3,r)=1+6F(r +122F<\/7k2) +SZZF<W) (L11)

7=1 k=1

This is Sloane’s series A000605.
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r | N(3,7)
0 1

1 7

2 33

3 123

4 257

5 5915

6 925

7 1419
8 2109
9 | 3071
10 | 4169
11 | 5575
12 | 7153
13 ] 9171
14 | 11513
15 | 14147
16 | 17077
17 | 20479
18 | 24405
19 | 28671
20 | 33401

I.2 All Positive Vectors in Sphere (First Octant), M

F(r)
M(nﬂ“):M(n—1,r)+ZM<n—1,\/r2—k:2> (I.12)
k=1
.21 n=0
M(0,7)=1 (1.13)
.22 n=1
F(r)
M(lr)=1+Y M (o, Vir? —k2) (1.14)
k=1
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F(r)
M(1r)=1+) 1
k=1

M@1,r)=1+F(r)

1.2.3 n=2

F(r)

M(2,7r)=1+F(r +ZM(1 W)

M (2,7) =1+F(r)+§:) 1+ F (ViT=12)]

B(r)

M(2,r)zl+2F(r)+ZF< rz—k2>

1.2.4 n=3

F(r)

k=1

M(3,r) =1+ 2F(r +ZF<\/7k2> g:) (2, r2—j2>

F(r)

V)« 3 F (VYRR

F(r) F

)

N@3,r)=14+3F(r +SZF(W) +ZZF(\/ﬂ)

This is Sloane’s series A000604.
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7=1 k=1

(1.15)

(1.16)

(L.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



r | M(3,7)
0 1

1 4
2 11
3 29
4 54
5 99
6 163
7 239
8 344
9 486
10 648
11 847
12 1069
13 1355
14 1680
15| 2046
16 2446
17 2911
18 | 3443
19 4022
20 | 4662
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