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Abstract

Construction of accurate potential energy (PE) surfaces for molecular systems is one

of the primary tasks performed by theoretical physical chemists. Once in hand, these

PE functions can be used to study the dynamics and spectroscopies, as well as the

structures and properties of molecular systems. This study focuses on approximating

many-body electronic induction in order to improve the accuracy of existing potentials

and improve the efficiency of ab initio methods in order to allow “on-the-fly” energy

and force evaluations in dynamical calculations.

The majority of the work reported here focuses on the solvated electron. We ini-

tiate a study aimed at understanding the effects of explicitly including the (ultrafast)

electron–solvent electronic induction, or polarization. We construct a single electron

potential in which the coarse grained electronic degrees of freedom of the solvent are

treated self-consistently along with the electronic wave function. Predictions of the

binding energy of an excess electron in water clusters obtained using this potential

compare well to ab initio electronic structure theories. Subsequently, this potential

was used to investigate the behavior of the excess electron in liquid water. The ex-

plicit treatment of induction appears to have a minimal impact on the structure and

solvation dynamics of the excess electron (in the ground state) but does have a large

impact on the vertical detachment energy and the optical absorption spectrum. In
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these latter cases there is an abrupt change in the charge distribution of the excess

electron. In such cases the electronic response from the solvent can be large and

should be taken into account.

The electronic response of the solvent occurs on the time scale of electronic excita-

tion. This introduces technical complications when solving for orthogonal eigenstates

of this system since the model Hamiltonian is state dependent. We describe a simple

method of solving this problem and discuss the possibility of generalizing this scheme

to many-electron theories (such and density functional and Hartree-Fock theories).

This procedure may potentially enable the study of non-adiabatic excited state re-

laxation dynamics including the electronic response of the solvent.

Construction of empirical potential energy surfaces, such as the one developed

here, is a time intensive process and one questions whether or not they have found

the optimal set of parameters. We would prefer to use accurate electronic structure

theories to compute energies and forces. Of particular interest is the use of ab initio

methods which offer a systematically improvable route to the exact energy. Currently

this is only feasible for small systems and short time scales. A class of algorithms

called fragment methods are currently being developed to extend these approaches

to condensed phase environments. Our strategy has been to efficiently approximate

electronic induction and fold this into the description of the single molecular frag-

ments. The fragments are then coupled to one another through a version of symmetry

adapted perturbation theory. This yields an accurate and efficient method that scales

linearly in the large system limit.
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CHAPTER 1

Introduction

In 1927 Max Born and Robert Oppenheimer published a paper that would forever

influence the way physical chemists think about processes such as chemical reactions,

solvation and isomerization.[10] This approximation defines what is meant by a po-

tential energy surface. A surface that, if we treat nuclei as classical point particles as

we shall in this work, guides the dynamics of the system. This idea of nuclear motion

following a potential energy landscape that is determined by the average positions,

momenta and sometimes dynamics of the electrons is fundamental and will be our

starting point. We will then proceed by discussing, in general terms, how one at-

tempts to solve the electronic Schrödinger equation, which will be defined below. We

will use this discussion to set up a bottom up approach to describe what is meant by

electronic polarization, which we may also have occasion to refer to as induction. As

an alternative viewpoint we will briefly touch on a top down approach to describing

these inductive intermolecular interactions. A very brief introduction to the hydrated

electron will be given, as well as an introduction to fragment methods.
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1.1 Defining a Potential Energy Surface

The fundamental equation of quantum mechanics is the time-dependent Schrödinger

equation (TDSE),[11]

i|Ψ̇〉 = Ĥ|Ψ〉, (1.1)

where ˙|Ψ〉 is the time derivative of the state vector |Ψ〉, Ĥ is the Hamiltonian and

atomic units will be used throughout this work unless otherwise specified. We will

work with a standard molecular Hamiltonian,

Ĥ =
∑

I

p̂2
I

2MI

+ Ĥelec , (1.2)

which is the sum of nuclear kinetic energy and an electronic Hamiltonian defined as

Ĥelec =
∑

i

p̂2
i

2
+

1

2

∑

i

∑

j 6=i

1

|~ri − ~rj|
−
∑

I

∑

i

ZI

|~ri − ~RI |
+

1

2

∑

I

∑

J 6=I

ZIZJ

|~RI − ~RJ |
. (1.3)

The notation here is standard, ~ri is the position of electron i, ~RI is the position of

nuclei I, ZI is its charge and p̂i = −i∇̂i is the momentum operator. The index i

should not be confused with the imaginary number and ∇̂i is the vector derivative

operator for particle i.

In the basis of eigenfunctions of the Hamiltonian, the time evolution of the state

vector is trivial, therefore we concentrate not on Eq. (1.1) but the time-independent

Schrödinger equation (TISE),

Ĥ|Ψ〉 = E|Ψ〉 . (1.4)

Suppose we have a set of eigenfunctions of the electronic Hamiltonian, Eq. (1.3),

which we denote as the set {|Φµ〉} with corresponding eigenvalues {ǫµ}. We note that
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the positions of the nuclei, {~RI}, appear as parameters in the electronic Schrödinger

equation [trivially defined as Eq. (1.4) with the electronic Hamiltonian replacing the

total Hamiltonian] implying that the eigenfunctions and eigenvalues are parametri-

cally dependent on the nuclear positions. We proceed by assuming we can write the

total wave function as [11]

|Ψ〉 =
∑

µν

Cµν |Φµ〉|χµ
ν 〉 (1.5)

where Cµν are expansion coefficients and the nuclear functions |χµ
ν 〉 have one index

that associates with them an electronic state, and a second index whose meaning will

become clear shortly. We are interested in the nature of TISE in this basis so we

begin by writing

(
∑

I

p̂2
I

2MI

+ Ĥelec

)
∑

µν

Cµν |Φµ〉|χµ
ν 〉 = E

∑

µν

Cµν |Φµ〉|χµ
ν 〉. (1.6)

Next, let us apply 〈Φλ| to yield

∑

µν

∑

I

Cµν
1

2MI

(
|χµ

ν 〉〈Φλ|p̂2
I |Φµ〉+ 〈Φλ|p̂I |Φµ〉p̂I |χµ

ν 〉
)

+ Cλν

∑

I

p̂2
I

2MI

|χλ
ν〉+ Cλνǫλ|χλ

ν〉 = ECλν |χλ
ν〉 ,

(1.7)

we have used the fact that the set {|Φµ〉} are eigenfunctions of the electronic Hamil-

tonian and form an orthonormal set. The two terms in parenthesis are the so-called

derivative couplings [11] and will be briefly discussed below. Neglecting these terms

is the Born-Oppenheimer approximation, this yields

(
∑

I

p̂I

2MI

+ ǫλ(R)

)
|χλ

ν〉 = E|χλ
ν〉 . (1.8)
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In Eq. 1.8 which we have made the parametric dependence of the electronic eigenvalues

on nuclear coordinates explicit. In this chapter we use arrows over variables to indicate

three dimensional cartesian vectors whereas bold symbols signify higher dimensional

objects such as matrices. In Eq. 1.8 R represents all of the coordinates of the system.

The Born-Oppenheimer approximation states that in the absence of derivative,

or non-adiabatic coupling, the eigenvalues of the electronic Hamiltonian define a po-

tential energy function that can be used to compute nuclear vibrational eigenstates.

In this approximation the nuclear and electronic degrees of freedom cannot exchange

energy and are said to be adiabatically separated. So long as the electronic eigen-

functions are slowly varying functions of the nuclear coordinates, the approximation

is robust. This fails when two eigenfunctions of the electronic Hamiltonian approach

degeneracy as a function of the nuclear positions.

In this work we make an additional approximation. We assume that the motion

of the nuclei can be treated classically. We suggest that the potential energy surface,

given by ǫµ(R), exerts a force on the I th nucleus equal to

~FI = −∂ǫµ(R)

∂ ~RI

. (1.9)

The motion of the nuclei remains adiabatically separated from the electronic degrees

of freedom. This being said, it is important to understand where the idea of potential

energy surfaces arises from and bear in mind that it is an approximation, though a

very good one for many applications.

4



1.2 Solving the Electronic Schrödinger Equation

Finding eigenfunctions of the electronic Hamiltonian is a nontrivial task and at first

glance it is not even clear where to begin. In what follows we only consider attempts

at finding the ground state eigenvector, |Φ0〉. The electronic Hamiltonian can be

written as a sum of zero, one and two electron operators,

Ĥelec =
∑

i

ĥ(~ri) +
1

2

∑

i

∑

j 6=i

1

|~ri − ~rj|
+

1

2

∑

I

∑

J 6=I

ZIZJ

|~RI − ~RJ |
, (1.10)

where ĥ(~ri) collects the electronic kinetic energy and electron-nuclear attraction for

electron i. If electrons were non-interacting, i.e. if the second term in Eq. (1.10)

were zero, the eigenfunctions could be written as direct products of single-particle

functions which would be eigenfunctions of the single particle operator ĥ. This is

called a Hartree product.[12] The problem with this Hartree product (other than the

fact that electrons do indeed interact) is that it does not satisfy the Pauli principle,

the notion that no two fermions can occupy the same state simultaneously. To satisfy

the Pauli principle we form a Slater determinant [12] of N electrons in N spin-orbitals

(single particle functions),

|Φ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φN(1)
φ1(2) φ2(2) · · · φN(2)

...
...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣

. (1.11)

Another way to define the Slater determinant, which we we will encounter in chapter 7,

is by the use of the antisymmetrizer, Â. The action of Â on a Hartree product of

spin orbitals produces an antisymmetrized product of spin-orbitals,

|Φ0〉 = Â (φ1(1)φ2(2) · · ·φN(N)) . (1.12)
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In these expressions we have used the simplifying notation φi(~ri) ≡ φi(i).

In Hartree-Fock theory (HF) we use a single Slater determinant to represent the

wave function,[12] this is the simplest wave function possible that satisfies the Pauli

principle. The form of this wave function is correct in the limit that electrons are non-

interacting. In this non-interacting case the spin-orbitals are the set of eigenfunctions

of the single particle operators in Eq. (1.10), each of these N single particle operators

is identical. That is, we only have to solve

ĥ(1)φi(1) = ǫiφi(1) , (1.13)

then construct the total (ground state) wave function with the N lowest energy spin-

orbitals. The total energy, defined as the expectation value of the Hamiltonian, is just

the sum of these single particle energies. Once we allow the electrons to interact we

have to face the question of how to define the single particle levels, {φi}. The answer is

simple, we appeal to the variational principle. We require that the expectation value

of the true Hamiltonian, using the HF ansatz for the wave function, be a minimum

in energy with respect to variations in the spin-orbitals,[12]

EHF = min
{φi}

(
〈Φ0|Ĥelec|Φ0〉 −

∑

ij

ǫij(Sji − δji)
)

. (1.14)

For convenience we also require that the spin-orbitals be orthonormal by using a set of

Lagrange multipliers, {ǫij}. Sij is the overlap integral of spin-orbitals i and j while δij

is the kronecker delta. We take the spin-orbitals to be a product of a spatial function

and a spin function. In what follows we have integrated over the spin variables so

that the resulting equations are only for the spatial part. We work in the restricted
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formalism [12] where the alpha and beta spatial orbitals are identical (accurate for

closed shell systems) and we wish to find these spatial orbitals.

The spatial orbitals that minimize the HF energy satisfy the Hartree-Fock equa-

tions,

f̂(1)φi(1) = ǫiφi(1) (1.15)

where ǫi is a diagonal element of the Lagrange multiplier matrix and the single-particle

Fock operator is

f̂(1) = ĥ(1) + 2Ĵ(1)− K̂(1) . (1.16)

The coulomb (Ĵ) and exchange (K̂) operators are defined by their action on a spatial

orbital, also known as molecular orbital (MO),

〈φj(1)|Ĵ(1)|φi(1)〉 =
∑

k

(ji|kk) (1.17)

〈φj(1)|K̂(1)|φi(1)〉 =
∑

k

(jk|ki) . (1.18)

The sums run over the alpha-spin occupied orbitals (the N/2 lowest in energy) and

the four index integrals are written in the chemists notation, [12] defined by

(ij|kl) =

∫
dr1

∫
dr2φ

∗
i (1)φj(1)

1

|~r1 − ~r2|
φ∗

k(2)φl(2) . (1.19)

It is important to note that the one-electron density for a single slater determinant

is given by the sum, of products of occupied MOs,

ρ(~r) =

∫
d~r2d~r3 · · · d~rNΦ∗

0(~r1, ~r2, · · · , ~rN)Φ0(~r1, ~r2, · · · , ~rN) =
∑

i

φ∗
i (~r)φi(~r) .

(1.20)
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From this it is clear that a diagonal matrix element of the coulomb operator ( say

Jii ) represents the coulomb interaction of the single-particle density of an electron

inhabiting orbital i with the full system density (including the self-interaction). The

presence of the exchange operator is a direct consequence of the Pauli principle and

exactly corrects for the self-interaction present in Jii. The HF equations are solved by

expanding the MOs in some basis set. In this work we use gaussian orbitals centered

on atoms, which we will refer to as atomic orbitals (AOs), though other choices are

possible. The HF equations then take the form [12]

FC = SCǫ , (1.21)

where C is the matrix of expansion coefficients that we are solving for, S is the overlap

matrix in the AO basis, ǫ is the matrix of Lagrange multipliers and the Fock matrix

in the AO basis takes the form

Fµν = hµν +
∑

λσ

Pλσ

(
(µν|λσ)− 1

2
(µσ|λν)

)
. (1.22)

P = 2CC† is the density matrix in the AO basis. Diagonalization of ǫ = C†FC yields

the eigenvalues of Eq. (1.15) in a finite basis set. Solving these AO basis equations is

iterative and proceeds in three basic steps, forming F from P which nominally scales

as O(N4
basis), diagonalizing F to get C which scales as O(N3

basis) and constructing P

which is also a cubic operation.

HF theory is a mean field theory in which electrons interact with the average field

of all of the other electrons.[12] It contains no electron correlation, that is, the motions
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of the electrons within the electron density are not correlated, as they should be. 1.1

This leads to small errors, but errors that are large on the energy scale that chemists

care about. For example, the HF energy of the water dimer is roughly 152 Hartree,

a simple estimate of the correlation energy (defined as the difference between the HF

energy and the correct energy) is ∼ 0.5 Hartree, clearly a small fraction of the total

energy. However, the binding energy of the water dimer is less than 0.01 Hartree.

If we are to calculate energy differences on this scale we need to improve upon HF

theory (and probably also rely on a cancellation of errors).

To proceed from our mean field theory we can use HF theory as a starting point

and the HF determinant |Φ0〉 as the “reference”. The HF reference determinant is a

single Slater determinant built from the N canonical HF MOs (solutions of Eq. (1.21))

that have the lowest eigenvalues. In any reasonable basis set the number of MOs

(equal to the number of basis functions) greatly exceeds the number of occupied MOs,

the remaining unoccupied MOs are referred to as virtual orbitals. We can make a

large number of Slater determinants by replacing one or more occupied orbitals with

one or more virtual orbitals. For example, the set of determinants in which we replace

one occupied orbital i with virtual a will be denoted as |Φa
i 〉, these are singly excited

determinants.

The true wave function is not a single determinant wave function. 1.2 However,

1.1Actually, inspection of the two-particle density reveals that HF theory accounts for same-spin
correlation while the spatial distribution of opposite spin electrons is completely uncorrelated.

1.2This can be easily seen if one inspects the so-called normal ordered Hamiltonian [13], which is
well beyond the scope of this introductory discussion.
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the set of all replacement determinants (singles, doubles, triples ...) approaches com-

pleteness as the single particle basis approaches completeness. Therefore, one can

expand the exact electronic wave function in this basis. The form of the expansion

leads to different electronic structure methods such as configuration interaction, cou-

pled cluster theory and Møller-Plesset perturbation theory.[12, 13] We will refer to

these methods as wave function methods. This approach offers a systematic route to

the exact answer from HF theory since one can truncate the wave function expansion

at some arbitrary level.

1.3 Electronic Polarization: A Microscopic Viewpoint

We will use the tools developed in the previous section to provide a description of

electronic polarization and make a connection to the formulas used in the context of

polarizable force fields, such as AMOEBA.[14] Let us start by considering a system in

which we have a molecule centered at ~Rm for which we have solved the HF equations.

For simplicity we assume it is a closed shell molecule and we work in the restricted

formalism. At some other point ~Ra we place a point charge q and investigate the

changes this brings about to the wave function, the dipole and the energy. Fig. 1.1

pictorially shows the system and coordinates. We write the Hamiltonian as the sum

of the Fock operator, the fluctuation operator (Ŵ ) and the interaction with the point

charge (V̂ ) as

Ĥ =
∑

i

f̂(i) + χŴ + ζV̂ , (1.23)
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q

origin

Ra

Rm

r

r1
ρ(r)

Figure 1.1: Coordinate System for a simple model of electronic polarization.

χ and ζ serve as perturbation parameters and we are only interested in expanding

with respect to ζ. The fluctuation operator is simply the difference between the

molecular Hamiltonian and the molecular Fock operator.[12] The perturbation V̂ is

explicitly given by

V̂ = −
∑

i

q

|~ri − ~Ra|
, (1.24)

i indexes electrons. The first order correction to the energy is just the expectation

value of the perturbation, the HF density interacts with the point charge. The first

order corrected wave function is more interesting,

|Φ〉 = |Φ0〉+ 2
∑

ia

〈Φa
i |V̂ |Ψ0〉
ǫi − ǫa

|Φa
i 〉 , (1.25)

where the factor of two is from the restricted formalism.
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The matrix element appearing in Eq. (1.25) is easily evaluated with the Slater-

Condon rules [12] to give

〈Φa
i |V̂ |Φ0〉 = −q

∫
d~r1

φi(~r1 − ~Rm)φa(~r1 − ~Rm)

|~r1 − ~Ra|
(1.26)

where we have shown explicitly that the MOs are localized on the molecule at ~Rm.

Referring to Fig. 1.1 we can now make the replacement ~r1 = ~r + ~Rm and expand

1/|~r + ~Rm − ~Ra| about ~r = 0 to give

〈Φa
i |V̂ |Ψ0〉 = −q

∫
d~rφi(~r)φa(~r)

[
1

|~Rm − ~Ra|
+

(
∇̂Rm

1

|~Rm − ~Ra|

)
· ~r + ...

]
.

(1.27)

The first term in Eq. (1.27) is zero by orthogonality, the second term can be written

as

〈Φa
i |V̂ |Ψ0〉 = −~F (~Rm) · ~µia (1.28)

by recognizing the electric field (due to the point charge) at the center of the molecule

as ~F (~Rm) = −q∇̂Rm
1/|Rm −Ra| and a dipole moment matrix element. This expres-

sion is expected to be accurate when the point charge at ~Ra is well separated from

the molecule. Let us now use this wave function correction to calculate the dipole

moment of the molecule up to linear order in the field.

~µ =
∑

I

ZI
~RI − 〈Φ0|~r|Φ0〉+ 2

∑

ia

〈Φ0|~r|Φa
i 〉
~F · ~µia

ǫi − ǫa
+ 2

∑

ia

〈Φa
i |~r|Φ0〉

~F · ~µai

ǫi − ǫa
+O(~F 2)

(1.29)

~µ = ~µ0 − 4
∑

ia

~F · ~µia

ǫi − ǫa
~µai +O(~F 2)
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where we have assumed that the MOs are real and have written the dipole moment

in the absence of the field as ~µ0. Eq. 1.29 can be simplified even further by defining

the polarizability tensor,

αxy = −
∑

ia

4
(~µai)x(~µia)y

ǫi − ǫa
(1.30)

so that the dipole is

~µ = ~µ0 + α · ~F +O(F 2) . (1.31)

This is the usual expression relating the induced dipole to the polarizability of the

molecule and the electric field.[15, 16] The electric field causes single excitations which

allow the zeroth order density to deform slightly and, as we shall see below, lowers

the energy of the system. Finally lets go back and calculate the second order energy

correction,

E(2) = 2
∑

ia

〈Ψ0|V̂ |Φa
i 〉〈Φa

i |V̂ |Φ0〉
ǫi − ǫa

. (1.32)

Inserting Eq. (1.28) yields

E(2) = 2
∑

ia

~F · ~µai
~F · ~µia

ǫi − ǫa
(1.33)

E(2) = −1

2
~F ·α · ~F (1.34)

E(2) = −1

2
~µind · ~F . (1.35)

The result in Eq. 1.28 is to be compared to the usual expression for an electric

dipole interacting with an electric field E = −~µ · ~F .[16] Evidently, half of the sta-

bilization energy of a dipole lined up with the field has gone missing. This missing

energy will be discussed below, first, we would like to analyze the polarizability and

the sign of the interaction. The xyth element of the polarizability tensor tells us the
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magnitude of a dipole induced in the x direction if we apply a small electric field in

the y direction. We intuitively expect that the diagonal elements will be much larger

than the off diagonal elements, in fact if the MOs are real α is symmetric and we can

find some axis system in which it is diagonal. Eq. (1.30) indicates that the diagonal

elements of α are positive in an arbitrary axis system, therefore, the polarizability

tensor is positive definite. This fact, together with Eq. (1.28) indicate that this effect,

which we refer to as electronic polarization, is a stabilizing effect.

We have just demonstrated that if we place a small point charge some distance

away from a molecule this charge induces an excess dipole in the molecule which

then interacts with the point charge, and that this is a stabilizing effect. Eq. (1.28)

indicates that the interaction of this induced dipole with the point charge is only half

of the magnitude of a permanent dipole of the same size and direction interacting

with the same point charge, why is this so? The answer is that some work must be

done to induce the dipole and this work is apparently equal to ~µind · ~F/2. This is called

the work of polarization,[17, 18] or sometimes the self energy. [19] To understand this

recall that prior to the placement of the point charge, the (unperturbed) molecule

has associated with it a wave function that produces an energy that is a minimum

(variational principle). When we place the point charge near the molecule, the wave

function is perturbed to produce an induced dipole that interacts with this charge,

lowering the interaction energy. However, if we computed the energy of the molecule

with this new, perturbed wave function, it is necessarily higher than it was prior to

the perturbation. Evidently, this energy is precisely ~µind · ~F/2. We will come back to
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this in the next section.

The development above was overly simplistic and should be extended to many

molecules. It is clear that one could consider a perturbative approach similar to that

above, but extended to many molecules. In this approach one would obtain pairwise

terms that would describe the polarization or induction effects of these molecules

in a pairwise form. At higher orders there would be three- and higher-body terms

that describe “higher order” induction effects. All orders of this perturbation can

be captured in a self-consistent treatment (such as HF theory).[20] Suppose we have

three molecules, the first molecule polarizes the first and the second. These polarized

molecules then “back polarize” the first molecule. All of this very complicated mutual

polarization occurs very rapidly until the total system wave function finds a minimum

of energy. This is a many-body effect (body being molecule) and cannot be computed

to high accuracy using a pairwise approximation. It is the hypothesis of this thesis

that this many-body polarization is the most important many-body effect in molecular

systems.

1.4 Electronic Polarization: A Macroscopic Viewpoint

To gain additional insight into the process of electronic polarization we will appeal

to a macroscopic viewpoint. This will also allow us to discuss, in the context of

common formulas such as Eq. (1.31), the connection between molecular properties and

bulk electrostatic properties. This discussion closely follows Nitzan.[11] We consider

matter that consists of neutral molecules that move as net neutral objects and possibly
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origin

R

ρ(r)

r

Rj

R + Rj

Figure 1.2: Coordinate System for a simple model of dielectric matter.

some mobile charges in the form of ions. Consider an infinite environment of such

(dielectric) matter. We divide this matter into non-overlapping regions of space, each

with volume V . This volume is much larger than the size of the molecules composing

the matter. Our system and coordinates are shown in Fig. 1.2. The electrostatic

potential at point ~r is

Φ(~r) =
∑

j

∫

V

d~R
ρ(~R− ~Rj)

|~r − (~R + ~Rj)|
, (1.36)

where ρ(~r) is the charge density and the sum is over the infinite number of non-

overlapping regions, each integrated over their own volume. We now expand each

term in the sum about ~Rj

Φ(~r) =
∑

j

∫

V

d~R ρ(~R− ~Rj)

(
1

|~r − ~Rj|
−
(
∇̂r

1

|~r − ~Rj|

)
· ~R
)

(1.37)
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which can be simplified by performing the integration to give the total charge (qj)

and dipole (dj) of region j,

Φ(~r) =
∑

j

(
qj

|~r − ~Rj|
−
(
∇̂r

1

|~r − ~Rj|

)
· ~dj

)
. (1.38)

We choose not to use the symbol µj to denote a dipole because it is not a molecular

dipole. We now introduce the coarse grained charge and dipole densities defined by

qj = ρ(~Rj)V (1.39)

~dj = ~P (~Rj)V , (1.40)

~P is also known as the polarization. In the macroscopic limit we replace the sum over

regions by an integral [11]

Φ(~r) =

∫
d~R

(
ρ(~R)

|~r − ~R|
−
(
∇̂r

1

|~r − ~R|

)
· ~P (~R)

)
. (1.41)

Next we use the identity ∇̂r(1/|~r − ~R|) = −∇̂R(1/|~r − ~R|) and integrate the second

term in Eq. (1.41) by parts to obtain

Φ(~r) =

∫
d~R

1

|~r − ~R|

(
ρ(~R)− ∇̂R · ~P (~R)

)
. (1.42)

This result states that the electrostatic potential arises from two types of density.

The “free” charge density ρ(r) and a “bound” charge density, the latter of which is

proportional to the divergence of the dipole density. In a solution with no ions, the

free charge is zero. Classical electrostatics only rigorously applies to static systems

[16] so the charge density of matter is viewed in a macroscopic and time averaged

sense.

17



Let us write the Poisson equation [16] for the bound plus free charge system,

∇̂ · ~F = 4π(ρf + ρb) = 4π(ρf − ∇̂ · ~P ) . (1.43)

A standard procedure at this point is to define a the displacement field ( ~D), which

satisfies Poisson’s equation for the free charge density, that is

∇̂ · ~D = 4πρf . (1.44)

It is simple to work out that

~D = ~F + 4π ~P . (1.45)

In a system lacking free charge density (ions in a solution or electrons in a conductor)

the displacement field represents any applied field and the polarization (dipole den-

sity) represents the response to this field. A linear dielectric is defined as a material

that responds linearly with the applied field,

~P (~r, t) =

∫
d~R

∫
dt′β(~r − ~R, t− t′) ~D(~R, t′), (1.46)

where β is the macroscopic polarizability and we have assumed that the response only

depends on time differences and distances (the dielectric is homogenous spatially and

temporally). Eq. (1.46) allows the dielectric to respond on different time and length

scales and can be Fourier transformed using the convolution theorem to yield

~P (~k, ω) = β(~k, ω) ~D(~k, ω) (1.47)

in which the quantities of interest are functions of wave vector and frequency. For now,

we assume that the response is local in space and time, dropping the dependence on ~k
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and ω. Using Eq. (1.45) in combination with Eq. (1.47) we can relate the displacement

and electric fields

~F = (1− 4πβ) ~D =
1

ǫ
~D (1.48)

which defines the dielectric constant ǫ and tells us that external electric fields are

“screened” by the dielectric. We can also relate the polarization to the total electric

field

~P =

(
ǫ− 1

4π

)
~F = χ~F (1.49)

which defines the linear susceptibility.

As in the previous section we are primarily interested in the response of the di-

electric material to the presence of some solute, for example, a point charge immersed

in the dielectric. Eq. (1.46) tells us that the response to this point charge would be

to induce a dipole density, it is the macroscopic analogue of µind = α · ~F . Eq. (1.46)

states that the response can occur on several length and timescales. Let us assume

that the response is local in space and can be characterized by two timescales, nuclear

and electronic, and write the polarization as

~P = βtot
~D = (βe + βn) ~D (1.50)

where βe and βn represent the electronic and nuclear responses, respectively. These

responses can be observed experimentally. Consider switching on a homogeneous

electric field at some time t0, at this time we assume the locally averaged dipole

density is zero. At some later time, long compared to τe but short compared to

τn, which are characteristic timescales of the electronic and nuclear responses, the
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dipole density becomes ~P = βe
~D. At much later times, long compared to τn, the

polarization becomes ~P = βtot
~D. These responses are more commonly defined in

terms of two dielectric constants, the electronic response can be characterized by

~Pe =
1

4π

(
1− 1

ǫe

)
~D . (1.51)

The total response is characterized by a similar equation,

~Ptot =
1

4π

(
1− 1

ǫtot

)
~D . (1.52)

Using these definitions it follows that the nuclear response is characterized by

~Pn = ~Ptot − ~Pe =
1

4π

(
1

ǫe
− 1

ǫtot

)
~D . (1.53)

The term in parenthesis in Eq. (1.53) is known as the Pekar factor.[11] It is important

to note that the dielectric “constant” is not simply a sum of electronic and nuclear

components but that these two constants represent an extremely coarse grained di-

electric function. ǫe is typically taken to be the “optical” dielectric constant, ǫ∞ that

represents the infinite frequency response of the electronic degrees of freedom of the

material. In this thesis we take this definition, i.e., electronic responses are instanta-

neous. The constant ǫtot is often referred to as the static dielectric constant, it is the

other limit, the zero frequency limit.

In this thesis we do not often rely on dielectric theory though it is useful to have

this alternative view of matter. In short, we treat the ultrafast electronic induction

approximately, but explicitly. The nuclear response is modeled by propagating the

classical equations of motion forward in time, therefore, the nuclear component of the
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dielectric response is modeled accurately, within the approximations of whatever po-

tential is being used. In the case of the hydrated electron this means that the motion

of the nuclei is driven by the pseudopotential developed in this work together with a

polarizable force field that models the electronic response of the solvent (dielectric)

by the use of atom centered “linear response” dipoles similar to those discussed in the

previous section. In the latter chapters of this thesis we discuss a fragment method

whose goal it is to apply wave function theory to on-the-fly calculations of potential

energies and there derivatives in order to propagate classical nuclear dynamics. In

this treatment it is necessary to efficiently approximate the many-body components

of the ultrafast dielectric response.

Before moving on we would like to use dielectric theory to compute the classical

work of polarization and show that the result is the same as that of the previous

section, even though the description of matter is quite different. The total energy

stored in a continuous charge distribution can be written as [16]

W =
1

2

∫
d~rρ(~r)Φ(~r) . (1.54)

We can use Poisson’s equation in combination with integration by parts to show that

this can be re-written in a convenient form,

W =
1

8π

∫
d~r ~F (~r) · ~F (~r) . (1.55)

This equation expresses the total energy stored in a continuous charge distribution

as a functional of the electric field. This is the energy required to construct a charge

distribution by taking all charges from infinity and placing them in their final location,
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it does not contain the work of polarization.[16] To include this work we must consider

a dielectric fixed in space and evaluate the change in work when we add some amount

of free charge, this change in work is given by

δW =

∫
d~rδρf (~r)Φ(~r) . (1.56)

The change in free charge satisfies Poisson’s equation using the displacement field,

∇ · δ ~D = 4πδρf , inserting this into Eq. (1.56) and integrating by parts gives

δW =
1

4π

∫
d~r ~F (~r) · δ ~D(~r) (1.57)

δW =
1

2
δ

(
1

4π

∫
d~r ~F (~r) · ~D(~r)

)

W =
1

8π

∫
d~r ~F (~r) · ~D(~r) . (1.58)

In the second line we have used the fact that ~D = ǫ ~F to rewrite the infinitesimal and

in the final line we have simply recognized the total work. This energy expression

contains all of the terms in Eq. (1.54) plus the work required to distort the dielectric,

the work of polarization. By subtracting Eq. (1.55) from the final line of Eq. (1.58)

and inserting Eq. (1.45) for ~D we find that the polarization work is

Wpol =
1

2

∫
d~r ~P (~r) · ~F (~r) . (1.59)

This result states that the work of polarization is the integral, over all space, of the

dipole density dotted into the total electric field. This is the macroscopic version of

the work of polarization of a single dipole, such as that discussed in the microscopic

version of the theory. It is important to recognize that this work depends on the

total electric field, not just that associated with the free charge. That is, the free
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charge induces some dipole density in the dielectric which contributes to the total

field. If we were to consider some small patch of dielectric, the dipole density in

this patch would depend on the free charge density as well as the dipole density in

the immediately surrounding vicinity. The dipole densities of many patches would

equilibrate and would be a many-body process, where in this case body is a patch.

From this treatment it should be clear that this many-body induction process is a

mean field effect (as opposed to a correlation effect) and therefore can be included in

a self-consistent procedure. This is the approach taken in this thesis.

1.5 A Short Introduction To the Hydrated Electron

The notion of a solvated electron was first invoked by Charles A. Kraus in 1908 in

an article reporting experiments concerning electrical currents in solutions of alkali

metals dissolved in liquid ammonia.[21] The first observation of the solvated electron

in ammonia was probably much earlier, as it had been known for some time that

solutions of alkali metals in ammonia produced a blue color, now attributed to the

solvated electron. The fact that this blue color (and absorption maximum) arose from

the solvated electron was first pointed out by Gibson and Argo in 1918.[22] While the

solvated electron in ammonia is quite long lived, the aqueous electron has a lifetime

on the order of microseconds.[23] For this reason, the absorption spectrum was not

recorded until 1962, by Hart and Boag.[24] It is now known that the hydrated electron

( e−aq ) is one of the primary products in the radiolysis of water and because of this,

understanding this species is important to fields as disparate as radiation biology and
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nuclear waste management.[25–27]

A single water molecule does not bind an excess electron while the water dimer

supports a dipole-bound anionic state.[28] In this sense, the existence of bound states

of the excess electron is a many-body effect and hence all properties of this species

are solvent effects. This is a unique aspect of this highly quantum mechanical solute.

Direct experimental observation of the structure, relaxation dynamics and energetics

of this species in the liquid phase is complicated due to the difficulty of producing

samples with high concentrations of hydrated electrons and contamination from a

large number of other species formed in pulse radiolysis experiments.[25, 29] For this

reason studies on finite-sized cluster analogues of the hydrated electron have been

used to estimate the bulk binding energy as well as to investigate the non-adiabatic

relaxation dynamics.[29, 30] Extrapolation of the cluster properties to the bulk limit

has been called into question due to a controversy over whether the clusters observed

by photoelectron spectroscopy correspond to electrons solvated on the surface of the

cluster, or internally.[30–35] This debate is what initially interested us in this problem

and we will use this controversy to motivate our work.

Finite-sized anionic water clusters were first observed by Haberland and co-workers

in the 1980s by mass spectrometry.[36, 37] A fews year later Barnett et al. used path

integral monte-carlo simulations to study these clusters and suggested that the excess

electron could either bind to the surface or the interior of the cluster. The internal

states were seen to have binding energies which scaled with cluster size as N−1/3,

where N is the number of water molecules.[31, 38, 39] Shortly afterword Coe et al.
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reported photoelectron spectra of anionic water clusters up to N = 69 and found a

linear trend in the binding energy, when plotted against N−1/3,[30] these data were

extrapolated to a bulk vertical binding energy of 3.3 eV. Interestingly, the surface

isomer binding energies predicted by Barnett et al. were in better absolute agree-

ment with the photoelectron data than the internalized states.[31] Barnett, Landman,

Makov and Nitzan later observed, using both simulation and dielectric theory, that

the optical absorption spectra of internally bound states were converged to the bulk

value at small cluster size while surface states exhibited a slow convergence.[40] In

1994 Makov and Nitzan pointed out that, according to dielectric theory, both surface

and internally bound electrons have binding energies that scale with cluster size as

N−1/3, this scaling law is insufficient to definitively assign an isomer class as surface

or internal.[9]

In 1997 Ayotte and Johnson measured the absorption spectra of anionic water

clusters from N = 6− 50 and found that these spectra are strongly red-shifted com-

pared to the bulk (1.72 eV) and blue-shift with increasing clusters size.[41] In 2005

Verlet et al. demonstrated that by varying the source conditions in the gas expansion,

one could form three isomer classes, the populations of which could be continuously

modified.[34] Around this same time Turi et al. used a mixed quantum/classical sim-

ulation approach (similar to that used in this thesis) and found that internally bound

clusters were not stable up to N > 100 and may only be kinetically stable in that

range. They observed that the absorption maxima of the surface bound isomers blue-

shifted with cluster size but that the maxima of internally bound electronic “states”
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did not.[42] Turi et al. made the rather bold claim that all experimental observations

reported thus far were consistent with surface isomers.[42] This point was immedi-

ately questioned in the literature.[33, 35] In their comment, Verlet et al. pointed out

that the binding energies of the internally bound isomers were actually in much bet-

ter agreement with the photoelectron data for the strongest binding isomer than the

surface isomers were.[35]

It is not surprising that comparisons between experiment and theory have not

been quantitative. Accurate computational prediction of vertical electron binding

energies (VEBE), sometimes referred to as vertical detachement energies (VDE), is a

demanding task. This is because local minima on the anionic potential energy surface

tend to be located in regions of configuration space that are high in energy on the

neutral potential energy surface.[43] This is no different in the case of a “classical”

ion such as Iodine. What is different is the fact that one cannot instantaneously

remove an Iodine ion, but one can (essentially instantaneously) promote an electron

to a vacuum level. In fact, the VDE measured by photoelectron spectroscopy serves

as a primary experimental observable in the study of anionic water clusters. This

means that an adequate description of local minima on the anion potential energy

surface is as important as an adequate description of unfavorable configurations on

the neutral potential energy surface, we hope that a “polarizable” water model (one

that treats many-body induction explicitly) is more accurate near these points than

one that is not. Additionally, and more importantly, is the observation that the

electrostatic environment immediately before and after an electron ejection event is
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dramatically different (charged versus neutral). This is also true in the case of optical

absorption spectra. We presume that in these cases, the electronic response of the

water molecules is large. If we wish to directly compare predicted to experimentally

observed binding energies, the electronic response of the solvent molecules should be

explicitly included. However, since the size of systems we are interested in studying

is large, we must include this response approximately. This is the approach we have

taken in constructing and applying an electron-water potential.

Our potential is initially developed in chapter 2 with promising results as com-

pared to ab initio predictions. This potential yielded poor results when applied to the

bulk hydrated electron, as discussed in Ref. [43], and so was re-parameterized. This

is discussed in chapter 3, along with application to the liquid phase. This chapter

highlights the important effects of including electronic polarization in this system.

Chapter 4 provides a comment on a recent pseudopotential constructed by Larsen,

Glover and Schwartz.[44] This work underscores the difficulty in constructing such

potentials and the need for efficient, on-the-fly, ab initio molecular dynamics tech-

niques. The optical absorption spectrum, initially discussed in chapter 3, is studied

further in chapter 5. The fact that the electronic response of the solvent is included

in a self-consistent treatment of the electron leads to a state specific Hamiltonian, in

turn, leading to non-orthogonal solutions. This is discussed in chapter 6, along with

a simple algorithm for finding strictly orthogonal eigenstates for this state specific

Hamiltonian.

27



1.6 A Brief Introduction to Fragment Methods

Post-HF schemes, such as Møller-Plesset perturbation theory (MP), configuration

interaction (CI) and coupled cluster theory (CC), seek to improve the description

of the wave function and provide a systematically improvable route to accurate

energetics.[12, 13] These wave function methods also scale poorly with system size

which prevents them from being useful in condensed phase applications.[45] Wave

function methods improve upon HF theory by treating electron correlation (absent in

the mean-field treatment). Electrons are only correlated at short range which implies

that these methods scale unphysically with system size.[46] In order to apply these ac-

curate methods to molecular interactions in condensed environments one must exploit

locality, that is, one must understand the length-scale over which particular interac-

tions persist and utilize distance-based cutoffs to improve asymptotic computational

scaling.[47]

One way to reduce the cost of electronic structure calculations [including HF and

density functional theory (DFT)] is to employ some sort of fragmentation scheme.

Consider the matrix representation of a Hamiltonian for a system containing four

molecules (which we will refer to as fragments) in a basis that is constructed from

functions that are localized on these fragments. For example, an atom-centered Gaus-

sian basis set. We can schematically think about this matrix as being composed of
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molecular blocks and there couplings,

H =




H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44


 (1.60)

where the diagonal blocks represent intramolecular interactions and the off-diagonal

blocks represent intermolecular interactions. If we neglect the off-diagonal blocks we

can diagonalize the molecular (diagonal) blocks separately, instead of diagonalizing

the full matrix. This leads to a block diagonal density matrix; the eigenfunctions

of the molecular blocks are expanded only in terms of basis functions local to that

molecule. This procedure also leads to a potentially significant computational savings

since we replace a diagonalization step which scales as O((N tot
basis)

3) with four steps

that scale as O((N frag
basis)

3), where N frag
basis is the number of basis functions on a fragment

and N tot
basis is the total number of basis functions. We have neglected interactions in

the Hamiltonian that couple the molecules and so we must find a way to include

these. If we can find an efficient and accurate way to do this we would have an

efficient and accurate method. There are many ways to include these interactions and

correspondingly many fragment methods, a small number of which we will mention

only to illustrate the different approaches and motivate our own.

The most conceptually straightforward fragment method is the SCF for molec-

ular interactions (SCF-MI) method originally developed by Stoll, Wagenblast and

Prueß [48] and recently revisited by Khaliullin, Head-Gordon and Bell.[49] This is an

approach to efficiently approximate the HF SCF energy while simultaneously elim-

inating basis set superposition error (BSSE). The MOs belonging to a particular
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fragment (molecule) are expanded only in terms of AOs localized on that fragment,

Khaliullin et al. term these absolutely localized molecular orbitals (ALMOs).[49] The

ALMOs on one fragment are not required to be orthogonal to ALMOs on another

fragment. The full Fock matrix in this basis is projected onto molecular blocks, which

are then diagonalized. This yields a new density matrix which is used to reconstruct

the Fock matrix. In this approach, the intermolecular interactions are not made any

more approximate than the underlying HF theory so SCF-MI requires construction

of the Fock matrix in the full basis set, an expensive step. The projection of the full

Fock matrix onto molecular blocks makes clear that one can implicitly include the

effect of the molecular coupling in the monomer matrices. One potential difficulty

with this approach is that it is difficult to describe charge-transfer interactions in the

ALMO basis.[49, 50]

A popular approach to reproducing the super-system energy of a model chemistry

(such as MP2 or CCSD) by fragmentation is the many-body expansion. In this

approach one writes the total energy of a system composed of many molecules as

Etot =
∑

i

E
(1)
i +

∑

i

∑

j>i

(
E

(2)
ij − E

(1)
i − E

(1)
j

)
(1.61)

+
∑

i

∑

j>i

∑

k>j

(
E

(3)
ijk − E

(2)
ij − E

(2)
ik − E

(2)
jk − E

(1)
i − E

(1)
j − E

(1)
k

)
+ ...

where E
(1)
i is the energy of monomer i, E

(2)
ij is the energy of the ij dimer, etc. The

first term in Eq. 1.61 is the sum of monomer energies, the second term is the sum

of dimer interaction energies, the third, trimer interaction energies and so on. For

a system of N monomers this expansion is exact if one retains terms up to E(N), it
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is also more expensive than the super-system (N -body) calculation. However, if one

can accurately truncate the expansion at low order significant computational savings

can be made. Dahlke et al. have demonstrated that if one embeds the monomer,

dimer, trimer, etc. calculations in the approximate electrostatic potential of the other

monomers by way of point charges, the many-body expansion is essentially converged

at three-body terms.[51–54] Dahlke et al. have also shown that if one performs a HF

super-system calculation, the many-body expansion of the MP2 correlation energy

(again using electrostatic embedding) is convergent with only two-body terms.[53]

Beran has extended this line of thinking by evaluating the many-body interactions

with the use of a force field that explicitly treats many-body induction, followed by a

many-body expansion of the MP2 energy keeping only two body terms.[55, 56] The

work of Dahlke et al. indicates that a full many-body description is important at the

mean field level while correlation can be treated fairly accurately in a pairwise manner.

The work of Beran has demonstrated that by many-body, we mean to say many-body

induction. If one can include this many-body induction into the description of the

monomers, correlation can be treated as a pairwise sum.

