
Accurate and Efficient Quantum

Chemistry Calculations for

Noncovalent Interactions in

Many-Body Systems

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Ka Un Lao, M.S.

Graduate Program In Chemistry

The Ohio State University

2016

Dissertation Committee:

John M. Herbert, Advisor

Sherwin J. Singer

Marcos M. Sotomayor



c© Copyright by

Ka Un Lao

2016



Abstract

We discuss the development and application of a number of fragmentation methods

focused on understanding of intermolecular interactions in different systems. The

advantage of fragmentation methods is to avoid the exponential growth of required

computational power for the most advanced and accurate quantum chemistry theories

which preclude the application in systems with large number of atoms and molecules.

In those fragmentation methods, the full chemical system is partitioned into different

subsystems, circumventing the exponential scaling computational cost. How this par-

titioning is performed and applied appropriately is the principal emphasis of this work.

One of the fragmentation methods developed by our group, called extended XSAPT,

combines an efficient, iterative, monomer-based approach to computing many-body

polarization interactions with a two-body version of symmetry-adapted perturba-

tion theory (SAPT). The result is an efficient method for computing accurate inter-

molecular interaction energies in large non-covalent assemblies such as molecular and

ionic clusters, supramolecular complexes, clathrates, or DNA–drug complexes. As

in traditional SAPT, the XSAPT energy is decomposable into physically-meaningful

components. Dispersion interactions are problematic in traditional low-order SAPT,

and the empirical atom–atom dispersion potentials are introduced here in an at-

tempt to improve this situation. Comparison to high-level ab initio benchmarks
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for biologically-related dimers, water clusters, halide–water clusters, supremolecular

complexes, methane clathrate hydrates, and a DNA intercalation complex illustrate

both the accuracy of XSAPT-based methods as well as their limitations. The com-

putational cost of XSAPT scales as O(N3)–O(N5) with respect to monomer size, N ,

depending upon the particular version that is employed, but the accuracy is typi-

cally superior to alternative ab initio methods with similar scaling. Moreover, the

monomer-based nature of XSAPT calculations makes them trivially parallelizable,

such that wall times scale linearly with respect to the number of monomer units.

XSAPT-based methods thus open the door to both qualitative and quantitative

studies of non-covalent interactions in clusters, biomolecules, and condensed-phase

systems.
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CHAPTER 1

Introduction

The efficient and accurate description of noncovalent interactions has been an active

research topic in the past decade because noncovalent interactions are important and

ubiquitous in various areas of chemistry, such as the determination of DNA struc-

tures, drug binding to both protein and DNA, crystal packing, and protein folding.

The description of noncovalent interactions based on computational chemistry has

made much progress in recent years, due to improvements in both algorithms and

computer power. An accurate, traditional quantum mechanical (QM) method, such

as the “gold standard” coupled cluster singles and doubles with noniterative triples

method [CCSD(T)], with chemical accuracy (errors 6 1 kcal/mol) scalesO(N7
s ) where

Ns is the size of the whole system, in other words, the computational cost increases

128 times when the system size doubles. Thus, the high computational cost limits

its applicability to the size of molecules with less than 30 atoms, and it remains out

of reach for large noncovalent assemblies. For example, the binding pocket of the

human immunodeficiency virus (HIV) protease + drug inhibitor system [Fig. 1.1(a)],

as shown in Fig. 1.1(b), is a representative model system and consists of the drug
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indinavir (opaque ball-and-stick model) along with 16 amino acids and 2 crystallo-

graphic waters (translucent tubular model). The total system size for this model

system amounts to 323 atoms, which makes traditionally accurate QM methods in-

tractable. Hence, it is hard to use such traditional QM methods in real applications,

such as in drug design where the search of a compound to effectively interact with

biomolecules is the central step, and there are lots of potential candidates to screen

during the process. Although empirical screening technologies are efficient to screen

lots of molecules simultaneously, the binding results predicted by these fast screening

methods have lower accuracy because approximations have to be used to make them

computationally feasible, often with only a loose connection to the real physics of

intermolecular interactions. The purpose of my doctoral research has been to build

a rapid and accurate QM approach for calculating interactions between molecules to

be applied to drug design and molecular crystals modeling.

Fragment-based quantum chemistry methods offer a way to surmount this predica-

ment and rely on decomposing the large supersystem (the system including all frag-

ments) into subsystems (fragments) to greatly reduce the computational cost.43–45

I have contributed to three aspects of fragmentation methods: Many-body expan-

sion (MBE),45–49 symmetry-adapted perturbation theory (SAPT),50–53 and extended

SAPT (XSAPT) methods.44,54–63

The simplest fragmentation method, many-body expansion (MBE), for a system

of N fragments or monomers is given by

E =
N∑

I=1

EI +
∑

I<J

∆EIJ +
∑

I<J<K

∆EIJK + · · ·+ ∆EIJK···N ,
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(a) (b)

Figure 1.1: (a) Structure of the protease inhibitor indinavir bound to HIV protease,
as obtained from PDB crystal structure 1HSG.1 (b) An enlarged view of the binding
pocket, consisting of indinavir (opaque ball-and-stick model) along with 16 amino
acids and 2 crystallographic waters (translucent tubular model). [Panel (b) is repro-
duced from Ref. 2; copyright 2011 American Institute of Physics.]

where I is an index over monomers, EI is the energy associated with monomer I,

and ∆EIJ ··· represents the interaction energy between the indexed monomers. For

example, ∆EIJ is the dimer interaction energy and can be represented as ∆EIJ =

EIJ − EI − EJ , where EIJ is the energy of the IJ dimer. ∆EIJK is the trimer

interaction energy and can be represented as ∆EIJK = EIJK−EIJ−EIK−EJK−EI−

EJ −EK , where EIJK is the energy of the IJK trimer. A large number of previous

studies using MBE methods have just focused on results truncated at three-body

correction, and the high-order terms can be included by using electrostatic embedding

(EE) in all subsystem calculations.45,48,64 In reality, it is not true for systems composed
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of lots of fragments, such as (H2O)40, and the EE-MBE does not converge even at four-

body calculations.49 Furthermore, the results are very sensitive to the charge schemes

used in the electrostatic embedding.49 The embedding charge schemes can deteriorate

the MBE results involving basis sets with diffuse functions due to the overpolarization

between charges and diffuse functions of basis sets.49 Hence, one should be careful to

use electrostatic-embedding scheme in the MBE calculations to capture the high-order

effects. We demonstrated that a four-body expansion, MBE(4), without involving the

unpredicable charge embedding schemes is required in order to obtain accurate values

for both total interaction energies as well as relative energies of various isomers of

water clusters. The generalized MBE (GMBE) developed by our group including

the overlap fragments can resolve this problem, and it provides results of comparable

accuracy at the two-body level, GMBC(2).49 However, this is not a “free lunch”

relative to MBE(4), because the size of the subsystem calculations increases in this

“GMBE(2)” approach. Furthermore, the correction of basis-set superposition error

(BSSE) is important to obtain accurate binding energies in chemical accuracy, and

counterpoise (CP) correction is a popular method to remove the BSSE. Nevertheless,

there are many extra supersystem calculations involved in the CP correction. In

fact, the CP correction can be expanded using a method similar to MBE, and such a

method is called many-body CP (MBCP).46,47 The convergence of MBCP has been

tested for various systems, and it suffers the same convergence issue as in MBE.49

The generalized MBCP (GMBCP) version is also available to obtain accurate CP

results although the computational cost for GMBCP is extraordinary high. This part

4



is described in detail in chapter 2.

Although our group has made much progress on the MBE method, there are

still two drawbacks that make MBE time consuming. First, the terms beyond two-

body interactions that contain many atoms and many terms have to be calculated.

Second, the CP or (G)MBCP correction involving extra calcaultions has to be used to

remove the BSSE. Furthermore, the supersystem calculation remains vastly cheaper

than MBE(4) or GMBE(2), at least in DFT level, unless 103 − 104 processors are

available, making (G)MBE fragmentation approaches good candidates only for peta-

and exa-scale computing.

The fragment-based XSAPT method was developed by our group44,51,54–63,65 in an

attempt to achieve chemical accuracy for interactions, yet remain affordable enough

to be applied to systems such as the one in Fig. 1.1(b). Moreover, the XSAPT method

is only a two-body method, and is inherently BSSE-free.

Our XSAPT method is based on the combination of two fragmentation meth-

ods, explicit polarization method (XPol) and symmetry-adapted perturbation theory

(SAPT). This approach starts from the XPol method, and the primary function of

this method is to capture many-body (MB) polarization effects (important for systems

with many fragments) which are omitted in traditional force fields and computational

screening functions. In a subsequent step, we apply a pairwise-additive form of SAPT

to capture the rest of the interactions missing in the XPol step. However, the single-

exchange approximation (SEA) used in the exchange formulas of SAPT makes SAPT

unreliable for use in anionic systems.50,51 Different levels of SAPT methods have been
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used to systematically study the binding energies in different ionic systems, and the

rescaled formula for SEA has been proposed to resolve the problem in exchange for-

mulas used SEA.50,52 Such a rescaled formula for SEA can also be used in XSAPT.

The importance of rescaled formula for SEA in ionic systems is described in detail in

chapter 3 and 4.

The resulting XSAPT method extends the traditional two-body SAPT method

to many-body systems, and it maintains the computational cost of a two-body sys-

tem. Furthermore, the XSAPT interaction energy can be decomposed into physically

meaningful energy components,56

EXSAPT
int = Eelectrostatic + Eexchange + Einduction + Edispersion , (1.1)

and we can study the interplay of various energy components, some of which are at-

tractive and some repulsive, to explore the chemical modification of target molecules.

Furthermore, we have introduced many different techniques to improve the original

XSAPT method.

The use of Kohn-Sham (KS) orbitals for XSAPT or “XSAPT(KS)” incorporates

intramolecular correlation effects beyond mean field in a relatively low-cost way.51,55–57

Long-range corrected (LRC) density functionals with a monomer-specific “tuning”

procedure are used to obtain correct asymptotic behavior of exchange-correlation

potentials in XSAPT(KS) instead of using traditional “splicing” schemes that do not

correspond to any well-defined energy functional and are potentially problematic in

the context of geometry optimizations.51,60 My work for XSAPT(KS) based on LRC

density functionals [J. Chem. Phys. 140, 044108 (2014)] was selected by The Journal
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of Chemical Physics as an “Editor’s Choice for 2014”. The detail of this method is

described in chapter 5.

To correct the problematic dispersion energies in second-order perturbation the-

ory, I replace the expensive dispersion terms in XSAPT(KS) with pairwise-additive

atom−atom dispersion contributions from localized multipoles:

Edisp = −
∑

i>j

(

C ij
6

R6
ij

+
C ij

8

R8
ij

+
C ij

10

R10
ij

+ · · ·

)

(1.2)

where Rij is the interatomic distance for atoms i and j. For each pair of atoms,

such as atoms i and j, C ij
6 is dipole−dipole dispersion coefficient, C ij

8 represents

dipole−quadrupole dispersion coefficient, C ij
10 expresses quadrupole−quadrupole and

dipole−octupole dispersion coefficients, and so on. The dispersion coefficients can be

determined by appealing to ab initio calculations or at least partly based on fitting to

a benchmark training set. The method combined with these dispersion potentials and

XSAPT for non-dispersion terms is called XSAPT(KS)+D.51,55–57 There are different

generation of these dispersion potentials which are called +D1, +D2, and +D3 and

are described in chapter 6, 7, and 8, respectively. My work for XSAPT(KS) with

third-generation dispersion potentials (“+D3”) [J. Phys. Chem. A 119, 235 (2015)]

was featured on the cover of The Journal of Physical Chemistry A.

Furthermore I have reformulated XSAPT in the atomic orbital (AO) basis.60 This

formulation avoids the four-index integral transformation that is required in the origi-

nal, molecular orbital version of the method.54,57,65 The AO-XSAPT(KS)+D method

reduces the scaling from O(N5
f ) to O(N3

f ) with respect to the fragment size, Nf .60
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Figure 1.2: Timings for XSAPT(KS) in AO basis and supersystem DFT calculations
for π-stacked (adenine)n systems.

The detail of AO-XSAPT method is described in chapter 9. I lead off with data illus-

trating the efficiency of the AO-XSAPT method, as shown in Figure 1.2 which plots

timings for XSAPT(KS)+D calculations in AO basis against the size of (adenine)n

where adenine is a DNA nucleobase. The supersystem DFT method is one of the

most economical QM methods, and the timing results of this method are also shown

in Figure 1.2 for comparison. Serial timings represent the total wall time required

using one processor, and the scaling of XSAPT(KS)+D is O(n2) where n is the num-

ber of adenine molecules. Parallel timings represent the wall time required when the

calculation is simultaneously run on n(n − 1)/2 processors for n adenine molecules.

This feature of parallel mode for XSAPT is called “embarrassingly parallel” mode,
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and the scaling is just O(n). Even in serial, XSAPT(KS)+D is just as efficient as

supersystem DFT for (adenine)2 and is substantially more efficient for larger systems.

In parallel, the wall time required for an XSAPT(KS)+D calculation on (adenine)10

is only about twice as large as that required for (adenine)2. Moreover, the XSAPT

method is not only efficient as indicated at Figure 1.2 but also accurate as described

in this thesis.

In XSAPT(KS)+D, the dispersion potentials are independent of chemical envi-

ronment and the squeezing effects by neighboring atoms are missing. We present

a dispersion contraction (DC) to capture the non-additive dispersion interactions in

XSAPT(KS)+D. The DC effect can be calculated by dispersion energy difference

based on XSAPT (with charge embedding) and SAPT (without charge embedding)

but has O(N5
f ) scaling. The DC term can be further simplified by only including the

second-order dispersion term with a double-ζ basis set where the good performance

is based on fortuitous error cancellation. Then, the scaling of XSAPT(KS)+D+DC

method is O(N3
f ) using a triple-ζ basis set for the non-dispersion terms, and O(N4

f )

using a double-ζ basis set for the DC corrections. The DC correction is especially

important in clusters with numerous numbers of monomers, for example, the DC

contribution is about 5 kcal/mol in (H2O)20. The DC correction for XSAPT(KS)+D

is described in chapter 10.

Finally, various schemes for decomposing quantum-chemical calculations of inter-

molecular interaction energies into physically meaningful components can be found in

the literature, but the definition of the charge-transfer (CT) contribution has proven

9



vexing to define in a satisfactory way and typically depends strongly on the choice

of atom-centered Gaussian basis set. This is problematic in cases of dative bonding

and for open-shell complexes involving cation radicals, for which one might expect

significant CT. We analyze CT interactions predicted by several popular energy de-

composition analyses and conclude that only the definition afforded by constrained

density functional theory (cDFT) can be recommended, as it is scarcely dependent

on basis set and provides results that are in accord with chemical intuition for simple

model systems, and in quantitative agreement with experimental estimates of the

CT energy, where available. We recommend a composite approach in which cDFT

is used to define the CT component of the interaction energy and (X)SAPT defines

the electrostatic, Pauli repulsion, induction, and van der Waals contributions. This

approach affords stable and physically-motivated definitions for each energy compo-

nent, paving the way for reliable in silico analysis of intermolecular interactions. The

detail of this method is described in chapter 11.
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CHAPTER 2

Understanding the many-body expansion for large

systems

2.1 Introduction

Electronic structure methods based on molecular fragmentation are an increasingly

popular way to sidestep the non-linear scaling of computational cost with respect to

system size.43,44,66 Such methods rely, at some level, on Kohn’s principle of the “near-

sightedness” of electronic matter,67,68 and attempt to decompose a large calculation

into a (potentially large number of) small subsystem calculations that are independent

of one another and thus lend themselves to trivially-parallel distributed computing.

High accuracy is reported in many applications (see Ref. 43 for a review), and thus

molecular fragmentation would seem to offer the proverbial “free lunch”, enabling

high-level ab initio methods to be applied to large systems at a fraction of the cost

(in wall time, memory, and disk requirements) that would otherwise be required.

Due to the high cost of obtaining benchmark results in large systems, the accuracy

of fragment-based methods has primarily been evaluated in small systems (typically

. 25 heavy atoms) and/or at low levels of electronic structure theory (e.g., self-

consistent field theory with minimal or double-ζ basis sets). It is unclear whether

11



such benchmarks are representative of the performance that can be expected when

high levels of theory are applied to larger systems. Consider that even the smallest

naturally-occurring protein (the 20-residue Trp cage) has a total electronic energy

approaching 10,000 hartree, which must therefore be predicted to a precision of about

0.00001% in order to achieve an accuracy of ∼1 kcal/mol in the total energy. This

is the famous “weighing the captain” problem in electronic structure theory,69,70 i.e.,

determining the captain’s weight based on measuring the ship’s displacement when

she is, and is not, on board. The situation is arguably somewhat worse for fragment-

based methods, which require huge numbers of electronic structure calculations that

must be performed at significantly higher precision than is required in conventional

quantum chemistry,48 such that a more apt analogy might be that of determining the

weight of a pilot on an aircraft carrier based on measuring the displacement when the

pilot sits in his plane, then determining the displacement for various combinations of

aircraft and pilots on board the ship.

In part I of this series,48 we examined the role of finite-precision arithmetic in

methods based on a truncated many-body expansion (MBE), otherwise known as an

“n-body expansion”. The analysis in Ref. 48 focused on systematic error as system

size was increased, and we found that the uncertainty in the n-body approximation

to the energy is strongly influenced by the self-consistent field (SCF) convergence

threshold used for the individual subsystem calculations (much more so than is the

total supersystem energy), as well as by accumulation of floating-point rounding

errors. Implementations of the MBE that rely on external calls to an electronic
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structure program (rather than being fully integrated into such a program), suffer

from an additional source of uncertainly, namely, the fact that discrepancies as small

as 10−6 a.u. between the driver routine and the electronic structure program (due to

six-digit roundoff in the electronic structure output, for example) can translate into

errors of several kcal/mol, for systems not much larger than (H2O)30.
48 Owing to the

combinatorial nature of the MBE, these problems are compounded as the system size

increases, and as one moves to higher n in pursuit of greater accuracy.

Although these precision problems appear to be surmountable using a combina-

tion of tight SCF convergence thresholds, arbitrary-precision arithmetic to sum the

terms in the MBE, and a consistent internal precision in all electronic structure calcu-

lations,48 these considerations do increase the cost of the calculations relative to what

has previously been discussed in the literature. The worst cases manifest only when

n ≥ 4, and for very large collections of fragments (N & 40) that may be avoidable

in applications to polyatomic molecules, and might be sidestepped in applications to

molecular liquids via some kind of distance-based criterion for discarding or approx-

imating well-separated n-mers. Thus, two- and three-body approaches might still

prove useful, provided that good accuracy can be obtained.

Using water clusters as exemplary cases where many-body polarization effects are

important, we demonstrate in the present work that a four-body expansion [MBE(4)]

is required in order to obtain accurate values for both total interaction energies as well

as relative energies of various isomers. On the other hand, a generalized many-body

expansion44,71,72 (GMBE) that utilizes overlapping subsystems can provide results of
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comparable accuracy at the two-body level. This is not a “free lunch” relative to

MBE(4), because the size of the subsystem calculations increases in this “GMBE(2)”

approach, but the number of subsystem calculations is dramatically reduced, staving

off numerical precision problems while maintaining the trivial parallelizability of the

traditional MBE approach.

Following up on our study of precision problems in Ref. 48, here we we seek to

evaluate the accuracy of various n-body approximations, using the same set of water

clusters that was examined in Ref. 48. Regrettably, the overwhelming majority of our

present results fail to achieve 1 kcal/mol accuracy in the total energy as approximated

at the three-body level, but do reveal some interesting trends as these methods are

pushed towards the large-system (N →∞) limit. Here, we focus on: (1) whether the

supersystem energy at a given level of theory can be accurately approximated when

the same level of theory is used for the subsystem calculations; (2) the oscillatory

nature of the n-body expansion as the truncation order, n, is increased; (3) size-

dependent errors in the n-body total energy and what impact these have on the

prediction of relative energies; and (4) the ability of these methods to reproduce high-

level benchmarks. As in our previous study,48 our findings unearth potential pitfalls

that have not been widely discussed in the rapidly-growing literature on fragment-

based quantum chemistry.
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2.2 Theory

2.2.1 Traditional MBE

The basic idea of the n-body expansion of the total energy E,

E =
N∑

I=1

EI +
N∑

I=1

∑

J<I

(EIJ − EI − EJ) + · · · , (2.1)

into monomer energies (EI), dimer energies (EIJ), etc., is straightforward and has

been reviewed extensively elsewhere.43,44,66 In particular, far more compact expres-

sions than those suggested by Eq. (2.1) can be found in our previous work.48 To place

Eq. (2.1) in the context of what is to come, note that this equation can alternatively

be expressed as46

E =
N∑

I=1

∆E
(1)
I +

(N
2 )
∑

J=1

∆E
(2)
J +

(N
3 )
∑

K=1

∆E
(3)
K + · · · (2.2)

where

∆E
(n)
I =

n−1∑

m=0

(−1)m
∑

J⊂I

E
(n−m)
J (2.3)

is a correction to the energy of the Ith n-body subsystem, of which there are a total

of
(
N

n

)

≡ NCn =
N !

n!(N − n)!
. (2.4)

The quantity E
(n−m)
J in Eq. (2.3) is the energy of the Jth (n −m)-body sub-cluster

formed from the Ith n-body cluster. As such, the second summation in Eq. (2.3)

ranges from J = 1, 2, . . . ,
(

n
n−m

)
, and this is the meaning of the J ⊂ I restriction in

that equation.
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In cases where fragmentation does not sever any covalent bonds, either of Eqs. (2.1)

or (2.2) is a formally exact expression for the total energy, but their appeal comes

in dropping terms beyond some given level of n-body interaction. Neglecting terms

involving (n+1)-body and larger sub-clusters defines the so-called n-body expansion,

which we will call MBE(n). A compact formula for the energy within the MBE(n)

approximation is48

E(n) =
n−1∑

m=0

(−1)m
(
N − n− 1 + m

m

) ( N
n−m)
∑

K=1

E
(n−m)
K . (2.5)

The summations in this equation run over all unique sub-clusters containing up to n

fragments.

2.2.2 Counterpoise correction in a many-body system

It is well known that electronic structure calculations converge slowly to the basis-set

limit73 (see Ref. 46 for just one example), which arises from a combination of basis-set

incompleteness and BSSE. In the present work, we address the incompleteness issue by

means of complete-basis extrapolations, but the convergence of these extrapolations

is sensitive to the presence of BSSE, which we therefore attempt to eliminate. The

interaction energy, ∆E, subject to a generalized Boys-Bernardi counterpoise (CP)

correction is74,75

∆E = EIJK···N
IJK···N −

∑

I

EIJK···N
I (2.6)

where, following the convention of previous work,46,76 the subscripts represent real

molecules whereas superscripts indicate where basis functions are centered. Thus
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EIJK···N
I denotes the energy of monomer I computed in a basis set having basis

functions located in the positions of monomers I, J,K, . . . , N ; that is, EIJK···N
I is the

energy of monomer I computed in the cluster basis, as in the original Boys-Bernardi

scheme.74 The quantity EIJK···N
IJK···N is the normal supersystem energy, which for brevity

we will henceforth denote simply as E.

Equation (2.6) can be trivially rewritten as

∆E =

(

E −
∑

I

EI
I

)

+

(
∑

I

EI
I −

∑

I

EIJK···N
I

)

= ∆E(uncorr) + δECP ,

(2.7)

where we have separated the interaction energy ∆E into an “uncorrected” (and thus

BSSE-contaminated) energy difference

∆E(uncorr) = E −
∑

I

EI
I (2.8)

and subsumed all BSSE corrections into a counterpoise correction

δECP =
N∑

I=1

δECP
I =

N∑

I=1

(
EI

I − EIJK···N
I

)
. (2.9)

The notation δECP
I = EI

I − EIJK···N
I is introduced in order to make contact with ap-

proximate counterpoise corrections introduced below, in which the quantity EIJK···N
I

is approximated by means of a MBE. Equation (2.9) looks like the traditional Boys-

Bernardi correction,74 applied in turn to each monomer.

2.2.3 Generalized MBE

The ground-state energy can also be approximated using a GMBE that employs

overlapping fragments and is derived based on the set-theoretical principle of in-

clusion/exclusion;71,72 application of the GMBE requires calculations on subsystems
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that are formed from intersections of fragments. In an n-body GMBE, which we call

GMBE(n), the approximate energy is

ε(n) =

(Nf
n )
∑

i=1

E
(n)
i −

(Nf
n )
∑

i=1

(Nf
n )
∑

j>i

E
(n)
i∩j + · · ·+ (−1)(

Nf
n )+1E

(n)

i∩j∩...∩(Nf
n )

. (2.10)

We have previously called this the intersection-corrected energy at order n.71 Lower

case indices i, j, · · · in Eq. (2.10) refer to n-mers of fragments, whose energies are

E
(n)
i , E

(n)
j , . . ., and i ∩ j is the subsystem formed from the intersection of n-mers i

and j, with energy E
(n)
i∩j . For general, macromolecular applications, construction of

i ∩ j requires severing covalent bonds and capping the severed valencies (as in a

recent application of the GMBE to proteins77), but in this work we only consider

non-covalent clusters, in an intentional effort to sidestep this complexity. Note also

that in this generalized approach the number of fragments, Nf , is generally larger

than the number of monomers, N . As in previous studies,18,71,72,78,79 for the GMBE

we use a distance cutoff of 3 Å between atoms to define the fragments.

The advantage of GMBE(n) relative to MBE(n) is that multiple monomers are

included in a single fragment and the system is tessellated into overlapping fragments

based on a simple distance criterion, but in a manner whose set-theoretical derivation

prevents over- or undercounting of interactions despite the use of overlapping frag-

ments.71,72 Obviously, one could assign more than one monomer to a single fragment

in a traditional MBE(n) calculation, but we anticipate that distance-based (rather

than cardinality-based) fragmentation will make it easier to adjust the fragment def-

initions on-the-fly in a continuous way based on distance cutoffs, during simulations

or geometry optimizations, although we leave this question to a future study. The
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presence of multiple monomers per fragment means that some many-body effects are

included already at the level of GMBE(1), so this is a non-trivial approximation,

in contrast to MBE(1). (All MBE calculations performed here use single-monomer

fragments.) The GMBE(1) method is equivalent to the generalized energy-based frag-

mentation approach of Li and co-workers.78,79

We find that GMBE(2) is generally sufficient to reproduce total interaction ener-

gies in non-covalent clusters, even in very challenging cases such as F−(H2O)N .44,71,72

At the same time, the number of subsystem calculations remains manageable as com-

pared to the four-body approximation that we will see is necessary to obtain accurate

MBE(n) results in clusters composed of polar monomers. For water clusters, the

3 Å threshold for GMBE fragmentation that is used here typically results in frag-

ments containing 3–4 H2O molecules. Application of GMBE(2) to the largest cluster

considered here, (H2O)55, requires 1,469 dimer calculations (consisting of 6–9 H2O

molecules for the dimer) and 17,883 calculations on intersections (4–6 H2O molecules

each). These numbers are dwarfed by the demands of an MBE(4) calculation, which

requires that subsystem calculations be performed on 341,055 tetramers (four H2O

molecules), 26,235 trimers (three H2O molecules), and 1,486 calculations dimers. On

the other hand, the GMBE(2) subsystems are larger and require ∼9 times more com-

putational time (ωB97X-V/aug-cc-pVTZ level). Operationally, GMBE(2) sidesteps

the precision problems associated with MBE(4), but at increased computational cost.

Considerations of cost are revisited in Section 2.4.3.
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2.2.4 Approximate many-body counterpoise corrections

There has long been a perceived inadequacy with the Boys-Bernardi counterpoise

correction, although the evidence for this inadequacy is debatable.80 The Valiron-

Mayer function counterpoise (VMFC) approach81 was later introduced as an attempt

to quantify and correct this inadequacy. It is based on the exact energy expression

in Eqs (2.1) and (2.2), with a counterpoise correction applied order-by-order in the

MBE. The resulting BSSE correction can be written

δEVMFC = δECP +
∑

I<J

(
∆EIJ

IJ −∆EIJK···N
IJ

)
+ · · · (2.11)

where ∆EXY ···
IJ , for example, is the two-body interaction between fragments I and

J , computed in a basis with functions on centers XY · · · . Analogous expressions

exist for the three-body and higher-order terms.46,76 Note that the monomer term is

equivalent to the original Boys-Bernardi correction, δECP in Eq. (2.9).