Of interest to us is the explicit polarization (X-Pol) potential, developed by Gao

and co-workers.[57–59] This is an approach that is not intended to reproduce any par-

ticular model chemistry, but is intended as a “next-generation” force field.[60] X-Pol

utilizes the ALMO ansatz and fragments interact via approximate electrostatics (this

approach will be described in detail in chapter 7). X-Pol neglects exchange repulsion,

a result of the fact that the X-Pol wave function does not satisfy the Pauli principle.
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For this reason, the X-Pol energy is supplemented with a Lennard-Jones (LJ) em-

pirical potential energy function to describe both exchange repulsion and dispersion

interactions.[58] The X-Pol procedure is very efficient because one only constructs

and diagonalizes fragment Fock matrices, nothing is done in the full basis. The X-Pol

potential describes intramolecular interactions from first principles and approximates

electrostatic interactions. It is iterative and as such, should describe many-body

induction effects, albeit approximately. We were interested in this procedure but

wanted to eliminate the need for LJ parameters. Our idea was to obtain exchange

repulsion and dispersion by a perturbative procedure after the SCF iterations were

complete. During the perturbative procedure we would also correct for inaccuracies in

the approximate electrostatics. We assume that the many-body interactions present

in the SCF iterations are reasonably accurate so that the perturbative scheme can be

applied in a pairwise fashion. This procedure is described in detail in chapter 7.
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CHAPTER 2

The static-exchange electron–water

pseudopotential, in conjunction with a polarizable

water model: A new Hamiltonian for

hydrated-electron simulations 2.1

2.1 Introduction

The chemical physics literature is replete with electron–water interaction potentials,[38,

39, 61–71] which have long been used (in conjunction with various methods of one-

electron quantum mechanics) to examine the nature of the hydrated electron.[31, 38,

39, 42, 61–83] As such, a person might reasonably question whether the chemical

physics community genuinely needs yet another hydrated-electron model, especially

in view of a study by Turi et al.[66] that seems to validate certain assumptions that

were made previously in the course of constructing electron–water pseudopotentials,

for example, the use of a local potential to model the exchange interaction. We

note, however, that the pseudopotential of Turi and Borgis (TB),[67] which was pa-

rameterized based on the work of Turi et al.,[66] has fueled[34, 35, 42] (rather than

2.1This chapter appeared as an article in the Journal of Chemical Physics in 2009, volume 130,
page 124115.
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settled) the old controversy regarding the nature and evolution of the electron bind-

ing motifs in finite (H2O)−n clusters, and whether photoelectron spectroscopy exper-

iments in such clusters probe surface-bound or cavity-bound states of the unpaired

electron.[30, 31, 34, 35, 42, 84–87]

At a phenomenological level, there are at least two important features missing from

the TB hydrated-electron model that one might reasonably expect to be qualitatively

important. The first of these is the absence of any dynamical correlation between the

unpaired electron and the charge distributions of the classical water molecules, i.e.,

the absence of electron–water dispersion interactions. Ab initio electronic structure

calculations suggest that such interactions are significantly larger for cavity-bound

electrons than they are for surface-bound electrons.[1] Jordan and co-workers[68–70,

77–79] address this deficiency using a quantum-mechanical Drude oscillator for each

H2O molecule;[68, 69] for prediction of vertical electron binding energies (VEBEs),

this appears to be the most accurate model currently available, short of ab initio

quantum chemistry. For an (H2O)−n cluster, however, this model involves not a one-

particle quantum mechanics problem but rather an (n+1)-particle problem. Although

the Drude model is still substantially cheaper than ab initio calculations, exhaustive

simulations have so far been reported only for (H2O)−13 and smaller clusters.[69, 70, 79]

A second potential deficiency of the TB model is its use of a fairly crude water–

water interaction potential, namely, the simple point charge (SPC) model.[88, 89]
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Electrostatic interactions are represented in the SPC model by means of fixed, atom-

centered point charges, and we will demonstrate that this potential is rather inac-

curate for predicting conformational energies of neutral water clusters. Meanwhile,

considerable evidence points to the fact that the neutral water potential is often more

important in determining VEBEs than is the electron–water potential,[90, 91] because

the electron–water interaction stabilizes water networks that are extremely high in

energy (and far from any stationary point) on the neutral water potential surface.

Neutral water potentials, however, are rarely parameterized using such high-energy

structures, and simple functional forms are not flexible enough to describe structures

that are far from any local minimum for neutral water. As detailed in Refs. [90] and

[91], one consequence in the context of (H2O)−n is that small differences in the clus-

ter geometry, which scarcely affect the total electron–water interaction energy, often

substantially modify the water–water interaction and hence the VEBE, defined as

VEBE = Eneutral − Eanion . (2.1)

Changes in the underlying water potential have been shown, for example, to produce

qualitatively different isomer distributions for (H2O)−6 in finite-temperature Monte

Carlo simulations.[79]

At present, the manner in which these facets of the TB model manifest as ob-

servables remains unknown. As a first step toward investigating this issue, we report

a re-parameterization of the electron–water interaction potential, following the TB

procedure but using the polarizable AMOEBA water model,[14] which is known to

perform well (compared to ab initio calculations) for structures and conformational
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energies of neutral water clusters.[14, 92] The result is a one-electron model Hamil-

tonian for (H2O)−n in which the one-electron wave function and the water molecules

polarize one another self-consistently. An electron–water polarization potential thus

arises in a natural way, via induced dipoles on the water molecules, and does not

need to be tacked on in an ad hoc fashion, as it is in the TB model. (The form of the

TB polarization potential can be recovered as a well-defined approximation to the

polarization potential arising from our model.)

We calculate eigenstates of the resulting one-electron Hamiltonian on a three-

dimensional real-space grid, using a modified Davidson algorithm that is consid-

erably simpler than the Lanczos-based algorithm often used in hydrated-electron

simulations.[93] Based on comparisons to ab initio electronic structure calculations in

(H2O)−n clusters (n = 2–33), the new model appears to be significantly more accurate

than the TB model, for both relative conformational energies and VEBEs.

2.2 Background

2.2.1 Pseudopotential theory

To date, most electron-water pseudopotentials have been based upon the so-called

static-exchange (SE) approximation.[39, 64, 66, 94] Within this approximation, one

considers the interaction of the excess electron with the ground-state wave function

of the isolated molecule, in our case H2O. The system wave function is taken as an

antisymmetrized product of the excess electron orbital and the frozen ground state
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wave function of the target molecule (itself an antisymmetrized product of spin–

orbitals) which leads to a one-electron eigenvalue equation for the excess electron:[64,

66, 94]

ĤSE|Ψ〉 = (T̂ + Vn + Vc + V̂x)|Ψ〉 = ε |Ψ〉 . (2.2)

Here, T̂ is the one-electron kinetic energy operator, Vn is the electron–nuclear interac-

tion, Vc is the electronic Coulomb energy, and V̂x is the (nonlocal) exchange operator.

The quantities Vc and V̂x are identical to the Coulomb and exchange operators in a

Hartree–Fock calculation of the isolated neutral molecule, so the lowest energy solu-

tions of Eq. (2.2) are the doubly-occupied molecular orbitals (MOs) of the neutral

H2O, followed by the ground–state excess electron orbital. The highest occupied

MO (HOMO) in the SE approximation is the lowest unoccupied MO (LUMO) in the

Hartree–Fock calculation.

Although Eq. (2.2) is a one-electron eigenvalue equation, construction of ĤSE

requires the H2O MOs. Our goal is to remove this dependence, so that we can

define a local potential V (~r ) that can be readily evaluated and fit to some analytical

expression, thus converting Eq (2.2) into a relatively simply one-electron eigenvalue

equation (T̂ + V )|Ψ〉 = ε|Ψ〉.

To motivate this approximation, consider the two reasons why Eq. (2.2) is not

already such an equation: first, the nonlocality of V̂x means that the exchange in-

teraction depends on the core MOs; and second, the MOs must remain orthogonal

(which prevents the excess electron from penetrating significantly into the core molec-

ular region). It is common to approximate the exchange interaction with some local
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functional of the density, as in the electron-gas (or local-density) approximation,[95]

which affords an attractive potential near the core region. In order to avoid collapse

of the one-electron wave function into the molecule, a repulsive potential must be

added. Early pseudopotentials[39, 62, 63] used a simple exponential for the repulsive

potential, a functional form that can be motivated based on density-functional con-

siderations of the change in kinetic energy upon assembling the system (e.g., H2O
−)

from its constituents (H2O + e−).[96] As an alternative, we employ a repulsive po-

tential derived from an approximate version[64] of Philips-Kleinman (PK) theory.[97]

This repulsive potential has the form

Vrep(~r ) = −
∑

α

εα ψα(~r )

∫
d~r ′ ψα(~r ′) , (2.3)

where the ψα are the MOs of neutral H2O, with orbital energies εα.

The repulsive potential in Eq. (2.3) was derived from exact PK theory by Schnitker

and Rossky[64] by expressing the wave function of the excess electron as a sum of

a nodeless pseudo-wave function and a linear combination of the MOs for neutral

H2O. By subtracting out the core oscillations, one obtains a Hamiltonian that is (by

construction) written for a nodeless wave function. Simplification of this Hamiltonian

to yield the repulsive potential in Eq. (2.3) involves two assumptions:[64] first, that the

excess electronic eigenvalue is much less than that of the core MOs (which is validated

by Hartree Fock calculations); and second, that the pseudo-wave function is constant

in the core region. Although the second approximation is less well-grounded than the

first, it was later validated by Turi and Borgis.[67]
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The repulsive potential can be included in the SE Hamiltonian to obtain a Hamil-

tonian that contains a local pseudopotential that is easily evaluated:

ĤSE(~r ) = T̂ + Vn(~r ) + Vc(~r ) + Vx[ρ(~r )] + Vrep(~r ) . (2.4)

Since the core MOs used to construct these local potentials are frozen, polarization

is not included in the SE treatment. Previous workers[39, 64, 67] have dealt with

this deficiency by grafting an ad hoc polarization potential onto an otherwise non-

polarizable model, as detailed in the next section. We will instead use a polarizable

water potential, from which an electron–water polarization potential arises in a nat-

ural way. Our approach is described in Section 2.3.

2.2.2 Turi–Borgis (TB) model

In the model potential given by TB,[67] the interaction between the unpaired electron

and a given atomic site (oxygen or hydrogen) has a very simple functional form,

expressed in terms of three error functions:

V TB
es/rep =

1

ri

{
−qi erf(Ai

1 ri) +Bi
1

[
erf(Bi

2 ri)− erf(Bi
3 ri)

]}
, (2.5)

which incorporates both repulsion (rep), in the sense discussed in the previous section,

as well as electrostatics (es). Beginning with Eq. (2.5), summation over repeated

indices is implied; atomic units are used throughout. The quantity ri represents the

distance between the electron and the ith nucleus, qi are the point charges of the

SPC water model, and the Ai
j and Bi

j are empirical parameters. These parameters

were not fit to reproduce the various components (i.e., the local potentials) of the
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pseudopotential derived from the SE approximation, but rather to reproduce the

eigenvalue and density of the excess electron obtained by solution of Eq. (2.2). It is

clear, however, that the first term in Eq. (2.5) is a damped Coulomb interaction, while

the second and third terms together represent a repulsive interaction. It is important

to damp the Coulomb potential to avoid singularities at the atomic sites.

TB suggest that the ability of their potential to predict the bulk optical absorption

spectrum with reasonable accuracy is due to the fact that the potential in Eq. (2.5) is

much less repulsive at the molecular core than previous potentials.[67] The spectrum

obtained with their potential is redshifted from previous potentials, an effect that is

suggested to arise from electron penetration into the core molecular region.

The polarization potential used by TB is taken from Barnett et al:[39]

V TB
pol = − α

2(r2
oxy + C2

oxy)2
, (2.6)

where α is the isotropic polarizability of H2O, roxy is the electron–oxygen distance

[with an implied summation over oxygen sites in Eq. (2.6)], and Coxy is a parameter

that is fit to give the correct ground-state eigenvalue of the bulk aqueous electron.

This potential is spherically symmetric and has the proper asymptotic distance depen-

dence, but the presence of the electron has no effect on the water–water interactions

defined by the SPC water model. In this way, one might consider the TB potential

to be a truly adiabatic surface, i.e., the electron–water and water–water potentials

are coupled only through geometry.

Our implementation of the TB model employs the harmonic version of the flex-

ible SPC potential,[89] as we experienced difficulties using the Morse version of the
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stretching potential; see Ref. [91] for a detailed discussion. The SPC water model

consists simply of a Coulomb interaction between point charges located at the oxy-

gen and hydrogen sites, a 12-6 Lennard-Jones potential between the oxygen sites, and

intramolecular interactions that are quadratic in the atomic displacements.

2.3 New electron–water pseudopotential

Our new electron–water model is based upon the polarizable water model known as

AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications),

which is part of a more general polarizable molecular mechanics force field developed

by Ren and Ponder.[14] In order to establish our notation, and to lay the groundwork

for our model, we briefly review AMOEBA’s electrostatic and polarization potentials

in Section 2.3.1. (For complete details, see Ref. [14].) Following this, our electron–

water model is introduced in Section 2.3.2.

2.3.1 AMOEBA water potential

Electric multipole moments through the quadrupole are obtained from a distributed

multipole analysis[98, 99] of gas-phase H2O at the MP2/aug-cc-pVTZ level of theory,

where MP2 denotes second-order Møller–Plesset perturbation theory. The quadrupole

moments of the water monomer were adjusted by scaling the gas-phase moments by

a factor of 0.73 in order to reproduce the “flap-angle” of the dimer, as compared to

ab initio results.

Using the notation of Applequist,[18, 100] we may collect the electrical moments
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at site i into a “polytensor”

Mi = [qi, ~µ i, Qi]⊤ (2.7)

consisting of the monopole, dipole, and cartesian quadrupole moments, respectively.

We use cartesian multipole moments[100] in the equations to follow, but note that

AMOEBA uses traceless quadrupole moments,[14] which differ by a factor of 3 from

the cartesian moments. (The trace of Qi is not unique, and our convention differs

from that in Ref. [14], but either formulation yields exactly the same electrostatic

energy.[15]) Define the interaction tensor elements as

tij =
1

rij

, (2.8a)

tijα = ∇̂i
α

1

rij

, (2.8b)

and

tijαβ = ∇̂i
α∇̂i

β

1

rij

, (2.8c)

where i and j index atomic sites, α, β ∈ {x, y, z}, and rij = |~rj − ~ri|. From this we

can construct an interaction polytensor

Tij =




tij tijα tijαβ

−tijα −tijαβ −tijαβγ

tijαβ tijαβγ tijαβγǫ


 , (2.9)

where the negative signs in alternating rows arise from the identity

∇̂i 1

rij

= −∇̂j 1

rij

. (2.10)

This allows us to write the full electrostatic potential in a simple, compact form:

Ves = 1
2
M⊤

i Tij Mj. (2.11)
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Equation (2.11) is merely a compact notation for the double Taylor series expansion

of the Coulomb potential between two charge distributions; the multipole moments

are the coefficients of this expansion.

In AMOEBA, polarization is represented by induced dipoles at each atomic site,

~µ i
ind = αi

~Fi , (2.12)

or in polytensor notation

Mind
i = αi[0, ~Fi , 0]⊤ = αiFi , (2.13)

where ~Fi is the electric field due to all other sites, αi is the isotropic polarizability at

the ith site, and Fi = [0, ~Fi , 0]⊤ is defined for convenience. Since i ∈ {1, 2, . . . , 3N}

for an N -atom system, Eq. (2.12) constitutes a set of 3N linear equations that must

be solved self-consistently, since the induced dipoles themselves contribute to the

electric field.

If we write the full multipole polytensor as the sum of permanent and induced

terms, keeping in mind that only dipoles are treated as polarizable within the AMOEBA

model, then Eq. (2.11) may be partitioned according to

Ves = V perm
es + Vpol , (2.14)

where

V perm
es = 1

2
(Mperm

i )⊤ Tij Mperm
j (2.15)

is the electrostatic interaction arising from the permanent multipoles and

Vpol = (Mperm
i )⊤ Tij Mind

j + 1
2

(Mind
i )⊤ Tij Mind

j (2.16)
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is a polarization potential, defined as the sum of all electrostatic terms involving

induced dipoles. It should also be clear that the electric field at site i can be generated

by a polytensor Ei, where

Ei = [φi,
~Fi, Gi]

⊤ = −Tij(M
perm
j + Mind

j ) . (2.17)

The quantities φi, ~Fi and Gi are, respectively, the electric potential, electric field,

and electric field gradient at the ith site.

The final term that defines the electrostatics is the “self-energy”,[19] i.e., the

work required to distort a charge distribution from its equilibrium state (an isolated

molecule) to its final state in the supramolecular system. In the case of the linear

response dipoles in Eq. (2.12), this work is given by[17, 18]

Wpol =
(Mind

i )⊤Mind
i

2αi

. (2.18)

Using Eqs. (2.13) and (2.17) to simplify, and noting that F⊤
i Mind

i = E⊤i Mind
i when

only the dipoles are polarizable, the final expression for the electrostatic contribution

to the AMOEBA water potential is

Vtot = V perm
es + Vpol +Wpol (2.19)

= 1
2

(Mperm
i )⊤ Tij Mperm

j + 1
2

(Mperm
i )⊤ Tij Mind

j ,

where the second equality reflects how the potential in AMOEBA is actually imple-

mented. It should be noted that the electric field due to all atomic-site multipoles is

damped using a Thole-type scheme,[101] in which dipole interactions are attenuated

by replacing one of the point dipoles by a smeared charge distribution. Interaction
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elements analogous to those found in Eqs. (2.8) are obtained by differentiation. This

procedure is used to avoid the so-called polarization catastrophe, in which the electric

field diverges as any site–site distance approaches zero.

Dispersion and exchange repulsion are modeled in AMOEBA using a buffered 14-7

potential. Unlike SPC, AMOEBA uses pairwise van der Waals interactions at every

site in the system. DeFusco et al.[102] point out the necessity of including repulsive

interactions between all atomic sites in order to describe the potential energy surface

of the water dimer at oxygen–oxygen distances shorter than about 2.65 Å.

2.3.2 Electron–water model

We are now prepared to describe the components of our electron–water potential and

the fitting procedure used to parameterize it. To avoid singularities arising from the

electron–water Coulomb interaction, electrostatic interactions between the electron

and the water molecules must be damped, while the electric field due to the electron

(which is used to induce the water dipoles) must also be damped, in order to avoid

polarization catastrophes of the sort described above. The damping of both inter-

actions is done in the same manner. In the spirit of the TB potential, we define a

damped Coulomb potential

t′elec,j =
1

relec,j

erf(aj relec,j) , (2.20)

where aj is one of two damping parameters (one for oxygen and one for hydrogen),

and the subscript elec is a special case of the subscript j that indexes all multipole

centers in the system. Higher-order interaction elements are derived by replacing the
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Coulomb potential in Eqs. (2.8) and (2.9) by the damped form in Eq. (2.20). The

electric field is computed by integrating the damped analogue of Eq. (2.8b) over the

coordinates of the electron, weighted by the one-electron density |Ψ(~r )|2.

The electron–water electrostatic interaction is

V elec
es = (Melec)

⊤ T′
elec,j Mperm

j , (2.21)

where the prime indicates that the interaction matrix elements are generated from the

damped Coulomb potential, Eq. (2.20). The polytensor Melec for the electron contains

only a negative point charge (i.e., the dipole and quadrupole moments are set to zero),

and the implied sum over j in Eq. (2.21) runs over all molecular mechanics (MM)

atoms. By defining a damped Coulomb potential, polarization from the quantum-

mechanical (QM) region (i.e., the electron) arises in a natural way and does not

require additional consideration. We simply add the electric field due to the electron

to that of the MM region when solving for induced dipoles.

In order to compute the polarization work, we separate the contributions due to

the MM and QM regions,

Wpol =
(Mind

i )⊤ Mind
i

2αi

= 1
2

(FMM
i + F elec

i )⊤ Mind
i , (2.22)

where F MM
i contains the electric field (~FMM

i ) at site i arising from both the perma-

nent and induced multipoles of the MM region, while F elec
i contains the electron’s

contribution to the electric field (~F elec
i ) at the same site. We define the final term in
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Eq. (2.22) to be the polarization work done by the electron,

W elec
pol = 1

2
F elec

i Mind
i . (2.23)

Note, however, that while Wpol is strictly positive, W elec
pol need not be. This can be

understood by imagining a system in which a large electric field in the MM region

effectively “wins out” over ~F elec
i , polarizing a dipole nearby the excess electron in a

such a way that this dipole has a positive (destabilizing) interaction with the electron.

In such a case, W elec
pol < 0 and represents a stabilizing or restoring force that would

re-orient the nearby dipole, in the absence of the MM electric field.

Following TB, we employ a repulsive potential of the form given in Eq. (2.3). This

potential was computed using Hartree–Fock/aug-cc-pV6Z+diff MOs and eigenvalues

for H2O, at the Hartree–Fock geometry. (The “diff” designation in the basis set

indicates the addition of two extra s-type diffuse functions on the hydrogen atoms,

with exponents of 0.001 and 0.006 a.u., and also the fact that we have removed all g-

type and higher angular momentum functions.) The integrals appearing in Eq. (2.3)

were evaluated analytically and Vrep(~r ) was calculated on a grid. These numerical

data were then fit to a linear combination of four gaussian functions placed at the

center of mass of the H2O molecule.

Denoting AMOEBA’s van der Waals terms and valence (intramolecular) terms as

Vdisp and Vval, respectively, the full electron–water potential for our new model is

V elec−water = V MM
val + V MM

disp + V MM
es + V MM

pol +WMM
pol

+ V elec
es + V elec

pol +W elec
pol + V elec

rep . (2.24)
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Writing out the electrostatic and repulsive terms explicitly, the potential is given by

V elec−water = V MM
val + V MM

disp + 1
2

(Mperm
i )⊤ Tij Mperm

j

+ 1
2

(Mperm
i )⊤ Tij Mind

j + (Melec)
⊤ T′

elec,j Mperm
j

+ (Melec)
⊤ T′

elec,j Mind
j + 1

2
Mind

i F elec
i (2.25)

+
∑

H2O

4∑

n=1

Cn exp(−zn r
2
elec,com).

The final term represents the repulsive potential, and involves a sum over each water

molecule and a second sum over four gaussians centered at that water molecule’s

center of mass, as discussed above.

Unlike the ad hoc treatment of polarization within the TB model, the new poten-

tial V elec−water includes a polarization potential, V elec
pol +W elec

pol , that arises in a natural

way. It is not immediately obvious how (or even if) this potential is related to empir-

ical polarization potential defined in Eq. (2.6) and used in most previous studies, but

Eq. (2.6) can in fact be recovered as a well-defined approximation to V elec
pol +W elec

pol .

To see this, consider a model in which the polarization of a given water molecule

is represented by a single, isotropic inducible dipole, and where we furthermore insist

that the value of this dipole be induced solely by a point charge located at some other

site that we label “elec”. The component of the jth dipole in the cartesian direction

x is then given by

µj,x
ind = −α qelec tj,elecx = α qelec telec,jx . (2.26)

As we imagine the charge at site elec to be the unpaired electron, this equation does

not contain an implicit sum over the “elec” index, nor does Eq. (2.27) that follows.
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We next substitute the induced dipole in Eq. (2.26) into the polarization potential

V elec
pol +W elec

pol to obtain

V elec
pol +W elec

pol = −1
2
α (qelec telec,jx )(ql telec,jx )

= − α

2 r4
elec,j

. (2.27)

Note that we have not damped the interaction elements in the final equality of

Eq. (2.27). Our polarization potential thus recovers the r−4 distance dependence of

the empirical polarization potential. By replacing r2
elec,j in Eq. (2.27) with r2

elec,j +C,

we recover the empirical polarization potential in Eq. (2.6). This substitution has the

effect of damping the “direct” polarization interaction in Eq. (2.27), and we expect

that this damping will mimic the effect of allowing the rest of the system to polarize

the water molecule. (The bath will tend to induce dipoles in directions dissimilar to

those induced by the point charge, thus reducing the polarization of the water dipole

due to the presence of the point charge, compared to what it would be in the absence

of other water molecules.) The damping parameter C also avoids a singularity as the

electron–water distance approaches zero.

The new electron–water potential contains no explicit exchange potential. At-

tempts to fit exchange were unsuccessful, as described below (Section 2.5.2); similar

difficulties were noted by TB.[67] Instead, we adjusted the two damping parameters

(aO and aH) and an overall scaling factor for the repulsive potential, in order to re-

produce the VEBE of (H2O)−2 . The value that we obtain from the model, 24 meV, is

essentially the same as the MP2/6-31(1+,3+)G* value (26 meV),[103] which is under-

bound only by ∼10 meV compared to higher-level ab initio estimates, and by about
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Table 2.1: Parameters that determine the electron–water potential developed in this
work.

Parameter Value/a.u.
aO 0.38
aH 0.72
z1 1.5
z2 0.5
z3 0.1
z4 0.01
C1 −0.0144
C2 0.2170
C3 0.0453
C4 −0.0110

20 meV relative to experiment. We consider this level of accuracy acceptable. In

performing the fit, we attempted to maintain the two damping parameters at similar

values, in order to obtain an even-tempered electrostatic potential. The final fitted

parameters are collected in Table 2.1.

Energy gradients of the electron–water potential are formally simple due to the fact

that the total energy is minimized with respect to all parameters in the Hamiltonian,

namely, the induced dipoles for the MM atoms, and the expansion coefficients of

the one-electron wave function (grid amplitudes, in our implementation, though they

could be expansion coefficients in some other basis). Stationarity with respect to

the latter is obvious, since the wave function is determined by solving the time-

independent Schrödinger equation, but the induced dipoles are determined by solution

of coupled linear equations [see Eq. (2.12)], and it is not immediately obvious that
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these parameters are indeed variational. This we now demonstrate, following the

proof outlined in Ref. [104].

One may imagine determining the one-electron wave function via a minimization

carried out in two separate steps: first, we fix the induced dipoles and minimize the

expectation value of the Hamiltonian with respect to linear expansion coefficients

of the wave function. This minimization is equivalent to solving the Schrödinger

equation and yields a new one-electron density and hence a new electric field ~F elec
i at

each MM site. This electric field, together with that of the water molecules, is used

to compute the induced dipoles, and the energy (at fixed values of the wave function

coefficients) may be expressed as a function of these dipoles:

E(Mind) = 1
2
M⊤

i Tij Mj +
〈
Ψ
∣∣ (Melec)

⊤ Telec,j Mind
j

∣∣Ψ
〉

+
(Mind

i )⊤ Mind
i

2αi

. (2.28)

Taking the derivative of the energy with respect to the induced dipole on the kth site,

∂E/∂~µ k
ind, and equating the result to zero, one obtains

0 = Tki Mi +
〈
Ψ
∣∣Tk,elec Melec

∣∣Ψ
〉

+
Mk

αk

= −E MM
k − E elec

k +
Mind

k

αk

. (2.29)

We only allow the dipoles to be flexible and so this last expression simplifies to

0 = −~FMM
k − ~F elec

k +
~µ k

ind

αk

, (2.30)

which shows that the variational condition ∂E/∂~µ k
ind = 0 is equivalent to Eq. (2.12),

the equation that determines the linear-response dipoles. Thus, gradients of the

energy require only direct differentiation of the Hamiltonian, i.e., Hellman-Feynman

forces, with no response terms.
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2.4 Simulation algorithm

In this section we describe the algorithm used to calculate eigenstates of the model

Hamiltonian

Ĥ = T̂ + V elec−water + V AMOEBA . (2.31)

In view of the easy availability of analytic energy gradients, this algorithm may equally

well be used to perform quantum/classical molecular dynamics simulations, in which

classical molecular dynamics for the water molecules is propagated on the adiabatic

potential energy surface corresponding to an eigenvalue of Ĥ (but always with self-

consistent polarization of the wave function and the water molecules).

2.4.1 Description of the algorithm

We calculate the lowest few eigenstates of Ĥ on an evenly-spaced cartesian grid

in three dimensions,[105, 106] via an iterative technique, then calculate forces on

the atoms via the Hellmann–Feynman theorem, ∂E/∂x = 〈Ψ|∂V/∂x|Ψ〉. Regarding

iterative eigensolvers, Webster et al.[93] have noted that Lanczos-type methods are

problematic for hydrated-electron models, due to the high spectral density of Ĥ. In

our hands, we are consistently able to converge the ground state, and occasionally one

or two excited states, using a standard block-Lanczos procedure, but we are unable

to converge all of the excited states that have significant oscillator strength out of the

ground state.

To overcome this problem, Webster et al.[93] employ a two-step procedure that
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involves first using Lanczos iteration to determine eigenpairs of the operator

Ŵ = exp(−β V/2) exp(−β T̂ ) exp(−β V/2) , (2.32)

where Ĥ = T̂ + V is the original Hamiltonian. If the parameter β > 0 is sufficiently

large, then the spectrum of Ŵ will be much less dense than that of Ĥ, making the

former amenable to Lanczos iteration. A second Lanczos procedure is then used to

correct for the fact that the eigenstates of Ŵ are not eigenstates of Ĥ. When using

this technique, one must take steps to detect and remove spurious eigenvalues.[93, 107]

As an alternative to this rather complicated prescription (which appears still to

be in widespread use[42, 67, 108]), we calculate eigenstates of Ĥ via block-Davidson

iteration,[109] a procedure that is known to work well for diagonally-dominant ma-

trices. When represented on a real-space grid, the matrix of V is strictly diagonal,

while the matrix representation of T̂ has its largest elements along the diagonal, with

off-diagonal elements Tij that decay like ∼ (i− j)−2 (see Ref. [106]).

For fixed-charge potentials (e.g., the TB model), we employ a standard version of

the Davidson algorithm (as described, for example, in the Appendix to Ref. [110]). All

subspace vectors v1,v2, . . . ,vn are stored in core memory, as are the vectors wi = Hvi

generated by the action of Hamiltonian matrix. Some limited testing led us to cap

the number of subspace vectors at n ∼ 200 to avoid a diagonalization bottleneck;

if the subspace size reaches this limit, it is collapsed down to one vector per root.

We employ a “locking” procedure, whereby only the unconverged roots are used to

generate new subspace vectors.[110]
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Comparison to exact diagonalization indicates that this procedure consistently

determines as many eigenpairs of Ĥ as desired, to arbitrary accuracy and without

spurious eigenvalues. Starting from guess vectors with random entries, with a limit of

n = 200 subspace vectors and a very stringent convergence criterion (||(Ĥ −E)Ψ|| <

1.0 x 10−8 a.u.), the subspace must be collapsed two or three times in order to calculate

the lowest five eigenstates of a (H2O)−216 cluster in which the electron is contained

within a cavity. (For the TB model, these five states account for & 90% of the

oscillator strength out of the ground state.) For geometry optimizations and molecular

dynamics simulations, where converged eigenvectors from a previous step are available

as an initial guess, the same calculation requires only 15–25 subspace vectors per root,

for molecular dynamics, and significantly fewer than that for geometry optimizations.

In fact, for geometry optimizations it is often the case that zero additional subspace

vectors are required, i.e., it is only necessary to diagonalize the new Hamiltonian in

the very small basis of converged eigenvectors from the previous geometry. (To some

extent, this is a consequence of the fact that we optimize in cartesian coordinates,

where the step sizes are necessarily small.)

The simple block-Davidson procedure must be modified for polarizable water mod-

els, because in this case Ĥ depends upon the values of the induced dipoles, and these

in turn depend upon the one-electron density, |Ψ(~r )|2. Hence Ĥ is a functional of its

own eigenvectors. Strictly speaking, in such cases the vectors wi become out-of-date

every time one adds a new subspace vector, because each new subspace vector modi-

fies the approximate eigenvectors (Ritz vectors), thus altering the density |Ψ(~r )|2 that
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is used to polarize the water molecules, and consequently modifying the Hamiltonian

itself. However, the difference in wi = Hvi is likely to be small from one iteration to

the next, especially in the later iterations.

The procedure that we adopt is to update the subspace matrix after the error

(measured by the norm of the residual vector) decreases by a factor of 2–5. We store

the potential each time we polarize the water with the electron density; once we decide

to update, we re-polarize the solvent bath, compute the change ∆V in the potential

energy at each grid point, and finally update the matrix–vector products wi using

∆V . This procedure is very efficient for smaller clusters with highly diffuse, surface-

bound electrons, where a large grid is required but where the potential and linear

response equations [Eq. (2.12)] are inexpensive to compute. All results presented

here utilize this algorithm.

Preliminary calculations on larger clusters [e.g., (H2O)−216] exhibiting cavity-bound

electrons indicate that high accuracy can be achieved using much smaller grids, since

the electron is highly localized, but that evaluation of the potential and self-consistent

iteration for the induced dipoles are the bottleneck steps. (In smaller clusters with

large grids, repeated formation of matrix–vector products is the most expensive step.)

For these larger clusters, it is advantageous to converge all eigenvectors of interest

between each update of the dipoles. Overall convergence is then achieved when the

difference in energy between updates of the dipoles is smaller than some threshold,

for each eigenvalue of interest. This typically requires 3–5 updates of the dipoles.

55



2.4.2 Computational Details

All eigenpairs were converged to a precision ||(Ĥ−E)Ψ|| < 10−6 a.u. Our calculations

employ a 60 Å× 60 Å× 60 Å cartesian grid with a spacing of 1 Å, except in the case

of (H2O)−2 , where an 80 Å wide cubic grid (with the same grid spacing) is necessary

to converge the ground-state eigenvalue with respect to the grid parameters. A grid

spacing of ∆x implies that the maximum momentum component in the x direction

is ~π/∆x.[111] A wave function represented on a uniform grid in three dimensions

may therefore possess a kinetic energy no greater than (3/2m)(~π/∆x)2, and values

for 〈T̂ 〉 in our calculations are well below this limit. Furthermore, numerical tests

reveal that VEBEs obtained using the aforementioned grids are converged to within

0.01–0.02 eV with respect to decrease of ∆x. Such differences are smaller than the

intrinsic accuracy of the calculated VEBEs themselves.

These grid-based calculations were performed with our home-built code, Furry

(ver. A). This code employs a locally-modified version of the Tinker[112] MM package

to evaluate the AMOEBA water potential, solve for the induced dipoles, and evaluate

the electron–water potential.

In Section 2.5, we assess our new model and the TB model against benchmark

ab initio calculations. For VEBEs, we benchmark against MP2/6-31(1+,3+)G* cal-

culations, which have been shown to provide reasonable accuracy for VEBEs[103, 113]

(as quantified in Section 2.5) yet can be applied to medium-sized water clusters. A

library of (H2O)−n clusters isomers, ranging from n = 2 to n = 33, was obtained from

Ref. [1]. All ab initio calculations reported here utilize these geometries.
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While the MP2/6-31(1+,3+)G* method affords accurate VEBEs (due largely to

a lack of strong correlation effects and absence of significant orbital relaxation upon

electron detachment[113]), accurate benchmarks for relative conformational energies

demand a higher level of theory, and for these energies we employ complete basis

set (CBS) MP2 benchmarks. MP2/CBS energies were determined by separate ex-

trapolation of the Hartree–Fock energy and the MP2 correlation energy, using the

aug-cc-pVXZ+diff sequence of basis sets, where X = 2, 3, or 4 (i.e., D, T, or Q). The

“+diff” signifies that we have added an additional diffuse s function on each hydrogen

(with an exponent of 3.72 x 10−2 a.u.) as well as a diffuse s function and a set of dif-

fuse p functions on each oxygen (with exponents of 9.87 x 10−2 and 8.57 x 10−2 a.u.,

respectively). In Ref. [114], these diffuse functions were shown to perform adequately

for small (H2O)−n clusters. The Hartree–Fock CBS energy was estimated using a

three-point fit to the ansatz[115]

E(X) = E(∞) + a e−bX , (2.33)

where a and b are fitting parameters. The MP2 correlation energy was extrapolated

using a two-point fit (X = 3 and 4) to the expression[116]

E(∞) = E(X) + cX−3 , (2.34)

where c is a fitting parameter.

All ab initio calculations were performed using Q-Chem.[117] The Visual Molec-

ular Dynamics program[118] was used for visualization.
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2.5 Analysis of the new model

We now turn our attention from the development and technical description of the

model to the analysis of its properties. We first verify, by comparison to ab initio

benchmarks, that the new model is indeed more accurate than the TB model We then

make a detailed analysis of the potential itself, in order to compare and contrast it

with the TB potential. In this work, we consider only the ground state of the model

potentials.

2.5.1 Comparison to ab initio results

Figure 2.1 compares VEBEs computed at the MP2/6-31(1+,3+)G* level to those

obtained from our new model Hamiltonian and the TB model Hamiltonian. The 76

(H2O)−n cluster isomers in our data set range from n = 2 to n = 33 and include both

surface and cavity binding motifs. This diverse database poses a challenging test to a

model’s ability to predict VEBEs across the (H2O)−n potential surface (for a given n),

and for a wide range of cluster sizes. Relative to the MP2 benchmarks, our new model

outperforms the TB model, reducing the mean absolute deviation from 0.185 eV (for

the TB model) to 0.089 eV (for the new model). The maximum deviation is also

reduced, from 0.623 eV (TB model) to 0.339 eV (this work). We emphasize that

our model is fit exclusively to the VEBE of (H2O)−2 , so we regard the rather small

errors in VEBEs as evidence that our model contains most of the correct physics for

(H2O)−n . (As discussed below, a QM treatment of electron–water dispersion, which

is absent or at best implicit in our model, affords further improvement to VEBEs.)

58



The mean accuracy of the TB model for VEBEs (0.185 eV) is comparable to that

reported previously by Turi et al.[80] based on MP2/6-31(1+,3+)G* benchmarks for

a set of (H2O)−12 isomers. However, whereas in that study all of the VEBEs obtained

from the TB model were offset by an essentially constant amount relative to MP2

results, our results demonstrate that a constant offset cannot be expected across a

more diverse set of cluster isomers.

For cluster isomers with very small VEBEs, the MP2/6-31(1+,3+)G* level of

theory underbinds the excess electron by ∼0.03 eV.[103] If we adjust the MP2 VEBE

benchmarks upward by 0.03 eV for all structures whose VEBEs are less than 0.5 eV,

and use these modified values as benchmarks, then our new model underestimates

the VEBEs of these weak-binding clusters by only 0.06 eV, as compared to 0.10 eV

for the TB model. For strongly-bound isomers, VEBEs computed at the MP2/6-

31(1+,3+)G* level are estimated to be about 7% too small,[113] and our model is

underbound relative to these MP2 values by roughly another 8% (versus 22% for

TB). Our new model is thus nearly quantitative in its prediction of VEBEs, whereas

the TB model is only qualitative. It is significant that our model underbinds the

electron in nearly all cases, since we have neglected a QM treatment of electron–water

dispersion, which should increase the VEBE. Using a Drude model to incorporate this

interaction, Wang and Jordan[68] report errors of less than 0.005 eV in small-cluster

VEBEs (n ≤ 4), relative to high-level coupled-cluster benchmarks. Thus, we have a

hierarchy of model Hamiltonians of increasing complexity, expense, and accuracy. A

point-charge water model combined with an ad hoc polarization potential suffices to
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Figure 2.1: Comparison of VEBEs computed at the MP2/6-31(1+,3+)G* level of
theory to VEBEs predicted using model Hamiltonians, for a library of (H2O)−n iso-
mers ranging from n = 2 to n = 33. The diagonal line indicates where the model
Hamiltonian and MP2 predications are identical.
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pent1 pent2 pent3 pent4 pent5 pent6

hex1 hex2 hex3 hex4 hex5 hex6 hex7

Figure 2.2: Structures of (H2O)−4 , (H2O)−5 , and (H2O)−6 isomers used to benchmark
relative conformational energies. Each cluster is a stationary point at the B3LYP/6-
31(1+,3+)G* level.

predict VEBEs within ∼ 0.2 eV, while a more accurate, self-consistent treatment of

polarization decreases this error to less than 0.1 eV. A QM description of dispersion

reduces the error even further, albeit at significantly greater expense.

Another important test of a model potential is its ability to predict relative con-

formational energies of cluster isomers. In the case of (H2O)−n clusters, molecular

beam experiments appear to sample preferentially those isomers with the largest

VEBEs,[119] which tend to be fairly high-energy local minima on the anion potential
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energy surface.[90] For this reason, we desire a model that can predict relative confor-

mation energies, for both (H2O)n and (H2O)−n cluster isomers, at energies well above

the global minimum. Thus, we next compare the relative conformational energies

predicted by the model Hamiltonians to those obtained at the MP2/CBS level, for a

set of (H2O)−4 , (H2O)−5 , and (H2O)−6 cluster isomers whose structures are depicted in

Fig. 2.2. Each of these isomers is a stationary point at the B3LYP/6-31(1+,3+)G*

level of theory. In what follows, we discuss relative conformational energies not only

for these anionic clusters, but also for the corresponding neutral cluster isomers at

the same geometries.

Figure 2.3 compares the relative conformational energies for the tetrameric clus-

ters. Five of the six structures exhibit the well-known “double acceptor” or “AA”

structural motif,[120] in which one water molecule accepts two hydrogen bonds and

donates none, leaving it with two dangling hydrogen atoms. The excess-electron wave

function (or singly-occupied MO, in the case of ab initio calculations) is largely lo-

calized around this AA water molecule. Among these six cluster isomers, the only

non-AA isomer is the cyclic structure tet3 (see Fig. 2.2), and it is the lowest in energy

on both the anionic and the neutral potential energy surfaces. [In view of the exten-

sive ab initio calculations available for this isomer,[90, 121] it seems safe to conclude

that tet3 is the global minimum of (H2O)−4 . This isomer is structurally similar to

the (H2O)4 global minimum.[90]] The AA isomers, although they are far more promi-

nent in the experimental photoelectron spectrum of (H2O)−4 ,[122] each lie at least

4 kcal/mol above tet3; upon detachment of the excess electron, these AA structures
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Figure 2.3: Energies of tetrameric clusters on (a) the (H2O)4 potential surface and (b)
the (H2O)−4 potential surface. Note that the two panels use different energy scales.
The structure of each isomer is depicted in Fig. 2.2.
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lie at least 8 kcal/mol above the neutral tet3 isomer.

The SPC water model and the TB model fail badly at describing the relative

energies of the (H2O)4 and (H2O)−4 isomers, respectively. This is mostly a reflection

of the fact that the SPC model significantly underestimates the energy difference

between tet3, which is the most neutral-like isomer, and the rest of the structures.

This is in keeping with our expectations that simple water models cannot provide

consistent accuracy across the potential energy surface. The AMOEBA potential,

in contrast, almost exactly reproduces the MP2/CBS results for (H2O)4, and the

hydrated-electron model built upon this potential also performs well for the (H2O)−4

isomers.

Like the tetramers, the pentameric structures are mostly AA-type binding motifs,

the exception being the neutral-like pent2 isomer. Relative energies of these isomers

are depicted in Fig. 2.4, and once again the non-AA isomer is the lowest-energy

structure on both the neutral and the anionic potential surface. The SPC potential

significantly underestimates the energy difference between pent2 and the rest of the

structures, except for structure pent4, where the energy difference is approximately

correct. Looking at the (H2O)−5 relative energies, the largest differences between the

MP2/CBS and the TB results occur for isomers pent3 and pent5, coinciding with the

largest differences between SPC and MP2/CBS for the neutral pentamers. Clearly,

the SPC model plays a leading role in the success or failure of the TB model.

The TB model erroneously places (H2O)−5 isomer pent5 below the true minimum-

energy structure. We note that pent5 is a compact structure possessing more hydrogen
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bonds than any of the other pentameric isomers, despite the presence of one AA water

molecule. This suggests a bias in the TB model toward neutral-like structures that

maximize the number of water–water hydrogen bonds. The fact that pent5 is not

the lowest neutral pentamer suggests that SPC does impose some additional penalty

against water molecules in the AA configuration (beyond simply the loss of hydrogen

bonds), but that the strong electron–AA interaction more than compensates for this

penalty in anionic clusters.

The AMOEBA water model once again agrees quantitatively with MP2/CBS re-

sults for the neutral structures. Relative energies of (H2O)−5 isomers, as predicted by

our new model, agree with MP2/CBS results to within 1 kcal/mol.

Relative energies for the hexameric clusters are depicted in Fig. 2.5. For the

neutral hexamers, the performance of SPC is not quite as poor as was observed for the

tetrameric and pentameric clusters, perhaps because most of the hexameric clusters

are much more compact than the smaller clusters, but AMOEBA is quantitative

yet again. For the anions, the TB model again yields an incorrect minimum-energy

structure, placing two non-AA isomers (hex1 and hex3) below the correct minimum-

energy structure, the AA isomer hex5. The maximum error in the new model occurs

for hex2 and is only slightly greater than 1 kcal/mol.

2.5.2 Comparison to the TB potential

A direct comparison between the TB potential and our new potential is made in

Fig. 2.6. The origin of the plots is the center of mass of oxygen in all plots other than

Fig. 2.6(d), where the oxygen atom is the origin. As it would be difficult to visualize
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r = 0 at the oxygen atom.

the polarization potential of our model, we plot both potentials sans polarization

potential, that is, we omit Eq. (2.6) from the TB potential and set all induced dipoles

to zero in our model. Our potential is much softer around the oxygen atom and is

largely attractive along the in-plane axis perpendicular to the molecular C2 axis [see

Fig. 2.6(d)].

The attractive regions about the oxygen atom [Fig. 2.6(d)] is an indication that
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the exchange interaction is included implicitly in the fit. TB showed[66] that a Slater-

type (or Xα-type)[95] exchange potential

VXα(~r ) = − 2

π
kF (~r ) = − 2

π

[
3π2ρ(~r )

]1/3
, (2.35)

in which ρ(~r ) is the neutral water electron density, reproduces the eigenvalue of the

excess electron in the SE approximation. The collection of constants in Eq. (2.35)

corresponds to a Slater-exchange α value (not to be confused with a polarizabil-

ity) of α ≈ 1.33. This is larger than the values typically employed in atomic Xα

calculations,[95] but consistent with variationally-optimized α values determined re-

cently for small molecules.[123]

Figure 2.7 depicts the pseudopotential energy surface for H2O
− from using the

exchange potential in Eq. (2.35) scaled by a constant Cx, with 0 ≤ Cx ≤ 1. Increasing

Cx deepens the potential wells—especially around the oxygen atom—and narrows the

repulsive part of the potential. Also note that the difference in well depth between

the bisector coordinate in Fig. 2.7(a) and the bond coordinate in Fig. 2.7(b) increases

with increasing exchange. Although we attempted to adjust the parameters in our

potential to fit the numerical surface directly, the results were unsatisfactory; while

we were able to reproduce the VEBE of (H2O)−2 , we were not able to reproduce the

VEBE of even a small number of other structures, based on comparison to MP2

benchmarks.[1, 103, 113] TB were similarly unable to achieve a satisfactory direct fit

of the pseudopotential energy surface,[67] which may indicate an inadequacy in the

simple local exchange functional of Eq. (2.35).

69



–60

–40

–20

 0

 20

 40

 60

 80

 100

–60

–40

–20

 0

 20

 40

 60

 80

 100

–10 –5  0  5  10

O

HH

O

HH

O

H

H
O

HH

–10 –5  0  5  10

(a) (b)

(c) (d)

p
o

te
n

ti
a

l 
e

n
e

rg
y
 (

k
c
a

l/
m

o
l)

r / bohr r / bohr

Figure 2.7: Plots of the pseudopotential for H2O
− using various Xα-type exchange

potentials of the form Vx(~r ) = Cx VXα(~r ). Values of the scaling parameter Cx range
from Cx = 0 (the top curve, in red, which is least attractive) to Cx = 1 (the bottom
curve, in black, which is most attractive), in increments of 0.2. In (a)–(c), r = 0
represents the H2O center of mass, whereas in (d), r = 0 at the oxygen atom.
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Our new potential model is more attractive along the O–H bond than is the TB

model [Fig. 2.6(b)], but equally less attractive along the H–O–H bisector coordinate

[Fig. 2.6(a)]. Perhaps most importantly, we observe that our potential decays more

rapidly that that of Turi and Borgis [Figs. 2.6(c) and 2.6(d)]. This is due to the fact

that at long range the monopole term dominates the electrostatic expansion, and the

exaggerated point charges of the SPC model (qO = −0.82, qH = 0.41) provide a more

attractive potential than those of AMOEBA (qO = −0.51966, qH = 0.25983). This is

significant because the hydrated electron is quite diffuse, and the long range part of

the potential is thus sampled extensively.

2.5.3 Expectation values of the model potential

In an effort to understand why our new potential is less repulsive than the TB poten-

tial, and also to evaluate which (H2O)−n structures are most affected by polarization,

we have calculated expectation values of various components of the electron–water

interaction potential, for the library of (H2O)−n isomers that was used to evaluate

VEBEs (Fig. 2.1). Recall that this library consists of 76 different clusters ranging

in size from n = 2 to n = 33, including both surface states and cavity states. Fig-

ures 2.8–2.12 show histograms of various expectation values, binned over this library

of structures. For ease of analysis, we have sub-divided the database into AA-type

isomers, non-AA surface states (called simply “surface states” in the discussion that

follows), and cavity states.

The histogram in Fig. 2.8 shows the distribution of values for 〈Vrep〉, the expecta-

tion value of the repulsive potential, for both the new model and the TB model. This
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quantity is smallest, on average, for AA isomers and largest for cavity states. This in-

dicates that electron penetration into the molecular core is greatest for cavity states,

whereas for AA isomers the excess electron resides largely outside of the cluster and

does not sample the repulsive potential. The most noticeable difference between our

new model and the TB model is that the latter predicts much larger values of 〈Vrep〉 in

the case of cavity-bound electrons. According to our model, 〈Vrep〉 < 12 kcal/mol for

all of the structures in the data set, whereas the TB model affords 〈Vrep〉 > 20 kcal/mol

for most cavity states.

Because both models exhibit qualitatively similar VEBEs, in the case of cavity

states there must be some other component of the TB potential that is more negative

than the corresponding component of our model. Polarization energy is an obvious

candidate, and the histograms in Fig. 2.9 identify the precise culprit, namely, the

change in the water–water polarization energy upon electron attachment. (Specif-

ically, these histograms show the difference between the water–water part of the

potential when the dipoles are converged for the neutral system versus when they

are converged in the anion, including the self-energy due to the electron in the latter

case.) For cavity states described using our potential, there is a significant increase

in the water–water potential upon electron attachment, due to re-polarization of the

water molecules by the electron. This increase compensates for a comparatively small

repulsive potential. This effect, which is missing from the TB potential, seems qual-

itatively correct—the induced dipoles computed in the neutral system minimize the

total potential energy of the water cluster, so introduction of the electron must lead
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to an increase in the water–water part of the potential. Apparently, this increase

is much larger for cavity states than it is for either AA or surface states, a point

to which we shall return. We re-iterate that our potential is fit exclusively to the

VEBE of (H2O)−2 —a far cry from any cavity state—so these results cannot simply be

dismissed as some obvious artifact of the fit.

The TB model contains a pairwise polarization potential between the electron

and the water molecules that simulates the effect of the electron polarizing the water

molecules, but omits water–water polarization. Polarization in our model is a many-

body effect, so in order to isolate the electron–water polarization in our model, and

thus facilitate detailed comparison to the TB model we must separate out the water–

water contribution to the polarization energy in our model. To this end, we define (for

our model only) an electron–water polarization energy 〈V elec
pol 〉elec +W elec

pol according to

〈V elec
pol 〉elec +W elec

pol = 〈V elec
pol 〉anion +W elec

pol − 〈V elec
pol 〉neutral . (2.36)

The subscripts 〈· · · 〉anion and 〈· · · 〉neutral in this equation indicate whether the dipoles

used to evaluate V elec
pol = (Melec)

⊤ T′
elec,j Mind

j are induced in the electric field of the

neutral or anionic cluster. In this notation, 〈V elec
pol 〉anion+W elec

pol is the expectation value

of the total polarization potential (as defined in Section 2.3.2), which includes con-

tributions from water–water polarization. The total polarization potential is strictly

negative, since polarization is variational in our formalism, although the electron–

water polarization potential defined in Eq. (2.36) may have either sign.

Figures 2.10 and 2.11 show the total polarization energy and the electron–water

polarization energy, respectively. Compared to TB, our model tends toward larger
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values of the total polarization energy for both AA and surface states, with results

comparable to TB for cavity states. In contrast, when we isolate the polarization

energy due to the electron, the two models yield similar results for AA and surface

states but our model gives a much larger polarization energy for cavity states (see

Fig. 2.11). For water networks that afford surface-bound or AA isomers of (H2O)−n ,

the dipoles are oriented in essentially the same way in both the neutral and the an-

ionic cluster, whereas in cavity-type geometries, the dipoles change qualitatively upon

electron attachment. Thus, while polarization may certainly amplify electron bind-

ing in the AA and surface isomers, it does not qualitatively change the electrostatic

environment of these clusters. In contrast, the excess electron qualitatively alters the

electrostatics of cavity-type geometries.

Figure 2.12 supports this conclusion by comparing the polarization energy in the

field of the neutral dipoles, 〈V elec
pol 〉neutral, with the electron–water polarization poten-

tial 〈V elec
pol 〉elec +W elec

pol . [The sum of these two quantities equals the total polarization

energy plus the self energy; see Eq. (2.36)]. For AA and surface states, the interaction

of the electron with the induced dipoles is nearly the same when the dipoles come from

the neutral water calculation as it is when the dipoles are self-consistently converged

for the anion. For cavity states on the other hand, the electron–water polarization

energy (with dipoles converged self-consistently for the anion) is large in magnitude

and negative in sign, whereas 〈V elec
pol 〉neutral is equally large but positive, indicating a

qualitative change in the electrostatic environment upon electron attachment.

It is perhaps counter-intuitive that the electron–water polarization energy should
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be so much more stabilizing in cavity-type isomers than it is in AA isomers, since

the latter are characterized by an unpaired electron that is strongly localized around

the AA water molecule. In small AA isomers, the AA water molecule is effectively

“buried” within the excess-electron wave function; see the figures in Refs. [90], [119]

or [120], for example. This observation is rather revealing, however. It seems that AA

and surface states owe their existence to the fact that the water cluster is oriented in

such a way that the electron simply attaches to the positive end of an extant dipole

moment, and this dipole moment essentially determines the VEBE of anionic cluster.

The stability of surface states, including AA isomers, is thus largely dictated by the

electrostatic environment of the neutral water cluster, which is only mildly perturbed

by the presence of the electron. This is clearly not the case for the cavity-type isomers,

for which we observe a significant re-polarization due to the electron. We speculate

that this might be a consequence of the more diffuse nature of surface-bound (as

compared to cavity-bound) electrons. While permanent electrostatics may suffice to

describe surface states, a non-polarizable model may not be able to offer a balanced

description of both surface and cavity isomers.

2.6 Conclusions

We have developed a new electron–water pseudopotential, using a sophisticated, po-

larizable water model, from which an electron–water polarization potential arises in

a natural fashion and need not be grafted onto the model a posteriori. Notably, our

model incorporates the fact that introduction of an excess electron must increase the
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water–water potential energy (even when the anion is bound). This effect is absent

in previous hydrated-electron models.

Our model is fit only to the VEBE of (H2O)−2 , and it is impressive that both

VEBEs, as well as relative conformational energies, are reproduced across a diverse set

of (H2O)−n cluster isomers. In particular, our model significantly outperforms a similar

model[67] that is based upon a non-polarizable force field for water. Comparisons to

this fixed-charge model reveal that polarization is especially important for cavity

states, for which the induced dipoles are qualitatively altered by the presence of the

electron. In the case of surface states (including so-called “AA” isomers), the excess

electron simply attaches to the positive end of an existing dipole moment.

The close agreement between our model and ab initio calculations suggests to us

that our model incorporates most of the relevant physics, and in particular, that the

majority of what might be considered (in ab initio language) as electron correlation

is really just polarization. While QM treatments of electron–water dispersion (via

Drude models) achieve somewhat greater accuracy in VEBEs, especially for very

weakly-bound anions, they do so at considerably greater expense, and it is not clear

whether such a treatment is necessary for larger, strongly-bound anions.
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CHAPTER 3

A one-electron model for the aqueous electron that

includes many-body electron–water polarization:

Bulk equilibrium structure, vertical electron

binding energy, and optical absorption spectrum 3.1

3.1 Introduction

Since its absorption spectrum was first observed in 1962,[124, 125] there have been

numerous experimental[4–7, 30, 34, 41, 119, 120, 126–146] and theoretical studies[31,

32, 38, 44, 62, 63, 65, 67, 70, 72–74, 77, 80–83, 90, 108, 147–160] focused on elucidating

the structure, dynamics, and spectroscopy of the aqueous electron (e−aq) in bulk water,

as well as finite (H2O)−n cluster anions. The hydrated electron is a prototypical

system for studying the interplay between quantum mechanics, which is required

to describe the unpaired electron, and classical mechanics, which is necessary to

sample over solvent configurations or cluster morphologies. Despite extensive study,

however, agreement between theory and experiment—regarding some of the most

basic structural and spectroscopic properties of these systems—is still lacking.

3.1This chapter appeared as an article in the Journal of Chemical Physics in 2010, volume 133,
page 154506.
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Extrapolation of the vertical electron binding energies (VEBEs) for (H2O)−n clus-

ter anions suggests a value of ≈ 3.4 eV for the VEBE of the aqueous electron,[2, 30]

consistent with several recent direct measurements of the VEBE for e−aq using liquid

microjets.[5–7] However, recent simulations using one-electron pseudopotential mod-

els suggest that the cluster photo-electron experiments do not actually probe “in-

ternal” (cavity-bound) states of the excess electron, but rather surface-bound states

with no bulk analogue.[32, 153] This interpretation remains controversial,[33, 35, 86]

and the cluster size at which the electron internalizes remains a topic of contemporary

interest.

The optical absorption spectrum is the primary experimental handle for e−aq in

bulk solution, yet quantitative reproduction of this spectrum by theoretical means has

proven elusive. Simulations based on a one-electron pseudopotential model developed

recently by Turi and Borgis[67] (TB) reproduce the absorption maximum to within

∼ 0.2 eV,[67, 160] but so far none of the different one-electron models that have

been developed over the years[67, 72, 147, 148, 152, 154] reproduces the asymmetric

Lorentzian tail that is observed on the blue edge of the spectrum.[2, 26, 161–163]

The solvation environment of the bulk species is also under discussion. Long

ago, Kevan[126, 127] proposed a hexavalent coordination motif, based upon spin echo

measurements in aqueous glasses at T = 77 K. Shkrob[157] has recently provided

theoretical support for this interpretation, based upon ab initio calculations of hy-

perfine coupling constants in small (H2O)−n clusters. However, the aforementioned

TB model potential affords a tetravalent structure at T = 300 K.[67] Very recently,
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Larsen et al.[44] have suggested, based upon a different one-electron model, that the

e−aq wavefunction is not really “coordinated” in the same sense as atomic ions such

as Br− or I−, but is instead delocalized over a large number of water molecules, on

which it exerts only a weak orientational influence. Further complicating the matter

are vibrational spectra of (H2O)−n clusters that suggest the presence of a so-called

double acceptor (“AA”) electron electron binding motif[119, 120, 137] in clusters as

large as n = 50,[141] whereas resonance Raman spectra of the bulk species are inter-

preted as arising from a coordination motif that involves only one hydrogen atom per

water molecule.[136]

Motivated by these outstanding issues, we decided to revisit the most basic struc-

tural, spectroscopic, and dynamical aspects of the hydrated electron, using a one-

electron model that is built upon a sophisticated and accurate water force field. In

practice, this means a polarizable force field, whereas most previous one-electron mod-

els for e−aq have employed fairly rudimentary water models, such as the “simple point

charge” (SPC) model.[88, 89] We expect that a polarizable model will better describe

the relative energies of distorted hydrogen-bonding networks that are stabilized by

the excess electron, but are highly unfavorable in neutral water.[43, 91] In addition,

we wish to determine the extent to which a self-consistent treatment of many-body

electron–water polarization is qualitatively important. Along these lines, we note that

cavity-bound (H2O)−n isomers are characterized by a much larger number of signif-

icant electron–H2O interactions, as compared to surface-bound isomers.[1] As such,

one might expect very different polarization energies for surface- versus cavity-bound
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electrons.

In chapter 2 we reported an electron–water pseudopotential designed for use with

the “AMOEBA” polarizable water model.[14, 164] In the discussion that follows,

this one-electron model for e−aq is termed “polarizable electron–water potential #1”

(PEWP-1). Compared to the non-polarizable TB model,[67] which has been used ex-

tensively in recent simulations,[32, 67, 80–83, 153, 159] PEWP-1 affords significantly

better agreement with ab initio benchmarks for both VEBEs and relative isomer en-

ergies of (H2O)−n clusters.[3] When used to simulate e−aq in bulk solution, however, we

found that PEWP-1 predicts a diffuse ground-state electronic wavefunction that pen-

etrates throughout the water network, rather than forming a proper cavity.[43] As a

result, PEWP-1 predicts an unrealistically fast diffusion coefficient of & 1.0 Å2/ps at

300 K, as compared to an experimental value of 0.51 Å2/ps.[129] Given the compelling

experimental evidence for electron localization in polar fluids,[126, 127, 165] plus the

fact that ab initio calculations strongly suggest cavity formation in hydrated-electron

systems,[103, 155, 160] we rejected this model and decided to revisit the parame-

terization of the electron–water pseudopotential. The largest difference between our

previous parameterization and the one reported here, the latter of which we shall

call PEWP-2, is that the new potential is much more repulsive in the core molecular

region. This difference alone facilities cavity formation.

In this work we re-parameterize our model on the basis of the static exchange (SE)

approximation.[39, 64, 66, 94] Unlike previous SE treatments, however, we use density

functional theory (DFT) to provide an electron–water exchange-correlation potential,
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rather than relying on Hartree-Fock theory for this purpose. After construction of

an exchange-correlation potential, we fit a repulsive potential in order to reproduce

the density maximum of the lowest unoccupied molecular orbital (LUMO) near the

core molecular region. As compared to the original parameterization (PEWP-1), this

new model (PEWP-2) affords even better agreement with ab initio benchmarks for

(H2O)−n clusters. Application of PEWP-2 to the bulk aqueous electron reveals that the

description of electronic relaxation upon electron detachment is crucial for obtaining

a reasonable bulk binding energy. Most interestingly, the inclusion of electron–water

polarization not only provides an accurate prediction of the optical absorption max-

imum, but for the first time affords a significant “blue tail” in the spectrum, vastly

improving the agreement with the experimental line shape, as compared to all previ-

ous one-electron models.

3.2 Re-parameterization of the model potential

3.2.1 Motivation

In order to construct a scalar potential for the electron–water interaction, we follow

the procedure of Smallwood et al.,[166] which provides a computationally exact way

to solve for the Phillips-Kleinman[97] pseudo-wavefunction. Although this procedure

was developed in the context of Hartree-Fock (HF) theory, one can easily replace the

HF exchange operator with the exchange-correlation operator defined by any Kohn-

Sham density functional, and thereby obtain a potential that includes dynamical
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correlation, provided that one accepts that the Kohn-Sham MOs are suitable replace-

ments for the HF MOs. The problem with using traditional DFT for the hydrated

electron is that self-interaction error causes widely-used functionals such as B3LYP

and BLYP to overbind the unpaired electron by a significant amount.[103] Recently-

developed “long-range corrected” (LRC) density functionals, however, are asymptot-

ically free of self-interaction error, and the LRC-µBOP functional[167, 168] has re-

cently been shown to provide extremely accurate VEBEs in (H2O)−n clusters.[3, 114]

Presumably, this is because the singly-occupied MO (SOMO) mostly occupies a region

of space apart from the valence MOs, and the LRC procedure therefore eliminates

self-interaction error associated with the SOMO.

At the outset, we should clarify that we expect any pseudopotential to be semi-

quantitative at best, due to a neglect of many-electron contributions to the wave-

function, which appear to be necessary in order to explain certain aspects of the

spectroscopy of e−aq. All-electron calculations in (H2O)−n clusters indicate that ∼10–

20% of the spin density resides on H2O molecules, which provides an explanation for

observed vibrational red shifts[156] and hyperfine coupling constants.[157] In addition,

the total oscillator strength associated with the optical spectrum of e−aq is ∼1.1,[146]

indicating that the electronic excitations contain a small amount of many-electron

character. (Because the excited states obtained from time-dependent DFT calcula-

tions clearly resemble particle-in-a-box eigenstates,[160] we expect that many-electron

character plays only a minor role in the excitation spectrum.)

In view of these facts, our main aim is to study the extent to which polarization
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is qualitatively important in describing the features of (H2O)−n clusters and bulk e−aq,

using a model that is tractable enough to facilitate adequate statistical sampling. At

the same time, we do wish to make contact with photo-electron data and to infer

relationships between cluster spectroscopy and bulk measurements, both of which

demand an accurate treatment of VEBEs. Furthermore, the ongoing debate regarding

surface states versus cavity states in (H2O)−n clusters is, at its core, a debate over

extrapolations to the bulk limit, so we desire a model that can also reproduce bulk

properties.

The model constructed herein is empirical in nature; we use the SE approximation

as a guide to constructing a potential, but not to derive quantitative interaction terms.

That said, we do not fit this model directly to any measured or computed observables,

so to the extent that the model successfully reproduces observables, it is reasonable

to conclude that much of the basic physics has been described successfully.

3.2.2 The static-exchange approximation

To date, most electron–water pseudopotentials are either extremely heuristic in na-

ture, which is inconsistent with our goal of achieving at least a semi-quantitative de-

scription of e−aq and (H2O)−n spectroscopy, or else are based upon the SE approximation.[39,

64, 66, 94] Within this approximation, one considers the interaction of an excess elec-

tron with the ground-state wavefunction of an isolated molecule, in our case, H2O.

The H2O
− wavefunction, |Ψ〉, is taken to be an antisymmetrized product of the excess-

electron orbital, |ψ〉, and the frozen MOs from a (neutral) H2O calculation, |ψi〉. This
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leads to a one-electron eigenvalue equation for the excess electron:[64, 66, 94]

ĤSE|Ψ〉 = (T̂ + Vn + VH + V̂xc)|Ψ〉 = ε |Ψ〉 . (3.1)

Here, T̂ is the kinetic energy operator, Vn is the electron–nuclear Coulomb interaction,

VH is the electronic Coulomb (Hartree) energy, and V̂xc is the (nonlocal) exchange-

correlation operator. The quantities VH and V̂xc are identical to the Coulomb and

exchange (or exchange-correlation) operators in a HF (or Kohn-Sham DFT) calcu-

lation of H2O, hence the highest occupied MO (HOMO) in the SE approximation is

the LUMO in the HF or DFT calculation. Inclusion of a DFT exchange-correlation

component in Eq. (3.1) is a novel feature of the present treatment.

Although Eq. (3.1) is a one-electron eigenvalue equation, construction of ĤSE

requires the H2O MOs. This dependence must be removed in order to obtain a scalar

potential, V (~r ), that can be readily evaluated and fit to some analytical expression,

thus converting Eq. (3.1) into a simple one-electron eigenvalue equation, (T̂+V )|Ψ〉 =

ε|Ψ〉.

Following Schnitker and Rossky,[64] we write the actual SE wavefunction, |ψ〉, as a

linear combination of a nodeless wavefunction, |φ〉, that is asymptotically correct but

lacks oscillations in the core molecular region, along with a residual that is expanded

in terms of the MOs, |ψi〉, from a calculation on an isolated H2O molecule:

|ψ〉 = |φ〉+
Nocc∑

i

ci|ψi〉 . (3.2)

Inserting Eq. (3.2) into Eq. (3.1) affords an eigenvalue equation for the nodeless
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wavefunction,[64] (
ĤSE +

Nocc∑

i

(ε− εi)|ψi〉〈ψi|
)
|φ〉 = ε|φ〉 . (3.3)

The second term in parenthesis in Eq. (3.3) is an operator that forces |φ〉 to remain

outside of the core (H2O) region, preventing variational collapse. One may express

the action of this operator on |φ〉 using a (scalar) repulsive potential

Vrep(~r ) =
Nocc∑

i

(ε− εi)ψi(~r )〈ψi|φ〉
φ(~r )

, (3.4)

but this potential then depends upon the nodeless pseudo-wavefunction itself.

To eliminate this dependence, Schnitker and Rossky make two subsequent approximations:[64]

first, that the excess electron is weakly-bound (|ε| ≪ |εi|), and second, that the node-

less function |φ〉 is not only smooth but is constant in the core region. Although

the latter assumption is somewhat dubious, without it the nodeless function is not

uniquely defined by Eq. (3.3).[166] Recently, Smallwood et al.[166] have shown that

this ambiguity can be removed (and the assumption that |φ〉 is constant in the core re-

gion can be avoided) by supplying an additional constraint. Following those authors,

we choose this constraint to be that 〈φ|T̂ |φ〉 should be minimized. This requirement

leads to an iterative recipe for calculating the nodeless pseudo-wavefunction:[166]

|φ〉 = |ψ〉+
Nocc∑

i

〈ψi|T̂ |φ〉
〈φ|T̂ |φ〉

|ψi〉 . (3.5)

Once |φ〉 is known, one can always define an orbital-dependent scalar potential

v[φ](~r ) =
〈~r |v̂|φ〉
φ(~r )

(3.6)

for any operator v̂. [In fact, Eq. (3.4) is just a special case of Eq. (3.6).] Construction

of this potential requires the H2O MOs, but once v[φ](~r ) is determined, it can be fit
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to some analytic form for convenient evaluation. In practice, we will use Eq. (3.6) to

obtain a local potential for exchange and correlation (v̂ = V̂xc). Note also that since

the MOs |ψi〉 used to construct this potential are frozen, polarization is not included

in this potential. Polarization is sometimes grafted onto the SE approximation, in

the form of a two-body polarization potential of the form

Vpol(r) = − α

2(r2 + C)2
, (3.7)

where α is the isotropic polarizability of H2O and C is a constant.[39, 62, 64, 67]

In the present work, many-body polarization is incorporated self-consistently, via a

polarizable water potential from which an electron–water polarization potential arises

in a natural way, and from which the two-body potential in Eq. (3.7) can be obtained

based on well-defined approximations.[3]

Electrostatic interactions between the electron and the water molecules are des-

tined to be replaced by electron–multipole interactions, where the multipoles come

from the water force field. Inclusion of the exact SE potentials Vn and VH from

Eq. (3.1) would double-count these interactions, thus we allow the force field alone

to represent the electrostatic parts of the electron–water interaction. The non-

electrostatic components of the interaction, which include Pauli repulsion and exchange-

correlation effects, are represented in the form of a potential Vrep + Vxc, where Vxc

comes from Eq. (3.6) as described above, and Vrep is a repulsive potential that pre-

vents collapse of the wavefunction. Fundamentally, Vrep arises from orthogonality; its

construction is discussed in Section 3.2.4.
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3.2.3 Electrostatic interactions

Electrostatics and polarization are handled in the same way as in our earlier work,[3]

to which the reader is referred for details. The essential features are summarized in

this section. Let V MM denote all of the intramolecular and water–water interaction

terms contained within the AMOEBA force field. Within AMOEBA, electrostatic in-

teractions are represented in terms of permanent charges, dipoles, and quadrupoles,

along with inducible dipoles, and we denote the electron’s interactions with the per-

manent and the induced multipoles as V elec−water
perm and V elec−water

pol , respectively. The

full interaction potential is then

V elec−water = V MM + V elec−water
perm + V elec−water

pol (3.8)

+ V elec−water
xc + V elec−water

rep ,

where the final two terms come from the pseudopotential. (Fitting of these two

terms is discussed in the next section.) Induced dipoles on the water molecules are

determined using the total electric field, which contains contributions from the water

molecules and from the wavefunction.[3]

Polarizable force fields based upon induced dipoles must utilize a damped Coulomb

operator that is finite as r → 0, in order to avoid a “polarization catastrophe”.[101]

The water–water interactions within AMOEBA already employ such an operator,[14]

which we do not modify here. For the electron–water electrostatic interactions, we

use the modified Coulomb potential

telec,i =
erf(ai relec,i)

relec,i

, (3.9)
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Figure 3.1: Calculated MP2 polarization potential, as compared to the fit that is used
to obtain Coulomb damping parameters. The origin of the coordinate system is the
H2O center of mass, except in panel (a), where the origin is the oxygen atom.

where ai is one of two damping parameters (i = O or H), and relec,i is the electron–

multipole distance. [Technically, telec,i is the modified Coulomb operator for electron–

monopole interactions; analogous quantities for higher-order multipoles are obtained

by differentiating telec,i.[3]] This same damped Coulomb operator is used to calculate

the wavefunction’s contribution to the electric field.

There is no a priori reason why the permanent and induced electrostatic interac-

tions should require the same damping parameters ai, and our model uses different
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parameters for each. The damping parameters aO and aH for the electron/induced

dipole interactions (V elec−water
pol ) are obtained from a fit to an ab initio polarization

potential for H2O, calculated at the level of second-order Møller-Plesset perturbation

theory (MP2), as follows. We first perform an MP2 calculation on isolated H2O, then

use these MOs as the starting point for a calculation that includes a single −1 point

charge. The MP2 polarization energy is calculated as a function of the position of

this point charge, and includes both the energy decrease that accompanies orbital

relaxation in the presence of the point charge, plus the change in the MP2 correlation

energy between the isolated H2O calculation and the calculation in the presence of the

point charge. The parameters aO and aH are then fit to reproduce this polarization

potential along each of the four one-dimensional cuts shown in Fig. 3.1. Since we will

ultimately add to this a potential that is quite repulsive in the core molecular region,

it is not necessary to obtain an extremely accurate fit for the attractive parts of the

potential where r is small; only the region where r & 3 bohr is relevant. The fits

shown in Fig. 3.1 are quite good in the relevant region.

3.2.4 Repulsive potential and fitting parameters

In order to construct a local potential of the form given in Eq. (3.6), we first solve

Eq. (3.5) for the nodeless pseudo-wavefunction, |φ〉, using an initial guess correspond-

ing to the LUMO of H2O. Once a self-consistent solution has been determined, we con-

struct a scalar potential for exchange and correlation by setting v̂ = V̂xc in Eq. (3.6),

using the LRC-µBOP functional[167, 168] to define V̂xc. Alternative density func-

tionals such as LRC-ωPBEOP that afford similar VEBEs yield similar results for the
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exchange-correlation potential, but the pseudopotentials obtained using functionals

that strongly overbind the electron (e.g., B3LYP) are notably different.

To this exchange-correlation potential we must add a repulsive potential, whose

physical origin is the orthogonality requirement between the excess-electron MO and

the core H2O MOs. In principle, one could construct a repulsive potential using the

expression [cf. Eq. (3.4)]

V̂rep =
Nocc∑

i

(ε− εi)|ψi〉〈ψi| , (3.10)

but our attempts to utilize this expression directly were not successful, as the result-

ing potential is far too repulsive in the core molecular region. In our view, Eq. (3.10)

produces a potential that is much too repulsive for use in conjunction with damped

electrostatics, which attenuate the attractive interactions at short range. In param-

eterizing our previous model, PEWP-1,[3] we drastically scaled down this repulsive

potential using a scaling parameter that was fit to reproduce ab initio VEBE bench-

marks for (H2O)−n clusters; a dramatic scaling of the repulsive potential was also

used by Wang and Jordan,[68] to develop a different electron–water potential. Evi-

dently, the Coulomb attenuation in Eq. (3.9) can compensate for this scaling, because

PEWP-1 affords fairly accurate VEBEs across a wide range of energies.[3] When ap-

plied to the condensed phase, however, PEWP-1 fails to localize the electron into

a cavity and predicts a diffusion coefficient that is too large by at least a factor of

two. We interpret these observations evidence that the repulsive potential has been

reduced too much.

As an alternative to Eq. (3.10), we fit a repulsive potential, as well as damping
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parameters aO and aH for the interaction between the electron and the H2O permanent

multipoles (V elec−water
perm ). The two damping parameters are fit in order to reproduce the

density maximum of the pseudo-wavefunction confined to the region of the molecule.

While we do not directly fit to any VEBEs per se, in the final step of this procedure

we do reject any fits that do not reproduce ab initio VEBEs to within ∼0.1 eV.

Calculations to determine the pseudo-wavefunction utilize a Gaussian basis set

that we call aug-cc-pVQZ+diff–pol. The “+diff” indicates we have added diffuse s and

p functions to each hydrogen atom, with exponents of 0.00295375 and 0.0106 bohr−2,

respectively; the “–pol” indicates we have removed all g and higher angular mo-

mentum functions. A single water molecule does not bind an extra electron, so

“convergence” of the basis set cannot be achieved with respect to the excess-electron

distribution, which is ultimately bound only by the compactness of the basis set.

However, the aforementioned basis set should give a good representation of the H2O

density, while being diffuse enough to describe the excess electron distribution in the

immediate vicinity of the molecule, which is the chemically significant region. Calcu-

lation of the pseudo-wavefunction was performed using a locally-modified version of

q-chem.[117]

The exchange-correlation potential obtained from Eq. (3.6) is computed on a grid

of points and then fit to an analytic form consisting of a sum of Gaussian functions

centered on the molecular mechanics (MM) atoms,

V elec−water
xc (~r ) =

∑

i

Ci exp
(
−zi |~r − ~ri|2

)
. (3.11)

A good fit was obtained using a single Gaussian function on the oxygen atom and
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Figure 3.2: The LRC-µBOP exchange-correlation potential, obtained from the
pseudo-wavefunction using Eqs. (3.5) and (3.6), along with the fit to this potential
that is used to construct the PEWP-2 model potential. The origin of the coordinate
system is the H2O center of mass, except in panel (a), where the origin is the oxygen
atom.
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three Gaussians on each hydrogen atom. (All fitting parameters are provided in

appendix.A) Figure 3.2 plots the fitted potential along four one-dimensional slices.

As mentioned above, it is only necessary to obtain a good fit to the attractive parts

of the exchange-correlation potential in regions where r & 3 bohr, and our fit is quite

reasonable in these regions.

We construct repulsive potentials centered on each MM atom, of the form

V elec,i
rep (~r ) =

Bi
1

relec,i

[
erf(Bi

2 relec,i)− erf(Bi
3, relec,i)

]
, (3.12)

where i = O or H, and relec,i = |~r − ~ri|. (The total repulsive potential is the sum

of the three atom-centered potentials.) Equation (3.12) is the same functional form

used by Turi and Borgis[67] to obtain a scalar potential that reproduces the SE

pseudo-wavefunction, neglecting exchange and correlation interactions. Following

those authors, we apply a confining potential of the form Vconf = k(x8 + y8 + z8),

with k = 5 x 10−7 Eh, which keeps the (unbound) excess electron near the core region.

This confining potential is only employed in order to fit the pseudo-wavefunction, and

not when fitting to the exchange-correlation potential described above. We believe

that applying a confining potential is reasonable in that it should mimic the behavior

of the excess electron in a high density environment,[169] and hence provide guidance

for the fitting of the repulsive potential.

Figure 3.3 shows the density of the excess electron, |ψ|2, calculated using vari-

ous methods. The H2O LUMOs computed at both the HF and LRC-µBOP levels

are shown, as are the corresponding SE pseudo-wavefunctions. Also shown are the

ground-state wavefunctions obtained using the PEWP-1, PEWP-2, and TB model
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potentials, the latter having been fit to reproduce the HF pseudo-wavefunction. Sev-

eral important observations can be made from Fig. 3.3. Comparing the LUMOs to

the SE pseudo-wavefunctions, we observe that the latter are indeed asymptotically

correct while lacking the large amplitude oscillation in the molecular core. The po-

sition of the density maximum in the LUMO, which is similar at both the HF and

LRC-µBOP levels of theory, is reproduced best by the HF pseudo-wavefunction, but

neither pseudo-wavefunction accurately locates the density maximum along the O–H

bond coordinate [see Fig. 3.3(a)]. We feel that this significant discrepancy reflects an

inadequacy in the Phillips-Kleinman procedure,[97] such that a pseudopotential that

is directly fit to the SE pseudo-wavefunction is likely to afford a one-electron wave-

function that differs substantially from the SOMO in a many-electron calculation.

We chose to fit our potential to reproduce the position of the density maximum

of the LUMO, as computed at the LRC-µBOP level. Figure 3.3 shows that we are

able to fit to the position of this maximum quite well, even if we cannot fit its

precise magnitude; in the end, the PEWP-2 density is quite similar to that obtained

using the TB potential.[67] The main differences are that our density maximum is

slightly closer to the molecular core, and our potential gives an enhanced amount of

density just beyond the oxygen atom, in the plane of the molecule [see Fig. 3.3(c)].

Figure 3.3 also shows why our previous parameterization, PEWP-1, fails to produce

a cavity: there is too much density in the core region. In the one-dimensional slices

depicted in Figs. 3.3(c) and 3.3(d), for example, the PEWP-1 density achieves nearly

its maximum value within the core region. The PEWP-1 repulsive potential is not
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Figure 3.4: Comparison of different electron–water potentials, shown without polar-
ization. The origin of the coordinate system is the H2O center of mass, except for
panel (a), where the origin is the oxygen atom.

nearly repulsive enough, and this allows the electron to penetrate easily into the

water network, without the need to form a proper cavity, which accounts for the

anomalously large diffusion coefficient predicted by this model. This should not be

the case with our new parameterization.

The full PEWP-2 potential is compared to PEWP-1 and to the TB potential

in Fig 3.4, where all three potentials are plotted without polarization. It is clear

from Fig. 3.4 that PEWP-2 contains a steeper and wider repulsive potential than its
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predecessor; the maximum value of this potential (not shown in Fig. 3.4) has increased

from ∼120 kcal/mol (PEWP-1) to ∼550 kcal/mol (PEWP-2). This increase leads to

a satisfactory reproduction of the LUMO from LRC-µBOP. The new potential is more

attractive along the “dipole” coordinate [Fig. 3.4(b)], and also along the perpendicular

coordinate in the plane of the water molecule [Fig. 3.4(c)]. These differences largely

result from the inclusion of a DFT exchange-correlation potential.

3.3 Computational procedures

Within our model, calculation of energies and wavefunctions requires simultaneous

solution of a grid-based Schrödinger equation,

HcI = EIcI , (3.13)

along with linear response equations for the inducible dipoles,

~µ ind
i = αi

(
~F MM

i + ~F QM
i

)
. (3.14)

Solution of Eq. (3.13) was accomplished via the Davidson-Liu method,[109] with a

convergence threshold of ||(Ĥ − E)ψ|| < 10−8 Eh. For (H2O)−n clusters with n < 20,

we use a 60 Å× 60 Å× 60 Å cartesian grid with a spacing ∆x = 1.0 Å, but for larger

clusters (where the wavefunction is more localized), we employ a 40 Å× 40 Å× 40 Å

grid, also with ∆x = 1.0 Å. These calculations were performed with our home-built

code, furry (ver. A),[3] which employs a locally-modified version of the tinker MM

package[170] to evaluate the AMOEBA water potential and solve for the induced

dipoles.
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Bulk e−aq simulations use a grid spacing of ∆x ≈ 0.93 Å. This choice is quite con-

servative, and numerical experiments suggest that the energy is probably converged

already with a grid spacing of ∆x ≈ 1.1 Å. (The smooth, slowly-varying nature of

the pseudopotential, combined with the small mass of e−, enables the use of such a

coarse grid.) Simulations were intiated from an equilibrated box of neat liquid water,

then allowed to equilibrate for at least 5 ps following introduction of the electron. We

propagate the dynamics in the canonical (NV T ) ensemble, using the velocity Verlet

algorithm. The water molecules were flexible and a time step of 1.0 fs was used.

A single Nosé-Hoover thermostat chain,[171] of length four, was used to conserve

temperature.

Electrostatic interactions for bulk e−aq are treated by standard Ewald summa-

tion with a uniform positive background density.[172] For simulations using the TB

hydrated-electron model,[67] which includes an ad hoc polarization potential of the

form given in Eq. (3.7), the polarization interactions were summed using the minimum-

image convention. Non-electrostatic interactions, including TB polarization, were cut

off at one-half of the box length, and were smoothly attenuated starting at 0.95 times

that value. (For the 200-molecule unit cell described below, Vpol < 0.04 kcal/mol at

the cutoff distance.)

Regarding Ewald summation, Staib and Borgis[152] point out that because the

one-electron wavefunction interacts with its periodic replicas, the electron–electron

interactions should be determined self-consistently, leading to an iterative procedure
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that is reportedly numerically unstable,[169] and is used infrequently. For the fixed-

charge TB model, however, Ewald summation has been shown to increase the bulk

VEBE by 0.8 eV relative to the value that is obtained using the minimum-image

convention.[83]

From our point of view, solution of the grid-based Schrödinger equation simply

requires knowledge of the potential energy at every grid point, and interactions with

the image electrons are artifacts of the use of a finite simulation cell, which vanish

as the size of the unit cell increases. Therefore, we will run trajectories at several

different periodic box sizes, in order to extrapolate to the infinite-dilution limit. In

our simulations, we evaluate the potential at each grid point as if a −e point charge

were located at that grid point, but with induced dipoles that are converged using

the actual electric field of the MM molecules and the wavefunction. Standard Ewald

summation is then used to sum all of the electrostatic interactions. We find this

procedure to be free of instabilities.

We run trajectories for cubic unit cells containing N = 100, 200, 300 and 600 water

molecules, using a water density of 0.997 g/cm3. (This corresponds to simulation cell

lengths Lbox = 14.4192 Å, 18.1671 Å, 20.7961 Å, and 26.2015 Å.) For each box size,

four independent trajectories were performed, with simulation lengths that varied

from 7 ps (N = 600) to 60 ps (N = 100), for total simulation times of between 21

and 240 ps.

For simulations involving N ≤ 300 water molecules, the grid is approximately the

same size as the simulation cell, but for ground-state dynamics with N = 600, we use
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the same grid as for N = 300, in order to make the simulation tractable. (Electronic

excitation spectra, however, are obtained using grids that fill the entire simulation

cell.) Because the electronic energy is not invariant to translation or rotation of the

grid, we would like to avoid moving the grid during the simulation, but this is im-

possible to avoid altogether because the wavefunction diffuses rapidly through the

medium, and would eventually reach the edge of the grid. Energy conservation in the

non-polarizable TB model appears to be relatively insensitive to small translations of

the grid, and other researchers have employed a procedure in which the grid is trans-

lated at each time step, such that its origin always coincides with the centroid of the

wavefunction.[67, 83] In the context of our polarizable model, however, this procedure

leads to a catastrophic failure to conserve energy, even though the discontinuities en-

gendered by grid translation change the VEBE by only ∼10−3 eV. Presumably, this

enhanced sensitivity arises because the polarizable model uses the grid to discretize

not only the potential but also the electric field due to the wavefunction.

We tested two strategies designed to avoid this problem. The first was to translate

the grid to the center of the electron distribution only when ∼1% of |ψ|2 resides on

the faces of the cubic grid, meaning that the grid is moved as infrequently as possible.

A second strategy was to translate the grid by exactly ∆x any time that the centroid

of ψ is more than ∆x away from the origin, so that the new grid exactly coincides

with the previous one, albeit shifted by ∆x. The first strategy led to good energy

conservation until a translation was performed, at which point the system energy
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dropped discontinuously, by a significant amount (∼ 0.1%). In the smallest simula-

tion cell, translation events occur at least every 10 ps—frequently enough to give us

pause. The second strategy conserves energy fairly well in the smallest simulation cell

(albeit with a constant drift), but quite well in the largest simulation cell. Using the

second strategy, and assuming that the grid is large enough so that the wavefunction

is zero at its edges, the system does not know that the grid has been moved, and

energy conservation simply reflects how well the wavefunction is converged as a func-

tion of grid size. In the simulations reported below, we employ the second strategy

exclusively.

3.4 Cluster benchmarks

As in our previous work,[3] we assess the accuracy of our one-electron model against

MP2 benchmarks for (H2O)−n clusters, n = 2–33. We will compare PEWP-2 to

its predecessor, PEWP-1, and also to the TB model.[67] The latter has been used

extensively in recent simulations of both (H2O)−n clusters and also bulk e−aq.[32, 67,

80–83, 153, 159] The TB model employs a non-polarizable force field for the water

molecules,[89] an ad hoc electron–water polarization potential [see Eq. (3.7)], and

an electron–water pseudopotential that is fit in order to reproduce the SE pseudo-

wavefunction computed at the HF level. As such, this model provides an appropriate

baseline for the performance of the PEWP models, which (in principle) offer a more

detailed description of the relevant interactions.

VEBEs serve as a primary connection between theory and experiment for the
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hydrated electron, since photo-electron spectra of (H2O)−n have been measured from

n = 2 to n = 200.[4, 30, 34, 85, 130, 131] At the same time, accurate prediction

of VEBEs is a challenging test of one-electron models, as this requires an accurate

description of both the neutral and anionic potential surfaces. In particular, the

neutral cluster’s potential surface must be described well in regions where the anion

is stable, which often correspond to highly distorted hydrogen-bonding networks that

lie far above the global minimum on the (H2O)n potential surface.[91] High-energy

configurations are not typically used to parameterize or test interaction potentials

that are intended to describe neutral water under ambient conditions.

Benchmark VEBEs for 95 different (H2O)−n cluster isomers, ranging in size from

n = 2 to n = 33, were obtained from Ref. [1], where they were computed at the

MP2/6-31(1+,3+)G* level. We have previously shown that this level of theory is

accurate to within ∼0.02–0.03 eV of coupled-cluster results,[90, 103, 113] and recent

quantum Monte Carlo calculations for two different (H2O)−6 isomers also agree, within

statistical error bars, with both MP2 and coupled-cluster VEBEs.[173] Our VEBE

database[1] contains not only gas-phase cluster geometries (optimized using ab initio

methods), but also clusters that were extracted from a bulk simulations using the TB

model, and which are therefore more illustrative of bulk e−aq structure.

Figure 3.5 compares VEBEs predicted by the various one-electron models to MP2

benchmarks, while Table 3.1 summarizes the statistical deviations with respect to

MP2 results. Our new model, PEWP-2, is a clear improvement upon both the TB

model and also PEWP-1, despite the fact that the Coulomb damping parameters in
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Figure 3.5: VEBEs for 95 different (H2O)−n cluster isomers, n = 2–33, as compared
to MP2/6-31(1+,3+)G* benchmarks from Ref. [1].