In large clusters, where one might expect more significant BSSE effects, even the

original Boys-Bernardi correction is expensive to evaluate, and evaluation of VMFC

becomes intractable even more rapidly. Indeed, the cost of these calculations has im-

peded any final reckoning on the (in)adequacy of the Boys-Bernardi approach. Several

approximations have been proposed that are consistent with a truncated MBE, and

in particular we have suggested an n-body approximation to Eq. (2.9) that we have

called a many-body counterpoise correction truncated at order n, or MBCP(n).46,47

This approximation consists in applying an n-body expansion to EIJK···N
I in Eq. (2.9).
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For n = 2–4, the MBCP(n) approximations for monomer I are

δE
MBCP(2)
I = (N − 1)EI

I −

N∑

J 6=I

EIJ
I , (2.12)

δE
MBCP(3)
I = δE

MBCP(2)
I +(N−2)

N∑

J 6=I

EIJ
I −

N∑

J 6=I

N∑

K>J
K 6=I

EIJK
I − 1

2
(N−2)(N−1)EI

I , (2.13)

and

δE
MBCP(4)
I = δE

MBCP(3)
I + (N − 3)

N∑

J 6=I

N∑

K>J
K 6=I

EIJK
I −

N∑

J 6=I

N∑

K>J
K 6=I

N∑

L>K
L 6=I

EIJKL
I

− 1
2
(N − 3)(N − 2)

N∑

J 6=I

EIJ
I + 1

6
(N − 3)(N − 2)(N − 1)EI

I .

(2.14)

Analogous to Eq. (2.9), the overall MBCP(n) counterpoise correction is then

δEMBCP(n) =
N∑

I=1

δE
MBCP(n)
I , (2.15)

A somewhat different counterpoise technique, termed by “many-ghost many-body

expansion”, has been suggested recently,82 which consists in applying a MBE to each

of the terms containing ghost functions in Eq. (2.11). In practice, the higher-order

terms are found to be negligible and only the leading term was retained in Ref. 82;

this leading term is precisely what we call MBCP(n). We use this correction together

with an n-body expansion of the energy in a method that we call MBE(n)+MBCP(n),

meaning that n-body approximations are applied separately to both ∆E(uncorr) and

δECP in Eq. (2.7).

In a similar vein, Kamiya et al.76 introduced an n-body approximation to the

VMFC procedure, which we call VMFC(n). The MBCP(2) and VMFC(2) correc-

tions are equivalent but the two approaches differ starting at n = 3, with VMFC(n)
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involving a significantly larger number of calculations. Based on comparisons to

complete-basis benchmarks in Ref. 46, for systems no larger than F−(H2O)10, it

is not clear that the increased expense of VMFC(3) is justified, but those are the

largest VMFC(3) calculations reported to date and results in larger clusters may

paint a different picture.

Alternatively, δECP in Eq. (2.9) can be approximated using the GMBE. When

truncated at order n, we will refer to this as a generalized many-body counterpoise

correction, GMBCP(n), the formula for which is introduced here for the first time:

δEGMBCP(n) =
N∑

I=1






(Nf
n )
∑

i=1

Ei
I −

(Nf
n )
∑

i=1

(Nf
n )
∑

j>i

Ei∩j
I + · · ·+ (−1)(

Nf
n )+1E

i∩j∩···∩(Nf
n )

I




 . (2.16)

The notation here requires some explanation. For each monomer I, the first term

inside the brackets (
∑

i E
i
I) represents the energy of I computed in all of the pos-

sible n-mer basis sets that contain this monomer. In the second term, the energy

of monomer I is computed in all possible two-fragment intersection basis sets that

contain monomer I, and so on. Like MBCP(n), there is only one “real” monomer

in any of these subsystem calculations, with the other fragments serving simply as

centers for basis functions. VMFC(n), in contrast, requires calculations with up to

n− 1 real monomers in an n-body basis.

2.3 Computational details

In some previous studies, the MBE has been used in a “multi-level” or “stratified” way,

with different n-body terms computed at different levels of theory.83–87 In other cases,

efforts have been made to identify a subsystem level of theory that will reproduce
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high-accuracy supersystem benchmarks, computed at an altogether different level

of theory.88 In contrast, the aim here is to test the accuracy and convergence of

the n-body expansion itself, so we will exclusively compare n-body calculations to

supersystem benchmarks computed at the same level of theory.

In the first part of this study, we examine a sequence of water clusters, (H2O)N=6−55,

whose structures are putative global minima on the TIP4P potential surface at each

cluster size.89 The same set of clusters was used in our previous investigation of

precision considerations for the MBE,48 and as in that study, we use the affordable

B3LYP/cc-pVDZ level of theory since our goal is to understand the size- and n-body-

dependence of errors in total interaction energies. In view of a recommendation by

Bettens et al.90 that the MBE should never be used with augmented basis sets (due

to the appearance of serious BSSE problems when diffuse functions are added), we

will also test aug-cc-pVDZ and 6-31+G(d,2p). The SG-1 quadrature grid91 was used

for all B3LYP calculations. A detailed study in Ref. 48 suggests that while MBE

results are sensitive to certain numerical thresholds, as discussed below, they are only

very weakly-dependent on the choice of grid.

Various forms of electrostatic embedding (EE) have been used in an attempt to

hasten the convergence (and thus improve the accuracy) of the n-body expansion,43

and in some cases EE-MBE results are surprisingly insensitive to the precise details of

the embedding charges,45,64,92 at least in systems such as small water clusters. Here,

we test the effects of including supersystem-derived atom-centered point charges.
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computed at the B3LYP/cc-pVDZ level. (This is not ideal for production calcula-

tions, as it requires the very supersystem calculation that we are trying to avoid, but

is used here for testing purposes and in the end we will conclude that embedding

charges provide very little advantage anyway.) Mulliken charges, Hirshfeld charges,93

charges from natural population analysis (NPA),94 charges derived from the electro-

static potential (“ChElPG”),95 and charges from the empirical CM5 model.96

To avoid precision issues associated with the reading and writing of electronic

structure input and output files, all calculations are carried out completely internally

within a locally-modified version of Q-Chem,97 where the subsystem calculations are

parallelized via the message-passing interface. (This will be released with Q-Chem

v. 4.4.) By performing all MBE calculations internally within Q-Chem, we avoid

the need to compute and subtract out the self-interaction of the embedding charges.

Although this may seem like a trivial point, errors due to finite precision can accumu-

late rapidly in the self-energy calculation, especially for the larger systems considered

here, if the self-interaction calculation is not performed using all digits of double-

precision arithmetic.48 GMBE and GMBCP calculations were performed using our

driver program, Fragme∩t,71,72,77 to prepare and execute the necessary Q-Chem

input files in full double precision. Note that this requires reading Q-Chem’s binary

scratch files.

In the second part of this study, we focus on establishing, and then attempting

to reproduce, high-accuracy benchmarks for a set of (H2O)20 clusters representing

four different structural motifs. In Ref. 3, structures for 20 different isomers of
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(H2O)20 are reported, representing the five lowest-lying isomers in each of four fami-

lies of structures, according to basin-hopping Monte Carlo calculations. For reasons

of cost, we consider only 8 of these structures, representing the highest- and lowest-

energy structures of the five reported for each structural motif. (Structures of the

8 that we consider are provided in the Supplementary Material.) Benchmark en-

ergetics are computed using second-order Møller-Plesset perturbation theory (MP2)

within the resolution-of-identity (RI) approximation,98–100 RIMP2, as implemented

in Q-Chem.101 The aug-cc-pVTZ (aTZ) and aug-cc-pVQZ (aQZ) basis sets are used

in conjunction with their corresponding auxiliary basis sets,100,102 and only valence

orbitals are correlated. We assume that the Hartree-Fock/aQZ energy is sufficiently

close to the complete basis set (CBS) limit to be used without extrapolation, whereas

we extrapolate the RIMP2 correlation energies using a two-point (“aTZ/aQZ”) X−3

scheme.73 Standard Boys-Bernardi counterpoise corrections are applied,74 which for

a many-body cluster means that we compute each monomer energy using the full

cluster basis,75 as in Eq. (2.9).

In principle these RIMP2/CBS benchmarks could be extended to the CCSD(T)/

CBS level by means of a triples correction

δCCSD(T) = ECCSD(T) − EMP2 , (2.17)

and good results based on two- and three-body approximations to Eq. (2.17) have been

demonstrated.46,56,103,104 The δCCSD(T) for (H2O)20 has been estimated to be around

−2.7 kcal/mol,18,57 but in the interest of performing a larger number of exploratory

calculations, we omit this correction from the MP2 calculations reported here. As an
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alternative, we will report calculations using the ωB97X-V density functional,105 as

it has been shown to provide accurate non-covalent interaction energies, when used in

conjunction with a triple-ζ basis set.52,57,105 In particular, for (H2O)20, counterpoise-

corrected ωB97X-V/aTZ calculations differ from CCSD(T)/CBS benchmarks only by

an average of 1.7 kcal/mol.59 Per the recommendation in Ref. 105, we used used

an Euler-Maclaurin-Lebedev grid with 75 radial points and 302 angular points to

integrate the the semi-local parts of ωB97X-V, and the SG-1 grid91 for the nonlocal

correlation part.

2.4 Results and discussion

In Section 2.4.1 below, we focus on how well the MBE reproduces a supersystem

calculation at the same level of theory. It will be seen that this issue is complicated

by the oscillatory (with respect to n) and size-extensive (with respect to N) nature

of the resulting errors. In Section 2.4.2, we focus on the ability of the MBE to repro-

duce high-accuracy benchmarks. There, we will see that error cancellation between

MBE(n) and MBCP(n) plays a major role in the accuracy of the results, whereas the

good performance of GMBE(2)+GMBCP(2) does not rely on cancellation of errors.

2.4.1 Absolute performance of the many-body expansion

Errors versus system size

Previously, we observed that the total energy predicted by an n-body expansion can

change dramatically as a function of both the SCF convergence criterion, τSCF, as well
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Figure 2.1: Signed errors in two-, three-, and four-body total interaction energies for
a series of (H2O)6−55 clusters relative to supersystem results at the B3LYP/cc-pVDZ
level. The “loose” thresholds are τSCF = 10−5 a.u. and τints = 10−9 a.u., whereas
“tight” thresholds are τSCF = 10−7 a.u. and τints = 10−14 a.u.

as the integral screening threshold, τints.
45,48 Figure 2.1 presents a more thorough, size-

dependent analysis of the effects of numerical thresholds, comparing results obtained

with “loose” thresholds (defined here as τSCF = 10−5 a.u. and τints = 10−9 a.u.) to

those garnered from “tight” thresholds (τSCF = 10−7 a.u. and τints = 10−14 a.u.).

A statistical summary of the mean absolute errors (MAEs) is given in Table 2.1.

Throughout this work, we define

error = E(n) − Esupersystem , (2.18)

so that negative error indicates that the n-body approximation is overbound with

respect to the benchmark.
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Embedding
MAE (kcal/mol)

n = 1 n = 2 n = 3 n = 4
— MBE (loose thresholds) —

None – 31.31 (1.04) 14.73 (0.48) 2.11 (0.07)
— MBE (tight thresholds) —

None – 31.31 (1.04) 15.88 (0.51) 3.01 (0.10)
Mulliken – 5.38 (0.20) 14.15 (0.45) 2.14 (0.07)
ChElPG – 47.14 (1.45) 12.68 (0.40) 0.79 (0.03)
NPA – 57.74 (1.77) 12.57 (0.39) 0.75 (0.03)
Hirshfeld – 6.92 (0.25) 14.29 (0.46) 2.24 (0.07)
CM5 – 30.59 (0.92) 12.91 (0.41) 1.11 (0.04)

— GMBE (tight thresholds) —
None 26.68 (0.78) 0.68 (0.02) – –

Table 2.1: MAEs and (in parenthesis) MAEs per monomer, for (G)MBE(n) calcu-
lations of clusters in the range (H2O)6−55, with energetics computed at the B3LYP/
cc-pVDZ level.

From Fig. 2.1, the difference between MBE(2) using loose and tight thresholds can-

not be differentiated, and is only barely discernible for MBE(3), except for the largest

clusters. When using a four-body expansion, however, the accumulation of roundoff

is enough to change the sign of the error for N & 40. In the largest cluster, (H2O)55,

the differences between results with loose and tight thresholds are −0.11 kcal/mol

(two-body), 3.40 kcal/mol (three-body), and −9.47 kcal/mol (four-body). This ob-

servation complements the propagation-of-errors analysis that we presented in Ref.

48, and underscores the fact that each subsystem energy in the MBE is multiplied by

a binomial coefficient that is growing factorially with respect to both n and N [see

Eq. (2.5)]. All remaining calculations in this work will be performed using the tight

thresholds. For a B3LYP/cc-pVDZ calculation of (H2O)55, this requires about 2.4
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Figure 2.2: Signed errors in total interaction energies for a series of water clusters
using (a) two-body, (b) three-body, and (c) four-body expansions, at the B3LYP/cc-
pVDZ level, either with or without electrostatic embedding. In (d), we plot the signed
errors for GMBE(1) and GMBE(2). Error is measured with respect to a supersystem
calculation at the same level of theory. Note that the vertical energies scales are
different in each panel.

times more computer time as compared to the looser thresholds.

The other obvious message from these data is that, even with tight thresholds,

errors at the MBE(2) and MBE(3) level are unacceptably large, even for clusters

containing only a few water molecules. Electrostatic embedding is designed to rectify

this, so in Fig. 2.2 we plot size-dependent errors in MBE(n) using a variety of different

embedding charges. [We use the notation “EE-nB” to mean an embedded version

of MBE(n).] In stark contrast to the conventional wisdom that embedding charges
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should improve the accuracy of truncated MBEs, no such trend is observed at the two-

body level, where the errors can change dramatically (even in sign) depending upon

the choice of point charges. In the three- and four-body cases, use of any one of five

different choices for the embedding charges does lead to a systematic reduction in the

error across all cluster sizes, and the results are consistent with previous observations

that the results are rather insensitive to the particulars of how the embedding charges

are chosen.45,64,92 Moreover, they are consistent with the notation that the details

of the embedding should matter less as n increases and ever-large sub-clusters are

described quantum-mechanically.64 On the other hand, in the three-body case the

error reduction engendered by the embedding charges is quite small relative to the

overall error with respect to the supersystem benchmark. Only in the four-body

case—which we would like to avoid, by virtue of its disastrous combinatorics—do we

see a meaningful reduction in the errors by virtue of the embedding charges.

Of all the EE-MBE(n) methods examined in Fig. 2.2, only the four-body expansion

with NPA, ChElPG, or CM5 charges achieves so-called “chemical accuracy” of ∼

1 kcal/mol. Note that the error per monomer (Table 2.1) is a size-intensive quantity,

unlike the total errors in Fig. 2.2, and it has been argued that for dynamical studies of

cluster evolution, it is sufficient to achieve a “dynamical accuracy” per monomer equal

to 10% of the average molecular kinetic energy at room temperature, (3/2)kBT .82

This amounts to an accuracy threshold of 0.09 kcal/mol, and unfortunately none of

the two- or three-body expansions achieves even this level of accuracy, although all

of the four-body methods do, including the MBE(4) with no embedding charges at

30



all. This is a useful fact to note, given that evaluation of the Coulomb self-energy of

the embedding charges is a serious obstacle to obtaining reproducible, high-precision

results when the n-body expansion is implemented via an external driver program or

script.48

Several previous studies have noted that the “success” of n-body expansions often

relies heavily on error cancellation,47,76,83,90 and the EE-2B data in Fig. 2.2(a) suggest

that MBE(2) with either Mulliken or Hirshfeld embedding represents a “Pauling

point”106 at the two-body level. This is almost certainly not for any physically-

meaningful reason, given that the average Mulliken charge on oxygen is −0.26e in

the case of (H2O)40, and −0.22e when Hirshfeld charges are used, as compared to

−0.80e for ChElPG (which is similar to force-field charges designed to reproduce

the presumed H2O dipole moment) and −0.99e for NPA (consistent with chemical

intuition).

Finally, results for GMBE(n) are plotted in Fig. 2.2(d). As noted above, the

GMBE includes some many-body effects even for n = 1, but these turn out to be

insufficient to afford reasonable accuracy even in small clusters, at least with the

3 Å threshold for fragment formation that is used here. Using the same thresh-

old, however, GMBE(2) results are outstanding, with a MAE per monomer of only

0.02 kcal/mol across the whole range of cluster sizes, N = 6–55. This is more accurate

than any of the MBE(4) methods, and this accuracy does not require the use of em-

bedding charges. While it is likely true that the total error in GMBE(2) calculations

is size-extensive, the plot in Fig. 2.2(d) suggests that the rate of growth with N is so
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Embedding
MAE per monomer (kcal/mol)

cc-pVDZ aug-cc-pVDZ 6-31+G(d,2p)
None 0.51 0.06 0.11
Mulliken 0.45 0.07 0.05
ChElPG 0.40 0.37 0.09
NPA 0.39 0.56 0.11
Hirshfeld 0.46 0.04 0.05
CM5 0.41 0.23 0.06

Table 2.2: Mean absolute errors per monomer for EE-MBE(3) calculations of
(H2O)6−55 at the B3LYP level in several basis sets. Supersystem charges computed
at the B3LYP/cc-pVDZ are used for charge embedding.

small that this extensivity is unlikely to prove problematic for values of N that are

likely to be used in practical calculations, and GMBE(2) can safely be employed to

predict total cluster binding energies.

Basis-set dependence

Much of the rationale for examining water clusters in this work is these have been

popular test cases for various fragment-based methods, and in the Supplementary

Material we compare our EE-2B and EE-3B results to a large number of previous

benchmarks from the literature. Care must be taken in comparing these literature

values either to one another or to the numbers reported here, because it is uncommon

to find a detailed specification of how the thresholds were set in a given calculation,

and these settings can significantly alter the results, as can the choice of electrostatic

embedding, in the two-body case.
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Figure 2.3: Signed errors in the MBE(3) total interaction energies for (H2O)6−55,
using the B3LYP functional with three different basis sets. Error is measured with
respect to a supersystem calculation at the same level of theory.
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That said, a survey of the literature suggests that the large MBE(2) errors docu-

mented above are not unprecedented. Our MBE(3) results are noticeably worse than

most literature values, however. With only a few exceptions, the literature reports

errors of . 3 kcal/mol for clusters in the size range N = 16–32, with numerous re-

ports of errors < 1 kcal/mol in basis sets such as STO-3G, 3-21G, and 6-31G* (see

Table S2).

In an attempt to understand this discrepancy, we have examined size-dependent

trends in the MBE(3) errors in three different basis sets, as plotted in Fig. 2.3 with

error statistics are summarized in Table 2.2. In contrast to B3LYP/cc-pVDZ results,

where the choice of embedding charges made only a minor difference in the error,

results using aug-cc-pVDZ show a dramatic dependence on the choice of embedding

charges. Starting from the MBE(3) results without charge embedding [green symbols

in Fig. 2.3(b)], the various EE-MBE(3) plots diverge in an order that correlates

precisely with the average embedding charge on the oxygen atoms, which is small for

the Hirshfeld and Mulliken embeddings but nearly −1e for NPA charges. Use of the

latter leads to errors that approach 50 kcal/mol for the largest clusters, whereas errors

are < 10 kcal/mol when no embedding charges are used at all. This strongly suggests

that overpolarization caused by point charges interacting with diffuse basis functions

is the reason for the dramatic dependence on the choice of embedding charges when

the aug-cc-pVDZ basis set is used.

Very accurate results for small water clusters (N < 10) were reported in Ref.

84 using EE-MBE(3) at the B3LYP/6-31+G(d,2p) level, so we have applied the
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MAE Embedding
Signed Error (kcal/mol)

MBE(2) MBE(3) MBE(4) GMBE(2)
cc-pVDZ none 28.56 19.39 −3.96 −0.79
cc-pVDZ ChElPG −74.74 18.36 −0.74 —

aug-cc-pVDZ none 105.00 −4.05 −9.26 0.23
aug-cc-pVDZ ChElPG −22.06 23.74 −75.35 —

cc-pVTZ none 20.09 32.59 −9.85 0.05
cc-pVTZ ChElPG −68.78 28.71 −6.50 —

aug-cc-pVTZ none 105.54 −8.92 9.26 0.33
aug-cc-pVTZ ChElPG −0.40 4.19 −23.40 —

6-31G(d,2p) none 74.18 5.83 −0.82 0.07
6-31G(d,2p) ChElPG −32.47 5.77 1.60 —

6-31+G(d,2p) none 84.24 −0.84 5.19 0.73
6-31+G(d,2p) ChElPG 6.68 −7.26 5.65 —

Table 2.3: Signed errors for (H2O)40 using B3LYP in various basis sets. (Embedding
charges are from a supersystem calculation at the level of B3LYP/cc-pVDZ.)

same methodology to the (H2O)6−55 sequence, with errors reported in Fig. 2.3(c).

MAEs in Table 2.2 show that each choice of embedding charges except NPA leads

to reduction in the errors, and even the errors using NPA charges are comparable in

magnitude (though different in sign) to those without embedding. The errors are also

much smaller using 6-31+G(d,2p) as compared to either of the other two basis sets,

although total errors remain ≫ 1 kcal/mol for the largest clusters.

This dramatic sensitivity to basis sets is the most surprising conclusion drawn

from Fig. 2.3, all the more so in view of the fact that the three basis sets used here
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are not so dissimilar. A recent review of fragment-based methods43 mentions the need

for a comprehensive study of how the accuracy of each method depends upon the level

of electronic structure theory used for the subsystem calculations, yet few systematic

studies exist in the literature.45,47,48,90 Here, we use B3LYP in conjunction with six

different double- and triple-ζ basis sets to study the performance of (G)MBE(n) for

(H2O)40, both in the absence of embedding charges and when ChElPG embedding

charges are used. Signed errors are reported in Table 2.3.

For MBE(2), results are improved by employing charge embedding in all basis

sets except cc-pVDZ and cc-pVTZ. For MBE(3), results are improved by employ-

ing charge embedding in all basis sets except aug-cc-pVDZ and 6-31+G(d,2p). For

MBE(4), results are improved only for cc-pVDZ and cc-pVTZ by employing charge

embedding. In short, the results are rather erratic, and in none of the six basis sets

tested does charge embedding consistently reduce the errors for two-, three-, and

four-body expansions. Moreover, in the absence of embedding charges we observe

a monotonic decrease in the errors (going from n = 2–4) only for cc-pVDZ and 6-

31G(d,2p). This is consistent with the observation by Ouyang et al.90 that only in

the absence of diffuse functions does one obtain monotone convergence of the MBE,

although our results for cc-pVTZ are an exception demonstrating that the absence

of diffuse functions alone does not guarantee monotone convergence. In summary,

and in view of all the data presented so far, it is difficult to predict whether MBE(n)

results will be improved or degraded by MBE(n + 1) for a given basis set or charge

embedding scheme.
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Fortunately, GMBE(2) performs well for all six basis sets tested, and is superior

to (or in one case, comparable to) MBE(4) results with or without charge embedding.

Recent work has shown that the performance of GMBE(2) does depend on the nature

of the embedding charges,77 so in this study we choose not to use these charges in

GMBE calculations.

Convergence of the expansion

Ultimately, one needs a metric for gauging the accuracy of a given approach that does

not require a supersystem calculation, else the utility of the MBE is lost. Given the

apparent extensivity of errors in total interaction energies, it is not immediately clear

how (or even whether) small cluster benchmarks can be used to assess accuracy in

applications to much larger clusters. A reasonable metric is to examine how the errors

converge (or fail to converge) with respect to the truncation order, n, but unfortu-

nately the convergence behavior of the MBE is complicated,82,90,107–110 as seen above.

For atomic clusters, the MBE is oscillatory and slowly-convergent, often precluding

truncation.107–109 For small molecular clusters, the situation may not be so dire, as

the oscillations tend to settle down much more quickly,83,109,111 possibly owing to the

weaker nature of intermolecular interactions as compared to interatomic interactions.

Consider the n-body interaction energy ∆E
(n)
I in Eq. (2.3). As a simple, quali-

tative model, let us assume that the error in each subsystem energy, E
(n−m)
J , is the
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same, and denote this error as δE. Then the total error in ∆E
(n)
I would be

δ
(

∆E
(n)
I

)

= (δE)
n−1∑

m=0

(−1)m
(
n

m

)

= (−1)n+1(δE) .

(2.19)

This suggests there is reason to expect that errors in MBE(n) calculations may os-

cillate as a function of N , although the result is only rigorous if the errors are truly

identical for each n, which likely requires that |∆E
(n)
I | ≈ |∆E

(n+1)
J |. If the magnitude

of the (n + 1)-body interactions are significantly different than those of the n-body

interactions, then one cannot say with certainty whether the error will oscillate or

not.

In light of this analysis, let us reconsider the n = 2 results in Fig. 2.2(a). According

to Eq. (2.19), the error should be negative, and indeed large, negative errors are

obtained using CM5, ChElPG, and NPA charges, but on the other hand large positive

errors are obtained in the absence of charge embedding. (For reasons ultimately

having to do with error cancellation, the Hirshfeld and Mulliken embeddings lead to

errors much closer to zero, and which change sign as a function of cluster size.) These

observations suggest that the analysis in Eq. (2.19) is overly simplistic in this case,

consistent with the fact that |∆E
(1)
I | ≫ |∆E

(2)
I |.

On the other hand, errors for EE-MBE(3) [Fig. 2.2(b)] are all positive, consistent

with Eq. (2.19), and for EE-MBE(4) [Fig. 2.2(c)], most of the errors are negative,

and those that are positive are relatively small. Thus, we conclude there is reason

to expect that the MBE converges (if at all) in an oscillatory way, behavior that

may prove troublesome for high-accuracy applications if the oscillations do not decay
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rapidly enough. In the present calculations, this does not seem to be the case even

by n = 4, necessitating five-body calculations to check for convergence. As noted

in Ref. 47, and in Section 2.4.2 below, these oscillations may play a role in error

cancellation. BSSE is a significant component of these oscillations.90

2.4.2 High-accuracy calculations of relative energies

To this point we have focused on the intricacies of replicating a low level of theory

in a large system. We now turn our attention to an investigation of the accuracy of

the MBE as compared to high-quality RIMP2/CBS and ωB97X-V/aTZ benchmarks,

specifically for relative energies of (H2O)20 isomers.

Accuracy of the benchmarks

Total interaction energies for eight different (H2O)20 clusters are plotted in Fig. 2.4.

In these calculations, we attempted to reach the RIMP2/CBS using T/Q extrap-

olation of RIMP2/aug-cc-pVXZ data, both with and without counterpoise correc-

tions. These corrections are quite large, on average 21 kcal/mol for the aTZ basis

set and 10 kcal/mol for the aQZ basis set, and the extrapolated RIMP2/CBS values

in the absence of counterpoise correction are shifted to larger interaction energies

by ≈ 3.5 kcal/mol relative to an extrapolation of the counterpoise-corrected val-

ues. The counterpoise-corrected RIMP2/CBS extrapolations differ by an average of

2.7 kcal/mol as compared to counterpoise-corrected CCSD(T)/CBS benchmarks.57,59

The ωB97X-V functional105 combined with triple-ζ basis sets gives good perfor-

mance for interaction energies in (H2O)20 with a MAE of 1.7 kcal/mol as compared
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Figure 2.4: Total interaction energies for eight different isomers of (H2O)20, including
two from each of the four families of structural motifs.3

to CCSD(T)/CBS benchmarks.59 In the absence of counterpoise correction, ωB97X-

V/aTZ values are shifted to higher interaction energies by ≈ 2.8 kcal/mol, relative

to counterpoise-corrected results. In contrast to the RIMP2/aTZ case, counterpoise

corrections at the ωB97X-V/aTZ level are < 1 kcal/mol, consistent with more rapid

basis-set convergence of DFT as compared to MP2. Counterpoise-corrected ωB97X-

V/aTZ interaction energies agree with (counterpoise-corrected) RIMP2/CBS results

to within 1 kcal/mol, as shown in Fig. 2.4, suggesting that these two methods are

reliable levels of theory for relative energies of (H2O)20 isomers. In the next section,

we examine how well n-body approximations can reproduce these benchmarks.
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Accuracy of the (G)MBE

In Fig. 2.5, we examine the errors in three- and four-body versions of MBE(n)+MBCP(n)

as compared to counterpoise-corrected RIMP2/CBS and ωB97X-V/aTZ benchmarks.

We find that MBE(2)+MBCP(2) performs quite poorly, with errors > 40 kcal/mol,

so this approach will not be discussed here. In contrast, the GMBE(2)+GMBCP(2)

performs well but the GMBCP(2) correction is very demanding in terms of the num-

ber of subsystem calculations that are required, hence we have only used this method

in the aTZ basis set, and will not extrapolate to the CBS limit.