Method MUE/eV MAD/eV
TB 0.253 −0.746

PEWP-1 0.105 −0.348
PEWP-2 0.041 0.184

LRC-µBOP 0.037 0.224

Table 3.1: Mean unsigned errors (MUE) and maximum absolute deviations (MAD)
for cluster VEBEs, relative to MP2 benchmarks.
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PEWP-1 were fit to reproduce this same set of VEBE benchmarks. Moreover, the

PEWP-2 errors do not appear to correlate with cluster size with the magnitude of

the VEBE itself, and all of the PEWP-2 VEBEs lie within 0.1 eV of the correspond-

ing MP2 result. The performance of PEWP-2 is similar to that of the LRC-µBOP

functional that we used to obtain an exchange-correlation potential.

As in our previous report, we have also evaluated the performance of these models

for predicting relative isomer energies in small (H2O)−n clusters, where complete-basis

MP2 results are available.[3] The results for our new parameterization are quite good,

but do not differ significantly from those obtained for PEWP-1 and discussed in

Ref. [3]. These data may be found in appendix A.

3.5 Bulk simulations

The bulk hydrated electron holds an interesting place among aqueous ions, having

been deemed, for example, as the “champion structure breaker”,[128] owing to its

positive entropy of hydration. As summarized in Section 3.1, significant questions

remain as to the structure of this species, nevertheless the absorption spectrum,[26,

144, 145, 161–163] fluorescence spectrum,[134] resonance Raman spectrum,[132–136]

entropy of solvation,[128] and diffusion coefficient[129] have all been measured, often

under a variety of thermodynamic conditions. Several recent measurements of the

bulk VEBE are in reasonable agreement with one another.[5–7] In this section, we

examine the PEWP-2 predictions for some of these bulk data.
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3.5.1 Diffusion coefficient

The diffusion coefficient of e−aq has been measured over a wide range of temperatures,[129]

with a value of D = 0.51 Å2/ps obtained at 300 K. The TB model reproduces the

temperature dependence of D, and affords a value of 0.6 Å2/ps at 298 K.[159] For the

PEWP-2 model, we have estimated the diffusion coefficient by fitting the long-time

slope of the mean displacement, 〈|~r(t) − ~r(0)|2〉.[172] This average converges quite

slowly, as there is only a single solute particle, and because our trajectories are fairly

short we have only a crude estimate of D for the PEWP-2 model. At 300 K, we obtain

D = 0.79 ± 0.16 Å2/ps, where the uncertainty represents a 95% confidence interval

based on the standard deviation over four different trajectories in our smallest box

(100 H2O molecules). Obviously, this is faster than the experimental value; however,

the value of D is quite sensitive to temperature,[129, 159] and D = 0.79 Å2/ps corre-

sponds, experimentally, to T = 317 K. Reducing the temperature of our simulation

by 18 K (to 282 K), we obtain D = 0.65 ± 0.18 Å2/ps, similar to the TB value and

only slightly higher than experiment, although the uncertainty is considerable. This

issue may warrant further investigation in the future, but in any case the agreement

with experiment is far more satisfactory than it is for PEWP-1.

3.5.2 Structure

Radial distribution functions (RDFs) for the oxygen and hydrogen atoms, relative

to the centroid of the e−aq wavefunction, are shown in Fig. 3.6 for both the TB and

PEWP-2 models. (These RDFs were computed for a unit cell containing 200 water
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molecules, as we find that structural properties are not strongly affected by the size of

the simulation cell.) For both models, integration of the electron–hydrogen RDF up

to its first minimum yields a coordination number of four. The cavity size is slightly

smaller for our model than for the TB model, with the first hydrogen maximum

appearing at 1.7 Å versus 2.0 Å. The average radius of gyration of the electron is also

smaller in our model (2.25 Å) than for the TB model (2.45 Å). The first hydrogen (and

first oxygen) positions are much more highly correlated with the electron position in

our model [gel−H(r = 1.7 Å) ∼ 1.5] than in the TB model [gel−H(r = 2.0 Å) ∼

1.0]. This is mostly due to the fact that the volume element used to normalize the

distributions is smaller in PEWP-2, since the first maximum appears at a smaller

distance.

As compared to the TB model, the first oxygen minimum is far shallower and less

well-defined for PEWP-2. The RDFs for both models are relatively under-correlated

(in comparison to a more typical anion such as Br− or I−), and possess rather broad

features. This breadth arises from fluctuations in both the size and shape of the

cavity. The initial rise of the RDFs is noticeably steeper in PEWP-2 than in the

TB model, an effect that was also observed with a very early polarizable model for

e−aq.[63]

As mentioned in Section 3.1, magnetic resonance experiments in alkaline glasses

at T = 77 K are interpreted in favor of a hexavalent coordination environment

for e−aq,[126, 127] which is consistent with some theoretical models of e−aq in liquid

water.[65, 147, 158] An average electron–oxygen distance of ∼ 2.0 Å has also been
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Figure 3.6: Radial distribution functions, g(r), for the PEWP-2 and TB models, with
respect to the centroid of the electron’s wavefunction.
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deduced.[157, 158] If this value is characteristic of e−aq in liquid water under ambient

conditions, then our solvation cavity is ∼ 0.3 Å too small, whereas the TB model

is about right, although it—like PEWP-2—predicts tetravalent coordination. The

notion that the PEWP-2 cavity is ∼ 0.3 Å too small is consistent with a radius of

gyration (2.25 Å) that is slightly smaller than the experimental estimate of 2.5 Å that

is deduced from a moment analysis of the optical absorption spectrum.[86] It appears

that our model’s cavity structure is qualitatively correct, though not in quantitative

agreement with experiment.

Visual inspection of the PEWP-2 trajectories reveals that the electron is typically

coordinated to about four water molecules, but that the arrangement of the O–H

bonds is usually far from tetrahedral. Five-coordinate structures also exist, albeit

transiently. In contrast, the coordination environment in the TB model is almost

always tetrahedral. In PEWP-2, we frequently observe a “bridging” water molecule

that donates hydrogen bonds to two different first-shell water molecules, such that the

positive end of the bridging molecule’s permanent dipole moment is oriented towards

the wavefunction. This behavior is absent in the TB model, most likely owing this

model’s expanded cavity size. Using PEWP-2, we find that these bridging H2O

molecules can reside very close to the electron, although they are not coordinated

to it, and this feature, together with the fleeting pentavalent structures, effectively

“washes out” the first minimum in the electron–oxygen RDF.

Tauber and Mathies[136] have previously invoked the idea of a disrupted H-bonding

network in the vicinity of the electron, in order to rationalize the resonance Raman
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spectrum of e−aq, but this aspect of e−aq solvation does not seem to have been exam-

ined with detailed simulations. In order to understand the H-bonding environment

nearby the electron, we will examine the average number of hydrogen bonds per water

molecule, as a function of the electron–oxygen distance, using two different definitions

of what constitutes a hydrogen bond. The first definition, which was used to char-

acterize e−aq diffusion in a previous study,[159] is that the oxygen–oxygen distance

between two H-bonded water molecules is less than 3.5 Å, while at the same time the

angle between the covalent O–H bond vector and the O–O vector is less than 30◦. We

call this the “simple geometric criterion” in the discussion that follows. The second

criterion was introduced in Ref. [174], and involves an angle-dependent O–O distance

threshold,

R(θ)/Å = −0.00044(θ/deg)2 + 3.3 , (3.15)

for −50◦ ≤ θ ≤ 50◦. Here, θ is the aforementioned O–H/O–O angle, and according

to this definition, a hydrogen bond exists if the O–O distance is less than or equal to

R(θ). This criterion accounts for the fact that if a particular O–O distance is quite

long, then the corresponding angle should be small in order for the two H2O molecules

to be considered H-bonded. Alternatively, if the H-bond angle θ is large, then the

O–O distance should be small for H-bonded water molecules. In what follows, we will

compare the number of hydrogen bonds predicted by these two definitions; when the

simple geometric definition predicts an H-bond but the definition in Eq. (3.15) does

not, we infer that the hydrogen bond in question is a weak one. We will furthermore

decompose the average number of H-bonds per H2O molecule into the number of
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electron–oxygen RDF, g(r).

H-bonds donated (ND) and the number of H-bonds accepted (NA).

Figure 3.7 shows the results of this analysis, for both the PEWP-2 and TB models.

When the electron–oxygen distance is smaller than the first maximum in the electron–

oxygen g(r), we find NA ≈ 2 but ND < 1, whereas bulk behavior (NA ≈ ND) is

not recovered until r ≈ 5.0 Å, well into the second solvation shell. These results

are independent of which H-bond definition that we choose, and also independent
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of the particular hydrated-electron model (TB or PEWP-2). At the value of r that

corresponds to the first maximum in g(r), the simple geometric criterion affords ND ≈

1, exactly what one would expect for coordination involving one O–H bond per H2O

molecule. The criterion of Eq. (3.15), however, affords a somewhat smaller value

of ND in this region, and in either case ND increases rapidly as r decreases. These

observations indicate that water molecules in the first solvation shell are relatively

poor H-bond donors. Conversely, first-shell water molecules are excellent H-bond

acceptors, especially those nearest the electron; in fact, the simple geometric criterion

yields NA > 2 for these innermost water molecules. It is tempting to view this as a

polarization effect, since strong interaction with the electron could enhance the H2O

dipole moment, making H-bonds with other water molecules even more favorable,

and in fact we do see that PEWP-2 affords slightly larger values of NA at small r

than does the TB model. Even the TB model, however, predicts NA > 2 at small r.

If we substitute the H-bond definition in Eq. (3.15), then the maximum value of NA

is reduced to ≈ 2, suggesting that any H-bonds in excess of two per H2O molecule

are fairly weak.

In our view, the weak H-bond-donating capability of first-shell water molecules

arises from the diffuse nature of the ion, which provides relatively little restoring force

for water librations, as compared to a hydrated halide ion, for example. Thus, we

expect H2O molecules in the first shell to undergo fairly large-amplitude motion, as

compared to bulk H2O, making for poor H-bond donation. This does not necessarily

mean that the same first-shell H2O molecule cannot accept hydrogen bonds, however.
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In fact, since the electron orients water molecules even in the second solvation shell,

this has the effect of enhancing the number accepted H-bonds in the first shell.

3.5.3 Librational dynamics

In the previous section, we hypothesized that water molecules nearby the electron

are subject to enhanced librational motions. To substantiate this claim, we next

examine the librational dynamics of individual H2O molecules, as a function of their

distance from the centroid of the e−aq wavefunction. In order to separate librational

and vibrational motions as much as possible, we first determine the Eckart frame[175]

for each water molecule. We then compute an autocorrelation function

C(t) =

〈∑

i

~Ωi(0) ·
~Ωi(t)

〉
, (3.16)

where ~Ωi represents a unit vector along one of the Eckart axes, for the ith water

molecule, and the summation runs over a restricted set of water molecules, as de-

tailed below. Angle brackets in Eq. (3.16) indicate an ensemble average. A similar

approach has previously been used to characterize librational dynamics in neat liquid

water.[176]

In order to analyze the dynamics near the electron, we compute the average in

Eq. (3.16) using only those water molecules that, at t = 0, lie within a specified

distance of the centroid of the electron’s wavefunction. Because this distance changes

as a function of time, our analysis is limited to the short-time behavior of C(t). We

investigate the dynamics in three regions: from r = 0 up to the first oxygen minimum

(r = 3.2 Å for PEWP-2 and r = 3.8 Å for TB); from the first oxygen minimum out
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to r = 5.0 Å; and finally, r > 5.0 Å. We refer to these regions as the first solvation

shell, second solvation shell, and bulk water, respectively.

Figure 3.8 shows C(t) evaluated for a unit vector along the C2 Eckart axis. (Qual-

itatively similar results are obtained for all three Eckart axes.) For neat liquid water,

C(t) exhibits an ultra-fast inertial response at short times followed by a small recoil

prior to the onset of a long-time exponential decay.[176] We are interested in the

dynamics prior to the exponential decay.

For neat liquid water, C(t) decays from unity to a value of ∼ 0.9 over the first

34 fs, corresponding to a rotation angle of about 25◦. Between 34 and 54 fs, the water

molecule recoils slightly, as evidenced by a “hump” in C(t) centered around 54 fs.

By comparison, the initial Gaussian decay is more pronounced for water molecules in

the first shell of e−aq, and furthermore the average angle prior to recoil increases by 5◦

and the time period prior to recoil increases by 10 fs, relative to neat liquid water.

For the PEWP-2 model, the recoil maximum in C(t) is almost completely absent for

first-shell waters, while the TB model shows only a very slow recoil, with a maximum

at 80 fs. This is much slower than the 51 fs that is observed for the underlying SPC

water model. In contrast, the librational dynamics for first-shell water molecules in

aqueous Br− (as described by the AMOEBA force field) are much faster compared

to those in e−aq, and closely resemble the dynamics of water molecules in the second

solvation shell around e−aq.

We interpret the enhanced Gaussian decay and attenuated recoil as evidence of

enhanced librations due to smaller restoring forces for hindered rotation near the
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electron. That is, the inertial decay of C(t), corresponding to quasi-free rotation

of H2O, lasts slightly (∼ 10 fs) longer nearby the electron. In addition, the recoil

following this event is attenuated. This indicates that librational motion in amplified,

and that the restoring forces that lead to recoil are damped. Surprisingly, second-

shell water molecules also show enhanced librational dynamics, albeit to a much

lesser extent than is observed in the first solvation shell. At distances greater than

5.0 Å, the librational dynamics are essentially identical to those in bulk water. These

data support our earlier contention that hydrogen bonding is disrupted by enhanced

librational dynamics in the first two solvation shells, but that bulk-like behavior is

recovered beyond that.

3.5.4 Vertical electron binding energy

To determine the VEBE of bulk e−aq, we calculate the average VEBE at each simulation

cell size, and then extrapolate to the infinite-dilution (Lbox →∞) limit. For a charged

system, the long-range interactions in a Ewald sum converge slowly, and one expects

that the VEBE will converge as 1/Lbox,[177, 178] which is precisely what we observe

in practice. Extrapolations to Lbox = ∞ are depicted in Fig. 3.9, where error bars

are determined by propagating the statistical error in the mean for each simulated

VEBE, and are reported at the 95% confidence level.

For the TB model, the VEBE is (up to a sign) simply the ground-state electronic

energy, and extrapolates to a value of 4.79 ± 0.09 eV at infinite dilution. This is

considerably larger than all previous reports of this quantity using the TB model;

these include a value of 3.12 eV calculated using the minimum-image convention,[67]
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a value of 3.9 eV determined using Ewald summation (with an unspecified simulation

cell size),[153] and a value of 4.4 eV determined by extrapolating cluster VEBEs.[153]

That our Ewald-summed value is so much larger than what is reported in Ref. [153]

is not altogether surprising, given the sensitivity of the VEBE to Lbox that is seen

in Fig. 3.9, but it is curious that our infinite-dilution value is 0.3–0.4 eV larger than

that reported based on cluster extrapolation.

The MM inducible dipoles in our model represent electronic degrees of freedom,

albeit coarse-grained ones, and these ought to remain in equilibrium with the elec-

tron, relaxing on the same time scale as electronic excitation or electron detachment.

Figure 3.9 also shows three separate extrapolations for the PEWP-2 model: a “re-

laxed” binding energy, an “unrelaxed” binding energy, and the difference between the
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two, which we call the relaxation energy. The latter is the energy associated with

electronic re-organization of the solvent, i.e., changes in the MM inducible dipoles

upon electron detachment.

The slope and intercept of the unrelaxed binding energy extrapolation are similar

to those obtained for the TB model, where no relaxation is possible, which makes sense

because the dielectric constant of the two systems should be quite similar. However,

the relaxed binding energy in our model extrapolates to a much smaller value, 3.70±

0.071 eV. This value lies between the value of 4.0 eV that is obtained by extrapolating

VEBEs for (H2O)−n clusters collected in an ion trap (T ≈ 10 K),[4] and the value of

3.4 eV that is obtained by extrapolating VEBEs for warmer clusters.[2] Our predicted

VEBE is also larger than the value of 3.3 eV obtained in two recent liquid microjet

experiments,[5, 6] but is within error bars of a third liquid jet measurement, 3.6 ±

0.1 eV.[7] Considering that the ion trap experiments likely probe ice-like clusters,

experimental estimates for the liquid-phase VEBE lie in the range 3.3–3.6 eV; our

model’s prediction is far closer to these values than is the TB value, when the latter

is calculated in a rigorous way.

The relaxation energy extrapolates to a surprisingly large value of 1.37± 0.04 eV,

which reveals an important fact about non-polarizable solvated-electron models. Specif-

ically, it explains how the TB model can be systematically underbinding in small clus-

ters (Fig. 3.5), yet overbinding in the bulk limit (Fig. 3.9). This does not necessarily

imply that the non-polarizable models are inherently flawed, since this relaxation en-

ergy does not affect the ground-state forces, and ground-state structure and dynamics
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may therefore be largely insensitive to the lack of polarization. At the same time, it

is clear that some correction needs to be applied to binding energies calculated using

non-polarizable models, especially in the bulk limit. We expect this to be the case in

any polarizable medium, not just water.

Recently, Madarász et al.[153] extrapolated (H2O)−n cluster binding energies for

cavity states, calculated using the non-polarizable TB model, and obtained a value

of ∼ 4.4 eV. These authors then compare to a Born-like dielectric continuum model

developed by Makov and Nitzan,[9] obtaining VEBEs that are surprisingly consis-

tent with those obtained from atomistic simulations. Madarász et al. employ the

Makov-Nitzan model with an optical (infinite-frequency) dielectric constant ǫ∞ = 1,

consistent with a non-polarizable model. Here, we calculate the relaxation energy

predicted by this same continuum model, using water’s actual optical dielectric con-

stant, ǫ∞ = 1.8.[9] Instead of using this model to predict VEBEs of spherical clusters,

we will investigate a situation where the electron is embedded in an infinite dielectric.

We compare VEBEs obtained for ǫ∞ = 1.0 versus ǫ∞ = 1.8, and take the difference

to be a continuum approximation for the relaxation energy.

The parameters required for the continuum model are the electronic kinetic energy,

a cavity radius for the ion (which we take to be the electron’s radius of gyration, rg),

and the static and optical dielectric constants.[9] We use the average electronic kinetic

and radius of gyration determined from simulation, and a static dielectric constant

of ǫ = 78. The results (Table 3.2) are a relaxation energy of 1.3 eV for the TB model

and 1.4 eV for PEWP-2, in excellent agreement with the value extrapolated from
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Property One-electron model
TB PEWP-2

rg/Å 2.45 2.25

〈T̂ 〉/eV 1.6 1.7
VEBE(ǫ∞ = 1.0)/eV 4.2 4.6
VEBE(ǫ∞ = 1.8)/eV 2.9 3.2
Relaxation energy/eV 1.3 1.4

Table 3.2: Input parameters and results from application of the dielectric continuum
model developed in Ref. [9].

simulations with explicit many-body polarization. If the extrapolated TB binding

energy from Fig. 3.9 is reduced by 1.3 eV, we obtain a bulk VEBE of 3.5 eV. This

modified value is in good agreement with the value of 3.7 eV that is extrapolated for

PEWP-2 (see Fig 3.9), especially considering that cluster benchmarks indicate that

the TB model is underbinding, relative to PEWP-2, by ∼0.25 eV.

3.5.5 Optical absorption spectrum

Whereas VEBEs are important experimental handles for (H2O)−n clusters, optical

absorption spectroscopy is the primary means of detecting and characterizing e−aq in

bulk liquids. The absorption spectrum of e−aq in bulk water is broad and featureless,

peaked at 1.72 eV with a Gaussian rise on the low-energy side of the spectrum and a

Lorentzian decay on the blue edge (see Fig. 3.10).[2] Of the one-electron models that

have been brought to bear on this problem, the TB model affords the best estimate of

the absorption maximum, with a prediction of 1.92 eV,[67] whereas other one-electron

models put this maximum at still higher excitation energies. Turi and Borgis[67]
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claim that a self-consistent treatment of solvent electronic polarization in the excited

state should bring the absorption maximum into good agreement with experiment, an

assertion that will be tested here. Perhaps more importantly, the Lorentzian tail in

the spectrum has not been reproduced by any computational means,[154] prior to a

recent preliminary account of our PEWP-2 results,[160] which are discussed in more

detail here.

Here, we simulate the absorption spectrum by computing oscillator strengths

f0→n =
2me

3~2
(En − E0)

∑

κ∈{x,y,z}

∣∣〈ψ0| κ̂ |ψn〉
∣∣2 (3.17)

between the ground state and the lowest 29 excited states (n ≤ 29), at each of ∼1000

snapshots sampled from ground-state molecular dynamics. The absorption spectrum

is obtained as a histogram of excitation energies, weighted by the corresponding

oscillator strengths. Within our polarizable model, however, the treatment of the

excited-state wavefunctions is not entirely straightforward, as we next discuss.

Because the inducible H2O dipoles represent electronic degrees of freedom, it is

physically reasonable that they should remain in equilibrium with the wavefunction

upon electronic excitation. In principle, one could imagine a self-consistent procedure

to converge the dipoles and wavefunction for each excited state, but we have found

that such procedures have serious convergence problems owing to the fact that the

polarization energy is quite large in comparison to the small energy gaps between

excited states. As such, states may “switch” during the Davidson iterations. As

an alternative, we employ a state-specific perturbation theory in order to calculate
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Figure 3.10: Bulk absorption spectra for e−aq, calculated using various box sizes and
various treatments of the solvent’s electronic relaxation energy, including (a) neglect of
the perturbation Ŵn, (b) first-order correction for Ŵn, and (c) second-order correction
for Ŵn. Insets in (b) and (c) compare the experimental spectrum (obtained from line
shape parameters in Ref. [2]) to results computed with our largest simulation cell.
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“relaxed” excited-state wavefunctions and electronic energies. To obtain the pertur-

bation, we first calculate the ground-state wavefunction, |ψ0〉, and an excited-state

wavefunction, |ψn〉, using dipoles {~µ (0)
i } that are converged to |ψ0〉. We then obtain

new dipoles, {~µ (n)
i }, that are converged to |ψn〉, without relaxing the latter. The

quantity

Ŵn = Ĥ
[{
~µ

(n)
i

}]
− Ĥ

[{
~µ

(0)
i

}]
(3.18)

is taken to be the perturbation for state |ψn〉.

One difficulty with the aforementioned procedure is that of orthogonality. Each

relaxed excited state is an (approximate) eigenvector of a different Hamiltonian, and

therefore these states need not be mutually orthogonal. As such, one might antici-

pate spurious intensity enhancements due to non-orthogonality. Furthermore, if the

quantum states are not orthogonal then the transition dipole matrix elements are not

invariant to translation of the coordinate origin. In order to avoid the latter problem,

we do not allow the excited states to mix with the ground state in the perturbative

expansion of the wavefunction. This at least ensures that 〈ψ0|ψn〉 = 0, even if the

excited states are not mutually orthogonal.

Figure 3.10 compares the experimental absorption spectrum to spectra computed

using various corrections for the perturbation Ŵn. “Unrelaxed” spectra [Fig. 3.10(a)]

correspond to a complete neglect of Ŵn, i.e., only ground-state dipoles are involved in

the calculation. The “relaxed” spectra [Figs. 3.10(b) and 3.10(c)] include corrections

for Ŵn based on either first- or second-order perturbation theory. In addition, we

also compare spectra computed using different periodic cells. (Since many of the
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N Lbox/ Unrelaxed First-order Second-order
Å Emax σG Emax σG Emax σG

100 14.4 1.94 0.27 1.69 0.24 1.65 0.24
200 18.2 1.99 0.26 1.74 0.25 1.70 0.26
300 20.8 2.02 0.29 1.75 0.26 1.73 0.27
600 26.2 2.04 0.25 1.78 0.23 1.77 0.24

Expt.a 1.72 0.30
aExperimental line shape parameters from Ref. [2].

Table 3.3: Parameters Emax and σG, both in eV, for fitting the low-energy Gaussian
portion of the absorption spectrum [see Eq. (3.19)]. The quantities N and Lbox specify
the number of water molecules and the length of the simulation cell, respectively.

higher-lying states are quite diffuse, for the excited-state calculations we use a grid

that fills the entire simulation cell.)

The unrelaxed spectra [Fig. 3.10(a)] are insensitive to the size of the simulation

cell, and are quite similar to the spectrum obtained using the non-polarizable TB

model.[67, 160] The absorption maximum in these spectra is slightly blue-shifted

relative to experiment; upon fitting the low-energy portion of the spectrum to a

Gaussian,

I(E) = A exp
[
−(E − Emax)2/2σ2

G

]
, (3.19)

we obtain Emax ≈ 2.0 eV and σG ≈ 0.25 eV. (Gaussian fitting parameters are listed

in Table 3.3, where they are compared to experimental line shape parameters.) While

Emax is 0.3 eV higher than experiment, the Gaussian width of the unrelaxed spectrum

is reasonably accurate.

A first-order treatment of Ŵn dramatically red-shifts the spectrum [Fig. 3.10(b)],
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bringing the absorption maximum into excellent agreement with experiment, while

changing σG by only 0.02 eV. Thus, the Gaussian part of the experimental spectrum

is reproduced quantitatively using first-order relaxation, and essentially no further

change in the Gaussian feature is observed at second order. The contention of Turi

and Borgis,[67] that excited-state electronic polarization would red-shift the spectrum

by 0.2–0.3 eV, appears to be correct. What was not anticipated is the effect of

polarization on the blue tail.

Figure 3.11 decomposes the computed absorption spectra, for the largest simu-

lation cell, into contributions arising from various categories of excited states. Con-

sistent with the results of previous simulations,[67, 147, 148, 154] we find that most

of the absorption intensity is carried by three p-type states that give rise to a broad

Gaussian profile. This part of the spectrum is converged even in the smallest sim-

ulation cell, and the red edge (up to the absorption maximum) is in quantitative

agreement with experiment. At higher excitation energies, however, the unrelaxed

spectrum exhibits a gap, with very little spectral intensity, rather than the smooth tail

that is observed experimentally. Above this gap is a weak tail comprised of excitations

to unbound states, i.e., a photo-electron spectrum. (We categorize states as being

bound or unbound based on whether or not the excitation energy exceeds the VEBE.

This definition does not preclude the possibility that some of these vertically-bound

excitations are adiabatically unbound.)

First-order relaxation red-shifts the higher-lying states to a greater extent than
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the 1p states, resulting in a smoother decay of the spectrum at high energy, with-

out so much of the aforementioned gap in intensity. The distribution of oscillator

strengths changes only slightly, however, since first-order relaxation can alter f0→n

only through the excitation energy, En − E0 [see Eq. (3.17)]. Whereas the first 29

excited states account for 95% of the total oscillator strength, this figure drops to

80% upon first-order relaxation. This decrease in oscillator strength is understand-

able, given that first-order relaxation does not alter the transition dipoles, therefore

f0→n must decrease, according to Eq. (3.17).

At second order, one obtains a correction to the wavefunction and therefore the

transition dipoles, which allows the unrelaxed excited states to mix with the 1p states

and thereby acquire oscillator strength. 3.2 The result [Fig. 3.11(c)] is a significant

intensity enhancement in the blue tail, relative even to the first-order result. At the

same time, the 1p states are still clearly responsible for the Gaussian feature in the

absorption spectrum. The feature labeled “unbound states” has almost disappeared

in the relaxed spectra shown in Fig. 3.11, because relaxation leads to a considerable

increase in the number of bound states; of the 29 states that comprise the spectra in

Fig. 3.11, an average of 25.6 are bound at second order (collectively accounting for

90% of the total oscillator strength), whereas only 6.9 excited states are bound, on

average, when relaxation is neglected. We expect that the “unbound” feature would

return if we calculated additional excited states.

3.2Within a spherical cavity model, the 1s → 1p transitions carry essentially all of the oscillator
strength, since the 1s → 2s and 1s → 1d transitions are dipole-forbidden, while the 2p states are
quite diffuse and have little overlap with the 1s ground state, for cavity radii and binding energies
consistent with e−

aq
.
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Beyond the 1p states, the excited states are quite diffuse and are not adequately

represented in small simulation cells. (Snapshots of the PEWP-2 excited-state wave-

functions can be found in Ref. [160].) In small unit cells, the second-order relaxation

correction (and accompanying intensity borrowing by the higher-lying states) leads

to a “hump” on the blue edge of the spectrum, but this feature shifts to lower energy

as Lbox increases, ultimately producing a smooth tail in our largest simulation cell.

Figure 3.12 plots the average excitation energy and radius of gyration, rg, for each

electronic state, as a function of Lbox. For the ground state and the 1p states, rg is

essentially independent of Lbox, but for the higher-lying excited states, rg increases

steadily as the box (and the grid) are extended. The highest-energy states that we

calculate are probably not converged with respect to the size of the unit cell, and

a further increase in Lbox would likely result in a further red-shift of these states

that would improve the agreement with experiment around 2.5 eV. Nevertheless, it

is clear that the qualitative effect of the solvent’s electronic relaxation is to create

“polarization-bound” excited states that give rise to a continuous blue tail, without

the gap in oscillator strength that is observed in both the unrelaxed spectrum and in

the spectra calculated using non-polarizable models.

These observations lead us to the following interpretation of the bulk e−aq absorp-

tion spectrum. The Gaussian feature on the low-energy side of the spectrum arises

from three 1s → 1p excitations, as many previous studies have also concluded.[67,

147, 148, 154, 155, 158, 160] The “blue tail”, however, arises from a excitations into

diffuse quasi-continuum states that are bound (in a vertical sense) entirely by the
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instantaneous polarization of the solvent upon excitation of the unpaired electron.

These states acquire intensity via solvent-facilitated intensity borrowing from the 1p

states, which are the only bright states. in a spherical cavity model.

Although the high-energy edge of our computed spectrum is not in quantitative

agreement with experiment, it is vastly improved relative to that predicted using non-

polarizable models. We note that our calculations do not include any sort of lifetime

broadening, which could be important given the high spectral density beyond the 1p

manifold [see Fig. 3.12(b)], and might be the origin of the Lorentzian line shape that

is observed experimentally. Another source of error in the high-energy line shape

is that our model includes the solvent’s contribution to the oscillator strengths only

indirectly, via the response of the electron’s wavefunction to changes in the MM dipole

parameters. In a fully-QM treatment, the H2O dipole moments would contribute to

the dipole moment operator in Eq. (3.17).

Shkrob et al.[158] have reported QM/MM calculations of the e−aq absorption spec-

trum, at the level of singles configuration interaction (CIS), but these calculations

did not result in a blue tail. These authors acknowledge that the higher-lying states

are quite diffuse, and it is unclear whether the QM region in these calculations is

sufficient to describe these states. The blue tail is also absent in the Kohn-Sham den-

sity of states obtained from a Car-Parrinello simulation of e−aq.[155] However, we have

recently reported time-dependent DFT simulations of the e−aq absorption spectrum,

using a QM/MM formalism in conjunction with the LRC-µBOP density functional,

and these calculations do result in a substantial blue tail.[160] We find that a sizable
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QM region (somewhat larger than that used by Shkrob et al.[158]) is required in order

to obtain this tail, which we interpret as additional evidence that solvent polarization

does indeed facilitates intensity borrowing by higher-lying excited states.

3.5.6 Polarized transient hole-burning

A long-standing discrepancy between experiment and one-electron simulations of e−aq

concerns whether the Gaussian part of the absorption spectrum is primarily homo-

geneously or inhomogeneously broadened.[179] Most previous simulations suggest in-

homogeneous broadening that should be detectable via a polarized transient hole-

burning (PTHB) experiment,[108, 151] wherein a polarized pump laser is used to

excite a sub-population of the 1s → 1p band, leading to a bleach in the signal

arising from a second, polarized probe laser.[179] Although the first PTHB exper-

iments appeared to confirm this prediction,[180] subsequent experiments failed to

detect the anisotropic bleaching dynamics that would indicate of inhomogeneous

broadening.[179, 181, 182]

Observation of polarization dependence in the bleaching dynamics requires three

properties. First, the three 1p sub-populations must be sufficiently well-separated so

that the pump pulse can excite primarily a single sub-population; second, the three

1s→ 1p transition dipole moments must be orthogonal, or very nearly so; and third,

the re-orientation of these transition dipoles, due to fluctuations in the asymmetry of

the cavity, must be slow enough to be detectable via femtosecond spectroscopy. Ac-

cording to the absorption spectrum calculated using our model (Fig. 3.11), electronic

relaxation of the solvent causes the three 1s→ 1p sub-bands to overlap more strongly
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decay curves.

than they do in the absence of relaxation, such that to pump just a single 1s → 1p

transition probably requires excitation at either the red edge or the blue edge of the

Gaussian feature. However, our results suggest that the 1s→ 1p excitations near the

blue edge are strongly overlapped by quasi-continuum transitions that, as Schwartz

and co-workers point out,[179] are unlikely to have sufficient asymmetry in their tran-

sition dipoles (if indeed they are polarized at all) to observe polarization-dependent

anisotropy. According to our model, then, the only way in which one might expect

to observe PTHB dynamics is by exciting on the extreme red edge of the absorption

spectrum. Such an experiment has been reported,[179] but no significant polarization

dependence was observed in the bleaching dynamics.

Assuming that our model describes the excited states correctly, and assuming that
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selective excitation of the lowest-lying 1p state is indeed feasible, our model suggests

that one might still fail to observe PTHB dynamics. To see why, we plot in Fig. 3.13

the probability distribution function for θ, the angle between the 1s→ 1p transition

dipole moment vectors. In the absence of electronic relaxation of the solvent, these

three vectors are nearly orthogonal, with θ > 85◦ in nearly every case. Allowing for

second-order relaxation, however, we obtain a much broader distribution in θ, with

some amplitude all the way out to at least θ = 60◦. Thus, the relaxed transition

moments are not strictly perpendicular, even though the excited-state wavefunctions

are clearly p-like. Thus, even if it proves feasible to separate the three 1s → 1p

excitations on an energetic basis, one still would still have difficulty distinguishing the

populations based upon their orientation. Furthermore, Shkrob[183] has calculated

an autocorrelation function for rotation of the 1s → 1p transition dipole moments,

and found that this correlation function decays on a time scale of ∼100 fs. Together,

these observations indicate that the PEWP-2 model of e−aq is consistent with the lack

of observed PTHB dynamics.

It is worth noting that Larsen et al.[44] have used similar arguments to explain

the lack of PTHB dynamics in their e−aq model, which does not form a cavity. Indeed,

because earlier, cavity-forming models did predict observable PTHB dynamics, this

argument was used as evidence in support of the newer model, with its much more

diffuse electron.[44] At the very least, the results in this section demonstrate that lack

of PTHB dynamics need not be inconsistent with a cavity-bound electron.
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3.6 Summary and conclusions

We have described a re-parameterization of a polarizable electron–water interaction

potential, PEWP-2, leading to a new hydrated-electron model in which many-body

electron–water polarization is included in a self-consistent way. Unlike our previous

model (PEWP-1),[3] which afforded promising results for (H2O)−n clusters but failed

to localize the electron in the condensed phase, the new parameterization performs

at least as well for clusters (as judged by comparison to ab initio benchmarks), but

also qualitatively reproduces various experimental data for e−aq in bulk water. As

Shkrob et al.[157, 158] and others[146, 156] have argued, quantitative reproduction of

structural features and experimental parameters may require many-electron quantum

mechanics. Nevertheless, the PEWP-2 model affords a VEBE and an optical absorp-

tion spectrum that are in far better agreement with experiment than are previous

one-electron models, while structural and dynamical features, such as the radius of

gyration and diffusion coefficient, are at least qualitatively correct.

For e−aq in bulk water, we have demonstrated that H2O molecules in the first

solvation shell are poor H-bond donors but good H-bond acceptors, a result that we

can also reproduce using a non-polarizable model. This disruption in the H-bonding

environment is caused by enhanced librational motions of water molecules nearby the

solvated electron, and may be related to the electron’s anomalously large entropy of

hydration.

By extrapolating the bulk VEBE to the infinite-dilution limit, we predict a bulk
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binding energy of 3.7 eV, a value that is slightly smaller than the most recent ex-

trapolation of cluster photo-electron data,[4] but is 0.4 eV higher than previous

extrapolations.[2] Our value is also 0.4 eV higher than two recent direct measure-

ments of the VEBE using liquid microjets,[5, 6] but is in good agreement with a third

liquid microjet experiment.[7] The discrepancy between these various values under-

scores the need for models such as the one constructed here, which can reproduce

both qualitative characteristics of bulk e−aq, but are also quantitatively accurate for

cluster VEBEs.

The importance of self-consistent, many-body electron–water polarization has

been demonstrated in two very important ways. First, we have shown that the elec-

tronic re-organization energy that accompanies electron detachment is quite large

(≈ 1.4 eV) in the bulk limit. This observation indicates that non-polarizable models

can dramatically overestimate VEBEs in large systems, while simultaneously under-

estimating VEBEs in the small (H2O)−n clusters that are often used as benchmarks.

A second key effect of self-consistent polarization is a qualitative change in the line

shape of the optical absorption spectrum for e−aq, bringing the predicted spectrum

into much closer agreement with experiment than has been seen in any previous one-

electron model. Inclusion of electronic relaxation of the solvent upon excitation of

the one-electron wavefunction has the effect of red-shifting the absorption maximum

by 0.3 eV, placing it in remarkable agreement with experiment. Furthermore, re-

laxation greatly increases the number of (vertically) bound electronic states, leading

to a smooth tail on the blue edge of the absorption spectrum. This “blue tail” has
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proven elusive in previous simulations,[154] but in our model it arises naturally due

to solvent-facilitated intensity borrowing by quasi-continuum excited states.

It is our hope that this potential will ultimately be useful in interpreting photo-

electron experiments for (H2O)−n clusters, and for studying the ground- and excited-

state dynamics of the solvated electron in bulk water. Work along these lines is in

progress.
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CHAPTER 4

Comment on “Does the hydrated electron occupy

a cavity?”4.1

A recent report by Larsen, Glover, and Schwartz [44] (LGS) challenges the long-

held view that the “hydrated” (aqueous) electron, e−aq, consists of a one-electron

wavefunction localized within a quasi-spherical solvent cavity, and coordinated to 4–

6 water molecules. This has been the dominant paradigm for more than 40 years,[26]

and it is supported by numerous atomistic simulations.[67, 73, 184] The challenge by

LGS is based upon a new, “rigorously derived” electron–water pseudopotential;[44]

simulations using this one-electron pseudopotential model do not afford a well-defined

cavity. This model, however, has not yet been tested against reliable benchmarks.

Such tests are reported here.

The LGS pseudopotential is derived within the “static exchange” (SE) approxima-

tion, which essentially amounts to a Hartree-Fock calculation for H2O
− using frozen

molecular orbitals (MOs) for H2O. LGS have devised a clever way to obtain a nodeless

pseudo-orbital for the unpaired electron, without introducing approximations that are

4.1This chapter appeared, in a slightly modified form, as a technical comment in Science, in 2011,
volume 331, page 1387.
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typically made in this context.[166] Once the pseudo-orbital is determined, it can be

converted into an electron–water pseudopotential for condensed-phase simulations.

The LGS pseudopotential was fit using Mulliken atomic charges QO = −0.862709e

and QH = +0.431355e obtained from a Hartree-Fock calculation, but e−aq simulations

were performed using QO = −0.82e and QH = +0.41e, corresponding to the SPC wa-

ter model.[44] (This corresponds to a reduction in H2O dipole moment from 2.39 D

to 2.27 D, at the SPC geometry.) LGS augment their model with an approximate

polarization potential, which is not included in the SE treatment, and far less atten-

tion is paid to this aspect of the model. Polarization parameters from the literature

are used, without further comment.

High-level ab initio calculations have been reported for (H2O)−n clusters, n = 2–

33,[3] but LGS do not report any comparisons to these data. Fig. 4.1 compares

benchmark ab initio vertical electron binding energies (VEBEs) to results obtained

using the LGS pseudopotential. The LGS potential strongly overbinds the electron

compared to ab initio calculations. By modifying a single parameter in the polariza-

tion potential [Rc, in the Supporting Information for Ref. [44]], we obtain a model that

we call LGS-mPol that performs reasonably well against this benchmark database,

albeit not as well as other hydrated-electron models in the literature.[3, 67, 184] We

do not intend LGS-mPol to be a serious e−aq model, but rather to demonstrate that

the overbinding exhibited by the LGS model cannot be fixed in a simple way, without

deleterious effects on other observable properties.
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Figure 4.1: Panel (a): Comparison of MP2/6-31(1+,3+)G* benchmark VEBEs [3]
to results obtained using LGS-based pseudopotential models, for 71 different (H2O)−n
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and optical absorption spectrum of e−aq, obtained from bulk simulations. The gray
boxes in (b) and (c) depict the range of the experimental estimates of these quanti-
ties. [2, 4–7]
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We have performed molecular dynamics simulations of e−aq using the same sim-

ulation procedure reported in Ref. [44]. We find that radial distribution functions

and other structural properties reported by LGS are not strongly affected by varia-

tion of the polarization potential or the H2O point charges. Rather, it is the LGS

pseudopotential itself that is indisposed toward cavity formation.

Figs. 4.1(b)–(d) shows several properties obtained from our simulations and com-

pares them to experimental estimates. The average radius of gyration for the LGS

model is in good agreement with experiment,[2] but the agreement is far less sat-

isfactory for the LGS-mPol variant examined here, which performs much better for

VEBEs. The optical absorption spectrum predicted by the LGS model is slightly red-

shifted, relative to experiment, and a more rigorous treatment of solvent polarization

should further red-shift the spectrum.[184] The attenuated polarization potential in

LGS-mPol yields a spectrum that is red-shifted from experiment by 0.7 eV, which

makes sense given the larger radius of gyration predicted by this model.

Strikingly, all 29 excited states that we use to generate absorption spectra are

vertically bound. In fact, the 29th excited state is bound, in the LGS model, by

∼ 1.0 eV. Fig. 4.1(c) plots the distribution of ground-state VEBEs obtained from

the simulations. The LGS model overbinds the electron by 1–2 eV, while LGS-mPol

predicts a VEBE within the range of experimental estimates for e−aq.[2, 4–7] This

agreement is partly fortuitous, as the binding energy increases by ∼ 1 eV if Ewald

summation is used to sum the long-range Coulomb interactions,[184] whereas we

follow the procedure of LGS [44] and use the minimum-image convention.
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In Ref. [44], LGS plot the ground-state e−aq energy as a function of time. This

function oscillates around −5.5 eV, whereas the lowest few excited-state energies

oscillate between −3 eV and −4 eV. In contrast, the ground-state energy inferred from

experiment is 3.4–4.0 eV.[2, 4–7] In view of this tremendous discrepancy, the assertion

by LGS that “in every case. . . our predictions are consistent with experiment” appears

to be overstated.

Ab initio calculations on (H2O)−n clusters find that orbital relaxation upon elec-

tron detachment is fairly minor,[156] hence the Hartree-Fock (HF) singly-occupied

MO (SOMO) should offer a qualitatively correct description of the unpaired electron,

provided that this orbital is bound. The LGS pseudopotential, in conjunction with

an ad hoc polarization potential, is intended to mimic the HF SOMO. To examine

the extent to which it does so, we carved out a (H2O)−31 cluster from a cavity-forming

model of e−aq,[67] which represents a 5.5 Å radius around the centroid of the cavity-

bound wavefunction. The geometry of this cluster was subsequently optimized using

HF/6-31++G* theory and, alternatively, the LGS model. Fig. 4.22 shows that HF

optimization preserves the cavity-bound nature of the SOMO, but this cavity col-

lapses when optimized using the LGS model. The latter affords a wavefunction that

permeates throughout the cluster. At the LGS-optimized geometry, the HF SOMO

is unbound and is localized on the surface of the cluster; it has been “squeezed out”

by the collapse of the cavity.

Collapse of the solvent cavity arises because the LGS pseudopotential is far more

attractive near the hydrogen atoms than previous pseudopotentials. This feature
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Figure 4.2: Results of optimizing a cavity-bound (H2O)−31 structure. The initial geom-
etry [panels (a) and (b)] was carved out of a bulk e−aq simulation and clearly exhibits a
compact, cavity-bound wavefunction at the Hartree-Fock level. The cluster geometry
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function in (d) is calculated using the LGS model. The cluster geometry in (e) and
(f) is the LGS minimum-energy geometry, although the wavefunction in (e) is the
Hartree-Fock SOMO. Each isosurface encapsulates 0.9e.
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results from the fact that the density associated with the “exact” pseudo-orbital

obtains a maximum over the hydrogen atoms whereas the density of the exact SE

wavefunction is at a minimum; see Fig. 1 in Ref. [66] or Fig. 3.3 in this thesis. Any

pseudopotential derived from this pseudo-orbital will result in a far too attractive

region near the hydrogen atoms. In contrast to the LGS potential, the true HF

potential is clearly repulsive in these regions, as evidenced by the “dents” in the HF

SOMO around each water molecule (see Fig. 2). In a separate comment Turi and

Madarász also argue that the LGS potential is too attractive.[185] These authors show

that a minor change in the model can be made (which reproduces the eigenvalue of

the pseudo-orbital) which results in cavity formation.