In each of the MBE(3)+MBCP(3) calculations shown in Fig. 2.5, the MAE is >

1 kcal/mol, and this three-body approach consistently underestimates the interaction

energies in the two dodecahedral isomers of (H2O)20, as compared to those in the

other three structural motifs. (In a previous study, we noted that BSSE effects are

quite different for the dodecahedrons as compared to the other families of isomers.47)

This is somewhat disturbing, in that it suggests that a three-body expansion might

compare favorably to benchmark calculations in one region of the potential surface,

only to perform in a less-favorable for other isomers of the same cluster. On the

other hand, the MBE(4)+MBCP(4) and GMBE(2)+GMBCP(2) methods perform

consistently well for all four classes of (H2O)20 isomers, with MAEs < 0.3 kcal/mol.

In an attempt to separate the role of BSSE corrections from the performance of

the underlying n-body approximation to the total, uncorrected interaction energy, we

plot in Fig. 2.6 the errors in MBE(3), MBE(4), and GMBE(2) interaction energies for

the aTZ basis set, the aQZ basis set, and the CBS extrapolation, without applying
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Figure 2.5: Signed errors in relative energies of (H2O)20 isomers at the indicated
levels of theory, using the MBE(n)+MBCP(n) approach for n = 3 and 4. MAEs for
each fragmentation method are also shown, with respect to supersystem benchmarks
computed at the same level of theory. All supersystem benchmarks are counterpoise-
corrected, hence the MBE approximation with MBCP correction, or GMBE with
GMBCP correction, is the appropriate comparison.
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Figure 2.6: Signed errors in relative energies of (H2O)20 isomers at the indicated levels
of theory. Errors in MBE(n) and GMBE(2) results are defined relative to a supersys-
tem calculation that has not been corrected for BSSE, and errors in the MBCP(n)
and GMBCP(2) counterpoise corrections are defined relative to the “full” (supersys-
tem) counterpoise correction. Note that the vertical energy scales are different in
each panel.
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counterpoise corrections to either the supersystem calculation or the n-body calcu-

lation. (This is therefore a test of how well a BSSE-contaminated n-body expansion

reproduces the results of a BSSE-contaminated supersystem calculation.) In the same

figure, we also isolate the BSSE calculations and compare the MBCP(3), MBCP(4),

and GMBCP(2) corrections to the “full” counterpoise correction, the latter being

defined as the difference between traditional counterpoise-corrected and uncorrected

supersystem calculations.

Previously, Ouyang et al.90 have suggested that, for reasons related to BSSE,

MBE calculations should be performed using either the full cluster basis set (which is

intractable in large systems), or else using basis sets of at least aug-cc-pVTZ quality,

and these are the only basis sets considered in Fig. 2.6. Here, RIMP2 results indicate

that the performance of MBE(n) increases systematically as the basis set is improved,

especially for n = 4, whereas the errors start small for GMBE(2) calculations—even

as compared to MBE(4)—and are not substantially different between aTZ, aQZ, and

CBS. GMBE(2) is also the best-performing of these three methods at the ωB97X-V

level.

Likewise for the counterpoise corrections, the GMBCP(2) errors are smaller than

those observed for MBCP(3) or MBCP(4) in both the RIMP2 and the DFT calcu-

lations. Because GMBE(2), without counterpoise correction, agrees well with BSSE-

contaminated supersystem results, while GMBCP(2) agrees well with the supersys-

tem counterpoise correction, we conclude that the composite GMBE(2)+GMBCP(2)
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Method
MAE (kcal/mol)

MBE(3)+ MBE(4)+ GMBE(2)+
MBCP(3) MBCP(4) GMBCP(2)

— interaction energy —
ωB97X-V/aTZ 1.11 0.19 0.19
RIMP2/aTZ 1.34 0.27 0.17
RIMP2/aQZ 1.54 0.17 –
RIMP2/CBS 1.75 0.24 –

— relative energy —
ωB97X-V/aTZ 1.03 0.16 0.45
RIMP2/aTZ 1.05 0.42 0.41
RIMP2/aQZ 1.01 0.16 –
RIMP2/CBS 0.98 0.40 –

Table 2.4: MAEs in relative energies of (H2O)20 isomers and in total interaction
energies for the same isomers.

method offers good accuracy for the right reasons, and does not rely on error cancella-

tion. In contrast, MBE(3) tends to underestimate the BSSE-contaminated interaction

energy while MBCP(3) overestimates the counterpoise correction, while at the four-

body level the reverse is true, consistent with the oscillatory nature of the MBE. In

these cases, the composite MBE(n)+MBCP(n) method is relying on error cancella-

tion between the neglect of higher-order terms in the MBE and spurious BSSE effects.

This example is a more incisive analysis of a similar error cancellation that we first

noted in Ref. 47.

In studies of non-covalent clusters, relative energies are usually more important

than total interaction energies, the latter of which are only measurable in small clus-

ters. Having demonstrated that error cancellation plays a pivotal role in the accuracy
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of MBE(n)+MBCP(n) calculations, it is conceivable that this could be turned into a

feature, by exploiting error cancellation to obtain high accuracy at affordable cost. As

such, we report MAEs for relative energies of the eight (H2O)20 clusters in Table 2.4,

where we also compare them to MAEs in the total interaction energies.

Interestingly, the error statistics for total interaction energies are not significantly

different from those for relative isomer energies, vindicating the use of the former

as the metric by which MBEs have been assessed in our work and many previous

studies. (We rationalize this observation in terms of the fact that the total interaction

energy is, from a certain point of view, merely the relative energy between two very

different points on the potential energy surface, namely, a deep well versus an exit

channel.) The MBE(3)+MBCP(3) approach does not lead to sub-kcal/mol accuracy,

for which the four-body analogue is required, or alternatively once can bypass the need

for four-body calculations and use GMBE(2)+GMBCP(2) instead, whose favorable

performance does not appear to rest on error cancellation.

More exhaustive testing is required in order to obtain a comprehensive under-

standing of which subsystem levels of theory can be expected to perform well as

compared to high-level supersystem benchmarks. Ideally, one would like to estab-

lish a protocol (in terms of the choice of embedding, the level of truncation, the

size of the fragments, and any BSSE corrections) such that the accuracy of a given

electronic structure model for calculations in small clusters would be in some way

indicative of its accuracy when applied to large clusters via the MBE. This is needed
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especially since RIMP2/CBS, for example, is a reasonable level of theory for wa-

ter clusters but would not be for applications to systems where a sizable fraction of

the interaction energy comes from dispersion. The same can be said for the M11-

based112 density-functional models that are used for water clusters in Ref. 88,

whose success for dispersion-bound systems appears to rest on a delicate cancella-

tion of errors.113 Counterpoise-corrected ωB97X-V/aTZ, on the other hand, appears

to be accurate across a broad spectrum of non-covalent interactions,52,57,105 and the

MBE(4)+MBCP(4) and GMBE(2)+GMBCP(2) approximations to this supersystem

method accurately reproduce both total interaction energies and relative isomers en-

ergies for water clusters. Given a sufficient number of cores over which to distribute

such calculations, the time-to-solution can be made quite small.

2.4.3 Computational cost

It is often tacitly assumed that fragment-based methods are always computationally

less expensive than the corresponding supersystem calculations, but in terms of ag-

gregate computer time (rather than time-to-solution or “wall time”), this if often

not the case.77 In this section, we consider the cost of the (G)MBE calculations re-

ported here, with the caveat that we have made no attempt to perform any sort of

thresholding, by means of which subsystem calculations involving spatially-distant

monomers might be neglected or approximated. Preliminary tests suggests that a

significant fraction of the subsystem calculations are negligible in many cases, and

that this fraction increases with n, but since the purpose of this work is to evaluate
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the intrinsic accuracy of the (G)MBE we retain all subsystems. Given the cancella-

tion of errors that is often inherent in applications of the MBE,48 it seems wise to

establish exact (G)MBE(n) benchmarks before proceeding to discard terms.

Table 2.5 summarizes the number of subsystem calculations required for a MBE(4)

+ MBCP(4) or GMBE(2)+GMBCP(2) calculation, for both (H2O)20 and (H2O)55.

For N = 20, GMBE(2) affords a modest reduction in the number of subsystem cal-

culations, as compared to MBE(4), but the reduction is quite dramatic for N = 55.

This is especially true for the counterpoise correction, which is far more expensive

than a simple calculation of the supersystem energy. For N = 55, use of GMBCP(2)

to approximate EIJK···N
I generates 205 dimers (with 5–8 ghost molecules each) and

1,430 intersections (3–5 ghost molecules). Since there are N separate monomer ener-

gies to correct, the full GMBCP(2) calculation consists of 11,275 dimers and 78,650

intersections. In contrast, for MBCP(4) there are 1,364,220 tetramers (with three

ghost molecules each), with a large number of smaller subsystems as well.

The most time-consuming calculations for MBE(4)+MBCP(4) are tetramers in

the tetramer basis set and monomers in the tetramer basis set, which are approxi-

mately equally expensive at the DFT level because they require all the same electron

repulsion integrals. (Although the cost analysis changes somewhat for correlated

wave functions, we will see below that timing profiles for DFT and RIMP2 are actu-

ally rather similar.) For MBE(4)+MBCP(4) there are over 1.7 million terms requir-

ing a tetramer basis set, whereas the full GMBE(2)+MBCP(2) calculation requires

fewer than 110,000 subsystem calculations. On the other hand, the subsystems are
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size
(H2O)20 (H2O)55

MBE(4)a MBCP(4)b GMBE(2)a GMBCP(2)b MBE(4)a MBCP(4)b GMBE(2)a GMBCP(2)b

n = 4 4,845 19,380 – – 341,055 1,364,220 – –
n = 3 1,140 3,420 – – 26,235 78,705 – –
n = 2 190 380 – – 1,485 2,970 – –
n = 6–9 – – 150 1,110 – – 1,469 11,275
n = 4–6 – – 4,113 16,040 – – 17,883 78,650
Total 6,175 23,180 4,263 17,150 368,775 1,445,895 19,352 89,925
aCalculations involving n monomers in an n-mer basis.

bCalculations involving one monomer in an n-mer basis.

Table 2.5: Number of subsystem calculations required for several different fragment-based approaches, for two
different cluster sizes.
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Fragment ωB97X-V/ RIMP2/
Method aTZ aTZ
MBE(4) 9 8
MBCP(4) 3 2
GMBE(2) 53 74
GMBCP(2) 18 34

Table 2.6: Ratio of the total aggregate computing time for a given fragment-based
calculation to that required for the supersystem calculation that it is meant to ap-
proximate, rounded up to the nearest integer. The system is the same (H2O)20 isomer
used to generate the timing data in Fig. 2.7.

larger in the latter case, and for (H2O)20 at the ωB97X-V/aTZ level, the average

computer time per subsystem job is 601 s for MBE(4)+MBCP(4) but 5534 s for

GMBE(2)+GMBCP(2). These figures reflect the total aggregate computing time

across all processors rather than wall time. In practice, we carry out these calcu-

lations across as many as 500 processors, a number that is limited by our available

resources rather than by a lack of scalability, since the fragment-based calculation

should scale well at least to the regime where the number of processors is comparable

to the number of subsystem calculations required.

Figure 2.7 shows actual timing data for one ωB97X-V/aTZ or RIMP2/aTZ cal-

culation on (H2O)20, where we have separated the cost of the total energy calculation

from that of the counterpoise correction. In terms of total computer time aggregated

across all processors, a MBE(4) calculation is 8–9 times more expensive than simply

performing a calculation on the entire cluster, depending on the level of theory, and a

GMBE(2) calculation is up to 74 times more expensive! From another point of view,
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(a) ωB97X-V/aug-cc-pVTZ

(b) RIMP2/aug-cc-pVTZ

Figure 2.7: Left data sets: total computer time (summing all processors) for coun-
terpoise corrected ωB97X-V/aTZ and RIMP2/aTZ calculations on (H2O)20, with
timings for the counterpoise correction listed separated from those for the (H2O)20
total energy. Right data set: total computer time divided by the number of subsystem
calculations required. The bar labeled “full supersystem” represents a DFT calcu-
lation on the entire cluster, which does not decompose into trivially-parallelizable
subsystems, but the corresponding “full counterpoise” correction can be sub-divided
by a factor of N = 20, and this reduction is reflected in the “full counterpoise” bar
in the data set on the right. Supersystem calculations were multithreaded across 20
cores, whereas (G)MBE calculations were run in serial but the subsystem jobs were
distributed across as many as 500 processors.
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however, these ratios (which are listed in Table 2.6) provide a rough estimate of the

number of processors that would be required in order to make the time-to-solution

the same for both the supersystem and the fragment-based calculation, assuming

that all jobs are run in serial mode. Looking at it in this way, the highly accurate

GMBE(2) method will outperform the supersystem approach already on fewer than

100 processors.

As a measure of how favorable the wall times could be made, given the availability

of a very large number of processors, the data on the right side of Fig. 2.7 show

the average time per subsystem calculation. (We obtain this simply by dividing

the total aggregate computer time by the total number of subsystem calculations

from Table 2.5, reasoning that the largest and most expensive subsystem calculations

are also the most numerous. The full Boys-Bernardi counterpoise correction can be

trivially parallelized into N = 20 separate calculations, and the timings on the right

side of Fig. 2.7 reflect this.) Speed-ups approaching factors of 700–800 for MBE(4),

and 60–80 for GMBE(2), are possible, although to realize these will require use of a

number of processors comparable to the number of subsystem calculations, i.e., ∼104

or so. Scalability should be good into this regime, meaning that (G)MBE-based

calculations are good applications for peta- and exa-scale computing.

2.5 Conclusion

We report a systematic study of the accuracy of truncated MBEs as applied to water

clusters, (H2O)N=6−55. Elaborating upon a previous study of finite-precision problems
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associated with these methods,48 we demonstrate that for systems containing 30–40

fragments or more, results from three- and four-body expansions are quite sensitive to

the numerical thresholds used in the subsystem calculations, such that common de-

fault settings in an electronic structure program may afford supersystem energies that

differ by several kcal/mol as compared to results obtained using very tight thresholds.

The same is not true of the supersystem calculation itself, but arises from the very

large number of subsystem energies that must be summed. It is therefore important

to use tight thresholds in all subsystem calculations in order to minimize propagation

of errors and ensure that the result is not an artifact of roundoff error.

These problems are dramatically worse for the four-body expansion than they are

for the three-body expansion, which is unfortunate because only the former appears to

achieve what has been called “dynamical accuracy” for cluster calculations,82 defined

as 10% of mean thermal energy at room temperature, or 0.09 kcal/mol per monomer.

Although atom-centered embedding point charges are often assumed to accelerate

convergence of the MBE, we find no compelling evidence that this is true at the

three- or four-body level, while two-body results can be highly erratic depending on

the particular choice of embedding charges.

In contrast, a generalized two-body expansion based on overlapping fragments

containing 3–4 water molecules per fragment achieves an accuracy of 0.02 kcal/mol

per monomer, without resorting to embedding charges. The fact that high accuracy

can be achieved without charge embedding is significant for several reasons. First,
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precision problems associated with computing the Coulomb self-energy of the em-

bedding charges present a serious challenge to any implementation of the MBE that

uses a script or driver program that is external to the quantum chemistry program

itself, because the magnitude of this term can easily exceed 105 hartree in examples

such as the ones considered here, so that six- or eight-digit roundoff in the output

files of the electronic structure program can make a significant difference.48 Second,

applications to more heterogeneous clusters probably requires that the embedding

charges be iterated to self-consistency, a process that destroys the variational nature

of the subsystem SCF calculations and significantly complicates the formulation of

analytic energy gradients for the MBE. Finally, the use of embedding charges leads

to dramatic variations in the accuracy of the MBE from one basis set to the next,

especially in the presence of diffuse functions where overpolarization problems are

severe.

Having established the general characteristics of the (G)MBE using modest levels

of theory, we examined isomers of (H2O)20 at several more respectable levels, namely

RIMP2/CBS and counterpoise-corrected ωB97X-V/aTZ. To achieve high accuracy,

one must deal with BSSE present in the n-body calculations, and we have introduced

many-body counterpoise corrections for both the traditional MBE (in Refs. 46 and

47) and for the GMBE (in the present work). The three-body approach with three-

body counterpoise corrections, MBE(3)+MBCP(3), fails to achieve 1 kcal/mol accu-

racy, which can be achieved using the corresponding four-body calculation. As above,

however, the GMBE approach—GMBE(2)+GMBCP(2), in this case—performs well
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at the two-body level, with a MAE < 0.3 kcal/mol as compared to counterpoise-

corrected supersystem benchmarks. Separate analysis of the counterpoise corrections

themselves suggest that this success does not rest on error cancellation, whereas for

MBE(4)+MBCP(4) some error cancellation is indeed involved, wherein BSSE com-

pensates for five-body and higher-order terms that are neglected.

Together, this study and a previous one48 raise serious concerns about the efficacy,

or at least the generality, of the n-body expansion. These difficulties arise not only

from the factorial increase in the number of subsystem calculations, with respect to

both n and N , but also from the fact that to maintain consistent precision, tighter SCF

convergence thresholds and arbitrary precision floating-point arithmetic are required.

Non-monotone convergence with respect to n, coupled with size-extensive errors in

total interaction energies, mean that higher-order terms become more important as

system size grows. Together, these problems certainly detract from the “free lunch”

reputation of fragment-based methods. On the other hand, GMBE(2)+GMBCP(2)

has a number of advantages, as suggested above, and in conjunction with the ωB97X-

V/aTZ level of theory offers an accurate and stable method for application to large

systems, which can be competitive in cost on only a few hundred processors. Perfor-

mance will improve given a thresholding procedure for discarding irrelevant subsystem

calculations a priori, and we hope to report on systematic tests of such a procedure

in the future.
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CHAPTER 3

Breakdown of the single-exchange approximation

in third-order symmetry-adapted perturbation

theory3.1

3.1 Introduction

Symmetry-adapted perturbation theory (SAPT) is a systematically-improvable hier-

archy of methods for direct calculation of intermolecular interaction energies,114–117 in

which the interaction energy decomposes naturally into a sum of physically-meaningful

components: electrostatics, induction, dispersion, and exchange-repulsion. This is

appealing because one can construct physically-motivated potential energy surfaces

or force fields by separately fitting the individual components of a SAPT calcula-

tion. Applications to clusters,118–120 molecular crystals,121–124 bulk liquids,125 and

biomolecules126 have been reported recently.

Starting from a zeroth-order Hamiltonian equal to the sum of two monomer Fock

operators, the SAPT approach is based on a symmetrized Rayleigh-Schrödinger (SRS)

perturbation expansion114,115 with respect to three perturbations: the intermolecular

interaction potential, V̂ , and the two monomer fluctuation potentials, ŴA and ŴB.

3.1This chapter appeared as a full article in the Journal of Physical Chemistry A, in 2012, volume
116, pages 3042–3047.
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The interaction energy can be expressed as

Eint =
∞∑

i=1

∞∑

j=0

(

E
(ij)
pol + E

(ij)
exch

)

, (3.1)

where i indicates the order in perturbation theory with respect to V̂ and j indicates

the order with respect to both ŴA and ŴB. The correction terms E
(ij)
pol are known

collectively as the polarization expansion, and these are precisely the same terms that

would appear in ordinary Rayleigh-Schrödinger perturbation theory. The polarization

expansion contains electrostatic, induction and dispersion interactions, but in the

SRS expansion each term E
(ij)
pol has a corresponding exchange term, E

(ij)
exch, that arises

from the antisymmetrizer ÂAB that is introduced in order to project away the Pauli-

forbidden components of the interaction energy.115

The operator ÂAB generates all possible permutations (exchanges) of electrons on

monomers A and B, which makes it difficult to derive closed-form, programmable ex-

pressions for the exchange corrections. To the best of our knowledge, this has been ac-

complished127 only for the first-order exchange correction, E
(10)
exch, and all higher-order

exchange terms are evaluated within the single-exchange approximation (SEA).114

(Because the resulting formulas depend on the square of the dimer overlap matrix,

typically denoted by S, the SEA is sometimes known as the “S2 approximation”.)

The SEA is thought to be quite robust at equilibrium geometries.128 As an ex-

ample, we cite a recent SAPT study of dimers consisting of nonpolar monomers.129

There, the ratio E
(10)
exch/E

(10)
exch(S2), where the numerator is exact and the denominator

invokes the SEA, was used as a scaling factor for the higher-order exchange terms.

It was found that this scaling adds no more than 0.03 kcal/mol to binding energies
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at equilibrium geometries, and even at much shorter distances, where the intermolec-

ular interaction becomes repulsive, the scaling adds no more than 1 kcal/mol. The

largest contribution to this additional 1 kcal/mol comes from scaling the third-order

exchange–induction term, E
(30)
exch-ind(S2).129

A formula for the third-order exchange interaction E
(30)
exch(S2) was reported only a

few years ago,130 and has not yet been explored as thoroughly as have the lower-order

SAPT corrections. Because E
(30)
exch-ind ought to be more significant for polar molecules,

as opposed to the nonpolar ones considered in Ref. 129, we have undertaken a

careful analysis of the role of the E
(30)
exch-ind term in SAPT calculations on polar dimers.

The results, reported here, demonstrate that the SEA results in significant errors

leading to qualitatively-incorrect potential energy surfaces at distances shorter than

the equilibrium intermolecular distance.

3.2 Computational methods

We study potential energy curves (PECs) for five different dimers. Four these are po-

lar systems: (H2O)2, F−(H2O), Cl−(H2O), and HO−(H2O). In addition, we consider

the helium dimer as a “control experiment”, since induction plays almost no role in

the binding of He2. Third-order SAPT calculations for He2 and (H2O)2 near their

equilibrium geometries have been reported previously by Patkowski et al.,130,131 but

here we extend these calculations to full PECs.
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Rigid monomer geometries were adopted for all computations since the frozen-

monomer approximation works reasonably well for PECs.120,121 Monomer geome-

tries were obtained from MP2/aug-cc-pVTZ optimizations and then PECs were con-

structed along the distance coordinate, R, between the two heavy atoms. As bench-

marks, we estimated the complete-basis set (CBS) interaction energy at the CCSD(T)

level based on a two-point (“T,Q”) extrapolation of the MP2 energy and an estimate

of the triples correction in a smaller basis set. (Details can be found in the Sup-

porting Information.) All SAPT calculations were performed in the aug-cc-pVTZ

basis set using the sapt 2008.2 program,132 with integrals generated by the atmol

program.133

The different levels of SAPT applied in this work are defined as follows:117

ESAPT0 = E
(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

+ E
(20)
disp + E

(20)
exch-disp (3.2a)

ESAPT2 = ESAPT0 + E
(12)
elst,resp + E

(11)
exch + E

(12)
exch

+ tE
(22)
ind + tE

(22)
exch-ind (3.2b)

ESAPT = ESAPT2 + E
(13)
elst,resp + E

(21)
disp + E

(22)
disp (3.2c)

ESAPT2+3 = ESAPT + E
(30)
ind + E

(30)
exch-ind + E

(30)
disp

+ E
(30)
exch-disp + E

(30)
ind-disp + E

(30)
exch-ind-disp (3.2d)

The subscripts denote electrostatic (elst), exchange (exch), induction (ind), and dis-

persion (disp) components, and “resp” indicates that the component in question

includes the Hartree-Fock response of each monomer to the static electric field of its
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interacting partner. This response, which amounts to orbital relaxation, is obtained

by solving coupled-perturbed Hartree-Fock equations. The superscript “t” in tE
(22)
ind

indicates that this is the “true” correlation part of E
(22)
ind , not included in E

(20)
ind,resp, and

the corresponding “true” correlation part of E
(22)
exch-ind is estimated as

tE
(22)
exch-ind = tE

(22)
ind

(

E
(20)
exch-ind,resp

E
(20)
ind,resp

)

. (3.3)

With the exception of He2, the dimers that we investigate are dominated by

induction effects, so it will be convenient to define

∆E
(k)
ind = E

(k0)
ind + E

(k0)
exch-ind (3.4a)

∆E
(k)
ind,resp = E

(k0)
ind,resp + E

(k0)
exch-ind,resp (3.4b)

for k > 1. The quantity ∆E
(k)
ind represents the contribution to the total induction

energy that arises at kth order in V̂ , in the absence of monomer correlation,117 and

∆E
(k)
ind,resp is the analogous orbital-relaxed quantity.

The Hartree-Fock interaction energy, EHF
int , can be approximated within SAPT,

and through second- and third-order in V̂ these approximations are130

E
[2]
SAPT-HF = E

(10)
elst + E

(10)
exch + ∆E

(2)
ind,resp (3.5a)

E
[3]
SAPT-HF = E

[2]
SAPT-HF + ∆E

(3)
ind . (3.5b)

Since induction interactions converge slowly for polar molecules, and because one

may argue that a dimer Hartree-Fock calculation contains induction and exchange-

induction effects through infinite order,134–136 a “hybrid” SAPT approach is recom-

mended for polar molecules.130,131 In this approach, a dimer Hartree-Fock calculation
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is used to evaluate the energy difference

δE
(2)
int = EHF

int − E
[2]
SAPT-HF , (3.6)

which is then taken as an estimate of induction effects beyond second order.130 This

term can then be added as a correction to any of the SAPT methods that are second-

order in V̂ , including SAPT0, SAPT2, and SAPT. [What we call δE
(2)
int has alter-

natively been called the δEHF
int correction117 and the δ(HF) correction.137] Although

this correction brings in higher-order induction and exchange-induction effects, it also

contains spurious unphysical terms,127,130,136 most notably, exchange deformation of

the orbitals.136

3.3 Results and discussion

Qualitatively similar results are obtained for each of the four X · · ·H2O systems con-

sidered here (X = F−, Cl−, HO−, and H2O), and we will focus largely on F−(H2O)

as an example. However, all of the quantities that we plot for F−(H2O) are plotted,

for each X · · ·H2O system and also for He2, in the Supporting Information.

PECs computed for F−(H2O), using all four versions of SAPT defined in Eq. (3.2),

are plotted in Fig. 3.1. Each of these methods underbinds this dimer at near-

equilibrium distances, as compared to the benchmark CCSD(T)/CBS result, but

the SAPT0, SAPT, and SAPT2 curves at least exhibit reasonable shapes. How-

ever, in the case of SAPT2+3—which, in principle, is the highest-level SAPT method

that is employed here—the PEC is reasonable only for R > Req, where Req denotes

the minimum-energy intermolecular distance computed at the CCSD(T)/CBS level.
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Figure 3.1: Comparison of different levels of SAPT [as defined in Eq. (3.2)] for the
F−(H2O) system. The H2O geometry is frozen in these potential energy scans.

[For F−(H2O), Req = 2.5 Å.] At shorter distances, the SAPT2+3 curve turns over,

becoming attractive rather than repulsive.

The reason for this failure can be discerned by decomposing the interaction energy

into different components, some of which are plotted in Fig. 3.2. Attractive interac-

tions in F−(H2O) are dominated by induction and we observe that for R < 1.8 Å,

the third-order induction correction, ∆E
(3)
ind, is even larger than ∆E

(2)
ind. Although a

variety of third-order terms are present in a SAPT2+3 calculation [see Eq. (3.2d)], if

we add ∆E
(3)
ind to an otherwise qualitatively-correct SAPT0 calculation, the result is

a PEC that is completely wrong at short R. This result is shown in Fig. 3.3 for all

four ion–water complexes considered here. These calculations identify ∆E
(3)
ind as the
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orders of electrostatic (elst), induction (ind), and dispersion (disp) components, each
with a corresponding exchange (exch) contribution. For the second-order induction
and exchange–induction components, results are shown both with and without orbital
relaxation (resp) corrections.

origin of the problem.

In Fig. 3.4, we address the convergence of the SAPT approximations to the su-

permolecular Hartree-Fock interaction energy for F−(H2O) and also for (H2O)2. For

either system, both E
[2]
SAPT-HF and E

[3]
SAPT-HF are excellent approximations to EHF

int

for R ≥ Req. For intermolecular distances a bit shorter than Req, the addition of

∆E
(3)
ind to E

[2]
SAPT-HF (which defines the third-order approximation, E

[3]
SAPT-HF) success-

fully accounts for the difference between EHF
int and E

[2]
SAPT-HF. Thus the third-order

approximation to EHF
int is basically converged for distances ranging from a bit shorter

than Req, out to R =∞. For (H2O)2 near its equilibrium geometry, this convergence

was noted previously by Patkowski et al,130,131 but even for the anion–water systems
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Figure 3.3: SAPT0 potential curves for (a) F− · · ·H2O, (b) HO− · · ·H2O, (c) Cl− · · ·
H2O, and (d) H2O · · ·H2O, as a function of the distance R between the two heavy
atoms. (Both the vertical and horizontal scales are the same in all four panels.)

Also shown are the potential curves that result when ∆E
(3)
ind is added to a SAPT0

calculation and when the exact E
(10)
exch term in SAPT0 is replaced by its single-exchange

approximation, E
(10)
exch(S2). Results for helium dimer are not shown because all three

curves are indistinguishable on the energy scale used in this figure.
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Figure 3.4: Distance dependence of the supermolecular Hartree-Fock interaction en-
ergy (EHF

int ) and its second-order (E
[2]
SAPT-HF) and third-order (E

[3]
SAPT-HF) SAPT ap-

proximations, for (a) F−(H2O) and (b) (H2O)2. In each case, the coordinate R is
the distance between the heavy atoms, and the arrow indicates the CCSD(T)/CBS
minimum-energy geometry. Note that the two panels use different energy scales.
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considered here, where the induction effects are larger, we find that E
[3]
SAPT-HF is an

excellent approximation to EHF
int near the equilibrium geometry and also at larger

values of R.

In contrast, for R ≪ Req the second-order approximation E
[2]
SAPT-HF is clearly not

converged for F−(H2O), although the PEC defined by the E
[2]
SAPT-HF method is at

least qualitatively correct. For (H2O)2, where the binding energy and the induction

effects are much smaller, E
[2]
SAPT-HF is a much better approximation to the Hartree-

Fock interaction energy. For both systems, addition of ∆E
(3)
ind to E

[2]
SAPT-HF, which

defines the third-order approximation E
[3]
SAPT-HF, improves upon E

[2]
SAPT-HF at distances

somewhat shorter than Req but eventually the E
[3]
SAPT-HF curves turn over, even in the

charge-neutral water dimer. This behavior is clearly a manifestation of the divergence

of ∆E
(3)
ind at short intermolecular separation, which again points to this quantity as

the culprit responsible for the qualitatively wrong PECs obtained at the SAPT2+3

level of theory.

One might object that in our calculations the third-order induction terms do

not include orbital relaxation (response) effects. At near-equilibrium geometries,

Patkowski et al.131 have shown that orbital relaxation increases the third-order in-

duction interaction by up to 50% for dimers such as (H2O)2 that are composed of

polar monomers. Anion–water complexes were not considered by Patkowski et al., but

for F−(H2O) the second-order induction corrections are compared, with and without

orbital relaxation, in Fig. 3.2. The effect of orbital relaxation is to make the potential

energy curve more attractive at short distances, albeit by a relatively small amount.
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As such, we find it unlikely that the inclusion of orbital response at third order would

correct the qualitatively wrong PECs caused by ∆E
(3)
ind.

Thus the question remains: what is the problem with the ∆E
(3)
ind term? According

to Fig. 3.2, the interaction energy contributed by ∆E
(3)
ind increases as intermolecular

distance decreases, so it must be that E
(30)
ind is not sufficiently quenched by its ex-

change counterpart, E
(30)
exch-ind, at short distance. The ∆E

(2)
ind (or ∆E

(2)
ind,resp) curve has

roughly the same basic shape as that for ∆E
(3)
ind, although the latter diverges slightly

more rapidly than the former as R decreases; it is difficult to ascribe any qualitative

problems to this subtle difference.

Perhaps more telling are certain calculations reported in Fig. 3.3, in which we

have replaced the exact E
(10)
exch term in a SAPT0 calculation with its SEA, E

(10)
exch(S2).

For each of the four X · · ·H2O systems that we consider (including the water dimer),

this has the effect of greatly weakening the short-range repulsive interactions, and for

F−(H2O) and HO−(H2O), where induction effects are largest, this modified SAPT0

potential curve even becomes attractive at sufficiently short distance. Therefore, even

at first order the SEA can produce attractive PECs at short distances, although the

influence of the SEA on the third-order corrections is much larger. One might expect

that the SEA might also have qualitatively important effects on the second-order

exchange at short intermolecular distances, but in fact qualitatively correct PECs are

obtained using SAPT methods that are only second-order in V̂ .

For the X · · ·H2O systems, the value of the turnover point where the SAPT0 +

∆E
(3)
ind potential curve (Fig. 3.3) changes from repulsive to attractive decreases in the
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System Req/ Turnover
Å point/Å

F−(H2O) 2.5 1.9
HO−(H2O) 2.6 2.1
Cl−(H2O) 3.1 2.4
(H2O)2 2.9 2.0

Table 3.1: CCSD(T)/CBS equilibrium distances and SAPT2+3 “turnover points”
where the potential becomes attractive at short distance.

order Cl− > HO− > H2O > F−. (The turnover points for SAPT2+3 calculations

turn over in the same order; see Table 3.1.) For the anions, this is the same as the

order of the ionic radii (Cl− > O2− > F−), which we rationalize in terms of the

fact that ions with larger radii would be expected to have larger exchange–repulsion

interactions, at least for intermolecular distances not significantly smaller than the

sum of the van der Waals radii. Considering the water dimer, the aforementioned

turning point occurs at a smaller value of R than it does in HO−(H2O), which we

attribute to the much larger induction effects in the ionic complex. Together, these

observations suggest that the large negative values of ∆E
(3)
ind at small R are probably

attributable to the failure of E
(30)
exch-ind(S2) to quench E

(30)
ind .

Following Ref. 129, we use the ratio E
(10)
exch/E

(10)
exch(S2) to estimate third-order

exchange effects beyond the SEA. Thus we introduce an ad hoc scaling formula

E
(30)
exch-ind,scale = E

(30)
exch-ind

(

E
(10)
exch

E
(10)
exch(S2)

)α

(3.7)

where the exponent α is an empirical parameter. (In Ref. 129, only α = 1 was

considered.) Figure 3.5 shows the result when E
(30)
exch-ind is replaced in a SAPT2+3
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Figure 3.5: Comparison of several variants of SAPT2+3 for F−(H2O). In three of

these, the E
(30)
exch-ind term has been scaled using Eq. (3.7), with different values of

the parameter α, in order to approximate exchange interactions beyond the SEA. In
another, we have replaced the ∆E

(3)
ind term in SAPT2+3 with the δE

(2)
int correction

defined in Eq. (3.6), in order to capture higher-order induction effects.

calculation by the scaled version in Eq. (3.7). This replacement has little effect for

R ≥ Req, which is an indication of the robustness of the SEA at equilibrium geometries

and beyond. At short intermolecular distances, however, scaling using α = 3 corrects

the qualitatively incorrect SAPT2+3 potential curves. The choice α = 2 also prevents

the PEC from turning over at short distance, although the shape of the repulsive wall

is not correct, and with α = 1 the PEC still turns over at short distance. There is no

sound theoretical justification for any choice of α, but the fact that α > 1 is required

to obtained a qualitatively correct PEC indicates that exchange interactions beyond

the SEA are more important at third order than they are at first order, when the

intermolecular distance is small.
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int correction
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On the other hand, a SAPT2+3 calculation where ∆E
(3)
ind is replaced by δE

(2)
int is

in quantitative agreement with CCSD(T)/CBS results for R ≥ Req (see Fig. 3.5).

While this SAPT2+3 + δE
(2)
HF result is not quantitative for R < Req (which is to

be expected, owing to the spurious exchange contributions present in δE
(2)
int ), at the

very least this curve does not turn over at small R, and remains qualitatively correct

even at very short intermolecular separations. In the strongly repulsive region of the

PEC, the SAPT2+3 + δE
(2)
HF result is superior to the PEC obtained simply by scaling

E
(30)
exch-ind using α = 1 or α = 2.

These results serve to reinforce a previous recommendation130,131 to use the δE
(2)
int
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correction term when the monomers are polar. (For nonpolar monomers, the unphys-

ical artifacts inherent to this correction are more significant, relative to the very small

induction corrections, and better results are sometimes obtained without using this

correction.130) Even for polar monomers, however, one should note that the δE
(2)
int

correction does not improve the results in all cases. For example, adding δE
(2)
int to

SAPT0 for F−(H2O) does not improve the result, as shown in Fig. 3.6. The previous

recommendation130,131 was based on results for less strongly-bound systems such as

(H2O)2, and at geometries not much different from the equilibrium geometry.

3.4 Conclusions

We have found that the E
(30)
exch-ind term in SAPT, which at present can be computed

only within the single-exchange approximation, fails to quench E
(30)
ind at short inter-

molecular distances. This leads to the anomalous result that potential energy curves

for polar systems become attractive at sufficiently small intermolecular distances. For

the three anion–water complexes considered here, “sufficiently small” means about

0.5 Å shorter than the equilibrium monomer separation, while for (H2O)2 the turnover

occurs at R = 2.0 Å, as compared to Req = 2.9 Å. Scaling E
(30)
exch-ind based on the ra-

tio E
(10)
exch/E

(10)
exch(S2) approximates some higher-order exchange effects sufficiently well

to avoid catastrophic divergence of the potential energy curve, but for highly polar

systems this result serves mostly to identify the nature of the problem rather than to

correct it. Further amplification of this ratio, e.g., using [E
(10)
exch/E

(10)
exch(S2)]α for α ≈ 3,

is required in order to obtain potential energy curves that are qualitatively correct at
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short distances. Alternatively, calculation of the δE
(2)
int correction cannot be avoided,

even at third order.

Interestingly, even in cases where the third-order method fails catastrophically,

second-order SAPT potential curves remain qualitatively correct even at rather small

intermolecular distances. This suggests that the single-exchange approximation is

more severe in the case of E
(30)
exch-ind than it is for lower-order exchange interactions, at

least for highly polar monomers. This points to the importance of developing post-

SEA correction formulas at higher orders in SAPT. Furthermore, our results show

that it inadvisable to include E
(30)
ind and E

(30)
exch-ind when constructing analytic potential

energy surfaces based on SAPT.
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CHAPTER 4

Accurate description of intermolecular interactions

involving ions using symmetry-adapted

perturbation theory4.1

4.1 Introduction

Non-covalent interactions play an important role in a broad range of chemical sys-

tems, from the aggregation of rare gases to the formation of crystal structures.138–140

The coupled-cluster singles and doubles method with perturbative triples, CCSD(T),

evaluated in the complete-basis limit, is still considered to be the gold standard for

non-covalent interaction energies, as higher-order electron correlation effects typically

contribute ≪ 0.1 kcal/mol.33,141 However, the computational scaling of CCSD(T) is

O(N7) with respect to total system size, N , which renders this approach unfeasible

for large systems. Density functional theory (DFT), on the other hand, can routinely

be applied to systems with more than 1,000 basis functions on ordinary workstations,

but most conventional functionals fail to account the long-range part of the dispersion

interaction.

4.1This chapter appeared as a full article in the Journal of Chemical Theory and Computation, in
2015, volume 11, pages 2473–2486.
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There are several strategies to address this issue, including brute-force parameter-

ization (as in the Minnesota density functionals142) as well as the addition of explicit,

classical C6/R
6 atom–atom dispersion potentials, as in the “DFT-D” approach popu-

larized by Grimme and co-workers.143 Nonlocal correlation functionals have also been

developed to address this issue.144–148

Unlike these supermolecular methods, symmetry-adapted perturbation theory (SA-

PT) offers a way to compute intermolecular interactions in a physically-meaningful

way, as a sum of electrostatic, induction, and dispersion interactions along with

their exchange counterparts.114–117,149,150 Importantly, zeroth-order basis set super-

position error (BSSE) is absent in SAPT calculations. SAPT methods traditionally

use the Hartree-Fock (HF) determinants for the monomers as reference wave functions

(HF-SAPT) and a double perturbation expansion to account for both intermolecular

Coulomb interactions (between monomers) as well as intramolecular electron cor-

relation. The latter is treated as in Møller-Plesset perturbation theory114,151 or

coupled-cluster theory,152–156 and together this double-perturbation expansion consti-

tutes a successful approach to determining intermolecular interactions, with results

that compare favorably to complete-basis CCSD(T) calculations for dimers of neutral

molecules.114–117,149,150 The computational cost is high, though considerable progress

has been made recently reducing the computational cost,157–159 and systems as large

as a DNA intercalation complex have been treated in this way.160 Alternatively, SAPT

based on a DFT description of monomers has been used, in an approach known ei-

ther as DFT-SAPT or SAPT(DFT).137,150,161 In this case, asymptotic correction of
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the monomer exchange-correlation potentials is necessary in order to obtain accurate

energy components.162–164

High-order SAPT methods exhibit good quantitative accuracy for describing inter-

molecular interactions between neutral monomers,117 and while these methods have

sometimes been applied to ionic systems as well,50,165–173 these studies have mostly

focused on qualitative trends.166,167,169 Where ionic monomers are involved, the per-

turbation theory is typically slowly convergent and possibly even divergent,50 and

“chemical accuracy” (error . 1 kcal/mol) may not be realized in such cases.

There have been only a few attempts to benchmark SAPT for ionic systems. These

include a study by Matczak,170 who investigated 16 pairs of alkali halides (A+X−)

whose binding energies exceed 100 kcal/mol. That study concluded that the wave

function-based SAPT method is superior to CCSD(T) in the same basis set, which

in our opinion is probably a manifestation of the fact that SAPT calculations are

largely free of BSSE, since the CCSD(T) results were not extrapolated to the basis-

set limit. In any case, neither SAPT nor CCSD(T) achieves chemical accuracy, as

compared to experiment, for these alkali halides.170 On the other hand, Ansorg et

al.171 studied the cation-π interaction between NH+
4 and benzene using DFT-SAPT,

and demonstrated good agreement between CCSD(T) and DFT-SAPT with a triple-

ζ basis set. Two of us174,175 have recently examined HeCl−, NeNa+, and Li+F−,

with an eye toward understanding the role of the single-exchange approximation in

describing the repulsive wall, while Korona172 has performed DFT-SAPT calculations

on F−(HF), F−(H2O), and Na+(H2O), finding good agreement with SAPT(CCSD)
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energy components.

The aforementioned studies are insufficient to determine the complete-basis CCSD-

(T) result or to evaluate whether SAPT can describe intermolecular interactions in

ionic systems in a general way. The aim of this work is, firstly, to establish complete-

basis CCSD(T) benchmarks for a broad range of cationic, anionic, and ion-pair sys-

tems. Then, these benchmark values will be used to compare various level of wave

function-based SAPT, along with the recently-developed “attenuated” MP2 method

that has been suggested for non-covalent interactions.17,176–178 Finally, DFT-SAPT

and several supermolecular density functionals will be tested for the same data set,

including some relatively new functionals that have been suggested to be accurate for

non-covalent interactions. Lao and Herbert56,57 have recently shown that a number

of density functionals that had previously been recommended for non-covalent inter-

actions yield poor results for binding energies of halide anions in water clusters, and

the more extensive tests reported here confirm that binding energies in ionic systems

are challenging tests for DFT.

4.2 Methods

4.2.1 Symmetry-adapted perturbation theory

The SAPT interaction can be expressed as115

ESAPT
int =

∞∑

i=1

∞∑

j=0

(

E
(ij)
pol + E

(ij)
exch

)

(4.1)

where i indicates the order in perturbation theory with respect to the intermolecu-

lar potential, and j indicates the order with respect to the intramolecular electron

76



correlation (the “fluctuation potential”, in the language of Møller-Plesset perturba-

tion theory). The terms E
(ij)
pol originate from the so-called polarization expansion and

contain electrostatic, induction and dispersion interactions. Each term E
(ij)
pol has a

corresponding exchange term, E
(ij)
exch, that arises from antisymmetry requirements.

The simplest method SAPT method, often called SAPT0, neglects intramolecular

electron correlation and treats the intermolecular perturbation up to second order:

ESAPT0
int =

[

E
(10)
elst

]

elst
+
[

E
(10)
exch

]

exch

+
[

E
(20)
ind,resp + E

(20)
exch-ind,resp + δE

(2)
HF

]

ind
(4.2)

+
[

E
(20)
disp + E

(20)
exch-disp

]

disp
.

Following Ref. 173, the various terms in the SAPT0 energy expression are grouped,

using square brackets, into electrostatic, exchange, induction, and dispersion interac-

tions, according to the partitioning scheme used by Sherrill et al.117,173 The Hartree-

Fock correction term (δHF) up to second order, δE
(2)
HF, incorporates polarization effects

beyond second order and is defined as

δE
(2)
HF = EHF

int − E
(10)
elst − E

(10)
exch

− E
(20)
ind,resp − E

(20)
exch-ind,resp ,

(4.3)

where EHF
int is the counterpoise-corrected HF binding energy for the dimer. The “re-

sponse” (“resp”) subscripts indicate that the response correction for induction is

incorporated by solving coupled-perturbed HF equations.179,180

Traditionally, a closed-form analytic formula for the SAPT exchange energies has

been available only at first order (E
(10)
exch), whereas higher-order exchange terms have

been evaluated using the “single-exchange approximation” (SEA). Formulas obtained
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from the SEA involve the square of the orbital overlap matrix (S2), hence this is

also known as the “S2 approximation”.114 Schäffer and Jansen174,175 have recently

extended the complete derivation to second order, i.e., they have derived E
(20)
exch without

invoking the SEA, and results using exact second-order exchange will be examined

here.

Lao and Herbert50 have previously shown that use of the SEA in third-order

exchange-induction, E
(30)
exch-ind, breaks down severely for ionic systems at short inter-

molecular distances. Following Refs. 181 and 129, we introduced an ad hoc scaling

factor

pex(α) =

(

E
(10)
exch

E
(10)
exch(S2)

)α

(4.4)

that is then used to scale E
(20)
exch−ind,resp and E

(30)
exch−ind,resp for correcting the deficiency

of SEA. In Eq. (4.4), the numerator represents the exact first-order exchange en-

ergy while the denominator is evaluated within the SEA. The idea is to use the

difference between exact and S2 first-order exchange energies as a means to estimate

the error in the SEA used in the second-order exchange-induction energies although

Schäffer and Jansen have suggested the difference is smaller at first order than at

second order.174,175 In a recent study of F−(H2O),50 we used the exponent α = 2 for

E
(20)
exch-ind,resp and α = 3 for E

(30)
exch-ind,resp, the latter value having been recommended

for strongly hydrogen-bonded systems where the intermolecular distances are small

and thus the exchange energies are large.173 The value value α = 1 has been used in

other studies,129,173 and some results with α = 1 are presented here as well.
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In previous work, Lao and Herbert50 demonstrated that the δE
(2)
HF correction im-

proves the SAPT results for F−(H2O) at short intermolecular distances, consistent

with previous recommendations that the δE
(2)
HF correction is important for dimers

composed of polar monomers.130,131 The δE
(2)
HF term cancels the pex(α) scaling cor-

rection for E
(20)
exch-ind,resp, and the errors in E

(20)
exch-ind,resp arising from the SEA can thus

be avoided. Based on the pex(α) scaling factor, Parker et al.173 proposed a “scaled”

SAPT0 method, sSAPT0:

EsSAPT0
int =

[

E
(10)
elst

]

elst
+
[

E
(10)
exch

]

exch
(4.5)

+
[

E
(20)
ind,resp + pex(3.0)E

(20)
exch-ind,resp + δE

(2)
HF

]

ind

+
[

E
(20)
disp + pex(3.0)E

(20)
exch-disp

]

disp
.

Here, the value of δE
(2)
HF computed with pex(α = 1) is left unchanged, and the pex(α)

scaling factor is also applied to E
(20)
exch-disp. Parker et al.173 have called sSAPT0/jaDZ

the “bronze standard” of SAPT,173 where the jun-cc-pVDZ (jaDZ) basis set182 is also

been recommended for use with SAPT0.160

Schäffer and Jansen175 have shown that E
(10)
exch and E

(20)
exch-ind,resp are underestimated

by the SEA, while E
(20)
exch-disp is generally overestimated. Thus, the pex(α) scaling factor

based on first-order exchange is suitable for use with E
(20)
exch-ind,resp but not E

(20)
exch-disp.

As such, the fact that good results are obtained using sSAPT0, despite the fact that

E
(20)
exch-disp is scaled up, suggests that the success of this “bronze standard” rests on

error cancellation. In this study, we will compare the effects of the SEA on the E
(10)
exch,
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E
(20)
exch-ind,resp, and E

(20)
exch-disp terms for ionic systems, and explore what is the best α

value to use in scaling E
(20)
exch-ind,resp.

The SAPT2 method extends SAPT0 by including intramolecular electron correla-

tion up to second order for electrostatic, exchange, and induction interactions (only).

It is therefore only suitable for systems whose binding is dominated by electrostatics.

The performance of SAPT2 is similar to MP2 and its energy expression is

ESAPT2
int = ESAPT0

int +
[

E
(12)
elst,resp

]

elst
+
[

E
(11)
exch + E

(12)
exch

]

exch

+
[
tE

(22)
ind + tE

(22)
exch-ind

]

ind
. (4.6)

The E
(11)
exch and E

(12)
exch terms are still based on the SEA. The superscripts “t” in tE

(22)
ind

indicates that this is the “true” correlation part of E
(22)
ind not included in E

(20)
ind,resp. The

corresponding “true” correlation part of E
(22)
exch-ind is estimated as

tE
(22)
exch-ind = tE

(22)
ind

(

E
(20)
exch-ind,resp

E
(20)
ind,resp

)

, (4.7)

where E
(20)
exch-ind,resp is based on the SEA, therefore the tE

(22)
exch-ind is also based on the

SEA. Although the δMP2 term (as shown below) often cancels the SEA employed

in tE
(22)
exch-ind, we will discuss the influence of the SEA for tE

(22)
exch-ind in normal SAPT

calculations that do not employ the δMP2 correction term. Furthermore, the addition

of the δMP2 term offers a means to correct the SEA in E
(20)
exch-disp, as shown below.

Three higher-level SAPT methods will also be studied: SAPT2+, SAPT2+(3),

and SAPT2+3. These approaches include intramolecular electron correlation for

dispersion up to second order; this is equivalent to MP4-level dispersion and scales
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as O(N7). The corresponding energy expressions are117

ESAPT2+
int = ESAPT2

int +
[

E
(21)
disp + E

(22)
disp

]

disp
, (4.8)

E
SAPT2+(3)
int = ESAPT2+

int +
[

E
(13)
elst,resp

]

elst
+
[

E
(30)
disp

]

disp
, (4.9)

and

ESAPT2+3
int = E

SAPT2+(3)
int

+
[

E
(30)
ind,resp + E

(30)
exch-ind,resp

]

ind
(4.10)

+
[

E
(30)
exch-disp + E

(30)
ind-disp + E

(30)
exch-ind-disp

]

disp
.

The SAPT2+3 method includes the coupling between induction and dispersion. The

second-order correction δE
(2)
HF is replaced by the third-order δE

(3)
HF correction in SAPT2+3,

δE
(3)
HF = EHF

int −
(
E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

+ E
(30)
ind,resp + E

(30)
exch-ind,resp

)
. (4.11)

The E
(30)
exch-ind,resp, E

(30)
exch-disp, and E

(30)
exch-ind-disp terms are still based on the SEA, which

is probably acceptable since E
(30)
exch-disp is much smaller than E

(20)
exch-disp and E

(30)
exch-ind-disp

is mostly cancelled out by the corresponding E
(30)
ind-disp term. Furthermore, the δE

(3)
HF

terms often cancel the SEA used in E
(30)
exch-ind,resp. Parker et al.173 have called SAPT2+/

aug-cc-pVDZ the “silver standard” in SAPT.

The “δMP2” correction that was mentioned above is intended to account for

missing terms such as high-order coupling between induction and dispersion.173 This

correction as defined as

δEMP2 = EMP2
int − ESAPT2

int , (4.12)
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where EMP2
int is the CP-corrected MP2 binding energy for the dimer, and ESAPT2

int

contains the δHF correction, according to Eqs. (4.2) and (4.6). (Somewhat arbitrarily,

the δMP2 is grouped with the induction terms in the energy decomposition proposed

in Ref. 173.) The δMP2 term can be incorporated into SAPT2+, SAPT2+(3), or

SAPT2+3, affording methods that we will call SAPT2+δMP2, SAPT2+(3)-δMP2,

and SAPT2+3-δMP2. This is equivalent to replacing ESAPT2
int in Eqs. (4.8)–(4.10)

with EMP2
int . In other words, the three methods mentioned above, with the addition of

δEMP2, are effectively supermolecular MP2 plus a few additional SAPT terms. Parker

et al.173 have called SAPT2+(3)-δMP2/aug-cc-pVTZ the “gold standard” in SAPT.

One can also compute dispersion with doubles amplitudes from a coupled-cluster

doubles (CCD) calculation,183,184 and for the three higher-order wave function-based

SAPT methods this addendum leads to methods called SAPT2+(CCD), SAPT2+(3)

(CCD), and SAPT2+3(CCD).

Finally, we will consider DFT-SAPT calculations in which the interaction energy

is

EDFT-SAPT
int =

[

E
(1)
elst

]

elst
+
[

E
(1)
exch

]

exch

+
[

E
(2)
ind + E

(2)
exch-ind + δE

(2)
HF

]

ind

+
[

E
(2)
disp + E

(2)
exch-disp

]

disp
.

(4.13)

Here, the single superscript index indicates that intramolecular electron correlation is

not included perturbatively, but rather via DFT. Induction and dispersion energies in

DFT-SAPT are determined at the coupled-perturbed static and frequency-dependent

Kohn-Sham levels, respectively.
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4.2.2 Data sets and benchmarks

We first computed binding energies for the pre-existing “IHB15” data set of 15 ionic

hydrogen-bonded dimers,39 in which the ion is either acetate, guanidinium, methyl

ammonium, or imidazolium. These calculations were performed at the SAPT2+(3)/

aug-cc-pVTZ level to establish benchmarks for the individual energy components,

as in previous benchmark studies.37,51,56 The “gold standard” of SAPT methods,173

namely, SAPT2+(3)-δMP2, was also used to establish the accuracy of these bench-

marks. CCSD(T) energies extrapolated to the complete basis-set (CBS) limit are

also available for the IHB15 data set.39 The binding energies in this data set average

−17.42 kcal/mol for the three anionic systems and −20.06 kcal/mol for the twelve

cationic systems, computed at the CCSD(T)/CBS level. The mean absolute error

(MAE) for SAPT2+(3)/aug-cc-pVTZ, relative to these CCSD(T)/CBS benchmarks,

is 0.71 kcal/mol for the anions, 0.18 kcal/mol for the cations, and 0.28 kcal/mol

overall.

Adding the δMP2 correction to SAPT2+(3)/aug-cc-pVTZ [to obtain the method

that we call SAPT2+(3)-δMP2] reduces the MAE of the IHB15 data set to 0.16

kcal/mol (0.19 kcal/mol for the anions and 0.15 kcal/mol for the cations). The mean

absolute contribution of the δMP2 correction is 0.90 kcal/mol for the anions and

0.20 kcal/mol for the cations. Notably, this correction is more significant for the

anions and suggests that it would be useful to possess a data set with more than

three different anions. For this reason, we have assembled a new database “AHB21” of

CCSD(T)/CBS benchmark for 21 hydrogen-bonded dimers consisting of an anion and
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Table 4.1: CCSD(T)/CBS binding energy benchmarks for the AHB21 and CHB6
ion–neutral data sets.

No. System Binding Energy/
kcal mol−1

——AHB21——
1 F−(NH3) −17.79
2 F−(H2O) −32.50
3 F−(HF) −65.68
4 Cl−(NH3) −8.98
5 Cl−(H2O) −15.61
6 Cl−(HF) −25.52
7 Cl−(H2S) −14.35
8 Cl−(HCl) −41.79
9 OH−(NH3) −17.03
10 OH−(H2O) −37.31
11 N−

3 (NH3) −7.97
12 N−

3 (H2O) −14.13
13 N−

3 (HF) −26.01
14 N−

3 (H2S) −11.07
15 SH−(NH3) −8.62
16 SH−(H2O) −15.73
17 SH−(HF) −26.24
18 HCO−

2 (CH3NH2) −12.80
19 HCO−

2 (CH3OH) −20.65
20 HCO−

2 (H2O) −21.03
21 HCO−

2 (HF) −31.40
——CHB6——

22 Li+(H2O) −34.43
23 Na+(H2O) −23.83
24 K+(H2O) −17.83
25 Li+(C6H6) −39.09
26 Na+(C6H6) −25.63
27 K+(C6H6) −19.90
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a neutral molecule. The anions in AHB21 are F−, Cl−, N−
3 , SH−, and HCOO−, and

the dimers assembled from these anions are shown in Table 4.1 along with benchmark

CCSD(T)/CBS binding energies, which range from −65.68 kcal/mol for F−(HF) to

−7.97 kcal/mol for N−
3 (NH3). (Coordinates for all three of the data sets introduced

here can be found in the Supporting Information, SI.)