In there response LGS quip that “Jacobson and Herbert’s claims of supposed errors

in our development reflect a fundamental misunderstanding of pseudopotential the-

ory” and state that “pseudopotentials are based on pseudo-orbitals, not LUMOS”.[186]

LGS entirely miss our point. The fact that the pseudo-orbital density has a maximum

where the LUMO has a minimum implies that the pseudo-orbital does not reproduce

the “exact” SE wave function, which is an error. This discrepancy evidently leads to

the lack of cavity formation. We do not criticize their fitting procedure, but object

to their apparent viewpoint that the model is not approximate, referring to it as

“rigorously-derived” and in some instances as “numerically exact”.

The structure of e−aq is intimately quantum-mechanical, and cannot be probed

directly by experiment, so there is an acute need for theoretical models to aid in

the interpretation of experimental observables. Before new theoretical predictions
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can be taken seriously, however, such models must be carefully tested against the

large body of existing e−aq data. Relative to the current generation of cavity-forming

pseudopotential models,[67, 184] the model introduced in Ref. [44] fares poorly in

such tests.
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CHAPTER 5

Polarization-bound, quasi-continuum states are

responsible for the “blue tail” in the optical

absorption spectrum of the aqueous electron 5.1

The notion of a “solvated electron” was introduced more than a century ago, to ex-

plain the electrical conductance and optical spectra exhibited by solutions of alkali

metals.[22, 187] Owing to the relatively short lifetime of this species in water, how-

ever, direct observation of the aqueous electron (e−aq) was not made until 1962,[124]

but since that time it has been recognized that e−aq is one of the primary radicals

formed upon radiolysis of aqueous systems.[25] Nevertheless, important questions

persist concerning the structure and dynamics of this diffuse, polarizable, and funda-

mentally quantum-mechanical solute, especially with regard to its excited electronic

states.

Solvated electrons can be generated not only by ionizing radiation, but also by

UV irradiation of liquid water, at energies just above the band edge of water’s UV

spectrum;[188, 189] the details of this low-energy ionization mechanism remain a mat-

ter of debate.[190–193] Moreover, the “pre-hydrated” (or “wet”) electron, a short-lived

5.1This chapter appeared as a communication in the Journal of the American Chemical Society in
2011, volume 132, page 10000.
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(< 1 ps), non-equilibrium precursor to the fully solvated electron, whose existence

is inferred from ultrafast spectroscopy,[194–196] has only recently been definitively

assigned as an excited state of e−aq.[197] The time scale for internal conversion to

the ground state remains controversial, however, with experimental and theoretical

estimates ranging from 50–1000 fs.[82] Dissociative electron attachment of the pre-

hydrated species by nucleic acids has recently been implicated[27, 198, 199] as a

mechanism for DNA damage by ∼ 0 eV electrons,[200–202] suggesting that reduc-

tive chemistry plays a prominent role in biological radiation damage, alongside the

more familiar oxidative damage mechanisms involving OH radicals. In contrast to the

pre-hydrated electron, however, the equilibrium species e−aq appears to be relatively

ineffective in inducing DNA strand breaks.[203]

Given the importance of excited states of e−aq in radiation chemistry, and in view

of the fact that the optical absorption spectrum of e−aq is the primary means of de-

tecting and characterizing this species in bulk water, it is significant that no theo-

retical model or calculation has yet provided a qualitatively satisfactory description

of this spectrum. The spectrum (Fig. 1) exhibits a Gaussian line shape on the red

edge, with a peak absorption intensity at 1.7 eV (720 nm).[2] The overall shape

of this Gaussian feature is reproduced by simulations, albeit slightly blue-shifted,

and the prevailing view (based upon simulations using one-electron pseudopotential

models[147, 148, 154]) is that this feature arises from heterogeneous broadening of

three s → p excitations of an electron in a cavity. The high-energy side of the spec-

trum, in contrast, exhibits a Lorentzian line shape[2] that is absent in all previous
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Figure 5.1: Comparison of the experimental absorption spectrum of e−aq (using line-
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of the spectrum. (Only QM water molecules are shown, and these plots represent
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simulations of the e−aq absorption spectrum, including ab initio calculations.[155, 158]

Here, we simulate the electronic absorption spectrum of e−aq in bulk water, us-

ing both one-electron and many-electron quantum-mechanical (QM) models. The

one-electron model was described in chapters 2 and 3 and incorporates many-body

electron–water polarization in a self-consistent way. The many-electron model is

time-dependent density functional theory (TD-DFT), using a long-range corrected

functional that affords accurate electron binding energies in (H2O)−n clusters,[3, 204]

and is free of spurious, low-energy charge-transfer excited states that often plague

151



condensed-phase TD-DFT calculations.[205–207] These are two very different theo-

retical paradigms, yet the result in both cases is the same: a spectrum that is in

far better agreement with experiment than is any previous simulation, both in terms

of the peak position and, more importantly, the prediction of significant oscillator

strength in the blue tail. The calculations indicate that these higher-energy states

(beyond the p manifold) extend deep into the interstices between water molecules,

and are bound only by the overall polarization of numerous water molecules with

which they interact.

A TD-DFT simulation of the e−aq absorption spectrum was performed by sampling

over snapshots extracted from a simulation of e−aq in bulk water, obtained using a

one-electron model that has been used in many recent e−aq simulations.[67] Roughly

two solvation shells (≈ 28 water molecules) were described using DFT, whereas the

remaining bulk solvent was represented by molecular mechanics (MM) point charges.

The basis set (6-31+G*) is atom-centered, yet the orbitals shown in Fig. 1 make it

clear that this basis is diffuse enough to describe an electron that inhabits the voids

between water molecules.

As shown in Fig. 5.1, the TD-DFT simulation exactly reproduces the peak absorp-

tion intensity, without adjustable parameters, and also reproduces the width of the

Gaussian portion of the spectrum. As in the one-electron models, this feature arises

from inhomogeneous broadening of three s→ p excitations. This is true despite small

contributions to the e− wavefunction from frontier MOs of the water molecules. These

small contribution appear to be necessary to explain certain quantitative features of
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e−aq spectroscopy,[146, 156, 157] but do not qualitatively alter the cavity picture of

e−aq, and the low-energy excited states can still be rationalized in terms of a “particle

in a spherical box” model. Furthermore, each electronic excitation of e−aq is well-

represented by a single particle/hole pair of natural transition orbitals (NTOs),[208]

a few of which are depicted in Fig. 1.

Notably, when only the lowest three excited states are included in the TD-DFT

calculation, the spectrum that is obtained is strictly Gaussian. When additional

excited states are considered, however, we observe a long tail at higher excitation

energies. (In all, 15 excited states are included in these calculations; tests indicate

that the next five states support . 1% of the total oscillator strength.) The combined

oscillator strength of the three s → p excitations is extremely sensitive to the size

of the QM region in these calculations; somewhat smaller QM regions afford similar

excitation energies, but in such calculations, the p states carry essentially all of the

oscillator strength. Thus, relaxation of the solvent electron density upon excitation of

the cavity-bound electron facilitates intensity borrowing by the higher-energy states,

which manifests as the blue tail seen in Fig. 1.

Given that the higher-lying excited states penetrate well beyond the QM region

employed here, it will be extremely difficult to reproduce the blue tail quantitatively

in QM/MM calculations of this sort. To complement this approach, we turn to our

polarizable one-electron model, where simulations in bulk water can be performed

using periodic boundary conditions.

Our model, which is described in detail in Ref. [184], employs an electron–water
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Figure 5.2: (a) Absorption spectra for e−aq computed from a one-electron model, using
various approximations for the dipole relaxation energy. (b) Spectrum computed
using second-order relaxation, decomposed into contributions from various excited
states.

pseudopotential in conjunction with a polarizable water model, and thereby includes

many-body electron–water polarization. This model reproduces numerous ab initio

benchmarks in (H2O)−n clusters, n = 2–33, and provides a vertical electron binding

energy (VEBE) for bulk e−aq that is in far better agreement with experiment than

previous (non-polarizable) models, owing to a large (≈ 1.4 eV) dipole relaxation

energy, for vertical electron detachment.

We calculate the absorption spectrum from this model in several different ways,

with results shown in Fig. 5.2. In principle, one should calculate the dipole relaxation

energy by converging the H2O dipoles self-consistently with the excited-state e− wave-

functions, but this proves difficult because the relaxation energy is large compared

to the energy-level splittings. Complete neglect of dipole relaxation (by freezing the
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H2O dipole moments at their ground-state values) affords the “unrelaxed” spectrum

in Fig. 5.2(a), which is qualitatively incorrect but is quite similar to results obtained

with non-polarizable one-electron models.[67] This spectrum consists of a low-energy

Gaussian part arising from the s→ p excitations, along with a higher-energy feature

(above 3 eV) consisting of bound→ continuum excitations. In between these features

is a conspicuous gap in oscillator strength, not seen experimentally.

To go beyond this crude approximation, we estimate the dipole relaxation energy

using perturbation theory, taking the perturbation to be

Ŵ = Ĥ[{µex}]− Ĥ[{µgs}] . (5.1)

Here, Ĥ[{µgs}] represents the Hamiltonian determined using dipoles {µgs} converged

self-consistently with the ground-state wavefunction, whereas the dipoles {µex} are

converged to the excited-state eigenfunctions of Ĥ[{µgs}]. We do not allow the ground

state to mix with the perturbed wavefunctions, so that all of the latter are orthogonal

to the ground state, even if they are not quite orthogonal to one another owing to

the state-specific nature of the perturbation.

A first-order correction for Ŵ brings the peak absorption intensity into nearly

perfect agreement with experiment, as shown in Fig. 5.2(a). The line shape changes

only slightly, however, because first-order perturbation theory alters the line shape

only via the excited-state energies, En, that appear in the expression for oscillator

strength:

f0→n =
2me

3~2
(En − E0)

∣∣〈ψ0| µ̂ |ψn〉
∣∣2 . (5.2)
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VEBE = 3.29 (4.24) eV(a) E(0    2) = 1.43 (1.80) eV(b)

E(0    8) = 2.39 (3.02) eV E(0    14) = 2.80 (3.68) eV(c) (d)

Figure 5.3: Typical examples of (a) the ground-state and (b)–(d) excited-state wave-
functions, obtained from the one-electron model. The VEBE and excitation energies
for these particular states are shown as well, with relaxed excitation energies in paren-
theses. The isosurfaces encapsulate 90% of the probability density, |ψ|2.

Second-order perturbation theory is required to obtain a correction to the transi-

tion dipoles, and this correction results in a qualitative change in the distribution of

oscillator strengths, leading to significant intensity in the “blue tail” and far better

agreement with the experimental line shape. To the best of our knowledge, no other

model affords a blue tail with significant oscillator strength.

According to this model, polarization of the water molecules has the effect of

binding & 25 excited states that were unbound in the absence of relaxation. These
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excited-state wavefunctions are highly diffuse, and penetrate well beyond the cav-

ity occupied by the ground-state wavefunction. Representative examples of these

wavefunctions are depicted in Fig. 5.3.

The extremely diffuse nature of these states is consistent with the observation

that the blue edge of the e−aq optical absorption overlaps the red edge of its photo-

electron spectrum.[2] In the one-electron simulations, the p-state manifold extends

no higher than about 2.5 eV, whereas unbound excitations appear at 3.0–3.5 eV.

Within the narrow window in between, the excited states must evolve from compact,

hydrogenic wavefunctions [as in Fig. 5.3(b)] into completely delocalized plane waves.

Our calculations suggests that this gap is bridged by “quasi-continuum” states [as in

Fig. 5.3(d)] that are (vertically) bound, but only via polarization of numerous water

molecules that interact with these highly-delocalized electronic wavefunctions.

In summary, we have calculated the absorption spectrum of e−aq using two com-

pletely different methodologies: a many-electron method, in which the water molecules

possess explicit MOs that may contribute to the e− wavefunction; and also a one-

electron model where this is not possible, but where the H2O molecules possess in-

ducible dipoles that respond to excitation of the e− wavefunction. Qualitatively, both

calculations support the same physical picture: that the “blue tail” in the electronic

absorption of e−aq arises from excitations to delocalized, bound states that are sta-

bilized by polarization of water molecules beyond the first solvation shell. Solvent

polarization facilitates intensity borrowing from the p states, and while this effect

is small, the substantial number of these polarization-bound, quasi-continuum states
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affords significant intensity in the blue tail.
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CHAPTER 6

A simple algorithm for determining orthogonal,

self-consistent excited-state wave functions for a

state-specific Hamiltonian: Application to the

optical spectrum of the aqueous electron 6.1

6.1 Introduction

First observed directly in 1962,[124] the aqueous (or hydrated) electron, e−aq, has since

that time been the subject of numerous experimental and theoretical investigations.[43,

209] Despite numerous atomistic simulations of this species over the past 25 years,[43]

it was not until quite recently that the Lorentzian decay on the high-energy side of

the optical absorption spectrum was reproduced even qualitatively.[160, 184]

Due to the highly quantum-mechanical nature of the solute (an electron), the

dynamics and bulk structure of e−aq have mostly been studied using one-electron pseu-

dopotential methods,[39, 43, 64, 66, 210] or in other words, hybrid quantum me-

chanics/molecular mechanics (QM/MM) procedures with a one-electron QM region.

The ostensible simplicity of such models (only one QM electron), combined with the

importance of e−aq in the radiation chemistry of aqueous systems,[25, 209, 211] means

6.1This chapter appeared as a full article in the Journal of Chemical Theory and Compuation, in
2011, volume 7 page 2085.
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that these one-electron pseudopotential models have historically been used to test a

variety of mixed quantum/classical simulation techniques.

We have recently developed a new one-electron pseudopotential model that incor-

porates self-consistent polarization between the solvent (water) and the single “ex-

cess” electron.[184] Results from this model compare favorably to ab initio calcula-

tions in (H2O)−n clusters, and various properties of the bulk species, e−aq, are also re-

produced reasonably well.[184] Our model utilizes the AMOEBA water potential,[14]

which treats polarization by means of inducible point dipoles located on each MM

atom. In our hydrated-electron model,[3, 184] the electric field generated by the QM

wave function contributes to the total electric field that polarizes these dipoles.

Because the induced dipoles represent electronic degrees of freedom, they should

respond (polarize) on the time scale of electronic excitation. As such, it seems physi-

cally reasonable that the calculation of excited states in our polarizable model should

require a self-consistent calculation in which the solvent dipoles are converged with

respect to each excited-state wave function. Because the QM Hamiltonian depends

on the inducible dipoles, the realization of such a procedure effectively renders the

Hamiltonian state-specific, i.e., the nature of the Hamiltonian depends upon the par-

ticular electronic state that one is attempting to calculate.

In previous work,[184] we encountered difficulties in obtaining self-consistent,

excited-state solutions to this effective Hamiltonian, owing to the fact that the energy

gaps between states are small (∼0.1 eV) while the electronic relaxation energy of the

solvent is large (e.g., 1.4 eV for vertical electron detachment in the bulk limit[184]).
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This leads to frequent state-switching during the wave function/dipole optimization.

Even if we were able to converge the excited-state wave functions self-consistently

with the induced dipoles, the wave functions thus obtained would not be mutually

orthogonal, owing to the state-specific nature of the effective Hamiltonian. In view of

these difficulties, we have previously resorted to the use of a perturbative correction

for the solvent’s polarization response upon excitation of the wave function.[160, 184]

While this approach allowed us to make progress in understanding the role of solvent

polarization, it suffers from a lack of mutual orthogonality amongst the excited-state

wave functions, owing to the state-specific nature of the perturbation. As such, one

might reasonably be concerned about possible artifacts in the predicted oscillator

strengths.

Here, we report a simulated annealing procedure in the space of electronic vari-

ables (wave function amplitudes and induced dipoles) by means of which the classical

dipoles are converged self-consistently with respect to each wave function. In addition,

our algorithm employs Lagrange multipliers to ensure that all of the wave functions

are orthonormal, despite the state-specific nature of the Hamiltonian. As a numerical

demonstration of this procedure, we calculate the electronic absorption spectrum of

the aqueous electron, using our polarizable one-electron model. The orthogonality

issue is general to QM/MM methods that employ polarizable force fields, and there-

fore these ideas may be more broadly applicable. (However, the large polarization

energies that we encounter may be unique to charged systems.)

Orthogonality is also an issue in certain self-consistent field (SCF) methods. For
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example, Gill and co-workers[212, 213] have recently introduced a maximum overlap

method (MOM) that attempts to find excited-state solutions to the SCF equations by

choosing the occupied orbitals at each SCF iteration, not in the usual aufbau way, but

rather by selecting those molecular orbitals that have the largest overlap with a set of

user-specified guess orbitals. This situation is similar to the problem outlined above

in that the effective Hamiltonian (Fock matrix) is state-specific, and the excited-state

solutions are not mutually orthogonal. Moreover, there is a direct correspondence

between our polarizable QM/MM method and the SCF method. In the QM/MM

procedure, we use the one-electron density, |ψ|2, to compute induced dipoles, then

use these dipoles to construct an effective Hamiltonian and finally diagonalize this

Hamiltonian to obtain a new density. This process is iterated to self-consistency. In

the SCF method, one uses the density to compute a new Fock matrix. We believe

that our algorithm can be modified for use in the SCF procedure, in a manner that is

conceptually (if not computationally) straightforward, and we hope to report on this

in the future.

This paper is organized as follows: Section 6.2 provides a brief overview of our

one-electron pseudopotential model for e−aq and introduces the electronic annealing

method. Details of the calculations are given in Section 6.3. In Section 6.4, we

present results for the optical absorption spectrum of e−aq and draw a comparison with

results obtained previously, using a perturbative treatment of the solvent’s polariza-

tion response. We discuss certain formal aspects of the method, and some possible

generalizations, in Section 6.5. Section 6.6 provides a summary.
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6.2 Theory

6.2.1 Polarizable QM/MM model

We will not discuss our hydrated electron model in detail, but will only highlight

those aspects that are important to understand the annealing procedure. As in many

polarizable QM/MM models, the total Hamiltonian in our model is a function of both

the coordinates of the MM atoms, {~RI}, as well as the induced MM dipoles, {~µi}.

The one-electron Hamiltonian can be written

Ĥ
(
{~µi}, {~RI}

)
= T̂ + Velec-water

(
{~µi}, {~RI}

)
+ VMM

(
{~µi}, {~RI}

)
. (6.1)

Here, T̂ is the one-electron kinetic energy operator, Velec-water is the electron–water

pseudopotential, and VMM is the molecular mechanics (MM) potential energy function

for the polarizable water molecules. In our model, VMM is the AMOEBA water force

field.[14] The pseudopotential, Velec-water, contains electrostatic interactions between

the electron and both the permanent and induced multipole moments of the water

molecules. In addition, it contains a repulsive potential that keeps the electron from

collapsing into the core molecular region.

The induced dipoles are obtained by solution of the equation[3, 184]

~µi = αi

(
~F MM

i + ~F QM
i

)
, (6.2)

in which αi is an (isotropic) polarizability for site i, ~F MM
i is the electric field produced

by the MM subsystem at site i, and ~F QM
i is the electric field due to the wave function,

also evaluated at site i. It can be shown that the induced dipoles defined by Eq. (6.2)
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minimize the total energy with respect to variations in ~µi.[3, 104] The one-electron

wave function is determined by the solution of the Schrödinger equation

Ĥ
(
{~µi}, {~RI}

)
|ψ〉 = E |ψ〉 . (6.3)

In practice, |ψ〉 is replaced by c, a vector of amplitudes on a real-space grid. In order to

obtain self-consistent polarization, we iterate Eqs. (6.2) and (6.3) to self-consistency.

This procedure works well for the ground state but is difficult to converge for more

than one or two excited states.

As a result of this difficulty we have, in previous work, computed approximate

excited states by means of a simple perturbative scheme.[160, 184] To define the

perturbation, we first calculate the ground-state wave function |ψ0〉 and some number

of excited state wave functions, |ψn〉, using dipoles {~µ (0)
i } that are converged with

respect to |ψ0〉. For each excited state, we then obtain new dipoles, {~µ (n)
i }, that are

converged with respect to |ψn〉, without relaxing |ψn〉. The quantity

Ŵn = Ĥ
(
{~µ (n)

i }, {~RI}
)
− Ĥ

(
{~µ (0)

i }, {~RI}
)

(6.4)

serves as the perturbation.[160, 184]

The perturbatively-corrected wave functions thus obtained are not orthogonal,

because the perturbation is state-specific. However, they do turn out to be approxi-

mately orthogonal, with typical overlaps on the order of ∼0.1. Similar overlaps have

been reported in MOM-SCF calculations, yet oscillator strengths in these calculations

are in reasonable agreement with benchmark results.[212] As such, we believe that

the e−aq spectra computed using the perturbative approach are at least qualitatively

correct.
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6.2.2 Electronic annealing procedure

We next describe our new algorithm to determine orthogonal excited states for state-

specific effective Hamiltonians. The idea is not entirely new, and is inspired by the

Car-Parrinello molecular dynamics (CPMD) method,[214, 215] wherein the electronic

degrees of freedom are propagated dynamically as classical variables. The CPMD

approach can also be used to obtain ground-state, single-determinant wave functions

by clamping the nuclei in place and “annealing” a guessed wave function.[214, 216]

This amounts to a systematic removal of the fictitious kinetic energy associated with

the electronic degrees of freedom. So far as we are aware, however, this technique

has not been applied to the annealing of excited states. The main difference here,

apart from the obvious difference of having only one QM electron in the present

implementation, is that we constrain the wave function of interest to be orthogonal

to each previously-determined wave function. Doing this allows one to “march up”

the manifold of excited states. Each excited state will then be defined as the lowest

energy state that is orthogonal to all previously determined states. In a sense, this

is a natural generalization of the linear variation method in elementary quantum

mechanics.

Let c0 denote the vector of wave function amplitudes that we are interested in

optimizing, and let {ci}Ni=1 denote a set of previously-determined states. Note that

c0 need not (and probably does not) represent the ground state, but the notation for

the equations of motion will be simpler if we adopt a common index for all of the

vectors. Only c0 is propagated in time, whereas c1, . . . , cN are fixed. We also find it
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convenient to define a dot product

ci · cj = 〈ψi|ψj〉 =

Ngrid∑

µ=1

ci,µ cj,µ ∆τ (6.5)

where the sum runs over grid points and ∆τ is the volume element defined by the

cubic grid.

We insist that the new state, c0, must be orthogonal to the previously-determined

states c1, . . . , cN . Our method employs a Lagrangian

L = 1
2
m̃el ċ0 · ċ0 + 1

2
λ0 (c0 · c0 − 1) +

N∑

i=1

λi(ci · c0)− E[c0, {~µi}, {~Ri}] , (6.6)

where the λi are undetermined multipliers that enforce orthonormality constraints.

The parameter m̃el is a fictitious electron mass and E[c0, {~µi}, {~Ri}] is the energy

functional. In principle, one could also propagate the induced dipoles dynamically.

Because updating the Hamiltonian is far more expensive than minimizing the energy

with respect to the induced dipoles, however, we choose to converge the dipoles each

time c0 is updated.

From the Lagrangian in Eq. (6.6), one obtains the following equations of motion:

m̃el c̈0 = −2 Hc0 +
N∑

i=0

λi ci . (6.7)

Here, and in what follows, we use H to denote the Hamiltonian matrix, and for

convenience we omit from our notation the explicit dependence of H on {~µi} and

{~RI}. In deriving Eq. (6.7), we have assumed that all quantities are real-valued.

In the limit that the fictitious kinetic energy goes to zero, minimizing L with

respect to c0 is equivalent to solving the time-independent Schrödinger equation.
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Therefore, if we propagate the electronic degrees of freedom according to Eq. (6.7),

and systematically remove kinetic energy, we should eventually find a local minimum

where ∂L/∂c0 = 0, although this minimum certainly need not be the global minimum.

To remove kinetic energy, we add a velocity-dependent friction term to the equations

of motion. Equation (6.7) is thereby modified, affording

m̃el c̈0 = −2 Hc0 +
N∑

i=0

λici − γ m̃el ċ0 . (6.8)

The friction parameter, γ, has dimensions of reciprocal time. This modified equation

of motion is not conservative and does not arise from any Hamiltonian.

We next develop our algorithm for propagating the equations of motion in Eq. (6.8).

For this we use a modified form of the velocity Verlet (VV) algorithm,[217] and follow

closely the work and the notation of Tuckerman and Parrinello,[218] who developed

a VV-type algorithm to integrate the CPMD equations of motion. In the case of no

damping (γ = 0), the appropriate VV equations for our purpose are

c0(t+ δt) = c0(t) + δt ċ0(t) +
(δt)2

2m̃el

f(t) +
(δt)2

2m̃el

N∑

i=0

λR
i ci(t) (6.9a)

ċ0(t+ 1
2
δt) = ċ0(t) +

δt

2m̃el

f(t) +
δt

2m̃el

N∑

i=0

λR
i ci(t) (6.9b)

ċ0(t+ δt) = ċ0(t+ 1
2
δt) +

δt

2m̃el

f(t+ δt) +
δt

2m̃el

N∑

i=0

λV
i ci(t+ δt) . (6.9c)

Here, δt is the time step and f(t) = −2 Hc0(t) is the force on c0 at time t. Although

we have written all of the vectors ci as functions of time (in order to use a common

index for c0 and ci, which facilitates a compact notation), the vectors {ci}Ni=1 are
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fixed and only c0 is propagated forward in time. In other words

ci6=0(t) = ci6=0(t+ δt) . (6.10)

As in the rattle method,[219] the undetermined multipliers in Eq. (6.9) are allowed

to have two different values, λR
i and λV

i , representing coordinate and velocity con-

straints, respectively. This is similar to the approach used to maintain orthonormality

constraints when integrating the CPMD equations of motion.[218]

Upon substituting f(t) → f(t) − γ m̃el ċ0(t) in Eq. (6.9), one obtains equations

for the case of finite damping. The corresponding VV algorithm can be expressed in

three steps. The first step consists of both “coordinate” (c̃0) and half-step “velocity”

( ˙̃c0) updates:

c̃0(t+ δt) = c0(t) + δt
(
1− 1

2
γδt
)
ċ0(t) +

(δt)2

2m̃el

f(t) (6.11a)

˙̃c0(t+ 1
2
δt) =

(
1− 1

2
γ δt
)
ċ0(t) +

δt

2m̃el

f(t) . (6.11b)

The second step consists of corrections,

c0(t+ δt) = c̃0(t+ δt) +
N∑

i=0

Xi ci(t) (6.12a)

ċ0(t+ 1
2
δt) = ˙̃c0(t+ 1

2
δt) +

N∑

i=0

Xi

δt
ci(t) , (6.12b)

where the intermediate quantities Xi are defined below. The final step is an update

and a correction:

˙̃c0(t+ δt) =
(
1 + 1

2
γδt
)−1
[
ċ0(t+ 1

2
δt) +

δt

2m̃el

f(t+ δt)

]
(6.13a)

ċ0(t+ δt) = ˙̃c0(t+ δt) +
N∑

i=0

Yi ci(t+ δt) . (6.13b)
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Equations (6.12) and (6.13) employ the intermediate quantities

Xi =
(δt)2

2m̃el

λR
i (6.14)

and

Yi =
δt

2m̃el

(
1 + 1

2
γδt
)−1

λV
i . (6.15)

The values of Xi and Yi are chosen to satisfy the constraint equations

c0 · c0 = 1 (6.16a)

c0 · ci6=0 = 0 . (6.16b)

We start by substituting the first update of the second step of the algorithm, Eq. (6.12a),

into these constraint equations. The result of this exercise is the following pair of

equations:

1 = X2
0 + 2X0

[
c0(t) · c̃0(t+ δt)

]
+
[
c̃0(t+ δt) · c̃0(t+ δt)

]
−

N∑

i=1

X2
i (6.17a)

Xi6=0 = −c̃0(t+ δt) · ci . (6.17b)

Equation (6.17b) can be solved for Xi, for each i > 0, and then Eq. (6.17a) affords

X0. To obtain Yi, we first obtain velocity constraints by differentiating Eq. (6.16)

with respect to t, and then substitute the final velocity update, Eq. (6.13), into these

velocity constraints. The result is

Yi = − ˙̃c0(t+ δt) · ci(t+ δt) . (6.18)

In deriving Eq. (6.17), we have assumed that the constraints are satisfied at time t,

and in obtaining Eq. (6.18) we have assumed that the position constraints [Eq. (6.16)]
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are satisfied at time t+δt. In practice, this means that the dynamics cannot start from

a vector c0 that does not satisfy the constraints in Eq. (6.16). At the beginning of the

annealing procedure for a particular state, the guess vector must be orthogonalized

against all previously-obtained vectors.

6.3 Computational Details

We compute the optical absorption spectrum of the bulk hydrated electron under peri-

odic boundary conditions, using Ewald summation for the long-range interactions.[184]

Two hundred geometries were taken from a ground-state MD run in a periodic box

that is 26.2015 Å on a side and contains 600 water molecules, corresponding to a

density of 0.997 g/cm3. We solve the Schrödinger equation on a grid with a spacing

of 0.93 Å, for a total of 283 = 21952 grid points. Details of the simulation protocol

can be found in Ref. [184].

The zeroth-order states are obtained with the Davidson-Liu method,[109] using a

convergence threshold ||(Ĥ −E)ψ|| < 10−8 Eh as described in Ref. [3]. We use these

zeroth-order states to generate a guess for the induced dipoles, {~µi}, which we use to

construct a Hamiltonian matrix. We then “anneal” the state of interest, subject to

the constraint that it remain normalized and orthogonal to the previously-determined

states, as described above. Prior to initiation of the MD procedure, we orthogonalize

the state of interest against all previous states, using the Gram-Schmidt procedure,

so that the constraints are satisfied initially. The initial velocities (ċ0) are taken to

be zero. The electronic degrees of freedom quickly pick up kinetic energy since the
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guess vector is rarely near a minimum. Annealing proceeds until the change in energy

between successive MD steps is less than 10−8 Eh. (By that point, the total electronic

kinetic energy is also ∼ 10−8 Eh.) At this point we have an updated wave function

that we use to induce new dipoles. This procedure is repeated until the energy change

between successive dipole updates is less than 10−8 Eh.

In a typical CPMD calculation, one has to choose the fictitious electron mass and

time step in such a way that the electronic degrees of freedom are adiabatically de-

coupled from the nuclear dynamics. (See Refs. [220–222] for an interesting discussion

in the context of extended-Lagrangian MD.) This is not an issue here, as we are not

propagating the nuclei; rather, we are trying to find the Born-Oppenheimer surface,

not propagate dynamics along or near it. For this reason, we simply choose a time

step and electronic mass such that the annealing is stable. We use δt = 0.1 fs and

m̃el = 400 a.u., but we have not attempted to optimized these parameters. (We do

find that for δt = 0.1 fs, masses less than 200 a.u. lead to a failure to maintain the

constraints.) In our calculations, the position and velocity constraints are typically

satisfied to an average absolute error of 10−14 and 10−16 a.u., respectively.

The friction parameter, γ, is chosen according to the recommendation in Ref. [223],

which is based on a three-point fit using energies from successive steepest-decent steps.

Since the initial wave function guess may be far from the minimum we found it helpful

to generate γ several times during the MD routine; we do this every 50 time steps.

We find that the annealing typically converges after 20–300 time steps if the guess is

reasonable. However, in cases where the guess is poor, it may take upwards of 2000
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steps. The Hamiltonian is not updated during this procedure so the annealing steps

are quite inexpensive compared to inducing new dipoles and updating the potential

energy at each grid point.

Below, we will compare the e−aq spectrum obtained from the annealing procedure

to that calculated using the perturbative scheme that was described in Section 6.2.

In the latter scheme, we do not allow the perturbed wave function to mix with the

ground state, so that each perturbed state remains orthogonal to the ground state,

even though the excited-state wave functions are not mutually orthogonal. (This at

least ensures that the transition dipoles are translationally invariant.) An electronic

spectrum is constructed from a histogram of oscillator strengths,

f0→n =
2me

3~2
(En − E0)

∑

κ∈{x,y,z}

∣∣〈ψ0| κ̂ |ψn〉
∣∣2. (6.19)

Wave functions were visualized with the Visual Molecular Dynamics program[118]

and isocontour values were generated with OpenCubMan.[224] Calculations were per-

formed with a simulation code that is described in Refs. [184] and [3].

6.4 Results

6.4.1 Benchmark tests using fixed dipoles

Prior to applying our procedure to determine the fully-relaxed excited states of the

aqueous electron, we would first like to demonstrate the method’s effectiveness in the

case that the induced dipoles are not updated. That is, we will first verify that the

annealing procedure reproduces the lowest few eigenstates of a Hamiltonian where

the induced dipoles are converged to the ground-state wave function (only), in which
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Davidson-Liu Electronic
diagonalization annealing

n En − E0 f0→n En − E0 f0→n

1 2.13004 0.294897 2.13009 0.294889
2 2.22616 0.306758 2.22618 0.306793
3 2.45889 0.271951 2.45890 0.272044
4 2.89899 0.002009 2.89901 0.001878
5 3.35058 0.007256 3.35084 0.007513
6 3.36738 0.001328 3.36724 0.001038
7 3.42538 0.000995 3.42542 0.001048
8 3.47247 0.010379 3.47247 0.010336
9 3.57655 0.000950 3.57662 0.000979
10 3.62341 0.006859 3.62349 0.006142

Table 6.1: Excitation energies (in eV) and oscillator strengths, in the absence of
dipole relaxation, computed using two different algorithms.

case there is no orthogonality problem. For this test, we first determine the ground

state wave function and induced dipoles with our standard method,[3, 184] then solve

for the lowest 30 eigenstates of Ĥ with fixed dipoles. Next, we take a set of vectors

composed of random numbers and use these as initial guess vectors for the annealing

algorithm, fixing the induced dipoles at the values previously determined for the

ground-state wave function.

Table 6.1 shows that the annealing procedure reproduces—with high accuracy—

both the excitation energies and the oscillator strengths that are obtained by a

straightforward Davidson-Liu procedure. In this particular case, where the dipoles

are fixed, the states emerge from the annealing procedure in ascending order of en-

ergy, indicating that the procedure does not become trapped in any local minima
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and most likely locates global minima of the constrained optimization problem. (Of

course, there is no guarantee that this will be the case once we allow the dipoles to

relax.) Using the convergence thresholds specified in Section 6.3, we can reproduce

excitation energies to within ∼10−4 eV, which is far smaller than the error intrinsic

to the pseudopotential model. Due to the completely random nature of the initial

guesses, the annealing procedure takes ∼1500 steps to converge in this example.

Because the annealing procedure employs a larger number of constraints for higher-

energy states as compared to lower-energy states, one might question whether the ac-

curacy of the computed energies degrades as one marches up the manifold of states,

adding more and more constraints as the calculation proceeds. The data in Table 6.1

suggest that this is not the case. For example, the n = 8 excitation energy com-

puted by means of the annealing algorithm is closer to the Davidson-Liu result than

is the n = 1 excitation energy. The accuracy is not degraded because the annealing

algorithm does not introduce any new constraints beyond those imposed by linear

algebra. For a fixed set of dipoles, the exact (non-degenerate) eigenvectors of the

Hamiltonian are necessarily orthogonal, and obtaining them via diagonalization or

via Davidson’s procedure is equivalent to minimizing the Rayleigh-Ritz quotient

R[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (6.20)

subject to the constraint that |ψn〉 must be orthogonal to all lower-lying states,

|ψ0〉, . . . , |ψn−1〉. Our annealing algorithm simply provides an alternative means to

enforce these constraints, and to carry out the Rayleigh-Ritz variational procedure in

a robust way.

174



Unlike this benchmark test involving fixed dipoles, the “right” answer is no longer

well-defined once we let the MM dipoles relax. However, the very close agreement

between the annealing results and the Davidson-Liu results in this test gives us con-

fidence that our approach is a reasonable one, if one insists (as we do here) that the

relaxed wave functions should be orthogonal to one another.

The excited states need not emerge in energetic order once we allow the induced

dipoles to relax. They would do so only if the annealing procedure managed to find the

global minimum of the effective potential (with constraints) on each annealing cycle.

The presence of inducible dipoles appears to make this quite challenging, as the states

do not come out of the calculations in ascending order. This gives us some pause, and

calls into question the nature of our guess. We have run additional calculations in

which the guess for the annealing procedure is provided by the first-order corrected

wave function from the perturbative scheme. Inspection of the energies and oscillator

strengths indicate that typically, the first four states are identical and emerge in the

same order for either initial guess. Table 6.2 shows a typical case. The first four

excitation energies are nearly identical for either initial guess, and emerge in the

same order, but the ordering is different starting with n = 5. However, both initial

guesses do find the same set of excitation energies through at least n = 11.

The fact that the states do not come out energetically ordered is worrisome be-

cause the constraints placed on a particular state depend upon the order in which it

is determined and this should effect the energy. In the latter columns of Table 6.2 we
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ordered by na ordered by energyb differencec

Zeroth-order First-order Zeroth-order First-order
guess guess guess guess

n En − E0 f0→n En − E0 f0→n En − E0 f0→n En − E0 f0→n En − E0 f0→n

1 1.73894 0.133993 1.73894 0.133927 1.73894 0.133993 1.73894 0.133927 0.00000 0.000066
2 1.95139 0.237197 1.95140 0.237188 1.93676 0.028331 1.93668 0.028360 0.00008 0.000029
3 1.93676 0.028331 1.93668 0.028360 1.95139 0.237197 1.95140 0.237188 0.00001 0.000029
4 2.10816 0.132911 2.10817 0.132922 2.10816 0.132911 2.10817 0.132922 0.00001 0.000011
5 2.11486 0.001157 2.28370 0.001407 2.11486 0.001157 2.11521 0.001104 0.00035 0.000053
6 2.28397 0.001359 2.11521 0.001104 2.15224 0.000537 2.14726 0.000641 0.00498 0.000104
7 2.46492 0.001676 2.26762 0.004268 2.26925 0.004114 2.26762 0.004268 0.00163 0.000154
8 2.26925 0.004114 2.14726 0.000641 2.28397 0.001359 2.28370 0.001407 0.00027 0.000048
9 2.42928 0.001936 2.43138 0.001780 2.36290 0.003176 2.36278 0.003178 0.00012 0.000002
10 2.15224 0.000537 2.36278 0.003178 2.42928 0.001936 2.43138 0.001780 0.00210 0.000156
11 2.36290 0.003176 2.46681 0.001478 2.46492 0.001676 2.46681 0.001478 0.00189 0.000198
aExcitation energies listed in the order that the states are generated by the annealing procedure
bExcitation energies listed in ascending order of energy
cDifference in energies and oscillator strengths for the energy-ordered states computed using two
different initial guesses

Table 6.2: Excitation energies (in eV) and oscillator strengths computed by electronic annealing, using two
different initial guesses.
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have re-ordered the states energetically, and we have tabulated the differences in exci-

tation energies and oscillator strengths between the two different initial guesses. The

largest discrepancy in the energies between the two initial guesses is only 0.005 eV.

This is smaller than the typical energy gap between states, and we therefore find this

to be a tolerable error. In principle, one could probably ensure energetic ordering by

annealing the same state several times, starting from a variety of different guesses,

and taking the lowest energy result in an attempt to find the global minimum for each

set of constraints. Another possibility would be to perform the annealing, re-order

the states energetically, and repeat the entire procedure using the annealed states

as guesses. We have not done so here, owing to the smallness of the discrepancies

between energies obtained using different initial guesses.

6.4.2 Aqueous electron absorption spectrum

Figure 6.1(a) compares the absorption spectrum obtained using perturbative techniques[184]

to that obtained using the annealing algorithm that is described here. The experimen-

tal spectrum (reproduced from the line shape parameters in Ref. [2]) is also shown.

With the exception of the annealed spectrum, which is new, these spectra have been

described in detail in our previous work,[43, 160, 184] but for completeness we briefly

summarize these results here. At zeroth-order in the perturbation, the peak intensity

is blue-shifted relative to experiment, and although this zeroth-order spectrum does

reproduce the main, Gaussian feature in the experimental spectrum, it exhibits a gap

in intensity just below 3 eV, which is followed by a “hump” centered around 3.5 eV

that is essentially a photo-electron spectrum. The first-order correction for Ŵn shifts
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the maxima into quantitative agreement with experiment and also binds states that

were (vertically) unbound at zeroth order, meaning that the excitation energies were

greater than the vertical detachment energy. A second-order treatment of Ŵn affords

a correction to the wave function and hence the transition dipoles, and this has the

effect of increasing intensity in the “blue tail”.

The spectrum obtained from electronic annealing agrees quantitatively with the

second-order perturbation theory spectrum in the Gaussian region, but the anneal-

ing procedure shifts even more oscillator strength into the higher-lying bound states

that comprise the blue tail. (All of the spectra in Fig. 6.1 are normalized to unit

intensity at their respective absorption maxima.) If anything, the blue tail in the

annealed spectrum is in better agreement with experiment than is the second-order

perturbation theory result.

Figure 6.1(b) decomposes the annealed spectrum into contributions from 1s→ 1p

transitions versus excitations into higher-lying bound states. The 1p states are the

only bright states, for an aqueous electron modeled as a particle in a spherical box,[43]

and indeed the 1s → 1p excitations carry much of the oscillator strength in the

annealed spectrum. However, the 1p band has significant energetic overlap with

the higher-lying bound states, which borrow intensity from the 1p states and give

rise to a significant “blue tail”. The states that comprise this tail are unbound

in the zeroth-order treatment, and we have previously referred to them as “quasi-

continuum, polarization-bound” excited states.[160] These states have very little os-

cillator strength at zeroth order, but relaxation of the solvent dipoles allows them to
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Figure 6.1: Absorption spectra for e−aq in bulk water: (a) comparison of spectra

computed using zeroth-, first-, and second-order perturbative treatments of the Ŵn

[Eq. (6.4)] to the spectrum computed using the annealing procedure proposed here;
(b) decomposition of the annealed spectrum into contributions from various types of
excited states.
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mix with (and borrow intensity from) the 1p states. For the annealed spectrum, all

30 states that we calculate are vertically bound. (The average vertical binding energy

for the simulation cell used in this work is 3.35 eV,[184] well into the blue tail in the

spectra shown in Fig. 6.1.)

At zeroth-order in Ŵn (what we have previously called the “unrelaxed” approximation[43,

160, 184]), the states are ordered as follows. The ground state is spherical (1s) and

resides in a roughly spherical solvent cavity, while the first three excited states are

p-like (1p). The fourth excited state is typically more diffuse and can be identified

as the 2s state by virtue of a radial node. Above the 2s state are several states that

resemble 1d states, but above this it becomes difficult to assign particle-in-a-cavity

quantum numbers to the excited states, whose wave functions are quite diffuse and

contain many different lobes. The qualitative nature of these states is not altered

significantly by application of second-order perturbation theory.

The annealing procedure, on the other hand, sometimes does alter the initial guess

wave functions in a qualitative way. In particular, the annealing procedure appears to

have the ability to localize diffuse electronic states composed of largely disjoint lobes,

and in some cases may enhance the oscillator strength associated with these states,

relative to the nominal bright states. In cases where we observe such localization, the

nodal character of the state appears to be preserved, although this is only evident if

the wave function is plotted using an isosurface that encapsulates nearly all of the

electron density.

As an example, Fig. 6.2 depicts the unrelaxed n = 2 and n = 4 wave functions
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(a) n = 2, unrelaxed n = 2, annealed(b)

(c) n = 4, unrelaxed n = 3, annealed(d)

Figure 6.2: Examples of 1p- and 2s-like excited states of the aqueous electron. Panels
(a) and (c) depict the “unrelaxed” states (zeroth order in Ŵn), while panels (b) and
(d) depict the wave functions that are obtained by electronic annealing. The opaque
and translucent isosurfaces encapsulate 70% and 95% of |ψ|2, respectively.
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from the calculation reported in Table 6.1, as well as the corresponding annealed

wave functions from the calculation reported in Table 6.2. (The states are labeled in

the order that they are calculated by the annealing procedure, which need not be in

energetic order.) The unrelaxed 1p state shown in Fig. 6.2(a) is not altered by the

annealing process in any substantive way and is nearly identical to the n = 2 state in

the manifold of annealed excited states [Fig. 6.2(b)]. However, the annealed analogue

[Fig. 6.2(d)] of the n = 4 zeroth order wave function [Fig. 6.2(c)] is more localized than

its counterpart. The annealed function appears p-like rather than s-like, if a large

isosurface contour value is used to plot the wave function. However, a smaller contour

that encapsulates more of the wave function reveals s-like character. The transition

from the unrelaxed to the annealed wave function [i.e., Fig. 6.2(c) → Fig. 6.2(d)]

enhances the transition dipole, f0→n, of the state in question, because the localized,

annealed state has better overlap with the ground state and furthermore sheds some of

the pseudo-s-type symmetry that causes the unrelaxed state in Fig. 6.2(c) to exhibit

a rather small oscillator strength.

Comparison of Tables 6.1 and 6.2 seems to indicate that the n = 3 state loses

significant oscillator strength upon annealing, but an inspection of the wave functions

reveals that the state that emerges as n = 3 from the annealing procedure actually

corresponds to the fourth excited state at zeroth-order. The latter acquires significant

oscillator strength upon annealing, and drops below a state with p-type character to

become n = 3. While this sort of re-ordering does not occur in the majority of the

cases, it is also not entirely uncommon.
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(a) unrelaxed (b) annealed (c) annealed

Figure 6.3: An excited electronic state of the aqueous electron with d-type character.
Panels (a) and (b) depict the zeroth-order (unrelaxed) and annealed wave functions,
respectively, using opaque and translucent isosurfaces that encapsulate 70% and 95%
of |ψ|2, respectively. Panel (c) depicts the same annealed wave function as in (b), but
plotted using isosurfaces that encapsulate 70% and 99% of |ψ|2.

From the spectrum in Fig. 6.1(b), it appears that the highest-lying 1p state carries

somewhat less intensity than the two lower-lying 1p states. This is partly an artifact

of the manner in which we analyzed the data, namely, we assumed in constructing

Fig. 6.1(b) that the first three states are the 1p states, which is always true in the

perturbative approach but is occasionally not true following annealing. Despite this

occasional re-ordering of states, the 1p states still carry the vast majority of the

oscillator strength and are still responsible for the Gaussian feature in the absorption

spectrum.

Figure 6.3 shows the zeroth-order and the annealed wave functions for a d-type

state. Using an isosurface that encapsulates 90% of |ψ|2 [Fig. 6.3(b)], it appears as

though the annealed state is effectively a “charge hop”, in which the electron is trans-

ferred a sizable distance away from the cavity in which the ground-state wave function
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is localized. However, Fig. 6.3(c) depicts the same annealed wave function, plotted

using an isosurface that encapsulates 99% of |ψ|2. In the latter depiction, it is clear

that the wave function remains d-like but the electron has largely localized into one of

the lobes. In this example, the annealed state has very little overlap with the ground

state, which results in a very small transition dipole. States that have localized to

such an extent as to exhibit charge-transfer or charge-hopping character exibit very

small oscillator strengths, and thus do not contribute greatly to the absorption spec-

trum. These states are most likely not accessed in experiments that probe vertically

excited states. The “blue tail” does not arise from localized charge-hopping states

such as that shown in Figs. 6.3(b) and 6.3(c). Rather, it arises due to higher-lying,

diffuse excited states that do have reasonable overlaps with the ground-state wave

function.[160, 184]

6.5 Discussion

According to the Thomas-Reiche-Kuhn (TRK) sum rule,[225]

∑

n>0

f0→n = Ne (6.21)

where Ne is the number of electrons. By construction, Ne = 1 in our pseudopotential

model. In previous work,[184] we observed that f0→1 + f0→2 + · · · + f0→29 ≈ 0.95 at

zeroth-order, that is, the first 29 excited states account for 95% of the total oscillator

strength. A first-order correction for Ŵn reduces the electronic energy gaps (En−E0)

but does not affect the wave functions, and as a result, the total oscillator strength

carried by the first 29 excited states is reduced to ≈ 0.8. At second order, the wave
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function is corrected, and the total oscillator strength recovers, to ≈ 0.9. In the

present treatment, however, we find that f0→1 + · · ·+ f0→29 ≈ 0.65.

The question then arises as to whether the TRK sum rule is preserved in the

case of a state-dependent Hamiltonian and whether or not the expression for f0→n

in Eq. (6.19) is even valid in such a case. Here, we address these questions in the

context of the proposed annealing procedure.

In principle, the annealing procedure provides a way to obtain an infinite num-

ber of mutually orthogonal states, each of which is an eigenfunction of a different

Hamiltonian. For the purpose of analyzing the sum rule in Eq. (6.21), let us make

the (perhaps dubious) assumption that this set of eigenfunctions forms a complete

orthonormal basis. Then to derive Eq. (6.21), one employs the identity

[Ĥ, x̂] = −i~
m
p̂x . (6.22)

In principle, Ĥ could be any of the aforementioned Hamiltonians. Inserting Eq. (6.22)

into the expression

1

i~

〈
0
∣∣[x̂, p̂x]

∣∣0
〉

= 1 (6.23)

and using a resolution of the identity, one obtains

m

~2

∑

n

[
〈0|x̂|n〉〈n|[Ĥ, x̂]|0〉 − 〈0|[Ĥ, x̂]|n〉〈n|x̂|0〉

]
= 1 . (6.24)

This equation is valid for any Hamiltonian and any complete orthonormal basis.

However, in order to obtain the sum rule in Eq. (6.21) from Eq. (6.24), the basis

states |n〉 must in addition be eigenstates of the same Hamiltonian. In the present

case, however, each state is a solution to a different Hamiltonian so the sum rule is
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not preserved by the annealing procedure. (As such, nothing rests upon our dubious

assumption that the states |n〉 form a complete basis; the sum rule is not preserved,

whether or not this is in fact the case.)

Next, we address the question of whether or not Eq. (6.19) is a valid formula

for computing absorption intensities. In what follows, we assume that the nuclei are

clamped, and we consider the electronic dynamics. The oscillator strength formula

in Eq. (6.19) follows from time-dependent perturbation theory.[225] If the system is

in state |n〉 at time t = 0, then it seems reasonable that the system evolves under the

influence of the Hamiltonian for state |n〉, Ĥn. That is,

|Ψ(t)〉 = e−iĤnt/~|n〉 = e−iEnt/~|n〉 , (6.25)

where we have used the fact that Ĥn|n〉 = En|n〉.

We now investigate the time evolution in the presence of a time-dependent per-

turbation. We assume that the time-dependent wave function can be written

|Ψ(t)〉 =
∑

n

cn(t) e−iEnt/~|n〉 . (6.26)

This expansion may seem suspicious in light of questions regarding whether the ba-

sis {|n〉} is complete. However, we assume below that the system is initially in the

ground state, and we are only interested in the dynamics within the finite subset

of states that we have determined by means of annealing. In other words, this ba-

sis constitutes the region of interest in Hilbert space. To derive a formula for the

transition probabilities, the ansatz in Eq. (6.26) should next be inserted into the

time-dependent Schrödinger equation, but with which Hamiltonian? In the weak-

field limit, the traditional assumption is that the system occupies the ground state
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at t = 0, cn(0) = δn,0. It therefore seems reasonable to assume that the dynamics is

governed by the ground-state Hamiltonian, so that

i~ |Ψ̇(t)〉 =
(
Ĥ0 + V (t)

)
|Ψ(t)〉 . (6.27)

These assumptions, together with the fact that the basis is orthonormal, leads to

the textbook[225] dynamical equations for the expansion coefficients cn(t). For this

reason, we would argue that Eq. (6.19) is still valid, even though the TRK sum rule

is not.

The ambiguity regarding which Hamiltonian guides the dynamics of the system

is clearly an artifact of the model. The inducible dipoles represent electronic degrees

of freedom and should respond on the time scale of electronic motion, i.e., these

degrees of freedom participate in the short-time dynamics that results in absorption

of radiation, and they ought to be included in the quantum-mechanical description

of the system. Our decision to treat some of the electronic variables (solvent dipoles)

classically leads to some ambiguity (multiple Hamiltonians) since we do not have

information regarding the short-time quantum dynamics of these variables. This

is to be contrasted with the MOM-SCF technique[212, 213] that was mentioned in

Section 6.1. In that method, there is a single Hamiltonian but multiple stationary

points (solutions to the SCF equations). Since the SCF energy, at least in Hartree-

Fock theory, is the expectation value of the true Hamiltonian, there is no ambiguity

as to the quantum dynamics.

In the case of the methodology pursued here, one way around these difficulties
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would be to use a linear-response formalism, which has been explored in the con-

text of time-dependent density functional theory (TD-DFT) in the presence of a

polarizable medium.[226, 227] Here, however, we were interested in a self-consistent,

non-perturbative approach. In the future, it might be interesting to compare results

obtained from linear-response theory to those obtained from our electronic annealing

procedure.

Finally, we would like to speculate that this annealing procedure might be useful

for MOM-SCF calculations. The MOM-SCF method appears quite promising, and

avoids some problems associated with TD-DFT. However, the excited-state wave func-

tions obtained in MOM-SCF calculations are not orthogonal, although preliminary

results do not seem to exhibit any adverse effects on oscillator strengths, possibly be-

cause the deviations from orthogonality are small in cases examined so far.[212] In any

case, it is possible that the sort of electronic annealing that is introduced here could

eliminate any concern over oscillator strengths. This technique might also be useful in

the context of excited-state Kohn-Sham simulations,[228] non-adiabatic (surface hop-

ping) simulations utilizing CPMD,[229] or “constrained” DFT calculations,[230, 231]

each of which is potentially subject to nonorthogonality problems. Extensions to

many-electron QM/MM methods using polarizable force fields are also worth explor-

ing.
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6.6 Summary

We have introduced a novel “electronic annealing” procedure that is capable of finding

orthogonal solutions to a state-dependent Hamiltonian. This procedure appears to be

robust and is capable of finding many such solutions. When applied to a polarizable

QM/MM model of the aqueous electron in bulk water,[184] the electronic absorption

spectrum computed by means of electronic annealing is in reasonable agreement with

results obtained previously[160, 184] based on a perturbative treatment of the MM

polarization response following excitation of the QM region. In fact, the annealed

spectrum is in slightly better agreement with experiment, as compared to perturbative

results. In any case, these computed spectra all support the hypothesis that electronic

polarization (as described theoretically via atom-centered inducible dipoles) binds

additional excited states of the aqueous electron and facilitates intensity borrowing

from the 1p states that carry most of the oscillator strength. The “blue tail” in the

optical spectrum of e−aq arises from what we have termed “polarization-bound quasi-

continuum states”.[160] Here, we find that electronic re-organization of the solvent

can also cause diffuse excited states of the electron to localize into “charge-hopping”

states. These excitations, however, carry very little oscillator strength and do not

make a substantial contribution to the optical absorption spectrum.

In the future, we plan to explore generalizations of this electronic annealing algo-

rithm that are suitable for many-electron QM calculations.
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CHAPTER 7

An efficient, fragment-based electronic structure

method for molecular systems: Self-consistent

polarization with perturbative two-body exchange

and dispersion 7.1

7.1 Introduction

It is well-established that wavefunction-based quantum chemistry using Gaussian

basis sets can provide accurate ground-state properties for molecular systems. Ap-

plication of these same robust methods to condensed-phase systems—be they peri-

odic (crystalline solids) or non-periodic (liquids or amorphous solids)—represents a

tremendous challenge, given that the cost of wavefunction methods scales incredibly

poorly with system size. In fact, such methods scale unphysically with system size,[46]

as a result of the use of delocalized molecular orbitals, and the distance dependence

of different intermolecular interactions must be exploited if we are to apply these

methods to condensed phases.[47] From this point of view, Gaussian basis sets pos-

sess an inherent advantage over plane-wave basis sets, in that the basis functions are

highly localized and the length scale between different basis functions can be assigned

7.1This chapter appeared as an article in the Journal of Chemical Physics in 2011, volume 134,
page 94118
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in a straightforward way.[232] At present, however, most condensed-phase electronic

structure calculations are performed using delocalized plane-wave basis sets, which

is appealing for periodic systems because the basis functions are periodic, but may

be less advantageous for non-periodic systems. Moreover, despite many advances in

the development of “linear scaling” electronic structure methods,[233, 234] routine

application of wavefunction-based quantum chemistry remains limited to systems no

larger than ∼100 atoms.[235]

In the past decade, a variety of fragment-based methods have been introduced,

whose goal is to reduce the cost of quantum chemistry calculations in large systems.

Such techniques include methods based upon a many-body expansion of the super-

system energy,[51–56, 236] the most sophisticated of which is the “fragment molecu-

lar orbital” (FMO) method;[237–239] divide-and-conquer approaches;[240] the “self-

consistent field for molecular interactions” (SCF-MI) technique;[48, 49] the “natural

linear scaling” coupled-cluster approach;[241, 242] the effective fragment potential

(EFP) method;[243–245] and the “explicit polarization” (XPol) method.[57–59, 246]

A complete discussion of the strengths and weaknesses of each of these methods is

beyond the scope of the present article. Here, it suffices to note that each one—save

for EFP, which is an automated way to parameterize polarizable force fields using

ab initio calculations—requires iterative construction of Fock matrices for dimers of

fragments, or sometimes the supersystem itself, or else requires additional, empirical

parameters. The present article reports a method that avoids these requirements.

For maximum versatility, a fragment-based quantum chemistry method should
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allow for the possibility of fragmenting the system across covalent bonds, and sev-

eral of the aforementioned methods do facilitate this possibility.[58, 247–249] In the

present work, however, we exclude fragmentation across covalent bonds, with the aim

of developing an accurate and efficient method for molecular clusters, liquids, and

solids that are composed of relatively small monomers, each of which constitutes one

fragment.

To construct a low-scaling quantum chemistry method, one can imagine at least

two (rather disparate) strategies. One strategy is to make well-defined approxima-

tions to an existing ab initio method, then examine the extent to which the approxi-

mate method is faithful to the original one. Examples of this approach include local

correlation methods,[233, 250–257] dual basis procedures,[258, 259] and density fit-

ting or resolution-of-identity techniques.[260–264] Alternatively, one might construct

a method that is promising in its efficiency, and is based upon either well-defined

approximations or else some observations about the physical nature of interactions.

The latter approach, which is the one pursued here, does not seek to reproduce or

approximate the energetics of any existing quantum chemistry method.

The method that we propose herein was motivated in part by the electrostatically-

embedded, many-body expansion method introduced recently by Dahlke and Truhlar.[51–

54] In a simple many-body expansion, the energy of N interacting molecules is de-

composed into a sum of one-body terms, two-body terms, etc.: V = V1 +V2 +V3 + · · · .

For example, V2 is the sum of the energies of all N(N − 1)/2 dimers, minus the sum

of the N monomer energies to avoid double-counting. Application to water clusters
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at the level of second-order Møller-Plesset perturbation theory (MP2) demonstrates

that four-body terms must be retained in order to obtain accurate results.[265, 266]

However, Dahlke et al.[51–54] demonstrated that convergence of the many-body ex-

pansion is greatly accelerated if low-order n-body calculations are computed in the

presence of a set of point charges that approximate the electrostatic potential due

to the other monomers. The best results, as compared to supersystem MP2, were

obtained using a supersystem Hartree-Fock (HF) calculation followed by a two-body

expansion of the MP2 correlation energy.[52, 53] Alternatively, accurate results for

hydrogen-bonded clusters have been obtained by computing V1 and V2 at the MP2

level while using a polarizable force field to evaluate V3 and V4, without the need to

perform a supersystem HF calculation.[55, 56, 236]

We glean two important conclusions from these observations. First, it is crucial

to include the electrostatic effects of the environment in the one-body (monomer)

calculations. Second, although polarization (induction) is an inherently many-body

phenomenon, intermolecular electron correlation is largely a two-body effect. These

observations suggest that if one can efficiently incorporate many-body induction in a

fragment-based scheme, then it may be possible to approximate intermolecular elec-

tron correlation in a pairwise fashion, without resorting to supersystem calculations

or high-order terms in the many-body expansion.

To accomplish this, we will use the XPol method of Xie et al.[59] to perform
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electrostatically-embedded one-body calculations in a variational, self-consistent man-

ner. The XPol method, which is detailed in Section 7.2, involves solving single-

fragment SCF equations in the presence of point charges that represent the elec-

trostatic potential due to the other fragments. These point charges are derived

from the fragment wavefunctions, but unlike both the FMO method[267, 268] and

the electrostatic embedding method of Dahlke and Truhlar,[51–54] variation of the

point charges is included (exactly) within the single-fragment Fock matrices. Oper-

ationally, the method is a “dual SCF” procedure, with an outer loop over fragments

and an inner loop to solve the single-fragment Roothaan equations. As such, the

XPol method incorporates many-body induction (albeit in an approximate way), but

ignores electron exchange between fragments. The original XPol method developed

by Xie et al.[57–59, 246] accounts for dispersion and exchange-repulsion interactions

using empirical parameters Lennard-Jones potentials. Our goal is to replace these

empirical corrections with ab initio, post-XPol corrections based on a two-body form

of symmetry-adapted perturbation theory (SAPT).[20, 269]

Traditionally, SAPT has been used as a benchmark method for computing dimer

binding energies and for decomposing intermolecular interactions into induction, exchange-

repulsion, dispersion, and other components.[20, 269] SAPT calculations can be quite

expensive, although reduced-cost variants based on density functional theory (DFT)

have recently shown great promise.[270–275] Here, we use the variant known as

SAPT(0), which employs HF orbitals for the monomers and does not include monomer

electron correlation. We also explore SAPT(KS),[270] which is analogous to SAPT(0)
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but substitutes Kohn-Sham (KS) orbitals in place of HF orbitals.

Our proposed method incorporates self-consistent many-body induction, but as-

sumes that other interactions, such as exchange-repulsion and dispersion, are pair-

wise additive. Calculation of non-additive three-body interactions within the SAPT

formalism requires computationally-expensive triple excitations,[276–278] but SAPT

results for OH−(H2O)2 indicate that the two-body terms are about an order of mag-

nitude larger than the three-body terms. Furthermore, the three-body terms are

dominated by the induction correction,[279] that is, by the change in electrostatics

due to the presence of other molecules. In addition, energy decomposition analy-

sis of (H2O)6 isomers reveals that electrostatic, exchange-repulsion, and dispersion

interactions are pairwise additive (or nearly so), whereas polarization exhibits many-

body effects of ∼ 10 kcal/mol.[280] In our proposed scheme, many-body polariza-

tion is mostly captured within the zeroth-order wavefunctions generated by the XPol

procedure, and electrostatic embedding serves to reduce the magnitude of the inter-

molecular perturbation. The fact that the MP2 correlation energy is approximated to

high accuracy with only a two-body expansion[53] suggests that we need only extend

SAPT to pairwise fragment interactions, which will make the method highly efficient

for applications to molecular liquids.

7.2 Theory

The method introduced here is essentially an amalgam of two existing methods, XPol

and SAPT, so we call the new method XPol/SAPT or XPS. In what follows, we will
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use indices A and B to label fragments; i and j to label electrons; a ∈ A and b ∈ B to

label occupied MOs belonging to fragments A and B, respectively; r ∈ A and s ∈ B

to label virtual orbitals; Greek letters (µ, ν, λ, σ) to label atomic orbital (AO) basis

functions; and I, J,K, . . . to label nuclei. We restrict our attention to closed-shell

spin-restricted calculations. Atomic units are used throughout this section.

7.2.1 XPol

XPol is an approximate, fragment-based molecular orbital method that was devel-

oped to be a “next-generation” force field.[57, 58] This method starts from an ansatz

in which the supersystem wavefunction is written as a direct product of fragment

wavefunctions,[59, 281]

|Ψ〉 =

Nfrag∏

A

|ΨA〉 , (7.1)

where Nfrag is the number of fragments. We assume here that the fragments are

molecules and that covalent bonds remain intact, although XPol has been extended

to fragmentation of the system across covalent bonds.[58, 59] The fragment wave-

functions are antisymmetric with respect to exchange of electrons within a fragment,

but not to exchange between fragments. As such, exchange interactions between

fragments are neglected. In the original version of XPol, Lennard-Jones potentials

are used to model exchange-repulsion and dispersion interactions,[59] but our aim is

to replace these empirical interaction terms with perturbation theory. Very recently,

Gao and co-workers extended XPol to include interfragment exchange within the SCF
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iterations,[60] in a manner highly analogous to the SCF-MI approach.[49] In contrast,

our method treats exchange as a post-SCF correction.

For closed-shell fragments, the XPol energy is[59]

EXPol =
∑

A

[
2
∑

a

c†a
(
hA + JA − 1

2
KA
)
ca + EA

nuc

]
+ Eembed . (7.2)

The term in square brackets is the ordinary HF energy expression,[12] for fragment

A. Thus, ca is a vector of occupied MO expansion coefficients (in the AO basis) for

the occupied MO a ∈ A; hA consists of the one-electron integrals; and JA and KA

are the Coulomb and exchange matrices, respectively, constructed from the density

matrix for fragment A. The additional terms in Eq. (7.2),

Eembed = 1
2

∑

A

∑

B 6=A

∑

J∈B

(
−2
∑

a

c†aIJca +
∑

I∈A

LIJ

)
qJ , (7.3)

arise from the electrostatic embedding. The matrix IJ is defined by its AO matrix

elements,

(IJ)µν =

〈
µ

∣∣∣∣∣
1∣∣~r − ~RJ

∣∣

∣∣∣∣∣ ν
〉
, (7.4)

and LIJ is given by

LIJ =
ZI∣∣~RI − ~RJ

∣∣ . (7.5)

According to Eqs. (7.2) and (7.3), each fragment is embedded in the electrostatic

potential arising from a set of point charges, {qJ}, on all of the other fragments;

the factor of 1/2 in Eq. (7.3) avoids double-counting. Exchange interactions between

fragments are ignored, and the electrostatic interactions between fragments are ap-

proximated by interactions between the charge density of one fragment and point

charges on the other fragments.
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Crucially, the vectors ca are constructed within the absolutely-localized MO (ALMO)

ansatz,[49] meaning that the MOs for each fragment are represented in terms of only

those AOs that are centered on atoms in the same fragment. This partition of the

AO basis leads to significant computational savings, and affords a method whose

cost grows linearly with respect to Nfrag. The ALMO ansatz also excludes basis set

superposition error (BSSE) by construction, and in compact basis sets it excludes

interfragment charge transfer as well.[49]

The original XPol method of Xie et al.[57–59, 246] uses Mulliken charges for the

qJ in Eq. (7.3), though other charge schemes could be envisaged. In addition to

Mulliken charges, we will examine Löwdin charges[12] and charges derived from the

electrostatic potential (CHELPG).[282] This aspect of the method is discussed in

Section 7.2.2, with additional details given in appendix C.

Derivation of the XPol working equations follows closely that of the HF equations.

We require the energy expression in Eq. (7.2) to be stationary with respect to variation

of the MO coefficients, subject to the constraint that MOs within each fragment are

orthonormal. This leads to the XPol SCF equations,[59]

FACA = SACA
ǫ

A . (7.6)

Here, FA, CA, SA and ǫ
A are the fragment Fock matrix, MO coefficient matrix, AO

overlap matrix, and Lagrange multiplier matrix, respectively. The dimension of these

matrices equals the number of AOs centered on fragment A. Upon diagonalizing

ǫ
A =

(
CA
)†

FACA, the diagonal elements of ǫ
A are the eigenvalues of the fragment
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Fock matrix, FA. In the AO basis, FA has matrix elements

FA
µν = fA

µν − 1
2

∑

J /∈A

(IJ)µνqJ +
∑

J∈A

MJ(ΛJ)µν (7.7)

where fA = hA + 2JA − KA is the Fock matrix for fragment A in isolation. The

additional XPol terms consist of an “M-vector” defined by

MJ =
∂Eembed

∂qJ
(7.8)

= 1
2

∑

B
(J /∈B)

(
−2
∑

b

c†bIJcb +
∑

I∈B

LIJ

)
,

and also

(ΛJ)µν =
∂qJ
∂Pµν

. (7.9)

Here, P represents the one-electron density matrix, which is block diagonal in the

fragment index.

Our notation differs slightly from that used by Xie et al.,[59] though we believe

that ours is more transparent. We have written Eq. (7.7) in a general form that is

valid for any charge scheme, and explicit formulas for the charge derivatives, (ΛJ)µν ,

will be presented below. As pointed out by Xie et al.,[59] Eq. (7.7) indicates that each

fragment is polarized by the rest of the system, with half of this polarization stemming

from point charges on the other fragments and half from the true charge density of the

rest of the system, which is contained in the M-vector. In principle, the electrostatic

embedding could be systematically improved, by using higher-order multipoles or the

fragment densities themselves, but we will not explore this possibility here.
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Solution of the XPol equations requires a dual SCF procedure, since each frag-

ment Fock matrix depends upon the electron density of the other fragments. Imple-

mentation of the dual SCF is straightforward and will be discussed only briefly, in

Section 7.3.

7.2.2 Charge schemes

We investigate three different charge schemes: Mulliken, Löwdin and CHELPG. In

this section we will derive formulas necessary to incorporate Mulliken charges into

the XPS method. Details pertaining to the use of Löwdin and CHELPG charges are

given in the appendix C.

The Mulliken charges stem from a simple partitioning of the electron density,[12]

qMull
J = ZJ −

∑

µ∈J
ν

SµνPνµ . (7.10)

The derivative with respect to a density matrix element is quite simple and can be

written as

(ΛMull
J )µν = −1

2
(Sµνδµ∈J + Sνµδν∈J) , (7.11)

where δµ∈J = 1 if the basis function µ is centered on atom J , and δµ∈J = 0 otherwise.

In what follows, we will require an operator, Λ̂J , whose matrix elements are equal

to (ΛJ)µν as given by Eq. (7.11). It can be verified that a reasonable choice is

Λ̂Mull
J = −1

2

∑

µ,ν∈J

(
|µ〉(S−1

J )µν〈ν|+ |ν〉(S−1
J )νµ〈µ|

)
. (7.12)
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The quantity S−1
J in this equation refers to the inverse of the fragment overlap matrix,

for the fragment that contains atom J . At no point is it necessary to invert the

supersystem’s overlap matrix.

7.2.3 Symmetry-adapted perturbation theory

Two issues prevent us from applying perturbation theory to the XPol wavefunc-

tion, Eq. (7.1), in a straightforward manner. First, the fragment wavefunctions (and

ALMOs) are not mutually orthogonal amongst the fragments. Second, while the

fragment wavefunctions are properly antisymmetric with respect to exchange of elec-

trons within a fragment, the direct product ansatz in Eq. (7.1) is not antisymmetric

with respect to exchanges between fragments. Symmetry-adapted perturbation the-

ory (SAPT) was developed to overcome precisely these two problems. Here, we review

only the most relevant details of SAPT; see Refs. [20] and [269] for a complete intro-

duction to the method.

In SAPT, the Hamiltonian for the A · · ·B dimer is written as[20, 283]

Ĥ = F̂A + F̂B + ξŴA + ηŴB + ζV̂ , (7.13)

where ŴA and ŴB are Møller-Plesset fluctuation operators for fragments A and B,

and the intermolecular perturbation, V̂ , is conveniently written as

V̂ =
∑

i∈A

∑

j∈B

v̂(ij) (7.14)

with

v̂(ij) =
1∣∣~ri − ~rj

∣∣ +
v̂A(j)

NA

+
v̂B(i)

NB

+
V0

NANB

. (7.15)
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The quantity V0 is the nuclear interaction energy between the two fragments, and

v̂A(j) = −
∑

I∈A

ZI∣∣~rj − ~RI

∣∣ (7.16)

describes the interaction of electron j ∈ B with nuclei I ∈ A. In what one might

call “traditional” SAPT, the interaction energy is expanded in a triple perturbation

series in the parameters ξ, η, and ζ.[20, 284]

Here, we expand only with respect to ζ. When the zeroth-order monomer wave-

functions come from HF theory, this is usually termed SAPT(0), where the “(0)”

means zeroth-order in the monomer fluctuation potentials.[20] Within this formalism,

the interaction energy is given by a symmetrized Rayleigh-Schrödinger perturbation

expansion,[269, 284–286]

Eint(ζ) =
〈Ψ0|ζV̂ ÂAB|Ψ(ζ)〉
〈Ψ0|ÂAB|Ψ(ζ)〉

, (7.17)

where ÂAB is an antisymmetrizer for the A · · ·B supersystem that projects out the

Pauli-forbidden components of the supersystem wavefunction, |Ψ(ζ)〉. The zeroth-

order wavefunction, |Ψ0〉, is taken to be a direct product of the monomer wavefunc-

tions, and the interaction energy is expanded with respect to ζ. At every order in

the perturbative expansion of Eq. (7.17), there is a polarization term analogous to

what would be obtained in ordinary Rayleigh-Schrödinger perturbation theory, along

with an exchange term.[269] Here, we consider the expansion through second order,

in which case the interaction energy can be decomposed as[270]

Eint = E
(1)
elst + E

(1)
exch + E

(2)
pol + E

(2)
exch . (7.18)

The various terms in this expression are discussed below.
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The antisymmetrizer in Eq. (7.17) can be written as[20, 284]

ÂAB =
NA!NB!

(NA +NB)!
ÂAÂB

(
1̂ + P̂AB + P̂ ′

)
, (7.19)

where ÂA and ÂB are antisymmetrizers for the two monomers, and P̂AB is a sum

of all one-electron exchange operators between the two monomers. The operator

P̂ ′ in Eq. (7.19) denotes all of the three-electron and higher-order exchanges. This

operator is neglected in what is known as the “single-exchange” approximation.[20,

269, 277] This approximation is expected to be quite accurate at typical van der

Waals distances,[269] and we invoke it here.

The electrostatic part of the first-order energy correction is denoted E
(1)
elst in

Eq. (7.18), and represents the Coulomb interaction between the two monomer elec-

tron densities.[269] The quantity E
(1)
exch in Eq. (7.18) is the corresponding first-order

(Hartree-Fock) exchange correction. Explicit formulas for these corrections can be

found in the literature.[20, 269, 284, 287]

The second-order polarization correction in Eq. (7.18), E
(2)
pol , can be further de-

composed into induction and dispersion contributions. The induction correction can

be written as

E
(2)
ind = E

(2)
ind(A← B) + E

(2)
ind(B ← A) , (7.20)

where the notation (A ← B) indicates that the frozen charge density of B polarizes

the density of A. In detail,[20]

E
(2)
ind(A← B) = 2

∑

ar

tar(wB)ra (7.21)
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where

(wB)ar = (v̂B)ar +
∑

b

(ar|bb) (7.22)

and tar = (wB)ar/(ǫa− ǫr). The second term in Eq. (7.20), in which A polarizes B, is

obtained from Eqs. (7.21) and (7.22) by interchanging the following labels: A ↔ B,

a↔ b, and r ↔ s.[20] Finally, the dispersion correction is

E
(2)
disp = 4

∑

abrs

(ar|bs)(ra|sb)
ǫa + ǫb − ǫr − ǫs

. (7.23)

The induction and dispersion corrections both have accompanying exchange correc-

tions (termed exchange-induction and exchange-dispersion) which are quite lengthy

and can be found in the literature.[20, 275]

Although an exact first-order exchange correction that avoids the single-exchange

approximation has been derived,[288] to the best of our knowledge the exchange-

induction and exchange-dispersion formulas have only been derived within the single-

exchange approximation. We have tested this exact formula forE
(1)
exch, and we find that

the single-exchange approximation is quite robust. Moreover, the single-exchange ap-

proximation does not require inversion of the dimer overlap matrix, which is required

in the exact formula for E
(1)
exch. For this reason, and in the interest of consistency, we

invoke the single-exchange approximation for all of the exchange interaction terms.

It is quite common to replace E
(2)
ind and E

(2)
exch-ind with their “response” analogues,

E
(2)
ind,resp and E

(2)
exch-ind,resp, which afford the infinite-order correction for polarization

arising from a frozen partner density.[20] Operationally, this substitution involves

replacing the second-order induction amplitudes, tar in Eq. (7.21), with amplitudes

obtained from solution of the coupled-perturbed Hartree-Fock equations.[289] (The
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perturbation is simply the electrostatic potential of the other monomer.) In addition,

it is common to correct the SAPT(0) binding energy for “higher-order” polarization

effects, by adding a correction term

δEHF
int = EHF

int −
(
E

(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
exch-ind,resp

)
(7.24)

to the interaction energy.[20] Here, EHF
int is the counterpoise-corrected HF binding

energy for A · · ·B.

If one simply replaces the MOs and eigenvalues of the SAPT(0) corrections with

KS MOs and eigenvalues, then the energy expressions above define the method known

as SAPT(KS).[270] [This approach was originally termed SAPT(DFT)[270] but the

latter term is now reserved for an alternative DFT-based SAPT method.[272–275]]

Initially, the SAPT(KS) approach was not deemed very successful, as the electrostatic

and induction energies failed to reproduce (traditional) benchmark SAPT values.[271]

However, these discrepancies were ultimately determined to result from the incorrect

asymptotic behavior of common exchange-correlation (XC) functionals used in DFT.

Applying an asymptotic correction to the XC potential improved the agreement with

benchmark values,[271] though the dispersion correction was still poor. This led to the

development of the method that is nowadays called SAPT(DFT),[272–275] in which

the sum-over-states formula for the dispersion interaction [Eq. (7.23)] is replaced with

a generalized Casimir-Polder-type expression based on frequency-dependent density

susceptibilities for the monomers, which are calculated by solving time-dependent

coupled HF or KS equations.[272–275] We have not yet implemented SAPT(DFT),

but the SAPT(KS) approach will be considered here, in addition to SAPT(0).
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7.2.4 XPol/SAPT

There are two difficulties in combining XPol with SAPT. First, the perturbation in

SAPT is not appropriate when XPol is used to obtain zeroth-order wavefunctions

and energies, due to the fact that some intermolecular interactions have already been

included, albeit approximately, by means of electrostatic embedding. In addition,

SAPT(0) must be extended to incorporate an arbitrary number of monomers.

Taking the zeroth-order Hamiltonian to be the sum of the fragment Fock operators

defined in Eq. (7.7), we can write

Ĥ0 =
∑

A

∑

i∈A

f̂A(i)−
∑

A

∑

i∈A

[
1
2

∑

J /∈A

qJ ÎJ(i)−
∑

J∈A

MJ Λ̂J(i)

]
, (7.25)

where f̂A(i) is the gas-phase (isolated fragment) Fock operator for electron i in frag-

ment A. Equation (7.25) can be rewritten as

Ĥ0 =
∑

A

∑

i∈A

f̂A(i) (7.26)

−
∑

A

∑

B>A

[
∑

i∈A

(
1
2

∑

J∈B

qJ ÎJ(i)−
∑

I∈A

MB
I Λ̂I(i)

)

+
∑

j∈B

(
1
2

∑

I∈A

ÎI(j)qI −
∑

J∈B

MA
J Λ̂J(j)

)]
,

where MA
J is the Jth element of an M-vector that contains only contributions from

fragment A. This partitioning of Ĥ0 suggests that we replace v̂A and v̂B in Eq. (7.15)

with

v̂A(j) = −
∑

I∈A

(
ZI − 1

2
qI
)
ÎI(j)−

∑

J∈B

MA
J Λ̂J(j) (7.27a)

v̂B(i) = −
∑

J∈B

(
ZJ − 1

2
qJ
)
ÎJ(i)−

∑

I∈A

MB
I Λ̂I(i) . (7.27b)
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Once these substitutions have been made, we use the standard SAPT(0) corrections,

in a pairwise manner, to calculate all dimer interaction energies, EAB
int , using Eq. (7.18)

in conjunction with the perturbation defined in Eq. (7.27). The total energy within

the XPS ansatz is then given by

EXPS =
∑

A

(
∑

a

[
2 ǫAa − c†a(JA − 1

2
KA)ca

]
+ EA

nuc +
∑

B>A

EAB
int

)
. (7.28)

In this expression, we have removed the over-counting of two-electron interactions

present in HF theory, effectively taking the intrafragment perturbation to first order.

The generalization from a HF to a KS description of the monomers is straightforward.

To better understand what we have just done, let us first generalize the SAPT

Hamiltonian, Eq. (7.13), to an arbitrary number of fragments by writing

Ĥ =
∑

A

(
F̂A + ξAŴ

A
)

+
∑

A

∑

B>A

ζABV̂AB . (7.29)

In this expression, there are Nfrag intramolecular perturbations (ξAŴ
A) and Ndimer =

Nfrag(Nfrag − 1)/2 intermolecular perturbations (ζABV̂AB). In principle, one should

therefore employ a (Nfrag×Ndimer)-tuple perturbative expansion for this Hamiltonian,

analogous to the triple perturbation expansion that is applied to Eq. (7.13). However,

we neglect intrafragment electron correlation, analogous to SAPT(0) for dimers. In

addition, we neglect second-order terms arising from coupling between first-order

perturbations on different dimers.

We have also made a third (and somewhat more subtle) approximation. Neglecting

monomer electron correlation (ŴA) in the Hamiltonian of Eq. (7.29), the first-order
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(intermolecular) energy correction is [cf. Eq. (7.17)]

E(1) =

〈
Ψ0

∣∣∣
(∑

A

∑
B>A V̂AB

)
Â
∣∣∣Ψ0

〉

〈
Ψ0

∣∣Â
∣∣Ψ0

〉 . (7.30)

Here, |Ψ0〉 is the zeroth-order, direct-product wavefunction for the supersystem. Note

that Â is a supersystem antisymmetrizer and is not pairwise additive. This operator

can be expressed as

Â =

(∏
ANA!ÂA

)

(
∑

ANA)!

(
1 +

∑

A

∑

B>A

P̂AB + P̂ ′

)
, (7.31)

where the operator P̂AB generates all pairwise electron exchanges between fragments

A and B. Higher-order exchange terms contained in P̂ ′ are neglected within the

single-exchange SAPT approximation that was introduced in Section 7.2.3. In XPS,

however, there are multiple dimers of fragments, and in developing this method we

have tacitly introduced a further approximation in which only “diagonal” terms such

as 〈Ψ0|V̂AB(1̂ + P̂AB)|Ψ0〉 are retained in the numerator of Eq. (7.30). This approx-

imation neglects some single-exchange terms involving three or more fragments. For

example, in trimers A · · ·B · · ·C, fragments A and B can be coupled by P̂AB while B

and C are coupled by V̂BC , but such terms are neglected in the present formulation of

XPS. The impact of neglecting these terms is unclear, although such terms are only

likely to be important when all three fragments are in very close proximity. In future

work, we plan to reformulate our XPS procedure in a more rigorous and system-

atic manner based on Eqs. (7.29)–(7.31), which includes coupling between first-order

perturbations and also all single-exchange terms.
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At present, we have provided an ad hoc physical motivation for the XPS method,

rather than a rigorous derivation starting from Eq. (7.29). For this reason, we re-

fer to XPS as a parameter-free quantum-chemical model, rather than an ab initio

model. Our aim for the time being is to replace the Lennard-Jones terms used in

the XPol calculations of Xie et al.[57–59, 246] with pairwise SAPT corrections. To

this end, we have assumed that the leading many-body effect is induction, and we

incorporate this effect within the zeroth-order Hamiltonian in an efficient (albeit ap-

proximate) manner. We assume that the remaining induction corrections, as well as

all intermolecular exchange and dispersion interactions, can be described in a pairwise

fashion. To the extent that the method is successful, it succeeds by reducing the size

of the many-body perturbation, to the point where low-order, pairwise perturbation

theory provides sufficient accuracy.

The inclusion of many-body induction within the zeroth-order Hamiltonian makes

the subsequent SAPT corrections less meaningful in terms of energy decomposition

analysis. For instance, the first-order electrostatic correction in XPS is not the total

electrostatic energy, since the former corrects for errors in the approximate electro-

static treatment at zeroth order (i.e., the electrostatic embedding). The dispersion

correction may be less contaminated, since all of the XPS modifications to the tradi-

tional SAPT perturbation are one-electron operators [see Eq. (7.27)], and therefore

the pairwise dispersion correction differs from its traditional SAPT analogue only

insofar as the MOs are perturbed by the electrostatic embedding. As such, we will

continue to interpret this as a true dispersion correction.
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Finally, some discussion of basis sets is warranted. Typically, SAPT calculations

are performed in the so-called dimer-centered basis set (DCBS),[290] which means

that the combined A + B basis set is used to calculate the zeroth-order wavefunctions

for both A and B. This leads to the unusual situation that there are more MOs

than basis functions: one set of occupied and virtual MOs for each monomer, both

expanded in the same (dimer) AO basis. As an alternative to the DCBS, one might

calculate |ΨA〉 using only A’s basis functions (similarly for B), in which case the SAPT

calculation is said to employ the monomer-centered basis set (MCBS).[290] Because

XPol derives its efficiency by restricting MOs on fragment A to be built from AOs on

fragment A, we consider only the MCBS for the purpose of converging the fragment

wavefunctions. (In Section 7.4.2, however, we will introduce a post-XPol pseudo-

canonicalization in the DCBS, in order to recover intermolecular charge transfer.) Use

of the MCBS means that our SAPT(0) corrections are most likely not converged with

respect to basis-set expansion,[290] and thus rely on a cancellation of errors to provide

meaningful results. As stated above, we intend XPS not as a benchmark method but

rather as an efficient, parameter-free method to study molecular clusters and liquids.

As such, we see no problem with relying on error cancellation, provided that the

accuracy and robustness of the cancellation are established by thorough comparisons

to benchmark calculations. Such comparisons are reported in Sections 7.4 and 7.5.
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7.3 Computational details

We have implemented the XPol, SAPT(0), and XPS methods within a locally modi-

fied version of the q-chem software package.[117] The XPol SCF equations are solved

by means of a dual SCF procedure similar to that described by Xie et al.[59] In brief,

we iterate Eq. (7.6) to convergence for each fragment A, using a fixed set of point

charges derived from the previous SCF solutions for the other fragments. Once all

Nfrag sets of SCF equations have been converged in this manner, we evaluate the

supersystem SCF error as the average of fragment errors, each of which is defined as

the root mean square of the off-diagonal Fock matrix elements in the ALMO basis.

The dual SCF is considered to be converged when this error is < 10−8 a.u. The

integral threshold is set to 10−14 a.u. for all calculations reported here, and all SAPT

calculations employ Cartesian Gaussian basis functions.

To generate the CHELPG charges, we evaluate the electrostatic potential on a

cubic grid, with a grid spacing of 1.0 Å. We discard grid points that lie within the

van der Waals radius of any nucleus, using the van der Waals radii suggested by

Bondi.[291, 292] The grid edges extend 3.0 Å from the nearest atomic surface, as

defined by these radii.

As we have not yet implemented the analytic gradient for the XPS method, ge-

ometry optimizations are performed using a three-point finite difference of the total

energy, with atomic displacements of 10−3 bohr. For calculations using CHELPG

charges,[282] the number of grid points used to evaluate the electrostatic potential
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may change as the nuclei are displaced. To avoid discontinuities in the potential en-

ergy surface, we therefore use a modified CHELPG procedure based upon a weighted

least-squares fit to the electrostatic potential. Details of this procedure can be found

in appendix C.

In this report, we use the standard density functionals B3LYP,[293, 294] BOP,[167]

and PBE0.[295–297] We also employ several “long-range corrected” (LRC) func-

tionals including LRC-ωPBEh[298, 299] and LRC-µBOP.[168, 300] The LRC-µBOP

functional uses Coulomb attenuation parameter (µ = 0.47 bohr−1) recommended in

Ref. [300], while the LRC-ωPBEh functional uses the parameters recommended in

Ref. [299] (ω = 0.2 bohr−1 and 20% short-range HF exchange).

7.4 Dimer Benchmarks

In this section, we evaluate dimer binding energies predicted by the XPS method, in

comparison to benchmark values. Cembran et al.[60] note that the XPol method is

not intended to reproduce HF or DFT energies, but is instead intended as an efficient

way to obtain energies and forces for simulations of macromolecules and liquids. Sim-

ilarly, our XPS method is not intended to reproduce any particular model chemistry

but rather to allow efficient, accurate, and parameter-free simulations of molecular

systems. As such, we compare to dimer SAPT(0) results not with the expectation of

reproducing SAPT(0) binding energies exactly, but simply to demonstrate that our

procedure does not significantly degrade the results of a method that is known to

perform reasonably well for dimer binding energies. We also compare to complete
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basis set (CBS) extrapolations of binding energies computed at the MP2 level, and

at the coupled-cluster level with single, double, and perturbative triple excitations

[CCSD(T)].

The use of large basis sets is not consistent with our goal of fast quantum chem-

istry, so for XPS we consider only double-ζ and a few Pople-type triple-ζ basis sets.

In a sense, one may think of the basis set and point-charge embedding scheme as

parameters of the method.

7.4.1 S22 database

The S22 database of dimer binding energies was assembled in Ref. [301], although we

use the revised binding energies from Ref. [302] in this work. The data set contains

22 biologically-relevant molecular dimers, including seven hydrogen-bonded dimers,

eight dispersion-dominated complexes, and seven complexes where both dispersion

and hydrogen-bonding contribute significantly to the binding energy. The bench-

mark binding energies for these complexes range from ∼ 0.5–20.0 kcal/mol, and are

estimates of CCSD(T)/CBS binding energies. (See Ref. [302] for details of the CBS

extrapolation procedure.)