The three most strongly-bound complexes in the AHB21 set are F−(HF), Cl−(HCl),

and OH−(H2O), with binding energies of −65.68, −41.79, and −37.31 kcal/mol, re-

spectively. Consistent with solution-phase experiments for (FHF)−,185 each of these

species is characterized by a proton that is shared equally between two heavy atoms

(single minimum on the potential surface for proton transfer between the two X−

moities). The strength of the X− · · ·H+ interaction and the symmetry of the complex

drives the the non-covalent interaction closer to a covalent interaction, resulting in

a much larger binding energy as compared to the rest of the AHB21 data set. This

characteristic also makes the definition of fragments ambiguous in these three sys-

tems, which may therefore be difficult test cases for SAPT and other fragment-based

methods.

To complement the AHB21 set of anions, we have also assembled a cation-binding

data set that we designate as “CHB6”, which includes three alkali–water and three

alkali–benzene complexes (see Table 4.1). Binding energies for CHB6 range from

−39.09 kcal/mol for Li+(C6H6) to −17.83 kcal/mol for K+(H2O).

Finally, we wish to consider cation/anion pairs. Zahn et al.4 recently reported

CCSD(T)/CBS binding energies for an “IL-2013” database consisting of 236 different
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008 144 147

148 150 152

187 202 212 213

214 227 228

229 230 231

Figure 4.1: Structures of the cation/anion complexes in the IL16 data set, which were
taken (along with the numbering scheme) from Ref. 4. The coloring system is as
follows: white spheres (hydrogen), gray (carbon), dark blue (nitrogen), red (oxygen),
pale blue (fluorine), green (chlorine), yellow (sulfur).
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Table 4.2: CCSD(T)/CBS binding energy benchmarks for the IL16 data set.

Systema Binding Energy/
kcal mol−1

IL-008 −100.41
IL-144 −120.80
IL-147 −116.91
IL-148 −105.01
IL-150 −104.44
IL-152 −87.42
IL-187 −114.00
IL-202 −113.51
IL-212 −114.91
IL-213 −112.75
IL-214 −104.47
IL-227 −118.19
IL-228 −112.02
IL-229 −106.53
IL-230 −110.98
IL-231 −102.37
aNomenclature is taken from

Ref. 4 and structures are

shown in Fig. 4.1.
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pairs of cations and anions commonly encountered in ionic liquids (IL). The smallest

16 of these ion-pair structures are shown in Fig. 4.1 and constitute what we will call

the “IL16” data set. CCSD(T)/CBS binding energies for IL16 are listed in Table 4.2

and range from −87.42 to −120.80 kcal/mol. Note that the binding energies in

AHB21, CHB6, and IL16 data sets are considerably larger, on average, as compared

to more established databases of neutral dimers, such as S22 or S66.10,186

4.2.3 Computational methods

All geometries in the AHB21 and CHB6 data sets were optimized with the resolution-

of-identity MP2 method using the aug-cc-pVTZ (aTZ) basis set, except that the

def2-TZVPP basis set was used for the alkali atoms. [Similarly, in what follows def2-

QZVPP is used for the alkali atoms in cases where aug-cc-pVQZ (aQZ) is used for

the remaining atoms.] These geometry optimizations employed Q-Chem v. 4.2.97

The geometries of the IL16 data set were taken from Ref. 4. Subsequent single-point

MP2 and CCSD(T) calculations were carried out using the beta5 version of the Psi4

program,187 and CCSD(T)-F12 calculations for HCOO− complexes were performed

using the Orca 3.0.2 program.188 The CCSD(T)-F12 and MP2-F12 calculations for

complexes in IL16 were computed using the Molpro 2012.1 program.189

Regarding the accuracy of CCSD(T)/CBS benchmarks in general for non-covalent

interactions, note two recent studies by Hobza and co-workers that have gone beyond

this level for small dimers.33,141 In one of these studies, CCSD(T) binding energies

were found to differ by no more than 0.1 kcal/mol (and typically much less) from

coupled-cluster results containing connected pentuple excitations (CCSDTQP).141
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Another study considered contributions arising from core correlation, relativistic ef-

fects, and higher-order excitations at the level of CCSDT(Q), yet the sum total of

these effects altered CCSD(T)/CBS binding energies by no more than 0.04 kcal/mol.33

For dimers in the AHB21 data sets that involve F−, Cl−, OH−, N−
3 , and SH−, as

well as for the alkali–water complexes in CHB6, the CCSD(T) correlation energy in

the CBS limit was estimated using a two-point (aTZ/aQZ) extrapolation scheme.190

This correlation energy was then added to the Hartree-Fock/aQZ energy to obtain

the CCSD(T)/CBS energy.

For the HCOO− complexes in AHB21 data set, CCSD(T)-F12 correlation energies

in the CBS limit were estimated using a two-point extrapolation (cc-pVDZ-F12/cc-

pVTZ-F12 with the corresponding near-complete auxiliary basis sets cc-pVDZ-F12-

CABS and cc-pVTZ-F12-CABS).191,192 This correlation energy was added to the

Hartree-Fock/cc-pVTZ-F12 energy including the HF-F12 basis set correction193,194

to estimate the CCSD(T)/CBS energy.

For the three alkali–benzene complexes, the MP2 correlation energies in the CBS

limit were estimated using a two-point (aTZ/aQZ) extrapolation, and this correlation

energy was added to the Hartree-Fock/aQZ energy to estimate the MP2/CBS energy.

In this case, we then add a triples correction

δ
CCSD(T)
MP2 = ECCSD(T) − EMP2 . (4.14)

The basis set used to evaluate this correction consists of def2-TZVPP for the alkali

atoms and the “heavy augmented” (haTZ) basis set for the remaining atoms, in which

the diffuse functions on hydrogen in aTZ are removed.
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For the 16 complexes in IL16 data set, the same MP2 extrapolation scheme as

described above has been used to calculate the MP2/CBS energy. A triples correction,

δ
CCSD(T)-F12
MP2−F12 , was estimated as energy difference between CCSD(T)-F12 and MP2-F12

methods using the aDZ basis set. We expect that the quality of these CCSD(T)/CBS

benchmarks is better than that of the original IL-2013 benchmarks,4 in which the MP2

energy was extrapolated to CBS limit using basis sets lacking in diffuse functions (cc-

pVTZ/cc-pVQZ), and moreover the δ
CCSD(T)
MP2 correction was estimated using a double-

ζ basis set with no diffuse functions. The MAE between our new CCSD(T)/CBS

benchmarks (Table 4.2) and the old ones (Ref. 4) is 0.19 kcal/mol, with a maximum

deviation of 0.41 kcal/mol.

To determine the usefulness of wave function-based SAPT for ionic systems, we

will compare the benchmark CCSD(T)/CBS binding energies to SAPT2+, SAPT2+(3),

and SAPT2+3 results, both with and without CCD amplitudes for dispersion. These

SAPT calculations were performed using Dunning’s aug-cc-pVXZ basis sets.195,196

(As mentioned above, Ahlrichs’ def2-SVP, def2-TZVPP, and def2-QZVPP basis sets

are used for the alkali atoms,197 but we will continue to abbreviate these basis sets

as aDZ, aTZ, and aQZ.) For alkali–benzene dimers, the aQZ calculations strain our

computational resources, so in these cases the heavy-aug-cc-pVQZ (haQZ) basis set is

used in place of the full aQZ basis, where diffuse functions on hydrogen are omitted.

Note that the significantly diminished BSSE in SAPT calculations makes extrapo-

lation to the CBS limit less important than it is for supersystem methods, and in

fact previous work has suggested that DFT-SAPT/aQZ calculations are essentially
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converged to the basis set limit.42 Results presented here for the AHB21 data sets

show only minor differences between SAPT/aTZ and SAPT/aQZ results, although

the SAPT/aTZ outliers are slightly larger for the CHB6 data set. In any case, be-

cause the IL16 dimers are somewhat larger than those in the AHB21 and CHB6 data

sets, we omit the high-level SAPT/aQZ calculations for this particular data set.

The SAPT0/jaDZ and sSAPT0/jaDZ methods will also be evaluated for our three

data sets. (The jaDZ basis set was recommended for SAPT0 calculations by Sherrill

and co-workers.160,173 The same basis has also been called aug-cc-pVDZ′ and removes

a subset of the diffuse functions from aDZ.) Truncations of the virtual space based

on MP2 natural orbitals were used to reduce the cost of the SAPT2+, SAPT2+(3),

and SAPT2+3, as described in Refs. 159 and 184. Density fitting, as implemented

in Psi4, was used in all SAPT calculations. The SAPT2 and CP-corrected MP2

binding energies required for the δMP2 correction were also performed with the Psi4

program.187 The exact second-order (non-SEA) terms E
(20)
exch-ind,resp and E

(20)
exch-disp were

evaluated using a locally-modified version of the Molpro 2012.1 program.189

DFT-SAPT calculations employ Kohn-Sham (KS) orbitals determined using the

PBE0AC exchange-correlation (XC) potential.163 A hybrid XC kernel consisting of

25% exact exchange and 75% of the adiabatic local density approximation198 was

used to solve coupled-perturbed static and frequency-dependent KS equations for the

second-order contributions. The shift parameter in the asymptotic correction199 was

computed in each case using PBE0/aQZ calculations for the neutral molecules and

PBE0/def2-QZVPP for the cations. The anionic systems were left without asymptotic
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correction, since the XC potentials in these cases are short-ranged and do not decay

as 1/r.200 The δE
(2)
HF is included in DFT-SAPT to estimate polarization effects beyond

second order. All DFT-SAPT calculations were performed using a locally-modified

version of the Molpro 2012.1 program.189 Again due to the larger size of the IL16

dimers, the HF-SAPT and DFT-SAPT calculations with exact second-order exchange

were limited to the aTZ basis set in these cases.

We will also take the opportunity to test some density-functional methods for

AHB21, CHB6, and IL16. Amongst density functionals, M06-2X,142 ωB97X-D,201

ωB97X-D3,13 LC-VV10,147 ωB97X-V,105 and B97M-V202 will be tested, because they

have shown good performance for non-covalent interactions in neutral systems.13,57,105,202

Their performance for ionic systems is suspect, however, in view of previous calcu-

lations on SO2−
4 (H2O)n, F−(H2O)n, and Cl−(H2O)n clusters,56,105,203 where the root

mean square deviations for binding energies were in some cases as large as 4.8 kcal/mol

(M06-2X), 1.3 kcal/mol (ωB97X-D), and 2.7 kcal/mol (LC-VV10), although both

ωB97X-V and B97M-V exhibit errors no larger than 0.5 kcal/mol.202 To the best of

our knowledge, the ωB97X-D3 method has not been used to calculate the binding

energies in ionic systems, but will be tested here. The aTZ basis set (with def2-

QZVPP for alkali atoms, as usual) was used in all DFT calculations, along with

a (Nr = 99,NΩ = 590) Euler-Maclaurin-Lebedev quadrature grid for the semi-local

functionals and a (75,302) grid for the non-local contributions to LC-VV10, ωB97X-V,

and B97M-V.
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Finally, we test a Coulomb-attenuated MP2 method (att-MP2).17,176–178 This ap-

proach splits the two-electron Coulomb operator into short- and long-range compo-

nents,204 then neglects the long-range part in an effort to eliminate BSSE. We use

the aTZ basis set for all att-MP2 calculations (def2-TZVPP for the alkali atoms),

since the attenuation parameter was fitted using aTZ and since att-MP2/aTZ cal-

culations yield accurate intermolecular interaction energies in neutral dimers, and

att-MP2/aQZ results offer only a very tiny improvement that does not justify the

increased cost.17

MP2/aTZ, MP2/aQZ, and MP2/CBS binding energies are also reported, using a

two-point extrapolation scheme. All supersystem calculations are counterpoise cor-

rected except for the DFT and att-MP2 calculations. (DFT/aTZ results are likely

close to the basis-set limit already, and att-MP2 is designed to eliminate BSSE so it

does not make sense to apply a counterpoise correction in this case.)

4.3 Results and discussion

4.3.1 Accuracy of the S2 approximation

Given the importance of exchange effects beyond the SEA for anions,50 we first ex-

amine the accuracy of the exchange, exchange-induction, and exchange-dispersion

interactions within the S2 approximation. Table 4.3 presents the errors in these en-

ergy components for our three data sets, where “error” is defined with respect to

the corresponding exact (non-SEA) energy components. (These results are obtained

using the aTZ basis, but similar behavior is observed using aDZ and aQZ, and these
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data can be found in the SI.) In keeping with the observations of Schäffer and Jansen

for neutral systems and a few ions,174,175 we find that the SEA underestimates the

first-order exchange energy and the second-order exchange-induction energy, whereas

E
(20)
exch-disp(S2) is too large.

For the cationic dimers, the S2 approximation engenders very little error in either

E
(1)
exch(S2), E

(2)
exch-ind(S2), or E

(2)
exch-disp(S2). For the anions, however, the E

(10)
exch(S2) and

E
(20)
exch-ind(S2) terms exhibit large errors, with MAEs of 1 kcal/mol and maximum errors

as large as 6–9 kcal/mol in the case of Cl−(HCl). On the other hand, E
(20)
exch-disp(S2)

is quite accurate for anions, with maximum errors . 0.5 kcal/mol. For the ion pairs,

the MAE for the E
(10)
exch(S2) term is similar to that obtained for the AHB21 data set.

On the other hand, the MAE for E
(20)
exch-ind(S2) in IL16 is is about 0.4 kcal/mol larger

than in AHB21. Maximum errors in E
(10)
exch(S2) and E

(20)
exch-ind(S2) are generally smaller

for IL16 as compared to AHB21, as the ion-pair data set does not contain any of the

symmetric shared-proton complexes, X− · · ·H+ · · ·X−, that are so difficult for SAPT-

based methods. The E
(20)
exch-disp(S2) term is very accurate for IL16, with maximum

error of only 0.11 kcal/mol.

For the wave function-based HF-SAPT method, we will scale E
(20)
exch-ind,resp(S2) by

pex(α), where an optimal value α = 2.04 was determined by minimizing the MAE

(with respect to exact values of E
(20)
exch-ind,resp) for the AHB21 data set. This optimal

value is consistent with the value α = 2 that we used for F−(H2O) in a previous

study,50 and for the full AHB21 data set, scaling with α = 2.04 affords a MAE of only

0.07 kcal/mol for the E
(20)
exch-ind,resp(S2) term, with a maximum error of 0.3 kcal/mol for
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Table 4.3: Mean absolute errorsa (MAEs) and maximum errors in the single-exchange (S2) approximation.b

Exchange Term

error / kcal mol−1

AHB21 CHB6 IL16
MAE maximum MAE maximum MAE maximum

value system value system value system
——HF-SAPT——

E
(10)
exch(S2) 1.05 6.35 Cl−(HCl) 0.03 0.05 Li+(H2O) 0.98 1.71 IL-202

E
(20)
exch-ind,resp(S2) 1.05 8.44 Cl−(HCl) 0.06 0.10 Li+(C6H6) 1.28 2.59 IL-008

pex(α = 2.04)E
(20)
exch-ind,resp(S2) 0.07 0.31 F−(HF) 0.00 0.01 K+(C6H6) 0.08 0.15 IL-213

E
(20)
exch-disp(S2) 0.07 0.35 F−(HF) 0.00 0.01 K+(C6H6) 0.03 0.06 IL-202

tE
(22)
exch-ind(S2) 0.11 0.49 F−(HF) 0.00 0.01 K+(H2O) 0.15 0.25 IL-202

pex(α = 2)tE
(22)
exch-ind(S2) 0.01 0.07 F−(HF) 0.00 0.00 Li+(H2O) 0.02 0.04 IL-213

——DFT-SAPT——

E
(1)
exch(S2) 1.15 6.31 Cl−(HCl) 0.03 0.06 Li+(H2O) 1.11 1.77 IL-202

E
(2)
exch-ind(S2) 1.33 9.28 Cl−(HCl) 0.07 0.10 Li+(H2O) 1.69 3.36 IL-008

pex(α = 2.07)E
(2)
exch-ind(S2) 0.09 0.83 Cl−(HCl) 0.00 0.01 K+(C6H6) 0.10 0.16 IL-202

E
(2)
exch-disp(S2) 0.11 0.52 F−(HF) 0.00 0.01 K+(C6H6) 0.07 0.11 IL-202

aError is defined with respect to the exact first- or second-order exchange energy. baTZ basis set is used

here but aDZ and aQZ results can be found in the SI.
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F−(HF). The optimal scaling value for DFT-SAPT calculations is similar (α = 2.07),

and errors in the scaled DFT-SAPT value of E
(2)
exch-ind(S2) are also small. For the IL16

data set, an optimal value α = 2.20 was obtained for both HF-SAPT and DFT-SAPT

calculations; the MAE for the scaled value of E
(20)
exch-ind,resp(S2) with α = 2.20 is only

0.1 kcal/mol.

Typically, the tE
(22)
exch-ind term in Eq. (4.7) employs the SEA, since E

(20)
exch-ind,resp in

Eq. (4.7) is based on the SEA as well. For the AHB21 and IL16 data sets, the

MAEs in tE
(22)
exch-ind(S2) based on the SEA are 0.11 and 0.15 kcal/mol, respectively, as

compared to exact results. Scaling with α = 2 reduces both the mean and maximum

errors nearly to zero; see Tables 4.3. Errors for the cation data set are even smaller.

To summarize, the S2 approximation appears to be suitable for use in cation–

neutral systems, and also for the E
(20)
exch-disp term in anion–neutral and ion-pair sys-

tems, but not for E
(10)
exch or E

(20)
exch-ind,resp in anion–neutral and ion pair binding. Since

exact second-order exchange formulas174,175 have not yet been widely implemented

in quantum chemistry codes, we recommend scaling the SEA versions of these terms

by pex(α) in Eq. (4.4), with α = 2. This approach will be taken in the subsequent

SEA-based SAPT calculations in this work.

For calculations based on HF-SAPT, we also use a scaling factor of pex(α = 2) for

E
(20)
exch-ind,resp(S2), and then this scaled value is used to obtain tE

(22)
exch-ind according to

Eq. (4.7). For the DFT-SAPT methods, the closed-form analytic formula is used for

E
(2)
exch-disp and E

(2)
exch-ind, since the SEA and scaled SEA values exhibit somewhat larger

maximum errors. Furthermore, the exact (non-SEA) δE
(2)
HF correction will be used to
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obtain total binding energies with DFT-SAPT. For the sSAPT0 method, pex(3.0) is

used for both E
(20)
exch-ind,resp and E

(20)
exch-disp in Eq. (4.5), as proposed in Ref. 173. The

δHF term can correct the SEA used in exchange-induction, and the δMP2 term can

further correct the SEA used in E
(20)
exch-disp(S2) and tE

(22)
exch-ind(S2).

4.3.2 AHB21 anion–neutral data set

Existing benchmarks for neutral systems suggest that SAPT0, the simplest SAPT

method, performs well in conjunction with the jaDZ basis set in non-hydrogen-bonded

systems, owing to favorable error cancellation.160,173 For hydrogen-bonded systems,

SAPT0/jaDZ exhibits a MAE of 1.26 kcal/mol and a maximum error of 6.68 kcal/mol,

across four different data sets examined by Parker et al.173 Almost all of these systems

are overbound at the SAPT0/jaDZ level, hence the errors are reduced by empirical

scaling, i.e., the sSAPT0/jaDZ method of Eq. (4.5). This is the “bronze standard” of

SAPT, and it affords a MAE of 0.71 kcal/mol and a maximum error of 1.55 kcal/mol

for the same, neutral data set.173

The AHB21 systems exhibit even stronger hydrogen bonds, and for this data set

the MAE for SAPT0/jaDZ is 2.01 kcal/mol and the maximum error is 9.54 kcal/mol.

The most difficult systems are F−(HF), Cl−(HCl), and OH−(H2O), for which the

binding energies are overestimated by 9.54, 6.24, and 6.51 kcal/mol, respectively.

Scaling of the exchange interactions only helps a little: the sSAPT0/jaDZ method

affords a MAE of 1.58 kcal/mol and a maximum error of 7.58 kcal/mol for AHB21.

These results suggest that low-order SAPT methods are not suitable for use in anionic

systems with large binding energies.
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(a) AHB21 (b) AHB21

(c) CHB6 (d) CHB6

without δMP2 with δMP2

(e) IL16 (f) IL16

Figure 4.2: Mean absolute errors (MAEs, in red, blue, and orange) and maximum
errors (in black) for different levels of SAPT as applied to the AHB21 and CHB6
databases of hydrogen-bonded ion–neutral dimers. For all terms based on the SEA,
tE

(22)
exch-ind is scaled by pex(α = 2), E

(20)
exch-ind is corrected by δHF, and E

(20)
exch-disp is still

based on the SEA. Panels on the right show the results when the δMP2 correction
[Eq. (4.12)] is included, whereas this correction is omitted in the panels on the left.
Note that different panels use different vertical scales.
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Figure 4.2(a) shows AHB21 error statistics for six high-level SAPT methods:

SAPT2+, SAPT2+(3) and SAPT2+3, each with and without CCD amplitudes for

dispersion. (Binding energies for each individual system at each level of theory are

available in the SI.) Consistent with the trends observed by Parker et al.173 for

neutral hydrogen-bonded systems, we find that both the mean and maximum er-

rors increase as the basis set is enlarged. [The only exception to this trend is a

very slight decrease in the MAE going from aDZ to aTZ at the SAPT2+(3)(CCD)

level.] The best-performing methods are SAPT2+/aDZ (MAE = 0.77 kcal/mol) and

SAPT2+(CCD)/aDZ (MAE = 0.74 kcal/mol), and the maximum error for these two

methods is 2.8 kcal/mol, for the Cl−(HCl) system. If the aTZ or aQZ basis set is

employed, then SAPT2+(3)(CCD) affords the best performance. Use of CCD dis-

persion reduces the MAE when the aTZ or aQZ basis is used, although it actually

causes a slight increase in the MAE when the basis set is aDZ. In the AHB21 data set,

the silver standard SAPT method, SAPT2+/aDZ, performs better than the bronze

standard, sSAPT0/jaDZ.

Replacing E
(20)
exch-ind,resp with a scaled version thereof amounts to adding a term

[pex(α)− 1]E
(20)
exch-ind,resp to SAPT. The value of this scaled-exchange correction, along

with that of [pex(α) − 1]tE
(22)
exch-ind, is plotted in Fig. 4.3(a) for each dimer in AHB21

and for α = 2. These corrections are all similar in the aDZ, aTZ, and aQZ basis sets,

so only aTZ results are shown in Fig. 4.3. (The analogous plots for the aDZ and aQ

basis sets can be found in the SI. The values α = 1 and α = 3 also afford similar

results, although the best-performing value of α is somewhat sensitive to the choice
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Figure 4.3: Magnitude of the δMP2 correction [Eq. (4.12)], as well as the two second-
order scaled-exchange corrections, using the aTZ data set. (Note that the various
panels use different vertical scales.) The quantity pex(α) is the scaling factor defined
in Eq. (4.4). The numbering system for the various dimers corresponds to that given
in Table 4.1 (for AHB21 and CHB6) and Fig. 4.1 (for IL16).

100



of α. MAEs for AHB21 computed at the SAPT2+3-δMP2 in various basis sets using

either α = 1 or α = 3 can be found in the SI.

The exchange correction for E
(20)
exch-ind,resp is significant especially for F−(HF), Cl−

(HCl), and OH−(H2O), where it contributes 2.3, 8.5, and 2.3 kcal/mol, respectively.

These three systems are better described as X− · · ·H+ · · ·X−, in which a proton is

shared equally between two anions, leading to H+ · · ·X− distances that are in the

range of typical covalent bond lengths: 1.144 Å for X = F, 1.558 Å for X = Cl, and

1.359 Å for X = OH. The SAPT formalism, however, requires us to describe the

system as X− · · ·HX, and the short inter-monomer distance leads to a severe break-

down of the SEA (see Table 4.3). As such, E
(10)
exch is very different from E

(10)
exch(S2) for

these three systems, and the scaled-exchange correction is large. However, the break-

down of the S2 approximation or the large exchange correction for E
(20)
exch-ind,resp can be

mitigated by incorporating δE
(2)
HF, as has been pointed out before.50 The exchange cor-

rection for tE
(22)
exch-ind is not large, with a maximum value amongst the AHB21 dimers

of only 0.41 kcal/mol, for Cl−(HCl).

The large errors documented for AHB21 in Fig. 4.2(a) can be remedied by adding

the δMP2 correction [Eq. (4.12)]. The magnitude of this correction for each AHB21

dimer is shown in Fig. 4.3(a), from which we see that the δMP2 correction is also

largest for the three X− · · ·H+ · · ·X− systems, namely, 3.27, 5.79, and 3.43 kcal/mol

for X = F, Cl, and OH, respectively. The large magnitude of this correction is

another indication of breakdown of the perturbation series such that SAPT may

not yield accurate energy components in such cases, as discussed also by Parker et
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al.173 Total binding energies can still be reproduced accurately if the δMP2 correction

is included, as shown in Fig. 4.2(b) and discussed below. Note that SAPT with the

δMP2 correction is really just supermolecular MP2 with a few additional SAPT terms,

and this correction can cancel out the SEA used in E
(20)
exch-disp and tE

(22)
exch-ind.

Comparing Fig. 4.2(b) to Fig. 4.2(a), we see that the δMP2 correction significantly

reduces the errors at all levels of SAPT. The SAPT-δMP2 methods with the aTZ

and aQZ basis sets outperform the corresponding methods with the aDZ basis, with

SAPT-δMP2/aTZ being slightly more accurate than the corresponding aQZ method,

except in the case of SAPT2+(3)-δMP2 and SAPT2+(3)(CCD)-δMP2. Amongst all

of the SAPT methods evaluated here, the SAPT2+(CCD)-δMP2/aTZ approach pro-

vides the most accurate results for the AHB21 data set, with a MAE of 0.28 kcal/mol

and a maximum error of 0.71 kcal/mol, which occurs in the case of F−(H2O). The

superior performance of SAPT2+(CCD)-δMP2/aTZ is in line with previous conclu-

sions,173 although the errors for these anion–neutral dimers are slightly larger than

errors reported for neutral systems in Ref. 173. Note that SAPT2+(CCD)-δMP2 has

also been called MP2(CCD), since it amounts to a supermolecular MP2 calculation

supplemented with dispersion corrections from CCD amplitudes.173

In the four hydrogen-bonded systems examined by Parker et al.,173 the MAE

in SAPT2+(3)-δMP2/aTZ was 0.24 kcal/mol and was slightly worse than results

at the SAPT2+(CCD)-δMP2/aTZ level (0.22 kcal/mol) and SAPT2+3-δMP2/aTZ

level (0.21 kcal/mol). Nevertheless, those authors designate SAPT2+(3)-δMP2/aTZ
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as the “gold standard” of SAPT, since the performance is similar but the computa-

tional cost is ∼50% less than SAPT2+(CCD)-δMP2/aTZ. However, for the AHB21

data set, the SAPT2+(3)-δMP2/aTZ exhibits a MAE of 0.45 kcal/mol and a maxi-

mum error of 2.96 kcal/mol. This MAE is about twice as large as that obtained at

the SAPT2+(CCD)-δMP2/aTZ level, and as such we recommend SAPT2+(CCD)-

δMP2/aTZ as the method of choice when a balanced description of both neutral and

anionic hydrogen-bonded systems is required. The SAPT2+3-δMP2/aTZ method

performs similar to SAPT2+(3)-δMP2/aTZ, with a MAE of 0.49 kcal/mol and max-

imum error of 2.6 kcal/mol.

Statistical errors in AHB21 binding energies obtained from DFT-SAPT calcula-

tions without the SEA are summarized in Table 4.4. The MAEs of DFT-SAPT de-

crease as the basis set is enlarged, becoming as small as 0.91 kcal/mol in the aQZ basis.

The wave function-based SAPT2+(CCD)-δMP2/aTZ, SAPT2+(3)-δMP2/aTZ, and

SAPT2+3-δMP2/aTZ methods thus exhibit smaller MAEs and smaller maximum

errors for AHB21, as compared to DFT-SAPT, although the latter approach is less

expensive and can be made to scale as O(N5) with density fitting.205

For comparison, error statistics for AHB21 using MP2 and DFT methods are

also listed in Table 4.4. The M06-2X and LC-VV10 methods, which have previously

been recommended for DFT calculations of non-covalent interactions, afford MAEs

in excess of 1 kcal/mol, as in previous studies of F−(H2O)n and Cl−(H2O)n clus-

ters.56,57 The ωB97X-D, ωB97X-D3, ωB97X-V, and B97M-V methods afford much
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Table 4.4: Mean absolute errorsa (MAEs) and maximum errors in binding energies
for the AHB21 data set.