We will compare SAPT(0) and SAPT(KS) binding energies with and without in-

clusion of the XPol procedure. When XPol is used to obtained the zeroth-order wave-

function, and the perturbation is therefore modified according to Eq. (7.27), we will

refer to these methods as XPS(0) and XPS(KS). We have neglected the δEHF
int correc-

tion, as the need for a counterpoise-corrected supersystem binding energy makes this
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an unattractive option for large systems. We will use the notation SAPT(PBE0)/6-

31G*, for example, to indicate a SAPT(KS) calculation using the PBE0 density

functional and the 6-31G* basis set, and the notation XPS(PBE0)/6-31G* to denote

the corresponding XPS(KS) method. For XPS calculations, the additional symbol

“resp” will be used to indicate that we have replaced the second-order induction am-

plitudes with amplitudes obtained from the solution of coupled-perturbed HF or KS

equations.[20, 289]

Table 7.1 shows errors for the SAPT(0), SAPT(KS), XPS(0) and XPS(KS) meth-

ods, using Mulliken charges for the XPS calculations. (Additional results, for a wider

variety of basis sets and density functionals, can be found appendix C.) We note

that XPS(0) generally outperforms XPS(KS), and among variants of the latter, the

LRC functionals generally outperform their uncorrected counterparts. The XPS(0)

procedure typically results in slightly smaller errors than SAPT(0), but this is not al-

ways the case. The inclusion of infinite-order induction (“resp”) universally improves

the results when using XPS(0) and SAPT(0), but sometimes degrades the results of

SAPT(KS) calculations, especially for the non-LRC functionals.

The fact that traditional generalized gradient approximations (GGAs), such as

BOP, and global hybrid functionals, such as B3LYP and PBE0, fare poorly in SAPT(KS)

calculations is well-documented.[270, 271, 273–275] In particular, SAPT(KS) has been

shown to overestimate dispersion energies, owing to highest occupied/lowest unoccu-

pied MO (HOMO/LUMO) gaps that are too small.[270] Figure 7.1 shows the S22

database errors for SAPT(KS) and XPS(KS) methods in more detail, and the same
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Method SCF method, X =
HF BOP PBE0 LRC- LRC-

µBOP ωPBEh
SAPT(X)/6-31G* 0.79 (3.27) 2.02 (9.55) 1.52 (6.47) 1.56 (7.31) 1.45 (6.75)
SAPT(X)-resp/6-31G* 0.65 (2.48) 2.50 (9.21) 1.73 (6.50) 1.52 (7.33) 1.51 (7.36)
XPS(X)/6-31G* 0.56 (1.46) 2.00 (9.66) 1.33 (6.24) 1.10 (3.79) 0.99 (3.57)
XPS(X)-resp/6-31G* 0.90 (3.16) 1.87 (9.01) 1.28 (5.99) 0.80 (3.14) 0.82 (3.11)
SAPT(X)/cc-pVDZ 1.06 (4.45) 2.45 (9.58) 1.83 (6.27) 1.89 (8.30) 1.81 (7.76)
SAPT(X)-resp/cc-pVDZ 0.91 (3.72) 2.92 (9.41) 2.06 (7.46) 1.87 (8.34) 1.88 (8.37)
XPS(X)/cc-pVDZ 0.71 (1.94) 2.58 (10.11) 1.73 (6.81) 1.62 (5.93) 1.59 (5.83)
XPS(X)-resp/cc-pVDZ 0.50 (1.81) 2.52 (9.00) 1.66 (5.90) 1.38 (5.43) 1.42 (5.45)

Table 7.1: Mean absolute errors and (in parentheses) maximum absolute errors for the the S22 database, in
kcal/mol. A variety of SAPT(X) and XPS(X) variants are considered; note that SAPT(HF) is equivalent to
the method that is traditionally called SAPT(0). All XPS methods use Mulliken charges for the electrostatic
embedding.
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Figure 7.1: Binding energy errors (in kcal/mol) across the S22 database, as com-
puted at (a) the SAPT(X)/cc-pVDZ level and (b) the XPS(X)/cc-pVDZ level (with
Mulliken embedding charges), for a variety of different SCF methods, X. A few dif-
ficult cases are highlighted in panel (b). Starting at the top and moving clockwise
around panel (b), these are formic acid dimer, an indole-benzene π stack, and an
adenine-thymine π stack.
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trend is evident among traditional (i.e., non-LRC) density functionals. LRC func-

tionals, however, widen the HOMO/LUMO gap,[168] leading to larger energy denom-

inators in Eq. (7.23), and therefore smaller dispersion energies. Although the LRC

procedure appears to eliminate the strong overestimation of the dispersion energy, all

of the density functionals tend to underbind the hydrogen-bonded complexes, often

to a considerable extent.

The LRC correction scheme that is employed here differs from the asymptotic

correction[303, 304] (AC) that is typically used in SAPT(DFT) and SAPT(KS)

calculations.[271, 275] Although the traditional AC guarantees that the KS potential

has the correct asymptotic behavior,[303, 304] it has two major drawbacks that, in our

view, make it unappealing for XPS calculations. First, construction of the AC requires

an accurate ionization potential as input, and second, the AC-KS potential does not

correspond to the functional derivative of any known energy functional.[303, 304] (In

practice, the AC is applied to correct the asymptotic behavior of the potential, but the

energy functional is not modified.) These may not be serious problems for SAPT(KS)

calculations, where the binding energy is obtained directly and the total system en-

ergy is not needed. However, in XPS some of the interaction energy is wrapped up

in the zeroth-order XPol energy. We aim to use this method as an efficient way to

perform ab initio molecular dynamics simulations in clusters and condensed-phase

systems, where the total supersystem energy is obviously an important and meaning-

ful quantity. That said, in the context of SAPT(KS) or SAPT(DFT) calculations, it

is unclear to us whether the use of LRC functionals is superior to the AC procedure.
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Looking carefully at the errors listed in Table 7.1, it may seem strange that the

SAPT(0) and XPS(0) approaches are not equivalent for hydrogen-bonded complexes

when the infinite-order induction correction is applied. In fact, XPS(0) outperforms

SAPT(0) in many of these cases. This is because the response correction is an infinite-

order (non-perturbative) correction for induction in the presence of a frozen partner

density, whereas XPS treats polarization self-consistently, if not exactly. This means

that the XPS procedure attempts to include “higher order” induction effects into the

zeroth-order energy. In SAPT(0) calculations, such terms are typically incorporated

by means of the δEHF
int correction, which is omitted here.

Although these initial tests of XPS appear promising, we are generally unable to

converge the XPol procedure when Mulliken embedding charges are used in conjunc-

tion with diffuse basis functions. This is perhaps not entirely surprising, given the

well-known instability of Mulliken charges with respect to basis-set expansion. (In

their work on XPol, Xie et al.[57–59, 246] use Mulliken charges exclusively, but have

only reported calculations in small basis sets.) For small, compact basis sets, we find

that Mulliken, Löwdin, and CHELPG embedding charges all perform similarly, and

henceforth we discontinue the use of Mulliken charges in favor of these other two

charge schemes.

Having demonstrated that the LRC functionals are superior to traditional GGAs

and global hybrid functionals for use with XPS, all remaining calculations focus on

HF, LRC-µBOP and LRC-ωPBEh. Table 7.2 displays XPS statistical errors, eval-

uated over the S22 database, for a larger range of basis sets and charge schemes.
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XPS-Löwdin XPS-CHELPG MP2 MP2
Basis HF LRC- LRC- HF LRC- LRC- (counter-

µBOP ωPBEh µBOP ωPBEh poise)
6-31G* 0.73 (2.31) 0.91 (3.91) 0.93 (3.86) 0.87 (2.47) 0.87 (3.56) 0.90 (3.53) 1.44 (3.34) 2.09 (4.47)
6-31G*, resp 0.75 (2.40) 0.90 (3.88) 0.93 (3.88) 0.87 (2.55) 0.87 (3.54) 0.91 (3.55) — —
6-311G* 0.57 (2.76) 1.20 (6.52) 1.38 (6.92) 0.56 (2.32) 1.21(6.20) 1.40 (6.67) 1.54 (4.86) 1.82 (5.81)
6-311G*, resp 0.54 (2.55) 1.18 (6.41) 1.37 (6.88) 0.54 (2.18) 1.20 (6.15) 1.40 (6.65) — —
cc-pVDZ 0.55 (2.04) 1.46 (6.39) 1.48 (6.30) 0.39 (1.12) 1.35 (5.72) 1.39 (5.68) 1.68 (4.75) 1.98 (4.73)
cc-pVDZ, resp 0.51 (1.75) 1.44 (6.26) 1.47 (6.27) 0.38 (1.02) 1.35 (5.70) 1.39 (5.69) — —
aug-cc-pVDZ 1.52 (4.48) 2.46 (10.24) 2.71 (9.63) 1.26 (3.38) 2.21 (8.43) 2.49 (7.91) 3.15 (11.15) 1.00 (2.80)
aug-cc-pVDZ, resp 1.40 (3.80) 2.39 (9.91) 2.67 (9.52) 1.25 (3.39) 2.23 (8.40) 2.49 (7.91) — —
aug-cc-pVDZ′ — — — 1.31 (3.86) — — 1.76 (2.64) 1.02 (2.96)
aug-cc-pVDZ-proj — — — 1.31 (4.42) 1.66 (4.36) 2.05 (6.51) — —
aug-cc-pVDZ′-proj — — — 0.75 (3.38) — — — —

Table 7.2: Mean absolute errors and (in parentheses) maximum absolute errors for the S22 database, in kcal/mol.
A variety of XPS(X) variants are considered, using either Löwdin or CHELPG embedding charges. For several of
the basis sets, the corresponding response (“resp”) result is also listed. The primed and projected (“proj”) basis
sets are defined in the text (Section 7.4.2). MP2 results, with and without counterpoise correction, are also listed
for comparison.
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(Results for some additional basis sets can be found in appendix C.) Also listed in

Table 7.2 are statistical errors for binding energies computed using standard super-

system MP2 calculations, both with and without counterpoise correction.

The XPS methods are generally more accurate than MP2 in the smaller basis sets,

whereas counterpoise-corrected MP2/aug-cc-pVDZ and MP2/aug-cc-pVDZ′ results

both exhibit mean errors of 1.0 kcal/mol, versus a mean error of 1.3 kcal/mol for

XPS(0)-CHELPG calculations in the same basis sets. For the MP2 calculations,

however, counterpoise correction is essential to obtain errors this low, whereas this

correction is unnecessary in XPS calculations. This represents a significant advantage

in the context of larger clusters.

As in the case of Mulliken embedding charges, XPS(0) outperforms XPS(KS) for

the S22 database. Oddly, inclusion of diffuse basis functions slightly degrades the

performance of XPS(0) results but greatly degrades XPS(KS) results. The compact

basis sets perform quite well, and the smallest errors are obtained using the cc-pVDZ

basis set, CHELPG charges, and HF orbitals. This combination affords a mean

unsigned error of only 0.4 kcal/mol and a maximum error of 1.0 kcal/mol. It is

interesting to note that the infinite-order induction correction has very little effect on

the errors when CHELPG embedding charges are used. We take this as an indication

that these charges better reproduce the electrostatic potential outside of the molecular

core, which is precisely what CHELPG charges are designed to do.

The large errors observed at the XPS(KS) level, particularly where diffuse basis

sets are employed, result from an underestimation of the binding energies in strongly
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H-bonded complexes. (The S22 data set contains five H-bonded complexes whose

binding energies exceed 15 kcal/mol in magnitude.) In particular, the XPS binding

energy of formic acid dimer is almost always underestimated, and often this species

affords the largest error. This was also observed by Hohenstein and Sherrill,[305] in

both SAPT(0) calculations as well as SAPT calculations that include intramonomer

electron correlation. These authors suggest that it is “imperative” to include the

δEHF
int correction for H-bonded complexes. However, it appears that the XPol proce-

dure recovers some of the higher-order induction effects that the δEHF
int correction is

intended to incorporate. In fact, the errors reported here are competitive with those

reported in Ref. [305], where intramonomer electron correlation was included and the

aug-cc-pVDZ/DCBS was used.

Hohenstein and Sherrill[305] report that intramonomer correlation is especially

important in the formic acid dimer. It is therefore curious that the XPS(KS) errors

are much larger for this species than are the XPS(0) errors, given that XPS(KS)

includes some intramolecular electron correlation whereas XPS(0) does not. Where

does XPS(KS) go wrong? Rephrasing this question: if we assume that XPS(0) is

doing something right, then what is so different about XPS(KS)?

To answer this question, we define the total Coulomb and exchange energies for

the A · · ·B dimer according to

ECoul = EAB
0 + E

(1)
elst + E

(2)
ind − EA

0 − EB
0 (7.32)

and

Eexch = E
(1)
exch + E

(2)
exch-ind , (7.33)
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Figure 7.2: Comparison of (a) the total Coulomb and (b) the total exchange inter-
action energies computed at the XPS(0) and XPS(KS) levels, for the S22 database.
CHELPG charges are used in each case. The insets present the data for the five
strongly H-bonded complexes whose binding energies exceed 15 kcal/mol).
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respectively, where EAB
0 , EA

0 , and EB
0 are the zeroth-order energies of the dimer and

the two monomers. Figure 7.2 shows that the XPS(0) and XPS(KS) methods pre-

dict nearly identical Coulomb energies, but that the XPS(KS) methods predict much

larger exchange energies, especially for dimers that exhibit strong hydrogen bonding.

The net result is a less favorable cancellation of errors, and therefore an underestima-

tion of the binding energies, when XPS(KS) methods are applied to these complexes.

As the quality of the basis set increases, we expect the total electrostatic energy to

become more negative while the exchange energy will become more positive (since

an increasingly diffuse basis set will allow the monomer wavefunctions to overlap to

a larger extent). When HF orbitals are used, errors in the Coulomb and exchange

energies due to basis incompleteness must cancel, approximately, as relatively accu-

rate binding energies are obtained. This is not the case when KS orbitals are used.

It is tempting to attribute this to the well-known “delocalization error” in DFT,[306]

which might exaggerate the degree of overlap and therefore the exchange energy. This

artifact would tend to cancel out in SAPT(DFT) calculations, if the δEHF
int correction

were used. For this reason, it may come as no surprise that the HF variant of XPS

outperforms KS variants.

7.4.2 Potential energy curves

The results of the previous section demonstrate that XPS(0) calculations, with a

suitable choice of basis set and point-charge embedding scheme, can approach the

accuracy of complete-basis CCSD(T) benchmarks for the S22 database of dimers.

The best results are obtained using the cc-pVDZ basis set, which is far from complete,
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hence our method must benefit from some cancellation of errors. It is important to

understand whether that cancellation is robust across potential energy surfaces. In

this section, we examine some potential energy curves for (H2O)2 and (C6H6)2. The

benzene dimer was selected because it is a stringent test of the accuracy of dispersion

interactions, and because CCSD(T)/CBS potential energy curves are available.[8] The

water dimer was chosen because in Section 7.5 we will examine the performance of

XPS(0) for binding energies in larger water clusters.

Figure 7.3 shows binding energy curves for the “parallel-displaced” benzene dimer

at three different values of R1, the distance between the two C6H6 planes. For non-

polar molecules, Löwdin and CHELPG charges produce nearly identical results, so

only the latter are used here. We observe that 6-311G*, cc-pVDZ and aug-cc-pVDZ

qualitatively capture the profile of the binding energy curves (Fig. 7.3), but the 3-

21G* and 6-31G* basis sets do not (see appendix C). The latter basis sets exhibit

too small of a barrier at R2 = 0. In our view, the cc-pVDZ and 6-311G* basis sets

exhibit acceptable errors of ∼1 kcal/mol.

The largest basis set that we examine, aug-cc-pVDZ, overbinds the benzene dimer,

which is not surprising given that XPS employs an MP2-like dispersion formula,

and the MP2 method is known to overestimate the interaction energy of dispersion-

bound complexes.[8] The dispersion energy in SAPT(0) generally increases as the

size of the basis increases,[290] leading to a fortuitous cancellation of errors in small-

to medium-sized basis sets, particularly ones that lack diffuse basis functions. For

MP2-like methods, Hohenstein and Sherrill[305, 307] recommend a modified form of
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Figure 7.3: Binding energy curves for the parallel-displaced benzene dimer, computed
at the XPS(0) level using CHELPG charges. CCSD(T)/CBS benchmarks are taken
from Ref. [8].
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aug-cc-pVDZ that they call aug-cc-pVDZ′, wherein the diffuse functions on hydrogen

atoms are removed along with the diffuse d functions on the carbon atoms. For the

parallel-displaced benzene dimer, we find that this basis leads to a remarkably good

cancellation of errors, such that for R1 = 3.6 Å the XPS(0) curve is indistinguishable

from the benchmark.

A comparison of the potential energy curves for the three different values of

R1 shown in Fig. 7.3 suggests that the XPS exchange repulsion energy decays too

rapidly with respect to monomer separation. This is more obvious in the case of the

“T-shaped” and “sandwich” isomers of (C6H6)2, potential energy curves for which

are shown in Fig. 7.4. The aug-cc-pVDZ basis substantially overbinds these isomers

at their minimum-energy geometries, although the cc-pVDZ and 6-311G* basis sets

perform fairly well, affording errors on the order of ∼1 kcal/mol at the minimum. The

aug-cc-pVDZ′ basis set performs extremely well for the sandwich dimer but slightly

worse for the T-shaped dimer. For the sandwich configuration all of the basis sets

afford a minimum at shorter separations than the benchmark result, except for the

aug-cc-pVDZ′, where the entire potential curve is quite accurate. With the exception

of XPS(0)/aug-cc-pVDZ′ basis, all of the XPS(0) methods perform better for the

T-shaped isomer than they do for the sandwich conformation, which probably results

from underestimating the induction interactions while simultaneously overestimating

the dispersion energy.

To explore the (H2O)2 potential surface, we follow Burnham and Xantheas[308] in

examining four different (H2O)2 isomers with distinct point-group symmetries. These
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C2Ci

C2v Cs

Figure 7.5: (H2O)2 structures consider in this work.

are pictured in Fig. 7.5. We investigate minimum energy paths (MEPs) along the

oxygen–oxygen distance coordinate, relaxing the other degrees of freedom subject

to the constraint that point-group symmetry is maintained. To obtain benchmark

MEPs, we optimized the geometries at the MP2/aug-cc-pVTZ level and then used

counterpoise-corrected MP2/aug-cc-pVXZ calculations (X = D, T, Q) to estimate

the MP2/CBS binding energy. The HF energy was extrapolated using the three-point

ansatz

E(X) = E(∞) + ae−bX , (7.34)

where a and b are fitting parameters.[115] The correlation energy was extrapolated

using a two-point formula (X = T, Q),

E(∞) = E(X) + cX−3 , (7.35)

where c is a fitting parameter.[116]

Figure 7.6 compares these MP2/CBS benchmark MEPs to XPS(0)-CHELPG re-

sults, using a variety of basis sets. The salient features of the MP2 benchmarks that

we would like to capture with XPS are:
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Figure 7.6: Binding energy curves for four symmetry-distinct (H2O)2 isomers shown
in Fig. 7.5: (a) MP2/CBS benchmarks, and (b)–(f) XPS(0) results using a variety
of basis sets. Löwdin and CHELPG embedding charges afford essentially identical
potential curves, so only the latter are shown.
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(i) the global minimum along the Cs curve at RO−O ≈ 2.9 Å;

(ii) a C2v curve with a minimum at the same value of RO−O but higher in energy

by ≈ 2 kcal/mol;

(iii) C2 and Ci curves having minima at RO−O ≈ 2.75 Å located about 1 kcal/mol

above the Cs minimum; and

(iv) C2 and Ci curves that coalesce at RO−O ≈ 2.5 Å, which results from a collapse

to C2h symmetry.[308]

Panels (b)–(e) of Fig. 7.6 show that it is relatively easy to obtain features (i),

(iii), and (iv), even if the binding energies are not in agreement with the benchmark

values. However, feature (ii) is reproduced only if we use an augmented basis set.

With the aug-cc-pVDZ basis, the XPS(0) method reproduces the relative energetics

of the four MEPs quite well but the curves are slightly (≈ 0.5 kcal/mol) underbound

at the Cs minimum, which is pushed out to about 3.0 Å. While the 0.5 kcal/mol

underbinding represents only about a 10% error at the minimum, this will add up to

fairly significant errors when applied to large water clusters.

Our XPS calculations use the MCBS, in which the MOs of fragment A are ex-

panded in terms of only those AOs that are centered on atoms in fragment A. For this

reason, one could argue that we have neglected charge-transfer interactions. (How-

ever, some charge-transfer-like interaction must certainly be present, since the basis

functions on fragment A do extend over fragment B.) It would be useful to have a
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basis that mimics the DCBS that is often used in SAPT calculations for dimers,[290]

but it is not clear how to generalize this idea to the case of more than two fragments.

As an alternative, we have utilized what we call the projected (“proj”) basis set,

borrowing an idea from dual-basis MP2 calculations.[259, 309] We first solve the XPol

SCF equations and then, for a particular pairwise SAPT(0) correction, we construct

the XPol Fock matrices for fragments A and B in the dimer (A + B) basis set. We

then separately diagonalize the occupied-occupied and virtual-virtual blocks of these

matrices, which is sometimes called “pseudo-canonicalization”. This procedure leaves

the fragment densities and and zeroth-order fragment energies unchanged, but pro-

vides a larger set of virtual orbitals that extend over the partner fragment. We use this

larger virtual space to perform the perturbative correction. Because the occupied-

virtual block of the Fock matrix is non-zero, the pseudo-canonical MOs are not rig-

orous eigenfunctions of the fragment Fock matrices. In principle, we could include

a perturbative correction to the zeroth-order energies, of the form
∑

ar F
A
ar/(ǫa − ǫr)

for fragment A. (In the context of MP2-like methods, this is sometimes called the

“non-Brillouin singles” term.[49]) We decline to do so, however, as this would have

the effect of re-introducing BSSE. Instead, our aim is to enlarge the virtual space in

a manner that can account for interfragment charge transfer.

As compared to SAPT(0) calculations performed with the DCBS, we find that

the use of this “projected” basis set (aug-cc-pVDZ-proj) results in about a 10% error

in the (H2O)2 binding energy. However, most of this error is contained in the E
(1)
exch

correction, and the components involving virtual orbitals carry an error of < 1%.
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Therefore, if the aim is to increase the virtual space without changing the zeroth-

order density, then this is a successful strategy. If the first-order corrections are

converged in the MCBS, then this procedure should incur very little additional error.

XPS(0) binding energy curves for (H2O)2, using the projected basis, are shown in

Fig. 7.6(f). They are qualitatively similar to those in the aug-cc-pVDZ basis but now

the binding energies are in good agreement with MP2/CBS results. Interestingly, if

we take the difference in the binding energies computed in the aug-cc-pVDZ MCBS

and in the corresponding projected basis set as an estimate of the charge-transfer

interaction energy, then charge transfer accounts for only about 10% of the (H2O)2

interaction energy, a figure that is substantially smaller than that estimated by energy

decomposition analysis in the ALMO basis.[50] In Ref. [50], it was also reported

that the charge-transfer component of the interaction energy is significantly larger

when DFT is used to compute the ALMOs. In the context of the present work, this

observation may indicate that the strong underbinding of hydrogen-bound complexes

by XPS(KS) may be an artifact of the use of the MCBS. Use of the projected basis

significantly decreases the XPS(KS) errors for the S22 database (see Table 7.2). We

plan to explore this issue further in future work.

7.5 Water clusters

We have demonstrated that our method does not degrade the results of SAPT(0)

for the S22 database, and furthermore that we can describe binding energy curves of

benzene dimer with reasonable accuracy, and those of water dimer with high accuracy.
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Our ultimate goal, however, is application to larger clusters and molecular liquids.

In this section, we evaluate the binding energies predicted by our method for a set

of water clusters, in order to determine whether many-body effects are accurately

reproduced by XPS.

We have assembled a database of 19 (H2O)n isomers ranging from n = 2 to n = 20.

Structures and benchmark binding energies for these clusters are taken from the work

of Xantheas and co-workers.[92, 310–314] The data set includes MP2/CBS binding

energies for the dimer; the cyclic trimer, tetramer, and pentamer; the ring, book,

cage, and prism isomers of the hexamer; and the S4 and D2d isomers of the octamer.

In addition, it includes binding energies for five different (H2O)11 isomers, computed

at the MP2/aug-cc-pVQZ//MP2/aug-cc-pVTZ level. (Following Ref. [313], these

isomers are labeled 43′4, 44′3′, 515, 551 and 44′12.) Lastly, we include MP2/CBS

binding energies for four (H2O)20 isomers,[92] one from each of the four families of

low-lying minima (dodecahedron, fused cubes, face-sharing pentagonal prisms, and

edge-sharing pentagonal prisms) exhibited by the 20mer. Binding energies for all of

the benchmarks are computed relative to relaxed monomers.

In larger clusters, a meaningful comparison of binding energies between different

levels of theory should employ geometries that are optimized, separately, at either level

of theory. For XPS calculations, geometries were optimized using a three-point finite-

difference algorithm in cartesian coordinates, and were considered to be converged

when the change in energy dropped below 10−6 hartree. This procedure is quite

demanding, computationally, and for the (H2O)20 clusters with the larger basis sets
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(aug-cc-pVDZ and aug-cc-pVDZ-proj), it was necessary to reduce the convergence

threshold to 10−4 hartree. Tighter optimization would necessarily increase the binding

energies, which (as will become clear in what follows) would improve the agreement

between XPS results and benchmark binding energies. However, we expect that the

binding energies would increase by no more than a few kcal/mol, for clusters whose

binding energies are ∼200 kcal/mol. As such, we believe that these (H2O)20 tests are

still meaningful.

Figure 7.7(a) shows the correlation between the XPS(0) and the benchmark bind-

ing energies. In general, the basis sets that were overbinding for (H2O)2 are also

overbinding in larger clusters. In addition, Löwdin embedding tends to afford lower

binding energies than CHELPG embedding, indicating that the Löwdin charge scheme

underestimates the dipole moments of the H2O monomers. As was the case for the

S22 benchmarks, the cc-pVDZ basis set affords a superb cancellation of errors and

yields results in good agreement with the benchmark values.

Figure 7.7(b) plots the binding energy errors per hydrogen bond, as a function of

the number of hydrogen bonds. In all cases, this error grows rapidly from one to five

hydrogen bonds, but beyond this it is nearly a constant with respect to the number

of hydrogen bonds. We interpret this as evidence that XPS(0) recovers a constant

fraction of the many-body interaction energy in large water clusters.

Binding energies computed at the XPS(0)-CHELPG level, as well as percentage

errors relative to MP2 benchmarks, are listed in Table 7.3. The best results are
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Figure 7.7: (a) Correlation between XPS(0) binding energies and MP2 benchmarks.
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n Isomer XPS(0)-CHELPG Benchmark
6-311G* cc-pVDZ aug-cc- aug-cc-

pVDZ pVDZ-proj
2 6.9 (39.4) 5.6 (13.7) 4.6 (7.8) 5.1 (2.5) 4.97
3 20.2 (27.6) 16.6 (5.3) 14.0 (11.7) 15.6 (1.6) 15.82
4 34.8 (25.8) 28.4 (2.7) 23.5 (14.9) 26.5 (4.1) 27.63
5 46.5 (28.1) 37.7 (3.8) 31.0 (14.7) 34.9 (3.9) 36.31
6 book 57.9 (27.0) 47.6 (4.4) 38.8 (15.0) 43.8 (4.0) 45.61
6 cage 58.0 (26.7) 48.4 (5.8) 38.8 (15.2) 43.8 (4.2) 45.79
6 cyclic 58.1 (29.6) 47.0 (4.7) 38.4 (14.3) 43.2 (3.7) 44.86
6 prism 59.4 (29.4) 50.4 (9.8) 39.3 (14.2) 44.5 (3.1) 45.86
8 D2d 90.1 (23.6) 75.5 (3.5) 60.5 (17.0) 68.6 (5.9) 72.88
8 S4 90.0 (23.6) 75.4 (3.5) 60.6 (16.8) 68.7 (5.6) 72.83
11 43′4 126.8 (20.6) 105.8 (0.6) 84.8 (19.4) 96.2 (8.5) 105.16
11 44′3′ 128.0 (22.2) 107.1 (2.2) 85.3 (18.6) 96.6 (7.8) 104.76
11 515 127.4 (21.2) 106.1 (1.0) 85.4 (18.8) 96.7 (8.0) 105.09
11 551 128.0 (22.0) 106.4 (1.4) 85.5 (18.5) 96.8 (7.8) 104.95
11 44′12 127.2 (22.4) 106.0 (2.0) 85.0 (18.3) 96.2 (7.5) 103.97
20 dodecahedron 247.0 (23.4) 205.0 (2.5) 165.5 (17.3) 184.6 (7.7) 200.10
20 edge-sharing 261.8 (20.1) 220.3 (1.1) 174.3 (20.0) 194.9 (10.6) 217.90
20 face-sharing 259.4 (20.6) 219.1 (1.9) 172.2 (19.9) 192.9 (10.3) 215.00
20 fused cubes 259.7 (22.1) 220.4 (3.6) 172.2 (19.0) 192.8 (9.3) 212.60

Table 7.3: Negative binding energies for (H2O)n cluster isomers, in kcal/mol. Percent errors in the XPS binding
energies, relative to the benchmarks, are listed in parentheses.
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Isomer XPS(0)-Löwdin XPS(0)-CHELPG Benchmark
cc-pVDZ aug-cc- cc-pVDZ aug-cc-

pVDZ-proj pVDZ-proj
dodecahedron 184.2 (7.9) 154.3 (22.9) 220.4 (3.6) 184.6 (7.7) 200.10
edge sharing 198.1 (9.1) 164.2 (24.7) 220.3 (1.1) 192.8 (9.3) 217.90
face sharing 197.8 (8.0) 160.7 (25.3) 219.1 (1.9) 192.9 (10.3) 215.00
fused cubes 199.8 (6.0) 164.0 (22.9) 220.4 (3.6) 192.8 (9.3) 212.60

Table 7.4: Negative binding energies for (H2O)20 clusters, in kcal/mol. Percent errors
in the XPS binding energies, relative to the benchmarks, are listed in parentheses.

obtained using the cc-pVDZ and aug-cc-pVDZ-proj basis sets. The cc-pVDZ, aug-cc-

pVDZ and aug-cc-pVDZ-proj basis sets all reproduce the correct energetic ordering

of the (H2O)6 isomers, even though the error in the binding energy is greater than

the energetic difference between these isomers. The same is not true for the octamers

and endecamers, although the energy differences among these isomers amount to only

about 1% of the total binding energies. It is difficult to compare the relative energies

of the (H2O)20 isomers since our geometries are not fully relaxed, but in all cases the

dodecahedron is correctly identified as the highest-energy isomer.

As can be seen in Table 7.3, the water dimer is overbound by 14% using the cc-

pVDZ basis while the larger water clusters are overbound by ∼2%. In contrast, the

aug-cc-pVDZ-proj basis accurately reproduces the dimer binding energy but under-

estimates the (H2O)20 binding energies by about 10%. Using the aug-cc-pVDZ basis

set, the error grows from 8% at n = 2 to 20% at n = 20. We interpret these findings

as an indication that, for a fixed pairwise error, our method recovers ∼90% of the in-

teraction energy when used with CHELPG embedding charges. A smaller fraction of
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the interaction energy is recovered using Löwdin charges, as shown in Table 7.4, and

by a similar argument we conclude that the XPS(0)-Löwdin method recovers ∼80% of

the interaction energy. By performing single-point energy calculations on the (H2O)20

isomers at the optimized XPS(0)-CHELPG geometries, we find that traditional pair-

wise SAPT(0) in the aug-cc-pVDZ-proj basis recovers ∼ 70% of the binding energy.

This indicates that roughly 30% of the binding energy in these clusters comes from

many-body effects, and we recover about 2/3 of this using XPS(0) with CHELPG

embedding charges.

7.6 Computational expense

We intend XPS as a method for large systems, so let us comment on its computational

scaling. The first step in an XPS calculation, solving the XPol SCF equations, scales

linearly with Nfrag, assuming that construction and diagonalization of the fragment

Fock matrices is much more demanding than formation of the one-electron integrals

needed to compute the electrostatic interactions between the fragment densities and

the embedding charges. (Even the latter step can ultimately be made to scale lin-

early by exploiting fast-multipole techniques.[232]) Increasing the size of the basis set

formally scales as O(N4
basis) for Fock matrix construction and O(N3

basis) for diagonal-

ization.

In the second step of XPS, we perform Nfrag(Nfrag − 1)/2 independent, pairwise

SAPT(0) corrections, so this step scales as O(N2
frag) and dominates the total cost

in our present, serial implementation. Figure 7.8 shows actual timings for water
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clusters, as compared to timings for supersystem HF and MP2 calculations. Already

in its present implementation, XPS can be scaled up to quite large water clusters.

Each pairwise correction in SAPT(0) and XPS(0) requires integrals of the form

(aX|bY ), where a ∈ A and b ∈ B are occupied MOs, whereas X and Y range over

all occupied and virtual MOs on both fragments. We compute these integrals by

first computing all N4
basis AO integrals (µν|λσ), which represents some unnecessary

overhead in the MCBS. The AO integrals are transformed in four steps that scale

as O(NA
o N

4
basis), O(NA

o N
B
o N

3
basis), O(NA

o N
B
o N

AB
MON

2
basis) and O[NA

o N
B
o (NAB

MO)2Nbasis],

where NA
o is the number of occupied MOs on fragment A and NAB

MO is the total number
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of MOs (occupied + virtual) on fragments A and B. The most time-consuming

contraction step in the SAPT(0) correction is the accumulation of E
(2)
exch-disp, the

bottleneck of which scales as O[(NA
o )2NB

o N
A
v N

B
v ] where NA

v is the number of virtual

MOs associated with fragment A. [As such, the scaling of this step is usually reported

as O(o3v2).[273, 275, 307]] We find that the integral transformation is at least one

order of magnitude more expensive than the contractions.

In practice, the SAPT(0) corrections that we use in XPS exhibit a scaling similar

to that of dimer MP2 calculations, with respect to either the size of the fragments

or the size of the basis set. Stand-alone dimer SAPT(0) calculations are in general

less expensive than supersystem MP2 calculations, since the occupied and virtual

spaces in SAPT(0) are partitioned into components from fragments A and B, leading

to an overall computational expense of O(NA
o N

4
basis) for SAPT(0) versus O[(NA

o +

NB
o )N4

basis] for MP2.[307]

The exchange interactions in SAPT(0) decay rapidly as a function of interfrag-

ment distance, which could be exploited to reduce the cost of large XPS calculations

by introducing cutoff schemes, such that the exchange corrections are evaluated only

for nearby fragments. Thresholds could also be used to avoid accumulating disper-

sion and induction corrections for distant pairs. At very long range, the electrostatic

interactions included at the XPol level may be sufficiently accurate to avoid comput-

ing E
(1)
elst altogether. Parallelization of the Nfrag(Nfrag − 1)/2 independent SAPT(0)

corrections is another obvious way to reduce the cost. We plan to explore such cost-

reduction techniques in the future.
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7.7 Summary and outlook

We have introduced a new quantum chemistry method for studying intermolecular in-

teractions, which we call XPol/SAPT, or XPS. This method incorporates electronic

induction, intermolecular electrostatic interactions, and intramolecular interactions

at the SCF level, using a charge embedding scheme whose computational cost grows

linearly with the number of monomers. Dispersion, exchange-repulsion, and inter-

molecular charge-transfer effects, along with corrections to the electrostatic charge

embedding, are introduced by means of a pairwise, perturbative post-SCF correction.

The monomers are allowed to be fully flexible.

In developing this method, our intention was to replace the need for Lennard-

Jones parameters in the XPol procedure,[59] while preserving the favorable scaling

of that method with respect to system size. We have demonstrated that the XPS

method does not degrade, and in many cases improves upon, the results of tradi-

tional SAPT(0) calculations for molecular dimers. Given an appropriate choice of

basis set and electrostatic embedding, XPS recovers ∼ 90% of the binding energy

of large water clusters, as compared to MP2/CBS benchmarks, whereas traditional

pairwise SAPT(0) recovers ∼ 70%. In our present implementation, the cost of the

post-XPol corrections scales quadratically with the number of monomers. The com-

putational cost is already quite low for large clusters, if the monomers are small, and

can ultimately be made to scale linearly with the number of monomers, by intro-

ducing appropriate distance-dependent cutoffs. Work along these lines, including an

implementation using periodic boundary conditions, is currently in progress.
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While the XPS method is promising with respect to both accuracy and efficiency,

many future improvements must be explored. The poor scaling [O(N5)] of the SAPT

corrections with respect to fragment size can be improved by using density-fitting

techniques that have previously been introduced in the context of traditional SAPT

calculations.[273, 275, 305, 307] A method for fragmenting the system across covalent

bonds, such as that used in the original XPol method[57, 58] or in the fragment

MO method,[247–249] will be needed in order to handle large monomers. These

developments are currently being explored in our group.

The XPS method is systematically improvable, which may help to further improve

the accuracy. In particular, a more rigorous formulation of the method—which goes

beyond the pairwise approximation—is possible, as outlined in Section 7.2.4, and

work along these lines is in progress. It may also be possible to incorporate Casimir-

Polder-type dispersion formulas, as currently used in SAPT(DFT),[273, 275] in order

to obtain better results when DFT is used to describe the monomers. At present, XPS

results using KS orbitals are notably inferior to those obtained using HF orbitals.
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CHAPTER 8

Future Directions

In this thesis we have argued that explicitly including many-body induction in a

potential describing the interactions of an excess electron with water molecules can

have large qualitative effects. Our model was applied to the bulk hydrated electron

where we demonstrated that accounting for the electronic relaxation of the solvent,

upon rapid changes in the solute density, can lead to large effects and new insights.

We now have a model that appears to be applicable from small clusters to the bulk

limit. This leaves us in a unique position to attempt to reproduce the cluster VDEs

observed by photoelectron spectroscopy [4, 30, 34] and provide an interpretation of

these experiments. This work is currently in progress.

At the heart of the photoelectron data is a debate over whether or not the excess

electron prefers to reside on the surface of the cluster or in the interior. Evaluation of

free energy profiles as a function of electron solvation may be insightful. Furthermore,

we might conjecture that the isomers observed experimentally are free energy minima.

One may be able to explore the energetic relationship of these isomers and estimate

free energy barriers for conversion between isomers. The behavior and free energy

profiles of an excess electron at the (infinite) air–water interface is also of interest
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[315] and could potentially serve as a controlled test case for free energy calculations

since the position of the surface is better defined than that of a cluster.

In order to construct a free energy profile for this system one might consider

umbrella sampling along some coordinate that is collective; the distance between the

center of the electron and the center of mass of the cluster, or perhaps the surface.

To do this we must be able to constrain the centroid of the electron using a harmonic

potential. Unfortunately adding a potential such as

U(r) =
1

2
k (~r − ~r0)2 , (8.1)

where ~r0 is the desired position for the electron (which may be a function of the nuclear

coordinates) would also constrain the extent of the wave function. If we were to use

a CPMD-like algorithm to propagate the dynamics instead of a Born-Oppenheimer

dynamics scheme we may be able to constrain the centroid of the electron without

effecting its extent.

The algorithm developed in chapter 6 allows for a self-consistent treatment of ex-

cited states with our polarizable model. This in turn enables us to evaluate gradients

and propagate dynamics on the excited state surfaces. We have argued that solvent

induction is important when the density of the solute changes rapidly. This is the

case in experiments investigating the relaxation dynamics of the solvated electron

where the electron is photo-excited and the relaxation dynamics are followed. The

Neumark group has argued that the extrapolation of relaxation dynamics in clusters

supports the conclusion that the Isomer I data, measured first by Coe et al. are cav-

ity isomers.[29, 139, 140, 142] No theoretical treatment of the relaxation dynamics in
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clusters has been reported and would be of interest.

The hydrated electron work reported in this thesis improves our understanding of

the “blue-tail” of the optical absorption spectrum but our knowledge is still incom-

plete. We report states as being bound in a vertical sense, that is, they are bound if

the excitation energy is lower than the binding energy. In our calculations there is an

implicit boundary condition that the wave function go to zero at the edges of the grid.

This condition enters through the analytic kinetic energy matrix elements, see ap-

pendix A of Ref. [106] for details. The low-lying states are most likely converged with

respect to the size of the grid but higher lying states are not. It is not clear whether

these states are bound and localized or unbound, free-electron states. It would be

interesting to investigate alternative boundary conditions such as Siegert boundary

conditions that require the wave function to be proportional to a plane wave at the

boundary.[316] This has the added difficulty that the eigenvalues are complex and

one may have to solve a Schrödinger equation for numerous wave vectors. However,

this would allow one to calculate bound to continuum transitions (resonances) and

improve our understanding of the qualitative nature of the highly excited states of

the hydrated electron.

The XPS method introduced in chapter 7 is a promising route to extend wave

function-based quantum chemistry to the condensed phase. Some improvements have

been made since the writing of chapter 7 and many await future work. We have im-

plemented density fitting [260–264] to increase the efficiency of the SAPT corrections

and begun work on a parallel implementation. We have also reformulated the theory

245



in a more rigorous manner which includes three-body induction effects, this is done

as indicated by Eqs. 7.29, 7.30 and 7.31. The methodology should also be extended

to better electrostatic descriptions such as using the fragment electron densities to

compute electrostatic interactions as opposed to approximate point charges. In or-

der for XPS to be useful as a means to compute on the fly energies and gradients

for dynamics calculations we need to implement periodic boundary conditions for

the XPol Fock matrix using either Ewald summation or the continuous fast multi-

pole method.[232] It would also be useful to couple the XPS code to some efficient

means of sampling the nuclear configuration space, such as configurationally biased

Monte-Carlo algorithms.[172]

A final avenue of research is exploration of the “diagonal exchange” approximation

introduced in chapter 7. This approximation appears to be effectively unexplored in

electronic structure theory but may be of interest in a few contexts. For weakly inter-

acting systems (molecular liquids and solids) it would be interesting to approximate

the Hartree-Fock procedure by

EHF = min
{φi}

(
〈ΦH

0 |ĤelecA|ΦH
0 〉 −

∑

ij

ǫij(Sji − δji)
)

(8.2)

≈ min
{φi}

[
〈ΦH

0 |Ĥelec

(∏
ANA!ÂA

(
∑

ANA)!

)(
1 +

∑

A

∑

B>A

P̂AB

)
|ΦH

0 〉 −
∑

ij

ǫij(Sji − δji)
]

where |ΦH
0 〉 is a Hartree product of spin orbitals and AA is the antisymmetrizer for

fragment A. This approximation is possible if one utilizes the ALMO ansatz for spin

orbitals. The computational advantage is that the exchange interactions woule be

constructed in a pairwise fashion. It would be interesting to see how closely one can
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approximate the Hartree-Fock solution with this approximation and would serve as

a test of the diagonal exchange approximation.

This line of thinking can be taken further. A similar approximation can be used

in a CIS scheme to compute approximate excited states. One could start from gas-

phase molecular wave functions and use these to construct an exciton-like model,

but one that includes exchange. It would be interesting to compare this to exciton

models that neglect exchange. This type of methodology could also have applications

in construction of diabats for studies of charge-transfer excitation since the charge

on any fragment is easily constrained without relying on atom-centered charges as in

constrained DFT calculations.[230, 231]
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APPENDIX A

Supporting information for “A one-electron model

for the aqueous electron that includes many-body

electron–water polarization: Bulk equilibrium

structure, vertical electron binding energy, and

optical absorption spectrum”

A.1 Fit parameters

The fit parameters that ultimately define the PEWP-2 model are given in Table A.1.

The nature of these parameters is described below.

• aind: Coulomb damping parameters for electrostatic interactions between the

electron and the inducible dipoles, using the modified Coulomb operator defined

in Eq. (7) of the paper. These parameters (one for the H-atom dipoles and one

for the O-atom dipoles) are obtained by a fit to the MP2 polarization potential.

• aperm: Coulomb damping parameters for electrostatic interactions between the

electron and the permanent AMOEBA multipoles. These are fit, in conjunction

with the repulsive potential, in order to reproduce the density maximum of the

LRC-µBOP pseudo-wavefunction.
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Parameter Atomic Value
site (atomic units)

aind oxygen 1.47027
aperm oxygen 1.077362
aind hydrogen 0.514081
aperm hydrogen 0.840234
B1 oxygen 1.035565
B2 oxygen 0.999428
B3 oxygen 0.40954
B1 hydrogen 0.4
B2 hydrogen 1.010174
B3 hydrogen 0.463554
c1 oxygen −0.226083
c1 hydrogen −0.7930992
c2 hydrogen −0.03180506
c3 hydrogen 0.892828395
z1 oxygen 0.18013656
z1 hydrogen 2.19453033
z2 hydrogen 0.12620980
z3 hydrogen 2.76886142

Table A.1: Parameters that define the PEWP-2 model.

• Bi: These are parameters that define the repulsive potential, as defined in

Eq. (10) of the paper. There is one set of parameters Bi (i = 1,2,3) for H and

one set of O.

• ci, zi: These are parameters that are used to fit the exchange-correlation poten-

tial to a sum of atom-centered Gaussian functions, as in Eq. (9) of the paper.