Method
error / kcal mol−1

MAE maximum
value system

SAPT2+(CCD)-δMP2/aTZb 0.28 0.71 F−(H2O)
DFT-SAPTc/aDZ 1.93 5.73 F−(HF)
DFT-SAPTc/aTZ 1.03 6.15 Cl−(HCl)
DFT-SAPTc/aQZ 0.91 6.97 Cl−(HCl)
DFT-SAPTc/CBS 0.89 7.56 Cl−(HCl)
M06-2X/aTZ 1.08 3.97 F−(HF)
LC-VV10/aTZ 1.18 3.55 Cl−(HCl)
ωB97X-D/aTZ 0.27 0.64 OH−(H2O)
ωB97X-D3/aTZ 0.32 0.98 OH−(H2O)
ωB97X-V/aTZ 0.32 0.99 OH−(H2O)
B97M-V/aTZ 0.29 1.29 Cl−(HCl)
att-MP2/aTZ 0.47 2.47 Cl−(HCl)
MP2/aTZ 0.67 1.96 F−(HF)
MP2/aQZ 0.45 1.88 Cl−(HCl)
MP2/CBS 0.40 2.64 Cl−(HCl)
aWith respect to CCSD(T)/CBS benchmarks.
bBest-performing SAPT method for this data set.
cIncludes exact second-order exchange.
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smaller MAEs (0.3 kcal/mol), performance that is comparable to SAPT2+(CCD)-

δMP2/aTZ. This result is consistent with the good performance of ωB97X-D/aTZ

for other hydrogen-bonded systems.206 As with most of the SAPT methods, the

X− · · ·H+ · · ·X− systems remain challenging, and constitute the largest source of

error for each density functional, as well as for each MP2 method.

Regarding “attenuated” MP2 (att-MP2) methods,176,204 we find that the att-

MP2/aTZ results are superior to MP2/aTZ, consistent with results of a previous

study.17 However, MP2/aQZ and MP2/CBS results are slightly better still. The rea-

son may be that the Coulomb attenuation parameter in att-MP2 that was reported

in Ref. 17 (and used here) was optimized against the S66 data set,10 which con-

tains only charge-neutral monomers and therefore this attenuation parameter may

not strike an ideal balance between neutral and ionic systems.

4.3.3 CHB6 cation–neutral data set

Errors in high-level SAPT methods applied to CHB6 are shown in Fig. 4.2(c), and

are much smaller than those obtained for AHB21 [Fig. 4.2(a)]. his is consistent with

results for Hobza’s IHB15 data set,39 for which the SAPT2+(3)/aTZ method exhibits

large errors for the anionic dimers but performs much better for the cations. Unlike

AHB21 results, for CHB6 the aTZ and aQZ basis sets afford much smaller errors as

compared to results obtained using aDZ.

The scaled-exchange and δMP2 corrections for CHB6 are plotted in Fig. 4.3(b).

(As for AHB21, the aDZ and aQZ results are given in the SI.) The two exchange cor-

rections are close to zero, and the δMP2 correction is also not large, with a maximum
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value of 1.43 kcal/mol for Li+(C6H6). In this outlier, the distance from Li+ to the

center of the benzene ring is only 1.91 Å.

In contrast to the AHB21 dimers, for these cation–neutral systems the addition of

δMP2 tends to increase the errors, except for SAPT2+(3)/aQZ and SAPT2+3/aQZ

(with or without CCD dispersion); see Fig. 4.2(d). However, the δMP2 correction

does cause SAPT to exhibit monotonic convergence towards the CBS limit, so that

errors with respect to CCSD(T)/CBS results are smallest in the largest basis sets.

Notably, this monotonic convergence is not observed in the AHB21 data set; see

Fig. 4.2(b). The cations–neutral complexes in CHB6 are also better behaved with

respect to increasing the level of SAPT, i.e.

SAPT2+ → SAPT2+(3) → SAPT2+3 .

However, the more robust treatment of dispersion based on CCD amplitudes has little

effect.

The best SAPT methods for the CHB6 data set are SAPT2+3/aQZ and SAPT2+3

(CCD)/aQZ, which exhibit MAEs of 0.19 and 0.21 kcal/mol, respectively, and errors

no larger than 0.43 kcal/mol [for Li+(H2O)]. The so-called gold and silver SAPT

standards, SAPT2+(3)-δMP2/aTZ and SAPT2+/aDZ (respectively), afford MAEs of

0.73 and 1.64 kcal/mol, respectively. The SAPT2+(CCD)-δMP2/aTZ method, which

we identified as the best approach for the AHB21 data set, exhibits a 1 kcal/mol MAE

for CHB6, with a maximum error of 1.91 kcal/mol. SAPT2+3-δMP2/aTZ, identified

by Parker et al.173 as the best SAPT method for neutral hydrogen-bonded systems,

still affords moderate errors for CHB6 data set with a MAE of 0.49 kcal/mol and
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Table 4.5: Mean absolute errorsa (MAEs) and maximum errors in binding energies
for the CHB6 data set.b

Method
error / kcal mol−1

MAE maximum
value system

SAPT2+3-δMP2/aQZc 0.19 0.43 Li+(H2O)
DFT-SAPTd/aDZ 1.70 2.40 Na+(C6H6)
DFT-SAPTd/aTZ 0.80 1.73 K+(C6H6)
DFT-SAPTd/aQZ 0.56 1.10 K+(C6H6)
DFT-SAPTd/CBS 0.47 1.05 Na+(C6H6)
M06-2X/aTZ 1.30 3.27 Li+(C6H6)
LC-VV10/aTZ 1.62 4.60 Li+(C6H6)
ωB97X-D/aTZ 0.76 0.97 Li+(H2O)
ωB97X-D3/aTZ 0.32 0.77 K+(H2O)
ωB97X-V/aTZ 0.71 2.25 Li+(C6H6)
B97M-V/aTZ 0.85 1.55 K+(C6H6)
att-MP2/aTZ 0.88 2.05 Na+(C6H6)
MP2/aTZ 0.90 1.20 K+(C6H6)
MP2/aQZ 0.31 0.55 Na+(C6H6)
MP2/CBS 0.22 0.64 K+(C6H6)
aWith respect to CCSD(T)/CBS benchmarks.
bFor the alkali atoms, def2-SVP (aDZ), def2-TZVPP

(aTZ), and def2-QZVPP (aQZ) basis sets are used.
cBest-performing SAPT method for this data set.
dIncludes exact second-order exchange
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maximum error of 1.24 kcal/mol. Hence, the extra coupling terms between induc-

tion and dispersion in SAPT2+3 as compared to SAPT2+(3) improve the binding

description in cation–neutral complexes. For such systems, we therefore recommend

the highest possible level of SAPT combined with the largest affordable basis set,

preferably SAPT2+3/aQZ.

DFT-SAPT (with exact second-order exchange) shows monotonic convergence

with respect to expansion of the basis set (see Table 4.5), as observed also for the

AHB21 data set. However, the MAE at the DFT-SAPT/aQZ level is 0.56 kcal/mol,

three times worse than the best wave function-based SAPT method, SAPT2+3-

δMP2/aQZ, and slightly worse than SAPT2+3-δMP2/aTZ also. On the other hand,

DFT-SAPT/aQZ does outperform the so-called silver- and gold standards of wave

function-based SAPT.

Table 4.5 also reports error statistics for DFT and MP2-based methods as applied

to the CHB6 data set. The M06-2X and LC-VV10 methods afford large MAEs (1.30

and 1.62 kcal/mol, respectively), much worse than the performance of these func-

tionals for benchmark non-covalent interactions involving neutral molecules.57 The

ωB97X-D, ωB97X-V, and B97M-V methods give similar errors, with MAEs of 0.7–

0.9 kcal/mol. Amongst the functionals tested here, ωB97X-D3 affords the smallest

MAE (0.32 kcal/mol) for the CHB6 data set. However, the MP2/aQZ and MP2/CBS

methods afford even smaller MAEs, 0.31 and 0.22 kcal/mol, respectively. As with

AHB21, convergence of MP2 results with respect to expansion of the basis set is also

monotonic for CHB6.

108



Table 4.6: Mean absolute errorsa (MAEs) and maximum errors in SAPT binding
energies for the IL16 data set.

Method
error / kcal mol−1

without δMP2b with δMP2c

MAE max MAE max
SAPT2+ 1.01 1.95 0.34 1.74
SAPT2+(3) 0.50 1.00 0.92 2.86
SAPT2+3 1.22 2.40 0.33 0.94
SAPT2+(CCD) 0.71 1.51 0.44 2.41
SAPT2+(3)(CCD) 0.43 0.95 1.24 3.53
SAPT2+3(CCD) 0.89 1.73 0.37 1.60
aWith respect to CCSD(T)/CBS benchmarks. b tE

(22)
exch-ind

is scaled by pex(α = 2), E
(20)
exch-ind is corrected by δHF,

and E
(20)
exch-disp is evaluated using the SEA. c E

(20)
exch-ind is

corrected by δHF, and both tE
(22)
exch-ind and E

(20)
exch-disp

are corrected by δMP2.

4.3.4 IL16 ion-pair data set

For the IL16 ion-pair systems, SAPT0/jaDZ exhibits a MAE of 3.38 kcal/mol with

a maximum error of 5.68 kcal/mol. The “bronze standard” sSAPT0/jaDZ increases

the MAE to 5.20 kcal/mol with a maximum error of 8.27 kcal/mol. Therefore, in

contrast to the case of AHB21, where scaling of E
(20)
exch-disp(S2) reduces the MAE from

2.01 and 1.58‘kcal/mol, for IL16 sSAPT0 does not afford good error cancellation and

errors remain large. The silver standard of SAPT, SAPT2+/aDZ, performs much

better, with a MAE of 0.62 kcal/mol and a maximum error of 1.87 kcal/mol.

Errors in high-level SAPT methods, with and without including the δMP2 cor-

rection, for the IL16 data set are shown in Table 4.6. By using CCD amplitudes
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for the dispersion corrections, errors in SAPT methods without δMP2 are reduced

while errors in SAPT methods with δMP2 are increased. The δMP2 term wors-

ens the performance of SAPT2+(3) and SAPT2+(3)(CCD); however, it improves

the performance of the rest of the high-level SAPT methods. The best method for

these ion-pair systems is SAPT2+3-δMP2, with a MAE of 0.33 kcal/mol. The gold

standard SAPT2+(3)-δMP2 gives a MAE of 0.92 kcal/mol, almost three times worse

than SAPT2+3-δMP2. The extra coupling terms between induction and dispersion in

SAPT2+3 as compared to SAPT2+(3) are important in ion-pair complexes. The best

SAPT method for AHB21 data set, SAPT2+(CCD)-δMP2/aTZ, performs reasonably

well, with a MAE of 0.44 kcal/mol.

The scaled-exchange and δMP2 corrections are plotted in Fig. 4.3(c) for the IL16

data set. The average contributions of [pex(α = 2) − 1]E
(20)
exch-ind,resp, [pex(α = 2) −

1]tE
(22)
exch-ind, and δMP2 are 1.10, 0.12, and 1.22 kcal/mol, respectively. For comparison,

the same three values for AHB21 are 0.99, 0.10, and 1.13 kcal/mol, respectively, that

is, basically comparable if slightly smaller. (Note that the average binding energy in

AHB21 is −22.49 kcal/mol whereas in IL16 it is −87.42 kcal/mol.) We take this as

an indication that the anion exerts greater influence on the magnitude of these values

than does the cation.

The performance of DFT-SAPT, DFT, and MP2-based methods for IL16 is sum-

marized in Table 4.7. Amongst these supersystem methods, DFT-SAPT/aTZ exhibits

a rather large MAE, 2.18 kcal/mol. The M06-2X and LC-VV10 functionals perform

better for IL16 than for AHB21 or CHB6 data sets (MAEs < 0.5 kcal/mol), which
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Table 4.7: Mean absolute errorsa (MAEs) and maximum errors in binding energies
for the IL16 data set.

Method
error / kcal mol−1

MAE maximum
value system

SAPT2+3-δMP2/aTZb 0.33 0.94 IL-008
DFT-SAPTc/aDZ 3.57 4.80 IL-150
DFT-SAPTc/aTZ 2.18 3.67 IL-150
M06-2X/aTZ 0.47 0.95 IL-152
LC-VV10/aTZ 0.29 0.85 IL-144
ωB97X-D/aTZ 1.31 3.05 IL-008
ωB97X-D3/aTZ 0.89 2.32 IL-008
ωB97X-V/aTZ 0.79 1.31 IL-187
B97M-V/aTZ 0.43 1.06 IL-148
att-MP2/aTZ 0.33 1.43 IL-008
MP2/aTZ 0.92 1.67 IL-008
MP2/aQZ 0.47 1.15 IL-008
MP2/CBS 0.31 0.81 IL-008
aWith respect to CCSD(T)/CBS benchmarks
bBest-performing SAPT method for this data set.
cIncludes exact second-order exchange
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seems odd given the larger binding energies for IL16, whereas ωB97X-D, ωB97X-D3,

and ωB97X-V (MAEs of 0.8–1.3 kcal/mol) exhibit larger errors for IL16 than for

AHB21 or CHB6. B97M-V and att-MP2 exhibit MAEs < 0.5 kcal/mol for IL16 that

are similar to their MAEs for AHB21 although slightly larger than their MAEs for

CHB6. The MP2 method shows monotonic convergence towards the CBS limit, with

a MAE for MP2/CBS of 0.31 kcal/mol.

4.3.5 Summary

Overall errors for all 43 dimers contained in AHB21, CHB6, and IL16, are listed in

Table 4.8, as obtained using a variety of methods. The SAPT0/jaDZ and bronze stan-

dard173 sSAPT0/jaDZ methods afford large errors in these dimers that involve ions,

with overall MAEs of almost 3 kcal/mol. The DFT-SAPT/aTZ method affords an

overall MAE of 1.43 kcal/mol, roughly consistent with its MAE of 0.92 kcal/mol that

has previously been reported for neutral hydrogen-bonded systems.173 As such, none

of these three methods can be recommended for sub-kcal/mol accuracy in strongly-

bound complexes.

The silver standard173 SAPT2+/aDZ and gold standard173 SAPT2+(3)-δMP2/

aTZ methods afford more moderate errors, with overall MAEs of 0.67 and 0.44

kcal/mol, respectively. The SAPT2+(CCD)-δMP2/aTZ method, which gave the

smallest MAE for the AHB21 data set on its own, affords an MAE of 0.44 kcal/mol

for this composite data set, while the best method for IL16 on its own (SAPT2+3-

δMP2/aTZ) provides a similar MAE of 0.43 kcal/mol for the composite set. These

methods therefore appear to be accurate and consistent for complexes involving ions.
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Table 4.8: Overall mean absolute errorsa (MAEs) and maximum errors in binding
energies for the composite AHB21 + CHB6 + IL16 data set.b

Method
error / kcal mol−1

MAE maximum
value system

SAPT0/jaDZ 2.60 9.54 F−(HF)
sSAPT0/jaDZ 3.15 8.27 IL-227
SAPT2+/aDZ 0.84 2.78 Cl−(HCl)
SAPT2+(3)-δMP2/aTZ 0.67 2.96 F−(HF)
SAPT2+(CCD)-δMP2/aTZ 0.44 2.41 IL-008
SAPT2+3-δMP2/aTZ 0.43 2.58 F−(HF)
DFT-SAPTc/aTZ 1.43 6.15 Cl−(HCl)
M06-2X/aTZ 0.88 3.97 F−(HF)
LC-VV10/aTZ 0.91 4.60 Li+(C6H6)
ωB97X-D/aTZ 0.73 3.05 IL-008
ωB97X-D3/aTZ 0.69 2.32 IL-008
ωB97X-V/aTZ 0.55 2.25 Li+(C6H6)
B97M-V/aTZ 0.42 1.55 K+(C6H6)
att-MP2/aTZ 0.47 2.47 Cl−(HCl)
MP2/aTZ 0.79 1.96 F−(HF)
MP2/aQZ 0.44 1.88 Cl−(HCl)
MP2/CBS 0.34 2.64 Cl−(HCl)
aWith respect to CCSD(T)/CBS benchmarks.
bFor the alkali atoms in CHB6, def2-SVP (aDZ),

def2-TZVPP (aTZ), and def2-QZVPP (aQZ) basis sets

are used. cIncludes exact second-order exchange
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The SAPT2+(CCD)-δMP2/aTZ affords MAEs of 0.28, 1.00, and 0.44 kcal/mol for

the AHB21, CHB6, and IL16 data sets, respectively, whereas the MAEs engendered

by SAPT2+3-δMP2/aTZ are 0.49, 0.49, and 0.33 kcal/mol, respectively. The latter

method therefore offers the more consistent accuracy across different charge states.

The performance of SAPT2+3-δMP2/aTZ is also quite good for neutral complexes,173

hence this level of theory is recommended for high-accuracy SAPT calculations in

ionic complexes.

Amongst DFT methods, the newly developed ωB97X-V and B97M-V functionals

afford small overall MAEs of 0.55 and 0.42 kcal/mol, respectively. Furthermore,

B97M-V has the smallest maximum error among all methods used in this work,

included SAPT- and MP2-based approaches. Thus, B97M-V offers accurate binding

energies for both neutral202 and ionic systems. The att-MP2/aTZ is superior to

MP2/aTZ and MP2/aQZ, and it is also recommended as an efficient method to

study binding energies for both neutral17 and ionic systems. The best method for

ionic systems in this work is MP2/CBS with a MAE of 0.34 kcal/mol, although large

basis sets are required to eliminate BSSE. Moreover, MP2/CBS succeeds here due to

the importance of electrostatics; in systems where dispersion is more important, this

method is less accurate.186,207

4.4 Conclusions

In this work, we assembled three data sets of non-covalent dimers in which one or

both partners is an ion, and reported benchmark CCSD(T)/CBS results for these
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dimers. We call these data sets AHB21 (consisting of 21 strongly hydrogen-bonded

anion–neutral complexes), CHB6 (containing six cation–neutral dimers), and IL16

(composed of 16 cation–anion dimers composed of common ions found in ionic liq-

uids).

We have systematically evaluated the accuracy of the so-called “S2” or single-

exchange approximation that is used in the first-order exchange, second-order exchange-

induction, and second-order exchange-dispersion energy components. The accuracy

of various levels of SAPT has been evaluated for these three data sets, and in addition

the accuracy of some DFT and MP2 methods has been assessed as well. Our findings

are summarized below.

1. For these data sets, the 1st-order exchange and 2nd-order exchange-induction

components are underestimated within the SEA, whereas the 2nd-order exchange-

dispersion component is overestimated. This is consistent with previous con-

clusions for neutral molecules and selected ions.174,175

2. For the complexes in AHB21 and IL16, the E
(10)
exch(S2) and E

(20)
exch-ind,resp(S2) terms

exhibit large errors, whereas the E
(20)
exch-disp(S2) and tE

(22)
exch-ind(S2) terms are quite

accurate as compared to exact (non-SEA) results. Ad hoc scaling, based upon

the ratio between E
(10)
exch with and without the SEA [pex(α = 2) in Eq. (4.5)]

can be used to correct the deficiency in E
(20)
exch-ind,resp(S2) and thereby reduce the

MAE for AHB21 from 1.0 to 0.1 kcal/mol, and the MAE for IL16 from 1.5 to

0.1 kcal/mol, as compared to the exact value of E
(20)
exch-ind,resp.

3. For cations (CHB6 data set), the S2 approximation is quite accurate.
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4. The error engendered by the SEA in the E
(20)
exch-ind,resp and E

(30)
exch-ind,resp terms

can be compensated by addition of the δHF correction. The δMP2 correction,

defined as the difference between EMP2
int and ESAPT2

int [Eq. (4.12)], can compensate

for the SEA in E
(20)
exch-disp and tE

(22)
exch-ind.

5. The δMP2 correction is large for anions and ion-pairs, but smaller for cations.

This is due primarily to the fact that the higher-order induction-dispersion

coupling terms are large where anions are involved, and these terms are captured

by the δMP2 correction.

6. The magnitudes of the exchange-scaling correction,
[
pex(α)−1

]
E

(20)
exch-ind,resp, and

the δMP2 correction, point to the breakdown of the perturbation expansion

and thus indicate cases where the individual SAPT energy components may

no longer be reliable. However, total binding energies may still be accurately

reproduced by SAPT methods, if the δHF and δMP2 corrections are included.

7. For the anions in AHB21, the “gold”, “silver”, and “bronze standards” of

wave function-based SAPT173 [i.e., SAPT2+(3)-δMP2/aTZ, SAPT2+/aDZ,

and sSAPT0/jaDZ, respectively] afford MAEs of 0.45, 0.77, and 1.58 kcal/mol,

respectively.

8. The best SAPT method for the AHB21 anions is SAPT2+(CCD)-δMP2/aTZ,

which exhibits a MAE of 0.28 kcal/mol and a maximum error of 0.71 kcal/mol.

This method is equivalent to a supermolecular MP2 calculation with disper-

sion corrections that employ CCD amplitudes, and is therefore also known as
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MP2(CCD). The MP2(CCD) method performs better than the regular MP2/

aTZ method with a MAE of 0.67 kcal/mol, since dispersion corrections based

on CCD amplitudes have been included in MP2(CCD). This method also per-

forms well for describing hydrogen bonds between neutral monomers,173 and is

recommended in cases where a balanced description of both neutral and anionic

systems is required.

9. For the CHB6 data set, the “gold” and “silver” SAPT standards173 afford MAEs

of 0.73 and 1.64 kcal/mol, respectively.

10. The best SAPT method for the CHB6 data set is SAPT2+3-δMP2/aQZ, with

a MAE of 0.2 kcal/mol and a maximum error of 0.4 kcal/mol. We recommend

use of the highest-level of SAPT available, combined with the largest feasible

basis set, for cation-binding calculations.

11. For the ion-pairs in IL16, the “gold”, “silver”, and “bronze standards” of

wave function-based SAPT173 [i.e., SAPT2+(3)-δMP2/aTZ, SAPT2+/aDZ,

and sSAPT0/jaDZ, respectively] afford MAEs of 0.92, 0.62, and 5.20 kcal/mol,

respectively. Thus the “silver standard” performs slightly better than the “gold

standard” for ion pairs.

12. The best SAPT method for the IL16 ion pairs is SAPT2+3-δMP2/aTZ, which

affords a MAE of 0.33 kcal/mol and a maximum error of 0.94 kcal/mol.
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13. The extra coupling terms between induction and dispersion in SAPT2+3 as

compared to SAPT2+(3) are essential to generate good binding energies in

cation-binding and ion-pair complexes.

14. The SAPT2+(CCD)-δMP2/aTZ method affords MAEs of 0.28, 1.00, and 0.44

kcal/mol for the AHB21, CHB6, and IL16 data sets, respectively. Combining

these three data sets, the overall MAE is 0.44 kcal/mol. The corresponding

MAEs for SAPT2+3-δMP2/aTZ is 0.49, 0.49, and 0.33 kcal/mol, respectively,

with an overall MAE of 0.43 kcal/mol. Although SAPT2+(CCD)-δMP2/aTZ is

quite accurate for anionic systems, SAPT2+3-δMP2/aTZ provides a more bal-

anced description for a variety of ionic systems. Furthermore, the overall perfor-

mance of SAPT2+3-δMP2/aTZ is better than the aforementioned “gold stan-

dard” SAPT2+(3)-δMP2/aTZ method, with a MAE of 0.67 kcal/mol. Hence,

we put forward the SAPT2+3-δMP2/aTZ approach as an alternative “gold

standard” for ionic complexes.

15. SAPT methods can succeed in strongly-bound systems, so long as the supersys-

tem δHF correction [Eq. (4.3) or (4.11)] and the supersystem δMP2 correction

[Eq. (4.12)] are applied. These are no longer “pure” SAPT approaches, however,

as they require supermolecular HF and MP2 calculations, and the decomposi-

tion into energy components may therefore become problematic.
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16. The overall MAEs for SAPT0/jaDZ, bronze standard sSAPT0/jaDZ, and DFT-

SAPT/aTZ are 2.60, 3.15, and 1.43 kcal/mol, respectively. It is not recom-

mended to apply these approaches to strongly-bound complexes. The perfor-

mance of silver standard SAPT2+/aDZ approach is slightly better, with an

overall MAE of 0.84 kcal/mol for the three data sets considered here.

17. Amongst all supermolecular methods, B97M-V/aTZ is the best DFT method

with an overall MAE of 0.42 kcal/mol. MP2/CBS is the best wave function

method for these ionic complexes, with an overall MAE of 0.34 kcal/mol.
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CHAPTER 5

Symmetry-adapted perturbation theory with

Kohn-Sham orbitals using non-empirically tuned,

long-range-corrected density functionals5.1

5.1 Introduction

Symmetry-adapted perturbation theory115–117,149,150 (SAPT) is a popular method to

calculate dimer interaction energies and to decompose them into physically mean-

ingful components: electrostatics, induction, dispersion, and their exchange counter-

parts. In this approach, the Hamiltonian is partitioned into monomer Fock opera-

tors, Møller-Plesset fluctuation operators (representing intramolecular electron cor-

relation), and the intermolecular interaction operators. Unfortunately, high-order

terms in the fluctuation potentials are required in order to achieve highly accurate

interaction energies, which limits the application of SAPT to dimers composed of

small monomer units, or to semi-quantitative results if intramolecular electron cor-

relation is neglected. As such, there has been considerable interest in combining

the wave-function-based SAPT formalism with a low-cost density functional theory

5.1This chapter appeared as a full article in the Journal of Chemical Physics, in 2014, volume 140,
pages 044108:1–8.
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(DFT) description of the monomers, which would therefore include intramolecular

electron correlation.149,150

Such a hybrid approach was first tested in 2001,208 simply by substituting Kohn-

Sham (KS) orbitals and energies levels into the SAPT formalism, without further

justification. (Some formal properties of this approach were considered a short time

later.209) This approach, wherein the KS determinant is used as the reference state

for an otherwise traditional SAPT calculation, is known as SAPT(KS), and its com-

putational cost is essentially the same as the Hartree–Fock-based approach. (The

traditional second-order approach with Hartree-Fock determinants is usually called

SAPT0.117) Results obtained using SAPT(KS) were disappointing,208,209 however,

which was ultimately attributed to the incorrect asymptotic behavior of the exchange-

correlation (XC) potential, vxc, in existing density-functional approximations.162,208

The proper asymptotic behavior of vxc should be210

vxc(r) ∼ −
1

r
+ ∆∞ (5.1)

for large r. The limiting value of vxc(r) as r →∞ should be210,211

∆∞ = IP + εHOMO , (5.2)

where IP is the lowest ionization potential and εHOMO is the KS eigenvalue for

the highest occupied molecular orbital (HOMO). It was later demonstrated that

SAPT(KS) based on an asymptotically-corrected XC functional is able to predict the

electrostatics, first-order exchange, second-order induction and exchange-induction

energies with good accuracy,but second-order dispersion and exchange-dispersion en-

ergies remain quite poor.162–164
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Accurate dispersion and exchange-dispersion energies were ultimately obtained

by replacing the MP2-like sum-over-states dispersion formula (“uncoupled Hartree-

Fock” approximation212) with a formula involving frequency-dependent density sus-

ceptibilities for the monomers obtained from time-dependent coupled Kohn-Sham

(TD-CKS) calculations.213,214 This method has variously been called DFT-SAPT or

SAPT(DFT).118,137,149,150,161,205 To address the issue of the long-range behavior of vxc,

two asymptotic correction (AC) schemes have been employed: the Tozer-Handy splic-

ing scheme in conjunction with the Fermi-Amaldi asymptotic potential,210 and the

gradient-regulated asymptotic correction with the van Leeuwen-Baerends asymptotic

potential.199,215 The drawback of these AC schemes is that the corrected XC potential,

vAC
xc , is not the functional derivative of the XC energy for any exchange-correlation

functional:

vAC
xc 6=

δExc

δρ
. (5.3)

Exchange-correlation potentials that are not proper functional derivatives have been

called “stray” potentials. Such potentials may generate spurious forces and torques,

causing potentially serious problems with geometry optimizations.216 Only recently

has an AC model potential with vAC
xc = δExc/δρ been proposed,217 but this functional

has not yet been tested in the context of SAPT(KS). So far, the inconsistency in

Eq. (5.3) does not seem to cause problems in the context of SAPT(KS) calculations,218

but it is necessary to resolve this issue in order to derive analytic energy gradients for

the extended SAPT (XSAPT) methods developed by our group,44,54–56,65 which are

designed for fast calculations of non-covalent clusters.
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As an alternative to traditional AC model potentials, long-range corrected (LRC)

density functionals, also known as range-separated hybrid functionals, can improve

the asymptotic behavior of the XC potential.219–224 These functionals partition the

electron–electron Coulomb operator, r−1
12 , into short-range (SR) and long-range (LR)

components using the error function (erf):

1

r12
=

1− erf(ωr12)

r12
︸ ︷︷ ︸

SR

+
erf(ωr12)

r12
︸ ︷︷ ︸

LR

. (5.4)

Here, ω is an adjustable range-separation parameter that determines the length scale

(∼ ω−1) of SR Coulomb potential, and is often determined by fitting to some data

set.224–227 For a generalized gradient approximation (GGA) of the form

Exc = Ec + (1− CHF)EGGA
x + CHFE

HF
x (5.5)

(which is technically a hybrid functional if the coefficient of Hartree-Fock exchange,

CHF, is different from zero), the corresponding LRC function is228

ELRC
xc = Ec + (1− CHF)ESR,GGA

x + CHFE
SR,HF
x + ELR,HF

x . (5.6)

When the electron–molecule distance is large, the functional in Eq. (5.6) is dominated

by Hartree-Fock exchange, hence the asymptotic XC potential decays as ∼ r−1. As

such, LRC functionals exhibit the correct asymptotic distance dependence, however

they do not reproduce the proper limiting value [Eq. (5.1)], since ∆∞ 6= 0.

To correct this deficiency, Baer et al.229,230 proposed a physically-motivated (non-

empirical) “tuning” of ω, in order to satisfy the condition

εHOMO = −IP , (5.7)
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and thus ensure that ∆∞ = 0. When “tuned” in this way, LRC functionals predict

both fundamental gaps and and excitation energies quite accurately.231–233

Recently, some conventional (statistically-optimized) LRC functionals have been

used in the context of SAPT(DFT) calculations, with very poor results.218 This fail-

ure is attributed to the incorrect asymptotic limit of vxc, and the authors of Ref.

218 even go so far as to suggest that the name “long-range corrected functional” is

inappropriate for functionals based on Eq. (5.6). Actually, we had already shown that

LRC functionals with standard, statistically-optimized range separation parameters

do not correct the dispersion problems in SAPT(KS) calculations, although they do

afforde slightly better results (as compared to SAPT0) for strongly hydrogen-bonded

systems.54 In the present study, we will show that the aforementioned non-empirical

tuning procedure, when applied in a monomer-specific way, affords SAPT(KS) energy

components in good agreement with high-level benchmarks, except for this disper-

sion energy, which is still poor. The dispersion energy, however, can be accurately

incorporated via empirical potentials, as we will demonstrate, yielding high-accuracy

SAPT(KS)+D calculations where the exchange-correlation functional is well-defined

[unlike the situation in Eq. (5.3)], and is thus appropriate for the formulation of

analytic energy gradients.
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5.2 Theory

The traditional second-order SAPT interaction energy (SAPT0 method117) can be

written as

ESAPT0
int,resp = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp

+ E
(20)
disp + E

(20)
exch-disp . (5.8)

The notation E(nl) indicates a term that is nth order in the intermolecular interaction

and lth order in the monomer fluctuation potentials, hence the E(n0) energy compo-

nents in Eq. (5.8) imply that no intramolecular electron correlation is included in

SAPT0. The “response” (resp) subscripts indicate that the infinite-order response

correction for induction is incorporated by solving coupled perturbed Hartree-Fock

equations.179,180 In SAPT(KS), the intramolecular correlation is included implicitly,

so the superscript l is dropped and one has

E
SAPT(KS)
int = E

(1)
elst(KS) + E

(1)
exch(KS) + E

(2)
ind,resp(KS)

+ E
(2)
exch-ind,resp(KS) + E

(2)
disp(KS)

+ E
(2)
exch-disp(KS) . (5.9)

The computational cost of either method is about the same.

In the case of traditional (Hartree–Fock-based) SAPT methods, the induction

terms using “uncoupled” and “coupled” monomer densities are identical if the infinite-

order intramolecular correlation is included:234

∞∑

l=0

E
(2l)
ind =

∞∑

l=0

E
(2l)
ind,resp . (5.10)
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Since intramolecular correlation is implicitly included in SAPT(KS), the difference

between SAPT(KS) induction energies based on coupled versus uncoupled monomer

densities is expected to be smaller than in traditional wave function-based SAPT,

and the uncoupled sum-over-states formula works fairy well for the induction en-

ergy.162,164,208,235 Since orbital relaxation is present in the CKS static response theory

but not in the uncoupled sum-over-states formula, the CKS method should in principle

give better results for the induction energy as compared to an uncoupled calculation,

at least at large intermolecular separation.235 In this study, the orbital relaxation for

the induction and exchange-induction energies in SAPT(KS) are approximated as the

energy difference between coupled and uncoupled terms calculated by SAPT0:

E
(2)
ind,resp(KS) = E

(2)
ind(KS) + E

(20)
ind,resp − E

(20)
ind (5.11a)

E
(2)
exch-ind,resp(KS) = E

(2)
exch-ind(KS) + E

(20)
exch-ind,resp

− E
(20)
exch-ind . (5.11b)

Thorough comparisons to benchmark calculations, as presented below, support the

accuracy and robustness of this approximation.

When truncating the perturbation series at second order, as in Eqs. (5.8) and

(5.9), it is common to incorporate higher-order polarization effects by means of a

correction

δEHF
int,resp = EHF

int − (E
(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch-ind,resp) , (5.12)

where EHF
int denotes the supermolecular (dimer) Hartree-Fock interaction energy, with

counterpoise correction. The δEHF
int,resp term is recommended when the monomers are

126



polar.50,117,130,131,170

5.3 Computational details

To determine the usefulness of SAPT(KS) calculations using tuned LRC functionals,

we will use benchmark energy components determined from high-level calculations

for a variety of small dimers. High-accuracy energy components for He2 and Ne2 are

available,218,236–238 obtained using highly correlated wave functions evaluated near the

complete basis set (CBS) limit. For Ne2, the best available calculations218 were ob-

tained using the SAPT(CCSD) method.154–156,239 For He2, exact energy components,

obtained with a complete account of electron correlation (equivalent to full config-

uration interaction), and with a basis set that is saturated using a Gaussian-type

geminal (GTG), are available;236–238 this method has been called SAPT(GTG). For

the S22 data set,186 benchmark energy components computed at the SAPT2+(3)/

aug-cc-pVTZ level are taken from Ref. 37. [The SAPT2+(3) method includes terms

beyond second order; see Ref. 117.] Total binding energies (though not the individ-

ual energy components), computed at the CCSD(T)/CBS level, are available for both

the S22 and S66 data sets.34,35 In addition, we will use the CCSD(T)/CBS potential

energy curves for the “sandwich” (π-stacked) isomer of the benzene dimer, from Ref.

5.

In addition to examining the popular S22 and S66 data sets,10,186 we have assem-

bled a new set of benchmarks here. This data set, which we designate as SS41, consists

of 41 small systems (dimers) taken from some existing data sets. Namely, we take the
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24 dimers from the A24 data set;33 the formamide and formic acid dimers from S22;186

nine dimers from the S66 data set10 (specifically, H2O · · ·CH3OH, CH3OH · · ·CH3OH,

CH3OH · · ·CH3NH2, CH3OH · · ·H2O, CH3NH2 · · ·CH3OH, CH3NH2 · · ·CH3NH2, C2H2

· · · H2O, and two isomers of H2O · · ·CH3NH2); and finally, six dimers from the X40

data set36 (specifically, CH4 · · ·F2, CH3F · · ·CH4, CH3F · · ·CH3F, HF · · ·CH3OH,

HF · · ·CH3NH2, and CH3OH · · ·CH3F). Benchmark energy components for the SS41

dimers are reported here for the first time; these were computed at the SAPT2+(3)/

aug-cc-pVQZ level using MP2 natural orbital approximations to accelerate the cal-

culations, as described in Ref. 159. These calculations were performed using the

psi4 program,187 and the benchmark energy components for SS41 are available in the

Supplementary Material.

As in our previous work on XSAPT,55,56 we will use the LRC-ωPBE240 and LRC-

ωPBEh227 functionals for SAPT(KS) calculations. These functionals are based on the

short-range ωPBE exchange functional,222 augmented with 100% long-range Hartree-

Fock exchange as in Eq. (5.6). The LRC-ωPBEh functional also contains 20% short-

range Hartree-Fock exchange (CHF = 0.2), whereas LRC-ωPBE does not (CHF = 0).

Statistically-optimized values of the range separation parameter have been suggested

as either ω = 0.3 bohr−1 or ω = 0.4 bohr−1 for for LRC-ωPBE,240,241 and ω =

0.2 bohr−1 for LRC-ωPBEh.227 A previous study of LRC functionals for SAPT(DFT)

calculations used LRC-ωPBE with ω = 0.4 bohr−1.218 In this work, however, the

value of ω is determined by monomer-specific tuning to satisfy Eq. (5.7). [Monomer-

specific AC model potentials have previously been used in the context of SAPT(DFT)
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and DFT-SAPT,137,161 but monomer-specific LRC functionals have not been used in

this context.] Tuned values of ω, for each of the monomer appearing in the dimers

examined herein, are available in the Supplementary Material.

We use the aug-cc-pV6Z and aug-cc-pV5Z basis sets for the SAPT(KS) calcula-

tions on He2 and Ne2, respectively, in order to obtain results near the CBS limit.

For SAPT calculations on the SS41 data set, we use the aug-cc-pVQZ basis set.

The aug-cc-pVTZ basis set was used for S22, S66, and the benzene dimer potential

curve. Except for He2 and Ne2, all of the total binding energies computed with SAPT

methods include the δEHF
int,resp correction. All SAPT calculations employ the a dimer-

centered basis set,153 meaning that monomer wave functions were converged using

the dimer’s basis set. With the exception of the two rare-gas dimers, we used the

resolution-of-identity approximation (combined with standard auxiliary basis sets)

to accelerate the wave function-based SAPT calculations, performed using psi4.187

SAPT(KS) calculations with the resolution-of-identity approximation were performed

using a locally-modified version of Q-Chem.242,243

We will also report “SAPT(KS)+D” calculations that use an empirical dispersion

potential in place of the E
(2)
disp + E

(2)
exch-disp terms in second-order SAPT. This “+D”

potential is taken from Ref. 244 and has been shown to afford good results for a

wide variety of different systems.56,244
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Table 5.1: Interaction energy components for He2 at its equilibrium distance (5.6 bohr), calculated using the
dimer-centered aug-cc-pV6Z basis. Values in parentheses are the percentage errors with respect to the GTG
benchmarks, whereas other values are actual energies in units of cm−1.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

Exacta −7.651
CCSD(T)/CBSb −7.420
SAPT(GTG) benchmarkc −1.187 8.540 −0.196 0.177 −15.565 0.515 −7.716
LRC-ωPBEd (ω = 0.3 bohr−1) (114.18) (131.54) (154.71) (149.10) (11.38) (41.46) 0.565
LRC-ωPBEd (tuning ω) (1.67) (1.34) (3.44) (11.95) (21.33) (30.70) −4.664
LRC-ωPBE+Dd,e (tuning ω) −7.332
LRC-ωPBEhd (ω = 0.2 bohr−1) (70.17) (94.22) (112.15) (107.25) (5.89) (23.49) −1.435
LRC-ωPBEhd (tuning ω) (0.13) (0.30) (1.64) (10.30) (20.83) (29.74) −4.615
LRC-ωPBEh+Dd,e (tuning ω) −7.211
aFrom Ref. 245.
bFrom Ref. 218.
cFrom Refs. 236–238.
dSAPT(KS) using the indicated density functional.
eSAPT(KS) using the “+D” dispersion correction from Ref. 244.
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Table 5.2: Interaction energy components for Ne2 at its equilibrium distance (3.1 Å), calculated using the dimer-
centered aug-cc-pV5Z basis. Values in parentheses are the percentage errors with respect to the SAPT(CCSD)
benchmarks, whereas other values are actual energies in units of cm−1.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

CCSD(T)/CBSa −28.653
SAPT(CCSD)/CBS benchmarka −8.997 36.317 −7.533 7.752 −60.318 3.187 −29.592
LRC-ωPBEb (ω = 0.3 bohr−1) (89.82) (89.73) (120.48) (120.26) (56.36) (45.84) −37.370
LRC-ωPBEb (tuning ω) (4.46) (1.63) (9.08) (9.84) (30.83) (26.61) −48.125
LRC-ωPBE+Db,c (tuning ω) −23.274
LRC-ωPBEhb (ω = 0.2 bohr−1) (55.14) (55.23) (77.93) (77.68) (54.96) (22.88) −46.763
LRC-ωPBEhb (tuning ω) (1.99) (3.62) (5.45) (6.20) (32.00) (24.66) −48.256
LRC-ωPBEh+Db,c (tuning ω) −22.762
aFrom Ref. 218.
bSAPT(KS) using the indicated density functional.
cSAPT(KS) using the “+D” dispersion correction from Ref. 244.

131



5.4 Results and discussion

He2 and Ne2 are popular test systems for SAPT-based methods, as they are small

enough to use high-level wave function-based SAPT methods near the CBS limit.

SAPT(KS) results for these two dimers, using LRC functionals, are listed in Ta-

ble 5.1 for He2 and Table 5.2 for Ne2. Conventional (statistically-optimized) LRC

functionals, by which we mean LRC-ωPBE with ω = 0.3 bohr−1 and LRC-ωPBEh

with ω = 0.2 bohr−1, afford large errors for all of the energy components. For exam-

ple, the error in E
(2)
ind using LRC-ωPBE (with ω = 0.3 bohr−1) is about 150%. The

tuning strategy, on the other hand, reduces errors in E
(1)
elst, E

(1)
exch, E

(2)
ind, and E

(2)
exch-ind

to just a few percent. In the case of the dispersion interaction, the tuning strategy

improves the results for Ne2 but has deleterious effects for He2. Previous studies have

found that SAPT(KS), using the standard second-order, uncoupled dispersion for-

mula, afford poor dispersion energies even if the AC functionals are employed.213,214

This observation is consistent with the results presented here.

SAPT(KS) dispersion energies can be greatly improved by computing frequency-

dependent density susceptibilities for the monomers and then evaluating the dis-

persion energy using a generalized Casimir-Polder formalism.161,213,214 The cost of

such a calculation, however, scales no better than O(N5) with respect to monomer

size.246 Alternatively, one can use an empirical dispersion potential designed for

SAPT to obtain the dispersion energy,6,16,162,244 Here, we report dispersion-corrected

SAPT(KS)+D results using the empirical dispersion potential from Ref. 244 in

conjunction with tuned LRC functionals.

132



The E
(1)
elst, E

(1)
exch, E

(2)
ind, and E

(2)
exch-ind terms calculated by SAPT(KS) with AC XC

potentials, plus an empirical dispersion potential, constitutes an approach that has

been called SAPT(KS)+D.16,162,244 Here, we apply this method not with AC model

potentials but rather with LRC functionals. For He2, SAPT(KS)+D gives very good

results for the total binding energy, although errors are slightly larger for Ne2. Because

the SAPT(KS) method affords good results for the energy components E
(1)
elst, E

(1)
exch,

E
(2)
ind, and E

(2)
exch-ind in both rare-gas dimers, it seems that the problem lies with the

empirical dispersion potential. The dispersion energy in SAPT calculations converges

very slowly as a function of the one-particle basis set,24 thus the parameters in the

“+D” potential of Ref. 244 are fit to dispersion energies for a training set of dimers

computed at the SAPT(DFT) level using the aug-cc-pVTZ basis set with additional

mid-bond functions. It is possible that this basis is insufficient to afford converged

dispersion energies for the Ne2 system. We note that SAPT(KS)+D results of similar

accuracy to those reported here can be obtained with AC model potentials,16,162,235

but at the cost of sacrificing the relationship between vxc and Exc.

Turning now to larger systems, in Table 5.3 we present the mean unsigned er-

rors (MUEs) and mean unsigned percentage errors (MUPEs) for SAPT(KS) and

SAPT0 calculations of the SS41 data set, as compared to benchmark energy compo-

nents computed at the SAPT2+(3)/aug-cc-pVQZ level. Once again, SAPT(KS) with

tuned LRC functionals gives very good results for the non-dispersion energy compo-

nents and is much better than the SAPT0 results where the intramolecular electron
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Table 5.3: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), for interaction energy components of SS41 data set, with respect to bench-
marks computed at the SAPT2+(3)/aug-cc-pVQZ level. The errors in total binding
energies are with respect to CCSD(T)/CBS results.33–36 The δEHF

int,resp correction is
added to the total binding energies of the SAPT calculations.

Method E
(1)
elst E

(1)
exch E

(2)
ind E

(2)
exch-ind E

(2)
disp E

(2)
exch-disp Total

SAPT2+(3)a 0.14
(4.97)

LRC-ωPBEa,b 0.12 0.20 0.09 0.14 0.23 0.09 0.22
(4.37) (4.33) (3.59) (7.25) (6.65) (15.93) (10.93)

LRC-ωPBEha,b 0.08 0.16 0.06 0.10 0.22 0.08 0.34
(4.44) (3.27) (2.52) (5.50) (6.73) (14.41) (13.29)

SAPT0a 0.26 0.70 0.33 0.19 0.24 0.00c 0.69
(9.04) (9.09) (9.56) (9.56) (7.37) (0.00)c (13.53)

aaug-cc-pVQZ basis set.
bSAPT(KS) results using the indicated density functional and tuning ω.
cSAPT0 and SAPT2+(3) share the same formula for E

(2)
exch-disp .

correlation is completely neglected. At the SAPT0 level, errors in total binding en-

ergies range up to 5.4 kcal/mol, with the largest (absolute) error obtained for the

doubly hydrogen-bonded formic acid dimer, a system where intramolecular electron

correlation is known to have a large effect on the binding energy.158

Surprisingly, SAPT(KS) also gives quite good results for dispersion components

and total binding energies for the SS41 data set. As proposed by Hobza and co-

workers,7 a complex should be considered to be dominated by electrostatics if the

electrostatic component (E
(1)
elst) is at least twice as large as the dispersion component

(E
(2)
disp + E

(2)
exch-disp), and vice versa for a dispersion-dominated complex. Otherwise,
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Table 5.4: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), for individual energy components of the S22 data set, with respect to bench-
marks computed at the SAPT2+(3)/aug-cc-pVTZ level.37 All calculations were per-
formed at S22 geometries.

Method Energy Components
electrostatic exchange induction dispersion

LRC-ωPBEa,b 0.19 (3.05) 0.59 (5.65) 0.13 (3.65) 1.04 (13.90)
LRC-ωPBEha,b 0.17 (3.46) 0.57 (5.64) 0.13 (3.28) 1.05 (13.97)
SAPT0b 0.42 (6.47) 1.25 (8.05) 0.27 (4.49) 0.72 (9.61)
aSAPT(KS) results using the indicated density functional and tuning ω.
baug-cc-pVTZ basis set.

the complex is classified as having interactions of mixed type. According to this classi-

fication scheme, the SS41 data set contains 16 electrostatically-dominated complexes,

12 dispersion-dominated complexes, and 13 mixed-type complexes. The three largest

errors (each about 20%) in SAPT(KS) dispersion components occur for the dispersion-

dominated complexes, but these 20% errors only translate into ≈ 0.5 kcal/mol errors

since the dispersion component is no larger than −2.4 kcal/mol [at the SAPT2+(3)/

aug-cc-pVQZ level], even for the dispersion-dominated complexes. Larger molecules

with more electrons are needed in order to obtain larger dispersion energies.

The S22 and S66 data sets10,186 are popular for benchmarking non-covalent inter-

actions. [For the latest, basis-set-consistent revisions to the CCSD(T)/CBS binding

energies, see Ref. 34 for S22 and Ref. 35 for S66.] These data sets contain larger

molecules, as compared to SS41; the π-stacked adenine–thymine dimer, for example,

has a dispersion interaction of about 18 kcal/mol. For S22, we take benchmark energy
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components from Ref. 37, where they were computed at the SAPT2+(3)/aug-cc-

pVTZ level.37. These comparisons are listed in Table 5.4, where the electrostatic,

exchange, induction, and dispersion energies are defined according to37,117

Eelectrostatic = E
(1)
elst (5.13a)

Eexchange = E
(1)
exch (5.13b)

Einduction = E
(2)
ind,resp + E

(2)
exch-ind,resp + δEHF

int,resp (5.13c)

Edispersion = E
(2)
disp + E

(2)
exch-disp . (5.13d)

The SAPT(KS) and SAPT0 methods afford similar MUEs for electrostatic and induc-

tion energies, but SAPT(KS) yields smaller errors in exchange energies than SAPT0.

This suggests that intramolecular electron correlation, at least for exchange energy,

is important for the molecules in S22. SAPT(KS) results based on LRC-ωPBE are

slightly better than those based on LRC-ωPBEh, in accordance with previous ob-

servations.56 For the dispersion energy, on the other hand, SAPT(KS) calculations

afford larger errors as compared to SAPT0, again in accordance with previous obser-

vations that the use of KS orbitals and eigenvalues is detrimental to the quality of

the MP2-like sum-over-states dispersion energy.54 The error in the dispersion energy

for π-stacked adenine–thymine is about 20% or 3 kcal/mol.

Table 5.5 shows the MUEs for total binding energies with respect to CCSD(T)/

CBS results for the S22 data set34 and the S66 data set.35 Both sets are divided

to three subsets consisting of the hydrogen-bonded complexes (which are dominated

by electrostatics), the dispersion-dominated complexes, and complexes with mixed

influence, according to Hobza’s classification scheme,7 as discussed above. The main
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Table 5.5: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), with respect to CCSD(T)/CBS benchmarks for the S22 data set34 and the S66
data set35 along with subsets consisting of the hydrogen-bonded dimers, dispersion-
dominated dimers, and dimers of mixed influence. All calculations were performed at
S22 and S66 geometries and the δEHF

int,resp corrections are added to the total binding
energies of the SAPT calculations.

Method H-bonded Disp.-bound Mixed All
—S22—

LRC-ωPBEa,b 0.61 (3.84) 2.60 (54.74) 0.92 (25.09) 1.43 (29.11)
LRC-ωPBE+Da,b,c 0.48 (3.24) 1.33 (19.39) 0.56 (13.00) 0.82 (12.22)
LRC-ωPBEha,b 1.22 (7.00) 2.77 (58.69) 1.13 (30.41) 1.75 (33.25)
LRC-ωPBEh+Da,b,c 0.43 (2.99) 1.53 (25.60) 0.28 (7.96) 0.78 (12.79)
SAPT0b 2.72 (16.91) 2.00 (41.17) 1.01 (26.96) 1.91 (28.93)
SAPT0+Db,c 3.20 (21.08) 1.39 (21.50) 0.95 (23.41) 1.83 (21.98)
SAPT2+(3)b 0.51 (3.62) 0.38 (4.86) 0.12 (3.05) 0.34 (3.89)

—S66—
LRC-ωPBEa,b 0.22 (2.18) 1.52 (43.99) 0.82 (22.99) 0.85 (23.05)
LRC-ωPBE+Da,b,c 0.32 (3.61) 0.63 (14.40) 0.35 (9.15) 0.44 (9.05)
LRC-ωPBEha,b 0.57 (5.56) 1.66 (48.10) 1.02 (28.52) 1.09 (27.34)
LRC-ωPBEh+Da,b,c 0.21 (2.19) 0.69 (15.54) 0.45 (12.22) 0.45 (9.88)
SAPT0b 1.52 (14.55) 1.09 (30.34) 0.89 (24.90) 1.18 (23.19)
SAPT0+Db,c 1.89 (19.25) 0.90 (21.36) 0.83 (22.69) 1.22 (21.03)
aSAPT(KS) results using the indicated density functional and tuning ω.
baug-cc-pVTZ basis set.
cUsing the empirical dispersion potential from Ref. 244.
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sources of error for the SAPT(KS) calculations are in the dispersion-dominated com-

plexes, where the MUEs are 2.6 kcal/mol (S22) and 1.5 kcal/mol (S66). Substituting

the empirical dispersion potential developed by Podeszwa et al.244 in place of the

SAPT(KS) dispersion energy, to obtain a SAPT(KS)+D method based on LRC func-

tionals, the MUEs in total binding energies are reduced to 0.8 kcal/mol (S22) and

0.4 kcal/mol (S66).

It has previously been pointed out that the empirical dispersion potential devel-

oped in Ref. 244 and used here affords relatively large errors for the π-stacked uracil

dimer and the π-stacked adenine–thymine complexes.56 In fact, π-stacked complexes

are underrepresented in the training set used to parameterize this potential; only

the sandwich isomer of (C6H6)2 and the pyrazine dimer are included as examples of

π-stacking amongst the 79 dimers in the training set.244 For the uracil dimer, this

dispersion potential overestimates the SAPT2+(3)/aug-cc-pVTZ dispersion energy

by 1.8 kcal/mol, and for adenine–thymine by 2.0 kcal/mol. If we eliminate these two

problematic systems from the S22 data set, then the MUE for SAPT(KS)+D using

both density functionals examined here is reduced to about 0.5 kcal/mol for both

the dispersion-dominated subset and the entire set of 20 complexes (S22 minus two).

Similarly for S66, the MUE for SAPT(KS)+D using both functionals is reduced to

0.4 kcal/mol when the π-stacked uracil dimer is removed from the data set.

For the SAPT0, however, the use of the dispersion potential from Ref. 244 does

not obviously improve the results for either S22 or S66. Furthermore, the results

for hydrogen-bonded complexes described at the SAPT0+D level are worse than

138



in
te

ra
ct

io
n

 e
n

er
g

y 
 / 

kc
al

 m
o

l–
1

distance / Å

–3

–2

–1

–4

CCSD(T) / CBS
SAPT(KS) / LRC-ωPBE
SAPT(KS)+D / LRC-ωPBE
SAPT(KS) / LRC-ωPBEh
SAPT(KS)+D / LRC-ωPBEh

3.5 4.0 4.5 5.0 5.5 6.0 6.5

Figure 5.1: Potential energy curves for the “sandwich” isomer of (C6H6)2 as a func-
tion of the center-to-center distance between the two benzene rings. Benchmark
CCSD(T)/CBS results are taken from Ref. 5. The dimer-centered aug-cc-pVTZ
basis set was used for the SAPT(KS) calculations

the SAPT0 results that use the MP2-type dispersion formula. This implies that

dispersion is not the only term in SAPT0 that needs improvement: intramolecular

electron correlation is important as well.

Finally, we use these SAPT(KS) methods to compute the potential energy curve

for the dispersion-dominated sandwich isomer of the benzene dimer, which is regarded

as a stringent test of computational methods. As shown in Fig. 5.1, SAPT(KS) meth-

ods that use second-order MP2-type dispersion greatly overestimate the interaction

energy across the whole potential energy curve. The SAPT(KS)+D methods slightly

underestimates the binding energy at short intermolecular distance, but are very ac-

curate beyond the minimum-energy distance.
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5.5 Conclusions

The increasingly-popular non-empirical tuning procedure of Baer et al.230 for LRC

(range-separated hybrid) functionals affords an XC potential with not only the cor-

rect asymptotic distance dependence, but also the correct limiting value as r → ∞.

Results presented herein demonstrate that satisfaction of this condition is very im-

portant to obtain quantitative results for the non-dispersion energy components in

SAPT(KS) calculations. Although unacceptably large errors remain in the dispersion

energies predicted by SAPT(KS), we expect that dispersion energies obtained from

frequency-dependent density susceptibilities, computed by solving TD-CKS equations

as in the SAPT(DFT) approach,118,137,161,205 should yield quantitative results for the

dispersion energies. Thus, LRC functionals should be useful as substitutes for AC

model potentials in SAPT(DFT) and DFT-SAPT, while preserving the relationship

vxc = δExc/δρ that is sacrificed when AC model potentials are employed to “graft

on” correct asymptotic behavior to some existing density functional. This relation-

ship between functional and potential is crucial where analytic gradients are needed,

which is a direction that our group is headed with “XSAPT” methods.44,54–56,65

As an alternative to SAPT(DFT), in the present work we used an empirical dis-

persion potential244 to replace the second-order dispersion energy in SAPT(KS). The

resulting SAPT(KS)+D method affords quantitative binding energies for the S22 and

S66 data sets, save for a couple of π-stacked complexes, for which we have previously

argued56 that re-parameterization of the dispersion potential is needed. Although

“conventional” LRC functionals that employ a statistically-optimized value for the
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range separation parameter, which need not provide the correct limiting value of vxc,

have been shown to afford poor results in SAPT(DFT) calculations,218 the tuning

procedure used here affords good results for all energy components except dispersion,

as compared to high-level SAPT2+(3) calculations.
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CHAPTER 6

Accurate intermolecular interactions at

dramatically reduced cost: XPol+SAPT with

empirical dispersion6.1

Dispersion interactions are very important in biological systems, e.g., in protein fold-

ing and in the structure of DNA.117 In the latter case, the double helix is maintained

both by dispersion-dominated π-stacking interactions within a strand and by hydro-

gen bonding between complementary strands. Although the H-bonding interactions

are dominated by electrostatic effects, dispersion is still responsible for 20–30% of the

base-pairing interaction,247 and contrary to popular belief, experiments demonstrate

that the stability of the double helix is mainly determined by base stacking, rather

than base pairing.248 Thus, in the theoretical description of non-covalent interactions

it is crucial to employ methods that furnish an accurate description of dispersion

interactions.