There is one set of each parameter for the O sites and one set for the H sites.
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A.2 Additional cluster benchmarks

A.2.1 Relative isomer energies

While the MP2/6-31(1+,3+)G* method affords accurate VEBEs, due to a lack of

strong correlation effects and absence of significant orbital relaxation upon electron

detachment,[317] accurate benchmarks for relative conformational energies demand

a higher level of theory. To assess how well the model predicts the relative energies

of (H2O)−n cluster isomers, we use MP2/CBS benchmarks, where “CBS” indicates

extrapolation to the complete-basis limit, as described in our previous work.[3] Ge-

ometries for the benchmark clusters (n = 4, 5, 6) were optimized on the anion surface

at the B3LYP/6-31(1+,3+)G* level, and were then re-optimized using the model po-

tentials, in order to compare the relative energetics. We compare both the relative

energies of the anion isomers, and also the relative energies of the neutral clusters at

the same geometries, as the latter provides a sense of how well the neutral potential

surface is described at typical anion geometries. The full set of isomer geometries is

depicted in Ref. [3].

Figures A.1, A.2, and A.3 show the relative energy comparisons for n = 4, 5, and

6, respectively. For the tetramers, all of the model potentials reproduce the ab initio

data surprisingly well, for both the neutral and anionic clusters. For the pentamers,

however, only the polarizable models (PEWP-1 and PEWP-2) track the ab initio data

well. In particular, the TB models gives a relatively poor description of the isomer

“pent-5”, placing it too high in energy by ∼5 kcal/mol in both the anion and neutral

case. This poor description does not arise from any deficiency in the electron-water
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Figure A.1: Relative energies of (a) (H2O)4 cluster isomers and (b) (H2O)−4 isomers at
the same geometries, which represent stationary points on the anion potential energy
surface. Ab initio geometries are from B3LYP/6-31(1+,3+)G*.
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Figure A.2: Relative energies of (a) (H2O)5 cluster isomers and (b) (H2O)−5 isomers at
the same geometries, which represent stationary points on the anion potential energy
surface. Ab initio geometries are from B3LYP/6-31(1+,3+)G*.
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Figure A.3: Relative energies of (a) (H2O)6 cluster isomers and (b) (H2O)−6 isomers at
the same geometries, which represent stationary points on the anion potential energy
surface. Ab initio geometries are from B3LYP/6-31(1+,3+)G*.
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interactions, but is due to the underlying water model, SPC, as discussed below.

A comparison is made in Fig. A.4 between the ab initio optimized geometries and

those obtained using the TB model. Geometries from the PEWP-1 and PEWP-2

models are not shown, as they are nearly identical to the ab initio geometries. Opti-

mization on the TB surface tends to rotate non-hydrogen-bonded (dangling) hydrogen

atoms such that the water molecules lie in planes. Good examples of this are the iso-

mers “tet-3” where all waters have been rotated into a plane, and “tet-5” where

the three-dimensional cage-type structure collapses onto a plane. This rotation into

planes seems not to affect the relative energies of the tetramers, although it does

effect the pentamer and hexamer energies. In particular, the only geometry in which

this rotation does not occur is pent-5. The waters in this geometry are not able to

rotate because all of the hydrogen atoms, save for those associated with the “double

acceptor” (“AA”) water molecule, are involved in hydrogen bonds, and the aforemen-

tioned rotation would break these bonds. This apparently leaves this geometry quite

high in energy.

As discussed previously,[3] we believe the source of this planarity problem is the

lack of out-of-plane electrostatics. Effectively, the point charge water molecules are

rotating into planes because they are aligning dipoles which must only have compo-

nents in the plane of the molecule. This rotation does not occur with the AMOEBA

model because it contains quadrupole (and induced dipole) components that do not

lie in the plane of the water molecule. The SPC model is missing weaker electro-

static forces that stabilize non-planar configurations in the ab initio and PEWP-2
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pent 4 pent 5 pent 6

Figure A.4: Comparison of ab initio and TB geometries for the tetramer structures
studied in this work. Geometries were optimized on the anion potential energy sur-
face, and ab initio geometries are from B3LYP/6-31(1+,3+)G*.
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Figure A.5: Correlation of VEBEs computed using PEWP-2 with LRC-µBOP.

geometries.

A.2.2 VEBE of PEWP-2 compared to LRC-µBOP

Finally, we compare VEBEs computed with PEWP-2 to those obtained using LRC-

µBOP. This comparison (see Fig. A.5) is made over our full database of 95 cluster

geometries. The average absolute error for PEWP-2 compared to LRC-µBOP is

0.059 eV, however the average signed error is only −0.003 eV instead of −0.020 eV

when compared to MP2. This indicates that, on average, the binding energies of

PEWP-2 are in very good agreement with this density functional. This agreement

is ultimately a sort of self-consistency check, since the exchange-correlation potential

used to parameterize PEWP-2 was obtained from the LRC-µBOP functional.
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APPENDIX B

Supporting information for “Polarization-bound

quasi-continuum states are responsible for the

‘blue tail’ in the optical absorption spectrum of

the aqueous electron”

This appendix provides additional details regarding the TD-DFT calculations and

the calculations utilizing the one-electron model.

B.1 TD-DFT calculations

B.1.1 Functional and basis set

TD-DFT calculations employ a long-range-corrected (LRC) version of the “BOP”

density functional, where BOP indicates the combination of the Becke exchange (B88)

functional[318] with the “one-parameter progressive” (OP) correlation functional.[167]

A short-range version of the B88 functional (µB88) was constructed according to the

procedure described in Ref. [168], and the total exchange–correlation functional is

ELRC-µBOP
xc = EOP

c + EµB88,SR
x + EHF,LR

x , (B.1)

where “SR” and “LR” indicate that only the short-range or long-range parts of the

Coulomb operator are used to evaluate certain energy components. Our group has
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implemented this and other LRC functionals[207, 299, 319] within the Q-Chem elec-

tronic structure program.[117] Within Q-Chem, the functional denoted in Eq. (B.1)

is known as LRC-µBOP, although the value of the Coulomb attenuation parameter,

µ, must be set by the user.

The LRC-µBOP functional with µ = 0.33 a−1
0 has been shown to afford verti-

cal electron binding energies (VEBEs) for (H2O)−n clusters that are comparable to

those obtained at the CCSD(T) level.[3, 204] In addition, we have shown[206, 207]

that LRC functionals with comparable values of µ remove the spurious, low-energy

charge-transfer excited states that would otherwise be encountered in calculations

such as these.[205] Inadvertently, we used a slightly different value for the Coulomb

attenuation parameter, µ = 0.37 a−1
0 , for the TD-DFT calculations reported in this

work, as opposed to the value µ = 0.33 a−1
0 that was used in previous VEBE bench-

marks. However, a comparison of TD-DFT excitation energies for these two values

of µ, at a small number of randomly-chosen solvent configurations, reveals that the

excitation energies differ on average by only 0.06 eV, and in no case by more than

0.09 eV.

As in earlier QM/MM calculations of bulk e−aq, carried out at the CIS level by

Skrob et al.,[158] we use the 6-31+G* basis set for these calculations. Our own prior

work on (H2O)−n clusters[1, 156, 320] has shown that somewhat more diffuse basis sets

are necessary to describe weakly-bound isomers, but VEBEs for cavity-like isomers

converge much more quickly as a function of the number of diffuse basis functions.

Since the energy of the neutral cluster changes very little as additional diffuse shells
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Figure B.1: Comparison of simulated TD-DFT absorption spectra, computed with
the LRC-µBOP functional using two different basis sets.

are added, we regard convergence of the VEBE as evidence that the description of the

singly-occupied MO (SOMO) has converged. It is worth noting that the most diffuse

Gaussian basis function in the 6-31+G* basis set has a full width at half maximum

of 4.6 Å, which is large compared to the distance between nearest-neighbor water

molecules. The SG-1 quadrature grid[321] is used in all calculations, which has been

shown to be adequate even in the presence of highly diffuse basis functions.[320] All

TD-DFT calculations were performed using Q-Chem.[117]

As one marches up the manifold of states in the TD-DFT calculation, one expects

that these states will become increasingly sensitive to the diffuseness of the basis

set. Therefore as a check, we also computed the absorption spectrum using the same
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functional but a much more diffuse basis set, 6-31(1+,2+)G*, which includes two

additional sets of diffuse s functions on the hydrogen atoms. (Details of the simulation

procedure used to obtain the spectra are discussed in Section B.1.2 of this document.)

Figure B.1 shows that the results are quite similar to those obtained with the more

compact 6-31+G* basis. In particular, the peak absorption intensity and the width of

the Gaussian feature are reproduced essentially quantitatively, while a non-trivial tail

is observed at higher excitation energies. This blue tail is somewhat attenuated in the

more diffuse basis set, because this basis lowers the energies of the higher-lying states

to a much greater extent that for the first few excited states. To obtain significant

intensity above ∼3.5 eV in the larger basis, we would need to compute a much larger

number of excited states, which would make the calculations prohibitively expensive.

For this reason, and because we are somewhat wary of having basis functions that

extend well into the MM region, we report the 6-31+G* calculations in Fig. 1 of the

manuscript.

B.1.2 Simulation procedure

Geometries for the TD-DFT calculations were obtained from a simulation of an excess

electron in bulk liquid water. This simulation employed the one-electron pseudopoten-

tial model developed by Turi and Borgis,[67] a model that we selected because it has

been used extensively in recent hydrated-electron simulations,[32, 67, 80–83, 153, 159]

and because it provides a more accurate value for the e−aq absorption maximum than

any other non-polarizable one-electron model. (Our polarizable model is more accu-

rate in this respect, but we used the Turi–Borgis model for these calculations because
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Figure B.2: Convergence of the TD-DFT [LRC-µBOP/6-31+G*] excitation energies
as a function of the radius of the QM region, for three different randomly-selected
snapshots taken from a bulk e−aq simulation.

we wanted the TD-DFT calculations to be completely independent of the calcula-

tions performed using our own one-electron model, in order to report results from

two completely independent computational paradigms.)

Four independent, equilibrated trajectories were propagated at T = 298 K, using

a simulation code that we have described previously.[3] These simulations were per-

formed in a periodic unit cell, 18.1671 Å on a side, and snapshots were extracted every

0.5 ps. All H2O molecules having an O or H atom within 5.5 Å of the centroid of the

electron’s wavefunction were described using DFT (corresponding to an average of

28 water molecules in the QM region), whereas remaining water molecules (out to a

distance of 50 Å from the centroid of the wavefunction, or ∼18, 000 water molecules)

were described using point charges (qO = −0.82, qH = +0.41). The 5.5 Å radius for
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the QM region was chosen based upon convergence tests (see Fig. B.2) for a small

number of snapshots, which reveal that the first ten excitation energies are converged

at this size, and the next five states are nearly converged (to within ∼0.1–0.2 eV).

In all, 124 snapshots were used to construct the histogram that appears in Fig. 1

of the paper. The overall shape of this histogram is unchanged if the number of

snapshots is reduced by a factor of two, although somewhat larger bin widths are

then required to obtain a smooth spectrum. We take this as an indication that the

spectrum is converged with respect to statistical sampling of liquid configurations.

B.2 One-electron model

Our one-electron model is based upon a polarizable electron–water pseudopotential

that we have recently developed. For details regarding the construction of this model

and its performance relative to various experimental and ab initio benchmarks, the

reader is referred to Ref. [184]. Previously, we had developed an alternative pseu-

dopotential for (H2O)−n calculations,[3] but subsequent analysis, as documented in

Ref. [43], demonstrated that this potential is inappropriate for simulation of e−aq in

bulk water.

In Ref. [184], we also discuss the convergence of the bulk e−aq calculations with

respect to the simulation cell size, which is an important issue for these excited-

state calculations. Based upon these tests, the calculations described in this work

utilize a cubic simulation cell of length 26.2015 Å that contains 600 water molecules,

corresponding to a water density of 0.997 g/cm3, at T = 298 K. This cell size is more
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than sufficient to converge structural properties and low-lying excitation energies.

(The radii of gyration of the p states are essentially independent of simulation cell

size, for example.[184]) The higher excited states (∼3 eV and above) are probably not

(quite) converged, even in this very large box, hence we list their radii of gyration as

simply “> 10 Å”, since this value would increase somewhat in a larger simulation cell.

A larger simulation cell would likely red-shift the “higher bound states” in Fig. 2(b) of

the paper, thus improving the agreement with the experimental line shape. Because

the mixed quantum/classical dynamics is rather expensive in these larger cells, we

have not done this calculation.

Absorption spectra are computed using several independent, ground-state trajec-

tories for e−aq in the aforementioned periodic box. Each simulation is ≈ 21 ps in

length, and is propagated with a time step of 1 fs using flexible water molecules and

full Ewald summation (as described in Ref. [184]) for the long-range electrostatics, and

a Nosé-Hoover thermostat chain to simulate the NV T ensemble. The wavefunction

is represented on a cubic grid with ∆x ≈ 0.93 eV. (Excitation energies appear to be

converged with respect to ∆x.) These simulations were performed with a home-built

simulation code that we have described previously.[3] Following the ground-state tra-

jectory calculations, we calculate the lowest 29 excitation energies from each of ∼1000

snapshots, and bin these to form an absorption spectrum.
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APPENDIX C

Supplementary Material for “An efficient,

fragment-based electronic structure method for

molecular systems: Self-consistent polarization

with perturbative two-body exchange and

dispersion”

This appendix provides some additional theoretical details and benchmark calcula-

tions. Section C.1 is an expanded version of Section 7.2.2 of Chapter 7, and pro-

vides detailed equations for implementing the XPS method with either Mulliken,

Löwdin, or CHELPG embedding charges. For CHELPG embedding charges, the

original CHELPG algorithm[282] must be modified in order to avoid discontinuities

as the nuclei are displaced (since CHELPG uses atom-centered Cartesian grids to

discretize the electrostatic potential). The weighted least-squares procedure that is

used to ensure continuity is discussed in Section C.2. Finally, in Section C.3, we

present expanded versions of some of the figures and tables from the paper. These

provide additional benchmark data, using a wider variety of basis sets and density

functionals.
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C.1 Details of the charge schemes

We investigate three different charge schemes: Mulliken, Löwdin and CHELPG.

The Mulliken and Löwdin charges stem from two different partitions of the electron

density,[12]

qMull
J = ZJ −

∑

µ∈J
ν

SµνPνµ (C.1a)

qLowd
J = ZJ −

∑

µ∈J
ν,λ

(S1/2)µνPνλ(S1/2)λµ . (C.1b)

Derivatives of these charges with respect to density matrix elements are quite simple:

(ΛMull
J )µν = −1

2
(Sµνδµ∈J + Sνµδν∈J) (C.2a)

(ΛLowd
J )µν = −

∑

λ∈J

(S1/2)λµ(S1/2)νλ . (C.2b)

The quantity δµ∈J = 1 if the basis function µ is centered on atom J , and is zero

otherwise.

CHELPG charges[282] are designed to minimize the difference between the electro-

static potential, Φ(~r ), that is generated by the electron density, and the electrostatic

potential, φ(~r ), that is generated by a set of atom-centered point charges. This min-

imization is performed subject to the constraint that the sum of the point charges

equals the overall system charge, Q, and the potentials are evaluated at a set of grid

points ~Rk. The CHELPG charges are defined as those that minimize the quantity

L =

Ngrid∑

k

(Φk − φk)2 + λ

(
Natoms∑

J

qJ −Q
)
, (C.3)

265



where λ is a Lagrange multiplier. The true electrostatic potential at the ith grid

point, Φk = Φ(~Rk), is

Φk =
Natoms∑

J

ZJ∣∣~Rk − ~RJ

∣∣ −
∑

µν

(Ik)µν Pµν . (C.4)

The electrostatic potential φk = φ(~Rk) that is generated by the point charges is

φk =
Natoms∑

J

qJ∣∣~Rk − ~RJ

∣∣ . (C.5)

Minimization of L with respect to variation of qJ defines the CHELPG charges:

qCHELPG

J = (G−1e)J −
(

tr(G−1e)−Q
tr(G−1)

)∑

K

(G−1)JK . (C.6)

Here, the matrix G is defined by

GIJ =

Ngrid∑

k

∣∣~RI − ~Rk

∣∣−1∣∣~Rk − ~RJ

∣∣−1
(C.7)

and the vector e has elements

eJ =

Ngrid∑

k

Φk∣∣~Rk − ~RJ

∣∣ . (C.8)

It is straightforward to take the derivative of Eq. (C.6) to obtain

(ΛCHELPG

J )µν = −
∑

K

(G−1)JK

Ngrid∑

k

(Ik)µν∣∣~Rk − ~RK

∣∣ (C.9)

+

(∑
KL(G−1)KL

∑Ngrid

k (Ik)−1
µν

∣∣~Rk − ~RK

∣∣−1

tr(G−1)

)
∑

K

(G−1)JK

In what follows, we will require an operator, Λ̂J , whose matrix elements are equal

to (ΛJ)µν as given by Eq. (C.2) or Eq. (C.9). For CHELPG charges, this operator is

trivially constructed by making the replacement Ik → Îk in Eq. (C.9). The operators
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corresponding to the matrices in Eq. (C.2) are less obvious, but it can be verified that

the appropriate choice is

Λ̂Mull
J = −1

2

∑

µ,ν∈J

(
|µ〉(S−1

J )µν〈ν|+ |ν〉(S−1
J )νµ〈µ|

)
(C.10a)

Λ̂Lowd
J =

∑

µ,λ,σ∈J

|λ〉(S−1/2
J )λµ(S

−1/2
J )µσ〈σ| . (C.10b)

The quantities S−1
J and S

−1/2
J in this equation refer to the inverse and inverse square-

root of the fragment overlap matrix, for the fragment that contains atom J . At no

point is it necessary to invert the supersystem’s overlap matrix.

C.2 Weighted Least Squares CHELPG Charges

We have not yet implemented analytic gradients for the XPS method, so the geometry

optimizations reported here were performed using a three-point finite difference of the

total energy, with atomic displacements of 10−3 bohr. The number of CHELPG grid

points may change as the nuclei are displaced, so to avoid discontinuities we replace

the Lagrangian in Eq. (C.3) with a weighted Lagrangian,

L =

Ngrid∑

k

wk (Φk − φk)2 + λ

(
Natoms∑

J

qJ −Q
)
. (C.11)

The weight wk for grid point k is taken to be a product of short- and long-range

weighting functions, wk = wshort
k wlong

k . The short-range weight is itself a product

over atomic weights, wshort
k = ΠJA

J
k , where

AJ
k =





0 if |~Rk − ~RJ | < Rshort
cut,J

τ(|~Rk − ~RJ |, Rshort
cut,J , Ron,J) if Rshort

cut,J ≤ |~Rk − ~RJ | < Ron,J

1 otherwise

. (C.12)
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The cutoff parameters Rshort
cut,J and Ron,J are given below. The tapering function, τ , is

taken from Ref. [322]:

τ(R,Rcut, Roff) =
(R−Rcut)

2(3Roff −Rcut − 2R)

(Roff −Rcut)3
. (C.13)

To determine the long-range weight, we first find the minimum distance from the grid

point ~Rk to any nucleus,

Rmin
k = min

J
|~Rk − ~RJ | . (C.14)

Then

wlong
k =





1 if Rmin
k < Rlong

cut

0 if Rmin
k > Roff

1− τ(Rmin
k , Rlong

cut , Roff) otherwise

(C.15)

To evaluate the weights, we set Rshort
cut,J equal to the Bondi radius for atom J . We

set Roff = 3.0 Å, Ron,J = Rshort
cut,J + ∆r, and Rlong

cut = Roff −∆r, where the quantity ∆r

controls how rapidly a grid point’s weight is scaled to zero by the tapering function.

We use a fairly small value, ∆r = 0.1 bohr, because we were concerned about possible

discontinuities arising on the length scale of the finite-difference steps. Although

it may be necessary to increase this to ensure smoothness in molecular dynamics

applications, we have not encountered difficulties in geometry optimizations.

C.3 Expanded Versions of Data Tables and Figures

Table C.1 is an expanded version of Table I from the paper, and provides a statistical

summary of how XPS performs for the S22 database, when Mulliken embedding

charges are employed. Table C.2 is an expanded version of Table II from the paper,

and shows the XPS results for the S22 database using either Löwdin or CHELPG
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embedding charges. Figure C.1 expands upon Fig. 1 from the paper, and shows errors

over the S22 database for several other density functionals, including B3LYP. (B3LYP

results were not discussed in the paper because, in the context of XPS, they tend to

be similar to—but of slightly lower quality than—PBE0 results.) Figures C.2 and

C.3 are analogous to Figs. 3 and 4 in the paper, and show benzene dimer potential

energy curves computed at the XPS(0) level, but for a wider variety of basis sets than

were considered in the paper. Figure C.4 expands upon Fig. 7 from the paper and

shows the performance of XPS(0) for water clusters, using a wider variety of basis

sets. Numerical results for this wider variety of basis sets are provided in Table C.3.

269



Method SCF method, X =
HF B3LYP BOP PBE0 LRC- LRC-

µBOP ωPBEh
SAPT(X)/3-21G* 0.84 (2.25) 0.97 (2.92) 1.32 (4.96) 1.01 (2.86) 0.82 (4.24) 0.68 (3.62)
SAPT(X)-resp/3-21G* 0.91 (2.72) 1.04 (5.23) 1.41 (5.67) 0.98 (3.89) 0.87 (4.61) 0.74 (4.53)
XPS(X)/3-21G* 1.04 (3.06) 0.92 (3.76) 1.31 (4.70) 0.84 (2.43) 0.81 (3.14) 0.65 (2.97)
XPS(X)-resp/3-21G* 1.10 (3.43) 0.91 (3.71) 1.28 (4.61) 0.84 (2.38) 0.80 (2.95) 0.65 (2.83)
SAPT(X)/6-31G* 0.79 (3.27) 1.76 (6.82) 2.02 (9.55) 1.52 (6.47) 1.56 (7.31) 1.45 (6.75)
SAPT(X)-resp/6-31G* 0.65 (2.48) 2.03 (7.88) 2.50 (9.21) 1.73 (6.50) 1.52 (7.33) 1.51 (7.36)
XPS(X)/6-31G* 0.56 (1.46) 1.43 (6.70) 2.00 (9.66) 1.33 (6.24) 1.10 (3.79) 0.99 (3.57)
XPS(X)-resp/6-31G* 0.90 (3.16) 1.39 (6.37) 1.87 (9.01) 1.28 (5.99) 0.80 (3.14) 0.82 (3.11)
SAPT(X)/6-311G* 1.24 (6.40) 2.27 (8.43) 2.58 (9.80) 2.07 (7.48) 1.88 (9.63) 1.90 (9.51)
SAPT(X)-resp/6-311G* 1.09 (5.51) 2.54 (10.44) 3.05 (11.19) 2.26 (9.20) 1.83 (9.55) 1.96 (10.04)
XPS(X)/6-311G* 1.11 (4.91) 2.20 (8.15) 2.99 (12.76) 1.98 (7.39) 1.71 (6.70) 1.72 (6.95)
XPS(X)-resp/6-311G* 0.57 (2.22) 2.05 (6.82) 2.54 (8.14) 1.81 (5.65) 1.16 (5.91) 1.41 (6.37)
SAPT(X)/cc-pVDZ 1.06 (4.45) 2.14 (6.79) 2.45 (9.58) 1.83 (6.27) 1.89 (8.30) 1.81 (7.76)
SAPT(X)-resp/cc-pVDZ 0.91 (3.72) 2.41 (8.75) 2.92 (9.41) 2.06 (7.46) 1.87 (8.34) 1.88 (8.37)
XPS(X)/cc-pVDZ 0.71 (1.94) 2.09 (7.44) 2.58 (10.11) 1.73 (6.81) 1.62 (5.93) 1.59 (5.83)
XPS(X)-resp/cc-pVDZ 0.50 (1.81) 2.02 (6.45) 2.52 (9.00) 1.66 (5.90) 1.38 (5.43) 1.42 (5.45)

Table C.1: Mean absolute errors and (in parentheses) maximum absolute errors for the the S22 database, in
kcal/mol. A variety of SAPT(X) and XPS(X) variants are considered; note that SAPT(HF) is equivalent to
the method that is traditionally called SAPT(0). All XPS methods use Mulliken charges for the electrostatic
embedding.
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XPS-Löwdin XPS-CHELPG
Basis HF LRC- LRC- HF LRC- LRC-

µBOP ωPBEh µBOP ωPBEh
3-21G* 1.09 (3.52) 0.81 (3.01) 0.66 (2.87) 1.17 (3.95) 0.79 (2.57) 0.67 (2.46)

resp 1.11 (3.61) 0.81 (2.98) 0.66 (2.87) 1.17 (3.98) 0.79 (2.56) 0.67 (2.45)
6-31G* 0.73 (2.31) 0.91 (3.91) 0.93 (3.86) 0.87 (2.47) 0.87 (3.56) 0.90 (3.53)

resp 0.75 (2.40) 0.90 (3.88) 0.93 (3.88) 0.87 (2.55) 0.87 (3.54) 0.91 (3.55)
6-31+G* 0.90 (2.08) 2.52 (9.06) 1.94 (8.32) 0.89 (1.99) 2.56 (9.03) 1.98 (8.26)

resp 0.89 (1.99) 2.55 (9.12) 1.96 (8.40) 0.90 (2.10) 2.60 (9.05) 2.00 (8.32)
6-31+G** 1.11 (3.94) 2.76 (10.85) 2.22 (9.98) 1.03 (3.22) 2.73 (10.29) 2.20 (9.40)

resp 1.08 (3.75) 2.77 (10.84) 2.24 (10.03) 1.03 (3.08) 2.77 (10.30) 2.21 (9.46)
6-311G* 0.57 (2.76) 1.20 (6.52) 1.38 (6.92) 0.56 (2.32) 1.21 (6.20) 1.40 (6.67)

resp 0.54 (2.55) 1.18 (6.41) 1.37 (6.88) 0.54 (2.18) 1.20 (6.15) 1.40 (6.65)
6-311+G* 1.13 (6.63) 2.21 (12.31) 2.24 (12.25) 1.20 (6.73) 2.31 (12.55) 2.34 (12.48)

resp 1.11 (6.48) 2.22 (12.30) 2.25 (12.28) 1.20 (6.59) 2.34 (12.54) 2.37 (12.50)
6-311+G** 1.23 (7.12) 2.37 (12.75) 2.39 (12.54) 1.19 (6.60) 2.37 (12.39) 2.41 (12.20)

resp 1.18 (6.81) 2.36 (12.65) 2.39 (12.53) 1.19 (6.47) 2.39 (12.38) 2.43 (12.23)
cc-pVDZ 0.55 (2.04) 1.46 (6.39) 1.48 (6.30) 0.39 (1.12) 1.35 (5.72) 1.39 (5.68)

resp 0.51 (1.75) 1.44 (6.26) 1.47 (6.27) 0.38 (1.02) 1.35 (5.70) 1.39 (5.69)
aug-cc-pVDZ 1.52 (4.48) 2.46 (10.24) 2.71 (9.63) 1.26 (3.38) 2.21 (8.43) 2.49 (7.91)

resp 1.40 (3.80) 2.39 (9.91) 2.67 (9.52) 1.25 (3.39) 2.23 (8.40) 2.49 (7.91)
aug-cc-pVDZ′ — — — 1.31 (3.86) — —
aug-cc-pVDZ-proj — — — 1.31 (4.42) 1.66 (4.36) 2.05 (6.51)
aug-cc-pVDZ′-proj — — — 0.75 (3.38) — —

Table C.2: Mean absolute errors and (in parentheses) maximum absolute errors for the S22 database, in kcal/mol.
A variety of XPS(X) variants are considered, using either Löwdin or CHELPG embedding charges. For several of
the basis sets, the corresponding response (“resp”) result is also listed. The primed and projected (“proj”) basis
sets are defined in the paper.
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Figure C.1: Binding energy errors (in kcal/mol) across the S22 database, as com-
puted at (a) the SAPT(X)/cc-pVDZ level (for various SCF methods, X) and (b)
the XPS(X)/cc-pVDZ level, for a variety of different density functionals, X. A few
difficult cases are highlighted in panel (b). Starting at the top and moving clockwise
around panel (b), these are formic acid dimer, an indole-benzene π stack, and an
adenine-thymine π stack.
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n Isomer XPS(0)-CHELPG Benchmark
6-31G* 6-311G* cc-pVDZ aug-cc- aug-cc-

pVDZ pVDZ-proj
2 6.6 (33.4) 6.9 (39.4) 5.6 (13.7) 4.6 (7.8) 5.1 (2.5) 4.97
3 19.9 (25.8) 20.2 (27.6) 16.6 (5.3) 14.0 (11.7) 15.6 (1.6) 15.82
4 34.4 (24.6) 34.8 (25.8) 28.4 (2.7) 23.5 (14.9) 26.5 (4.1) 27.63
5 45.7 (25.8) 46.5 (28.1) 37.7 (3.8) 31.0 (14.7) 34.9 (3.9) 36.31
6 book 57.4 (25.9) 57.9 (27.0) 47.6 (4.4) 38.8 (15.0) 43.8 (4.0) 45.61
6 cage 58.0 (26.7) 58.0 (26.7) 48.4 (5.8) 38.8 (15.2) 43.8 (4.2) 45.79
6 cyclic 56.8 (26.7) 58.1 (29.6) 47.0 (4.7) 38.4 (14.3) 43.2 (3.7) 44.86
6 prism 59.4 (29.5) 59.4 (29.4) 50.4 (9.8) 39.3 (14.2) 44.5 (3.1) 45.86
8 D2d 90.8 (24.6) 90.1 (23.6) 75.5 (3.5) 60.5 (17.0) 68.6 (5.9) 72.88
8 S4 90.8 (24.7) 90.0 (23.6) 75.4 (3.5) 60.6 (16.8) 68.7 (5.6) 72.83
11 43′4 127.4 (21.2) 126.8 (20.6) 105.8 (0.6) 84.8 (19.4) 96.2 (8.5) 105.16
11 44′3′ 128.7 (22.8) 128.0 (22.2) 107.1 (2.2) 85.3 (18.6) 96.6 (7.8) 104.76
11 515 127.8 (21.6) 127.4 (21.2) 106.1 (1.0) 85.4 (18.8) 96.7 (8.0) 105.09
11 551 128.2 (22.1) 128.0 (22.0) 106.4 (1.4) 85.5 (18.5) 96.8 (7.8) 104.95
11 44′12 127.6 (22.7) 127.2 (22.4) 106.0 (2.0) 85.0 (18.3) 96.2 (7.5) 103.97
20 dodecahedron 248.4 (24.1) 247.0 (23.4) 205.0 (2.5) 165.5 (17.3) 184.6 (7.7) 200.10
20 edge-sharing 264.4 (21.3) 261.8 (20.1) 220.3 (1.1) 174.3 (20.0) 194.9 (10.6) 217.90
20 face-sharing 261.9 (21.8) 259.4 (20.6) 219.1 (1.9) 172.2 (19.9) 192.9 (10.3) 215.00
20 fused cubes 262.8 (23.6) 259.7 (22.1) 220.4 (3.6) 172.2 (19.0) 192.8 (9.3) 212.60

Table C.3: Negative binding energies for (H2O)n cluster isomers, in kcal/mol. Percent errors in the XPS binding
energies, relative to the benchmarks, are listed in parentheses.

276



Bibliography

[1] C. F. Williams and J. M. Herbert, J. Phys. Chem. A 112, 6171 (2008).

[2] J. V. Coe, S. M. Williams, and K. H. Bowen, Int. Rev. Phys. Chem. 27, 27

(2008).

[3] L. D. Jacobson, C. F. Williams, and J. M. Herbert, J. Chem. Phys. 130, 124115

(2009).

[4] L. Ma, K. Majer, F. Chirot, and B. von Issendorff, J. Chem. Phys. 131, 144303

(2009).

[5] Y. Tang et al., Phys. Chem. Chem. Phys. (2010).

[6] K. R. Siefermann et al., Nature Chemistry 2, 274 (2010).

[7] A. T. Shreve, T. A. Yen, and D. M. Neumark, Chem. Phys. Lett 493, 216

(2010).

[8] C. D. Sherrill, T. Takatani, and E. G. Hohenstein, J. Phys. Chem. A 113,

10146 (2009).

[9] G. Makov and A. Nitzan, J. Phys. Chem. 98, 3459 (1994).

277



[10] M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).

[11] A. Nitzan, Chemical Dynamics in Condensed Phases, Oxford University Press,

2006.

[12] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications

Inc., 1982.

[13] T. D. Crawford and H. F. Schaefer III, Rev. Comp. Chem. 14, 33 (2000).

[14] P. Ren and J. W. Ponder, J. Phys. Chem. B 107, 5933 (2003).

[15] A. J. Stone, the Theory of Intermolecular Forces, Oxford University Press,

1996.

[16] D. J. Griffiths, Introduction to Electrodynamics, Pearson Education, Inc., 1999.

[17] C. J. F. Bottcher, O. V. Belle, P. Bordewijk, and A. Rip, Theory of Electric

Polarization, volume 1 of Dielectrics in Static Fields, Elsevier, 1973.

[18] J. Applequist, Chem. Phys. 85, 279 (1984).

[19] H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269 (1987).

[20] B. Jeziorski et al., SAPT: A program for many-body symmetry-adapted pertur-

bation theory calculations of intermolecular interaction energies, in Methods and

Techniques in Computational Chemistry: METECC-94, edited by E. Clementi,

volume B, chapter 3, pages 79–129, STEF, Cagliari, 1993.

278



[21] C. A. Kraus, J. Am. Chem. Soc. 30, 1323 (1908).

[22] G. E. Gibson and W. L. Argo, J. Am. Chem. Soc. 40, 1327 (1918).

[23] F. P. Sargent and E. M. Gardy, Chem. Phys. Lett 39, 188 (1976).

[24] E. J. Hart, Solvated Electron, American Chemical Society Publications, 1965.

[25] B. C. Garrett et al., Chem. Rev. 105, 355 (2005).

[26] E. J. Hart and M. Anbar, The Hydrated Electron, Wiley, 1970.

[27] C.-R. Wang, J. Nguyen, and Q.-B. Lu, J. Am. Chem. Soc. 131, 11320 (2009).

[28] K. D. Jordan and F. Wang, Annu. Rev. Phys. Chem. 54, 367 (2003).

[29] D. M. Neumark, Mol. Phys. 106, 2183 (2008).

[30] J. V. Coe et al., J. Chem. Phys. 92, 3960 (1990).

[31] R. N. Barnett, U. Landman, C. L. Cleveland, and J. Jortner, J. Chem. Phys.

88, 4429 (1988).

[32] L. Turi, W.-S. Sheu, and P. J. Rossky, Science 309, 914 (2005).

[33] L. Turi, W.-S. Sheu, and P. J. Rossky, Science 310, 1769 (2005).

[34] J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neu-

mark, Science 307, 93 (2005).

[35] J. R. R. Verlet, A. E. Bragg, A. Kammrath, O. Cheshnovsky, and D. M. Neu-

mark, Science 310, 1769 (2005).

279



[36] H. Haberland, H. Langosch, H. Schindler, and D. R. Worsnop, J. Phys. Chem.

88, 3903 (1984).

[37] M. Armbruster, H. Haberland, and H. Schindler, Phys. Rev. Lett. 47, 323

(1981).

[38] R. N. Barnett, U. Landman, and C. L. Cleveland, Phys. Rev. Lett. 59, 811

(1987).

[39] R. N. Barnett, U. Landman, C. L. Cleveland, and J. Jortner, J. Chem. Phys.

88, 4421 (1988).

[40] R. N. Barnett, U. Landman, G. Makov, and A. Nitzan, J. Chem. Phys. 93,

6226 (1990).

[41] P. Ayotte and M. A. Johnson, J. Chem. Phys. 106, 811 (1997).

[42] L. Turi, W.-S. Sheu, and P. J. Rossky, Science 309, 914 (2005).

[43] J. M. Herbert and L. D. Jacobson, Int. Rev. Phys. Chem 30, 1 (2011).

[44] R. E. Larsen, W. J. Glover, and B. J. Schwartz, Science 329, 65 (2010).

[45] M. Head-Gordon, J. Phys. Chem. 100, 13213 (1996).

[46] P. Pulay, Chem. Phys. Lett. 100, 151 (1983).

[47] S. Hirata, Phys. Chem. Chem. Phys. 11, 8397 (2009).

[48] H. Stoll, G. Wagenblast, and H. Preuß, Theor. Chim. Acta. 57, 169 (1980).

280



[49] R. Khaliullin, M. Head-Gordon, and A. T. Bell, J. Chem. Phys. 124, 204105/1

(2006).

[50] R. Z. Khalliulin, E. A. Cobar, R. C. Lochan, A. T. Bell, and M. Head-Gordon,

J. Phys. Chem. A 111, 8753 (2007).

[51] E. E. Dahlke, H. R. Leverentz, and D. G. Truhlar, J. Chem. Theor. Comp. 4,

33 (2008).

[52] E. E. Dahlke and D. G. Truhlar, J. Chem. Theor. Comp. 3, 46 (2007).

[53] E. E. Dahlke and D. G. Truhlar, J. Chem. Theor. Comp. 3, 1342 (2007).

[54] E. E. Dahlke and D. G. Truhlar, J. Chem. Theor. Comp. 4, 1 (2008).

[55] G. J. O. Beran, J. Chem. Phys. 130, 164115 (2009).

[56] G. J. O. Beran and K. Nanda, J. Phys. Chem. Lett. 1, 3480 (2010).

[57] W. Xie and J. Gao, J. Chem. Theor. Comp. 3, 1890 (2007).

[58] W. Xie, M. Orozco, D. G. Truhlar, and J. Gao, J. Chem. Theor. Comp. 5, 459

(2009).

[59] W. Xie, L. Song, D. G. Truhlar, and J. Gao, J. Chem. Phys. 128, 234108/1

(2008).

[60] A. Cembran et al., J. Chem. Theor. Comp. 6, 2469 (2010).

[61] C. D. Jonah, C. Romero, and A. Rahman, Chem. Phys. Lett. 123, 209 (1986).

281



[62] A. Wallqvist, D. Thirumalai, and B. J. Berne, J. Chem. Phys. 85, 1583 (1986).

[63] A. Wallqvist, D. Thirumalai, and B. J. Berne, J. Chem. Phys. 86, 6404 (1987).

[64] J. Schnitker and P. J. Rossky, J. Chem. Phys. 86, 3462 (1987).

[65] I. Park, K. Cho, S. Lee, K. S. Kim, and J. D. Joannopoulos, Comp. Mat. Sci.

21, 291 (2001).

[66] L. Turi, M.-P. Gaigeot, N. Levy, and D. Borgis, J. Chem. Phys. 114, 7805

(2001).

[67] L. Turi and D. Borgis, J. Chem. Phys. 117, 6186 (2002).

[68] F. Wang and K. D. Jordan, J. Chem. Phys. 116, 6973 (2002).

[69] T. Sommerfeld and K. D. Jordan, J. Phys. Chem. A 109, 11531 (2005).

[70] A. DeFusco, T. Sommerfeld, and K. D. Jordan, Chem. Phys. Lett. 455, 135

(2008).

[71] J. E. Aremu-Cole, Mixed quantum-classical study of a hydrated electron and in-

vestigation of temperature-control algorithms, PhD thesis, Clemson University,

2007.

[72] A. Wallqvist, G. Martyna, and B. J. Berne, J. Phys. Chem. 92, 1721 (1988).

[73] J. Schnitker and P. J. Rossky, J. Chem. Phys. 86, 3471 (1987).

282



[74] R. N. Barnett, U. Landman, D. Scharf, and J. Jortner, Acc. Chem. Rev. 22,

350 (1989).

[75] M. Skorobogatiy, I. J. Park, and J. D. Joannopoulos, Comp. Mat. Sci. 32, 96

(2005).

[76] C. Nicolas, A. Boutin, B. Levy, and D. Borgis, J. Chem. Phys. 118, 9689

(2003).

[77] F. Wang and K. D. Jordan, J. Chem. Phys. 119, 11645 (2003).

[78] T. Sommerfeld and K. D. Jordan, J. Am. Chem. Soc. 128, 5828 (2006).

[79] T. Sommerfeld, S. D. Gardner, A. DeFusco, and K. D. Jordan, J. Chem. Phys.

125, 174301 (2006).
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[83] Á. Madarász, P. J. Rossky, and L. Turi, J. Chem. Phys. 126, 234707 (2007).

[84] J. V. Coe, Int. Rev. Phys. Chem 20, 33 (2001).

[85] J. V. Coe, S. T. Arnold, J. G. Eaton, G. H. Lee, and K. H. Bowen,

J. Chem. Phys. 125, 014315 (2006).

[86] D. M. Bartels, J. Chem. Phys. 115, 4404 (2001).

283



[87] T. Frigato, J. VandeVondele, B. Schmidt, C. Schütte, and P. Jungwirth,
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Institute for Computing, Jülich, Germany, 2nd edition, 2000.

[216] F. Tassone, F. Mauri, and R. Car, Phys. Rev. B 50, 10561 (1994).

[217] M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Oxford,

1992.

[218] M. E. Tuckerman and M. Parrinello, J. Chem. Phys. 101, 1302 (1994).

[219] H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

[220] J. M. Herbert and M. Head-Gordon, J. Chem. Phys. 121, 11542 (2004).

[221] S. S. Iyengar, H. B. Schlegel, G. E. Scuseria, J. M. Millam, and M. J. Frisch,

J. Chem. Phys. 123, 027101:1 (2005).

[222] J. M. Herbert and M. Head-Gordon, J. Chem. Phys. 123, 027102:1 (2005).

[223] M. I. J. Probert, J. Comput. Phys. 191, 130 (2003).

[224] M. Haranczyk and M. Gutowski, J. Chem. Theor. Comp. 4, 689 (2008).

[225] J. L. McHale, Molecular Spectroscopy, Prentice Hall, 1998.

[226] S. Yoo, F. Zahariev, S. Sok, and M. S. Gordon, J. Chem. Phys. 129, 144112:1

(2008).

294



[227] A. H. Steindal, K. Ruud, L. Frediani, K. Aidas, and J. Kongsted, J. Phys.

Chem. B 115, 3027 (2011).

[228] N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88, 166402:1 (2002).

[229] E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98, 023001:1

(2007).

[230] Q. Wu and T. Van Voorhis, J. Chem. Theor. Comp. 2, 765 (2006).

[231] Q. Wu, C.-L. Cheng, and T. Van Voorhis, J. Chem. Phys. 127, 164119:1 (2007).

[232] C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon,

Chem. Phys. Lett. 230, 8 (1994).

[233] S. Saebo, Low-scaling methods for electron correlation, in Computational Chem-

istry: Reviews of Current Trends, edited by J. Leszczynski, volume 7, pages

63–87, World Scientific, 2002.

[234] C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht, Linear-scaling methods in

quantum chemistry, in Reviews in Computational Chemistry, edited by K. B.

Lipkowitz and T. R. Cundari, volume 23, chapter 1, pages 1–82, Wiley-VCH,

2007.

[235] R. A. Friesner, Proc. Nat. Acad. Sci. 102, 6648 (2005).

[236] A. Sebetci and G. J. O. Beran, J. Chem. Theor. Comp. 6, 155 (2010).

295



[237] K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett.

313, 701 (1999).

[238] D. G. Fedorov and K. Kitaura, J. Phys. Chem. A 111, 6904 (2007).

[239] D. G. Fedorov and K. Kitaura, Theoretical background of the fragment molec-

ular orbital (FMO) method and its implementation in GAMESS, in The Frag-

ment Molecular Orbital Method: Practical Applications to Large Molecular Sys-

tems, edited by D. G. Fedorov and K. Kitaura, chapter 2, pages 5–36, CRC

Press, Boca Rotan, FL, 2009.

[240] W. Yang, Phys. Rev.Lett. 66, 1438 (1991).

[241] N. Flocke and R. J. Bartlett, J. Chem. Phys. 121, 10935 (2004).

[242] T. F. Hughes, N. Flocke, and R. J. Bartlett, J. Phys. Chem. A 112, 5994

(2008).

[243] P. N. Day et al., J. Chem. Phys. 105, 1968 (1996).

[244] M. S. Gordon et al., J. Phys. Chem. A 105, 293 (2000).

[245] D. Ghosh et al., J. Phys. Chem. A 114, 12739 (2010).

[246] L. Song, J. Han, Y.-L. Lin, W. Xie, and J. Gao, J. Phys. Chem. A 113, 11656

(2009).

[247] T. Nakano et al., Chem. Phys. Lett. 318, 614 (2000).

296



[248] D. G. Fedorov, J. H. Jensen, R. C. Deka, and K. Kitaura, J. Phys. Chem. A

112, 11808 (2008).

[249] Y. Komeiji, Y. Mochizuki, and T. Nakano, Chem. Phys. Lett. 484, 380 (2010).

[250] S. Saebo and P. Pulay, Ann. Rev. Phys. Chem 44, 213 (1993).
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