The “gold standard” of electronic structure theory, CCSD(T), is accurate enough

for this purpose but exhibits a cost that grows as O(N7) with respect to system

size, N . This fact, in conjunction with the large basis sets that are required for

6.1This chapter appeared as a full article in the Journal of Physical Chemistry Letters, in 2012,
volume 3, pages 3241–3248.
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accurate calculations of intermolecular interaction energies [e.g., to eliminate basis-set

superposition error (BSSE)] limits high-level ab initio calculations to small systems.

Furthermore, even given accurate CCSD(T) results for the intermolecular interaction

energy, it is not easy to ascertain how much of this interaction is due to dispersion

versus other effects such as exchange, electrostatics, or induction.

Symmetry-adapted perturbation theory (SAPT) is an alternative method to com-

pute the intermolecular interaction energies,116,117,149 using a monomer-based formal-

ism rather than a supersystem calculation. As such, the SAPT interaction energy

is free of BSSE, by construction, and is also decomposable into a sum of physically-

meaningful contributions:117

ESAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + · · · .

(6.1)

Here, we have explicitly listed all terms up to second order in the intermolecular in-

teraction, with subscripts that denote electrostatic (elst), exchange (exch), induction

(ind), and dispersion (disp) contributions. These low-order terms neglect intramolec-

ular electron correlation, and for high-accuracy SAPT calculations it is essential to

use a double-perturbation expansion that accounts for both inter- and intramolecular

correlation.117 Inclusion of intramolecular electron correlation, however, results in a

SAPT method whose cost scales as O(N7), so there is no cost savings over CCSD(T),

although the SAPT result can still be used to decompose the interaction energy.

In principle, Kohn-Sham density functional theory (KS-DFT) offers a low-cost

means to describe intramolecular electron correlation, and has been introduced in
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the context of SAPT calculations as the so-called SAPT(KS) method.162,208 This ap-

proach is disastrously unsuccessful, however, unless functionals with asymptotically-

corrected exchange-correlation potentials are employed, but even so, the dispersion

energies computed with SAPT(KS) remain quite poor.54,162–164,208 The solution to

this dilemma is to replace the MP2-like sum-over-states dispersion formula used in

traditional low-order SAPT with a formula involving frequency-dependent density

susceptibilities, computed using KS-DFT. This modified method has variously been

called DFT-SAPT137 or SAPT(DFT).161 With density-fitting techniques, this method

exhibits O(N5) scaling yet provides an accurate description of intermolecular inter-

actions.137,246

SAPT methods have mainly been used to study dimers, because calculation of

non-additive three-body interactions within the SAPT formalism requires computa-

tionally expensive triple excitations.249,250 Many-body (non-pairwise-additive) effects

are large in clusters of polar molecules but are dominated by induction (i.e., po-

larization).8,64,84,251 In recognition of this, our group has recently introduced a low-

cost, many-body generalization of the SAPT methodology that we call XPol+SAPT

(XPS),54,65 in which the variational XPol method252 is used to generate one-body

wave functions for subsequent pairwise SAPT calculations. The XPol procedure cap-

tures many-body polarization effects by means of a charge-embedded, monomer-based

self-consistent field calculation whose cost scales as O(n) with respect to the num-

ber of monomers, n. The subsequent second-order SAPT calculations scale as either

O(n2) or O(n3), depending on the level of approximation,54 but in any case these
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are embarrassingly parallelizable. With a suitable choice of basis set, dimer binding

energies computed by XPS based on a Hartree-Fock description of the monomers

[XPS(HF)] lie within 1 kcal/mol of high-level benchmarks.54,65

As with SAPT(KS), XPS results obtained using KS orbitals are notably inferior

to those obtained using HF orbitals. In particular, dispersion energies are vastly

overestimated by XPS(KS),54 which is an artifact of the sum-over-states dispersion

formula in conjunction with HOMO/LUMO gaps that are significantly smaller than

HF gaps.208 Ironically, the dispersion and exchange-dispersion terms are not only the

least accurate but also the most time-consuming to compute, scaling as the fourth

and fifth powers, respectively, of monomer size, whereas other second-order terms

are no worse than O(N3).16 Recently, Hesselmann16 introduced a method termed

SAPT+D, in which these terms are replaced by empirical atom-atom potentials. In

this work, we implement and test an analogous XPS(KS)+D method, which offers

important advantages over alternative electronic structure methods for non-covalent

interactions:

1. Unlike XPS(HF), it incorporates intramolecular correlation, and in a relatively

low-cost way.

2. The expensive and inaccurate sum-over states dispersion formulas are replaced

by simple scalar potentials.

3. Unlike SAPT+D, the method is applicable to any number of monomers.
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4. The cost of XPS(KS)+D calculations is O(N3) with respect to monomer size

and no worse than O(n3) with respect to the number of monomers, and is thus

amenable to large systems.

Several asymptotic correction (AC) schemes for the KS exchange-correlation po-

tential, vxc, have been used in SAPT(KS) and SAPT(DFT),199,210 although a draw-

back of these techniques is that the corrected potential, vAC
xc , is not the functional

derivative of the energy. As an alternative to traditional AC schemes, we utilize long-

range corrected (LRC) density functionals219,228,230 to obtain the correct asymptotic

behavior. Specifically, we employ an ansatz that we have called LRC-ωPBEh,227

which is based on the short-range ωPBE exchange functional.222 Rather than using

the empirically-optimized LRC-ωPBEh parameters suggested in Ref. 227, how-

ever, we re-optimize the fraction of short-range HF exchange (CHF) and then apply

a system-specific tuning of the range separation parameter (ω), as suggested by Baer

et al.,230 in order to satisfy the condition

εHOMO = −IP (6.2)

where “IP” denotes the lowest ionization potential. For supersystems composed of

well-defined monomers, as considered here, we assume that non-covalent interactions

do not greatly alter the monomer IPs, hence we just need to determine ω separately for

each monomer, using Eq. (6.2). The value of ω appropriate for the supersystem is the

one corresponding to the lowest monomer IP. Our tests reveal that this assumption

is quite robust.
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The empirical dispersion potential used in this work is the one suggested for

SAPT+D:16

ESAPT+D
disp = −sβ

∑

i∈A

∑

j∈B
(B 6=A)

fdamp(rij)
Cij

rβij
. (6.3)

Here, i and j represent nuclei located on different monomers, and

fdamp(rij) = erf

(
α rij

Ri + Rj

)

(6.4)

is a damping function. The latter differs from the damping function typically used

in dispersion-corrected DFT.143 Note that the role of the dispersion correction is

different in SAPT+D than it is in DFT+D.16 In the latter method, the dispersion

correction should only turn on at large intermolecular separation, since DFT models

the short-range interactions; as such, EDFT+D
disp “is a model-dependent quantity with

no real physical meaning”,253 and short-range damping is needed to avoid overcount-

ing of interactions. In SAPT, however, the dispersion contribution to the energy is

well-defined and should contribute at all intermolecular distances. However, short-

range damping is still required to ensure that the empirical potential in Eq. (6.3) is

finite when rij is small. The damping in Eq. (6.4) is much slower than that used in

DFT+D.16

The parameters Cij are defined in terms of atomic C6 coefficients,

Cij = (C6,i C6,j)
1/2 . (6.5)

The atomic parameters C6,i and Ri used here are taken from those developed by

Grimme.254 The parameters α = 1.087 and β = 5.67 are taken from SAPT+D,16
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where they were fitted to reproduce benchmark intermolecular interaction energies.

(The fact that dispersion is well-defined in SAPT suggests that these parameters

may be transferable; results presented below will ultimately validate this choice.)

Ultimately, β is an empirical parameter, but the fact that β 6= 6 can be understood

based on the observation that higher-order multipole terms may contribute as much

as 20–30% to the dispersion interaction in the middle-range region.255 Moreover,

E
(2)
exch-disp also contributes to the SAPT dispersion energy, and this component varies

exponentially with distance.

In this work, the parameter sβ in Eq. (6.3) was optimized for XPS(KS)+D using

the S22A database,38 which revises the energetics of the original S22 set of dimers.186

For fixed α and β, the fit for sβ is a simple linear one that minimizes the abso-

lute percent deviations, as this provides a more balanced fit for both weakly- and

strongly-bound systems as compared to a least-squares fit.16 It is possible that a

global, nonlinear fit of all three parameters might improve the results, but this has

not been attempted.

Optimal values of sβ were obtained for two different basis sets: aug-cc-pVDZ′ and

def2-TZVPP (hereafter abbreviated aDZ′ and TZVPP).117,197 The aDZ′ basis has

been suggested for use in low-order SAPT0 and XPS(HF) calculations of dispersion-

bound systems.65,117,157,158 For XPS(HF) calculations on ion–water complexes, how-

ever, much better results were obtained using def2-TZVP, which exhibits only slightly

worse error statistics for S22A.54 Since then, we have found that TZVPP—which adds

polarization functions to the hydrogen atoms—outperforms TZVP for S22A. As in
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previous work,54,65 we use smooth ChElPG embedding charges54 for the XPol calcu-

lations and “projected” (pseudocanonical dimer) basis sets for the SAPT parts of the

XPS calculations, along with a resolution-of-identity approximation combined with

standard auxiliary basis sets. All calculations were performed using a locally modified

version of the Q-Chem program.242

The optimized values of sβ are 0.7267 and 0.8439 for aDZ′ and TZVPP, respec-

tively. For these values of sβ, the optimal value of CHF = 0.6. Selected error statistics

for XPS-based methods, as applied to the S22A database, are listed in 6.1. The over-

all mean unsigned error (MUE) for XPS(KS) is larger than for XPS(HF), as observed

previously,54 due primarily to overestimation (by as much as 5 kcal/mol) of binding

energies for dispersion-dominated complexes. These errors are significantly reduced

by replacing the MP2-like sum-over-states dispersion formula with the empirical po-

tential in Eq. (6.3). The best results are obtained using XPS(KS)+D/aDZ′, for which

the MUE is 0.5 kcal/mol or 9%.

Note that XPS(KS) outperforms XPS(HF) for the strongly H-bonded subset of

S22A, where the intermolecular interactions are dominated by electrostatics and in-

duction. We attribute this to the effects of intramolecular electron correlation, since

SAPT(KS) has previously been shown to provide accurate values for components of

the intermolecular interaction other than dispersion, provided that vxc is asymptot-

ically correct.162,235 Our results demonstrate that LRC functionals afford an alter-

native means to enforce correct asymptotic behavior of vxc, without abandoning the

relationship vxc(r) = δExc/δρ(r).
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Table 6.1: Error statistics, with respect to CCSD(T)/CBSa benchmarks, for the S22A
data set.38

Method Data Error/kcal mol−1 % Error
Setb MUEc Maxd MUEc Maxd

XPS(HF)/ Total 0.60 1.67 16.7 79.1
aDZ′ H-Bond 0.60 1.05 6.5 25.5

Disp. 0.85 1.67 32.1 79.1
Mixed 0.30 0.55 9.3 17.6

XPS(HF)/ Total 0.53 1.94 12.4 49.8
TZVPP H-Bond 0.40 0.81 3.6 8.4

Disp. 0.78 1.94 22.0 49.8
Mixed 0.37 0.78 10.1 17.2

XPS(KS)/ Total 1.03 4.43 23.3 81.0
aDZ′ H-Bond 0.53 1.43 5.2 18.6

Disp. 1.79 4.43 46.3 81.0
Mixed 0.66 1.38 15.1 30.9

XPS(KS)/ Total 1.04 4.95 22.2 69.0
TZVPP H-Bond 0.30 0.70 2.1 4.3

Disp. 1.80 4.95 38.2 69.0
Mixed 0.90 1.82 24.0 38.8

XPS(KS)+D/ Total 0.53 1.16 9.4 24.4
aDZ′ H-Bond 0.73 1.16 5.9 9.9

Disp. 0.38 1.01 9.8 24.4
Mixed 0.52 0.99 12.3 21.8

XPS(KS)+D/ Total 0.61 1.48 10.9 33.0
TZVPP H-Bond 0.62 1.22 4.1 7.3

Disp. 0.63 1.48 13.0 33.0
Mixed 0.59 1.28 15.5 23.2

aCBS = complete basis set. bStatistics listed separately for the total S22A

data set, along with subsets consisting of strongly H-bonded dimers,

dispersion-dominated dimers, and dimers whose interactions are of

mixed influence, as classified in Ref. 38. cMean unsigned error.
dMaximum unsigned error.
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The performance of CBS-extrapolated MP2 and CCSD methods, along with spin-

component-scaled (SCS) versions thereof,117 was evaluated previously for the S22A

data set.38 The relevant MUEs are:

• 0.88 kcal/mol (MP2/CBS)

• 0.80 kcal/mol (SCS-MP2/CBS)

• 0.28 kcal/mol [SCS(MI)-MP2/CBS]

• 0.24 kcal/mol (SCS-CCSD/CBS)

Our XPS(HF) and XPS(KS)+D results, obtained using double-ζ basis sets, are better

than the MP2/CBS and SCS-MP2/CBS results. Although the XPS calculations may

benefit from some cancellation of errors, since the double-ζ basis sets used here are

far from complete, on the other hand BSSE is absent from XPS, by construction. As

such, one could argue that large basis sets are not an absolute requirement for XPS

calculations.

The XPS(KS) method will not be considered further because of known prob-

lems with the SAPT(KS) treatment of dispersion, evident from results in 6.1. The

XPS(KS)+D method contains parameters that were fit to the S22A database, so it

is possible that S22A error statistics are overly optimistic. For a blind test of this

approach, we turn to the S66 database,10 for which error statistics are summarized

in 6.2.
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Table 6.2: Error statistics, with respect to CCSD(T)/CBS benchmarks, for the S66
data set.10

Method Error/ % Error
kcal mol−1

MUE Max MUE Max

XPS(HF)/aDZ′ 0.54 1.91 15.3 53.9
XPS(HF)/TZVPP 0.39 1.11 9.9 29.0
XPS(KS)+D/aDZ′ 0.27 0.94 7.0 53.9
XPS(KS)+D/TZVPP 0.46 1.38 11.9 60.9
MP2/CBSa 0.45 40
SCS-MP2/CBSa 0.74 79
SCS(MI)-MP2/CBSa 0.28 54
MP2.5/CBSa 0.12 16
CCSD/CBSa 0.62 73
SCS-CCSD/CBSa 0.15 6
SCS(MI)-CCSD/CBSa 0.06 6
EFPb 0.61
aResults taken from Ref. 10. bResults for the effective

fragment potential (EFP), from Ref. 37
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Results for S66 obtained using XPS(HF) and XPS(KS)+D, with the two basis

sets considered here, are comparable to or better than CBS-extrapolated results ob-

tained with the MP2, SCS-MP2, and CCSD methods. Particularly impressive is the

XPS(KS)+D/aDZ′ method, whose MUE is just 0.27 kcal/mol and whose largest un-

signed error is < 1 kcal/mol. This method does exhibit a 54% error for the benzene-

ethene dimer (which is underbound by 0.78 kcal/mol), the maximum percentage

error that we observe for S66 with this approach. If we eliminate benzene-ethene

and also pyridine-ethene, which is underbound by 0.66 kcal/mol (35%), then the

MUE is reduced to 6% and the maximum unsigned error is reduced to 20% for

XPS(KS)+D/aDZ′.

Such small error in XPS(KS)+D against S66 is totally benefit from replacing the

inaccurate MP2-like sum-over-states dispersion formula by the empirical dispersion

potential. We can prove it by comparing the MUE of S66 calculated by XPS(KS)+D

and SAPT(KS)+D. Although the sβ value in the empirical dispersion formula for

the SAPT(KS)+D can be refitted against S22A database, we find that the change

of sβ value is less than 0.01. Therefore, the SAPT(KS)+D method uses the same

dispersion formula and parameter as XPS(KS)+D. The MUE of S66 calculated by

SAPT(KS)+D is 0.32 kcal/mol and in the same range of error as XPS(KS)+D. How-

ever, XPS(KS)+D used the XPol method to capture the many-body polarization is

superior than the SAPT(KS)+D in the many-body systems as pointed out at 6.1 us-

ing (H2O)n clusters. The structures and MP2/CBS benchmark binding energies for
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Figure 6.1: The binding energies for (H2O)n clusters where n = 2, 3, 4, 5, 6, 8, 11, and
20 calculated by SAPT(HF), XPS(HF), SAPT(KS)+D, and XPS(KS)+D combined
with aDZ′ basis set , as compared to MP2/CBS benchmarks.

(H2O)n clusters for n = 2, 3, 4, 5, 6, 8, 11, and 20 are taken from the work of Xanth-

eas and co-workers.256–260 From 6.1, we note that the XPS method is significantly

more accurate than the corresponding pairwise-additive SAPT method which is en-

tirely neglected many-body effects. Furthermore, XPS(KS)+D is more accurate than

the XPS(HF) method which neglects the intramolecular electron correlation and uses

the MP2-like sum-over-states dispersion formula. In short, the XPS(KS)+D method

definitely improves the binding-energy calculations for different sizes of clusters.

The error statistics presented above demonstrate the excellent performance of

XPS(KS)+D at equilibrium geometries, but it is also important to understand how

this method performs across a range of intermolecular distances. To test this, we
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have chosen several challenging systems: Ar· · ·Ne, formic acid dimer, benzene dimer,

and X−(H2O) with X = F and Cl. In the case of Ar· · ·Ne, several DFT approaches

thought to be accurate for non-covalent interactions predict qualitatively incorrect

potential energy curves (PECs) for this system, even in cases where the binding en-

ergy evaluated at the minimum-energy geometry is accurate.6 The binding energy

of the formic acid dimer has a large contribution from intramolecular electron cor-

relation,158 and exhibits the maximum error in SAPT0/aDZ′ calculations for S22A.

Benzene dimer was selected because it is a stringent test of the accuracy of dispersion

interactions, and we consider both the “sandwich” isomer, which is a dispersion-

dominated complex, as well as the T-shaped isomer, where quadrupolar electrostatic

interactions are also significant.38 Finally, X−(H2O) systems exhibit much larger bind-

ing energies than those in the S22A set.

One-dimensional PECs for these systems are depicted in 6.2–6.5. The XPS(KS)+D/

aDZ′ method yields PECs that are quite comparable to benchmark results for all of

these difficult cases except F−(H2O). For the charge-neutral systems, binding energy

errors evaluated at equilibrium geometries range from 0.02 kcal/mol for Ar· · ·Ne

to 0.77 kcal/mol for (HCO2H)2. For Cl−(H2O) and F−(H2O), the XPS(KS)+D/

aDZ′ method affords larger binding energy errors: 2.07 and 2.94 kcal/mol, respec-

tively, at the equilibrium geometries. Similar binding energies are obtained at the

XPS(HF)/aDZ′ level, whereas XPS(HF)/TZVPP binding energies are much more

accurate, consistent with previous results54 suggesting that large basis sets are re-

quired for systems whose binding is dominated by electrostatics and induction.
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Figure 6.2: Binding energy curves for Ar· · ·Ne. Benchmark results were computed
using a dispersion corrected version of the “dispersionless” density functional (dlDF)
of Ref. 6 (dlDF+Das/aTZ, in the language of Ref. 6).

Table 6.3: Error statistics, with respect to CCSD(T)/CBS benchmarks, for a set of
ionic H-bonded dimers.39

Method Error/kcal mol−1 % Error
MUE RMSE Max MUE Max

XPS(HF)/aDZ′ 1.26 1.61 3.31 6.3 12.4
XPS(HF)/TZVPP 0.97 1.15 1.92 6.0 10.6
XPS(KS)/aDZ′ 0.85 1.03 2.10 4.4 10.7
XPS(KS)/TZVPP 0.66 0.72 1.29 3.5 7.4
XPS(KS)+D/aDZ′ 1.02 1.14 1.96 5.4 14.1
XPS(KS)+D/TZVPP 0.48 0.56 1.08 2.5 6.2
MP2/cc-pVTZa 1.81
BLYP+D/def2-QZVPa 0.59
aCounterpoise-corrected results from Ref. 39.
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Figure 6.3: Binding energy curves for formic acid dimer. Benchmark CCSD(T)/CBS
results are taken from Ref. 7. The horizontal axis is the scaled equilibrium distance
between the centers of mass of the two monomers.

To examine whether these larger errors are systemic to ions in general, we have

computed binding energies for a database of 15 ionic H-bonded dimers,39 in which the

ionic partner is either acetate, guanidinium, methylammonium, or imidazolium. Error

statistics are listed in 6.3, and are somewhat larger than those seen for the neutral

S22 and S66 data sets. Here, the importance of monomer electron correlation and

triple-ζ basis sets is clear: absent either of those two factors, MUEs are & 1 kcal/mol

and maximum errors are 2–3 kcal/mol. This is consistent with previous XPS results

indicating that the description of H-bonded and induction-bound systems generally

improves in a systematic way with respect to basis-set quality and the treatment of

electron correlation.54 The XPS(KS)+D/TZVPP method delivers a root-mean-square

error (RMSE) of 0.56 kcal/mol for the ionic H-bonded data set, which is significantly
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Figure 6.4: Binding energy curves for (a) the “sandwich” and (b) the “T-shaped”
isomer of benzene dimer. The distance coordinate in either case is the center-to-
center distance between the benzene rings. Benchmark CCSD(T)/CBS results are
taken from Ref. 5.
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Figure 6.5: Binding energy curves for (a) F−(H2O) and (b) Cl−(H2O). The distance
coordinate is the halide–oxygen distance and the benchmarks are CCSD(T)/CBS.
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better than MP2/cc-pVTZ results and comparable to BLYP+D/def2-QZVP, but at

significantly reduced cost.

Returning to F−(H2O), we note that the PECs computed by XPS(KS)+D meth-

ods [6.5(a)] are qualitatively incorrect for intermolecular distances smaller than the

equilibrium distance. Several factors might account for this. First, no ionic systems

were used in fitting the dispersion potential. Second, this potential actually diverges

for rij ≪ Ri + Rj,
16 and we note that the van der Waals radius Ri for the anion

is larger than that of the corresponding neutral atom, which may explain the fact

that PECs for the neutral systems are accurate even at relatively short distances.

Lastly, the intermolecular interaction in F−(H2O) is known to have substantial cova-

lent character resulting from a low-energy FH · · ·OH− diabatic state,261 and as such

this system may be especially problematic for monomer-based quantum chemistry.

As a final test of XPS(KS)+D, we have computed binding energies for nucleobase

tetramers arranged in average B-DNA geometries,262 for which MP2, SCS-MP2, and

DFT-SAPT results are available.15 MP2 is known to overestimate binding energies

of π-stacked complexes,5 and SCS-MP2 is often used to reduce this systematic er-

ror.263,264 However, SCS-MP2 underestimates the binding energy of the π-stacked

uracil dimer,265 by 3 kcal/mol as compared to the CCSD(T)/CBS benchmark of

9.7 kcal/mol.38 The SCS(MI)-MP2 method,266 in which the two SCS parameters are

optimized (in a basis-set-specific way) against the S22 database, reduces this error

to 0.4 kcal/mol,265 comparable to the MUE for the S66 database obtained at the
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Table 6.4: Binding energies for nucleobase tetramers, treating each Watson-Crick
base pair as a monomer unit.

Systema binding energy / kcal mol−1

MP2/ SCS- DFT-SAPTd XPS(KS)

aTZb,c MP2/ aTZc scaled +D/aDZ′

aTZb,c disp.e

AT-AT −16.45 −11.10 −11.39 −12.41 −13.50
AT-CG −14.77 −9.33 −9.82 −10.89 −11.57
AT-GC −14.91 −9.34 −10.03 −11.12 −11.30
AT-TA −12.22 −6.62 −7.33 −8.42 −8.99
CG-AT −15.56 −10.33 −11.32 −12.36 −12.78
CG-CG −13.55 −7.99 −8.57 −9.65 −9.59
CG-GC −17.51 −11.83 −13.14 −14.30 −14.70
GC-AT −15.10 −9.83 −9.97 −10.97 −11.79
GC-CG −16.54 −11.15 −10.92 −11.97 −13.02
TA-AT −14.82 −9.96 −10.54 −11.48 −12.09
aThe notation WX-YZ means that WX and YZ are Watson-Crick

pairs. bCounterpoise corrected. cValues from Ref. 15. dIncludes the

δ(HF) correction. eIncludes empirical scaling of the dispersion

energy, as recommended in Ref. 24.

SCS(MI)-MP2/CBS level (see 6.2).10 The XPS(KS)+D/aDZ′ method exhibits com-

parable error statistics for S66.

Results for nucleobase tetramers are listed in 6.4. CCSD(T)/CBS benchmarks

are only available for base pairs, but in that case comparison to DFT-SAPT sug-

gests that the DFT-SAPT/aTZ results in 6.4 are systematically too small.247,267

For example, the DFT-SAPT/aTZ binding energy247 for the π-stacked AT dimer

is underestimated by 1.4 kcal/mol, as compared to the CCSD(T)/CBS benchmark

(11.66 kcal/mol), if the so-called δ(HF) correction117 is used in the SAPT calcula-

tion. If it is not, then the binding energy is underestimated by 3 kcal/mol. Hence, in
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perusing the DFT-SAPT/aTZ results in 6.4, one should anticipate that binding ener-

gies are underestimated by & 1 kcal/mol. At the same time, the XPS(KS)+D/aDZ′

method overestimates the π-stacked AT binding energy by 0.8 kcal/mol. Therefore,

the correct binding energies for the nucleobase tetramers probably lie between the

DFT-SAPT/aTZ and XPS(KS)+D/aDZ′ results in 6.4.

This conclusion is bolstered by DFT-SAPT results in which the dispersion energy

is scaled by an empirical factor of 1.051, suggested in Ref. 24 as a means of account-

ing for the slow basis-set convergence of this term. Scaled DFT-SAPT/aTZ binding

energies lie between the raw DFT-SAPT/aTZ results and XPS(KS)+D/aDZ′ results,

except for CG-CG where the scaled DFT-SAPT and XPS(KS)+D results are essen-

tially identical. Together, the nucleobase calculations presented here place plausible

bounds on the tetramer binding energies, and lend support to the accuracy of the

scaled DFT-SAPT/aTZ approach.24

As compared to DFT-SAPT, however, XPS(KS)+D has important advantages.

First, it avoids the supermolecular HF calculation that is required in order to compute

the δ(HF) correction. Second, the cost of XPS(KS)+D scales as O(N3) with respect

to dimer size, whereas whereas DFT-SAPT (with density fitting) scales as O(N5).

Finally, XPS(KS)+D can be extended to any number of monomer units, at O(n3) cost,

whereas DFT-SAPT is restricted to dimers only. As such, the nucleobase tetramer

calculations in 6.4 must be computed using Watson-Crick base pairs as the monomer

units, which adds significantly to the cost of DFT-SAPT.

Finally, we want to comment on the computational scaling of the XPS method.
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6.6 shows actual timings for stacking adenine clusters using the XPol, XPS(KS), and

XPS(KS)+D methods, as compared to timings for supersystem DFT calculations.

Since there are n(n − 1)/2 (n is the number of monomers) pairwise SAPT calcula-

tions in the XPS and they are completely independent of one another, we can use

the embarrassingly paralleizable version of XPS calculations to distribute each SAPT

calculation on each CPU. We name them XPS(KS) (Parallel) and XPS(KS)+D (Par-

allel) in 6.6. From 6.6, XPol and XPS calculations are apparently less expensive than

supersystem calculations as also pointed out before,65 furthermore, the cost for the

XPS calculations can be reduced to O(n) as XPol if the embarrassingly parallelizable

version of XPS is used. In other words, the cost of XPS(KS)+D (Parallel) calcula-

tion scales linearly with the number of monomers and such low cost scaling makes

XPS(KS)+D (Parallel) flexible for large many-body systems.

In summary, the expensive and problematic sum-over-states dispersion terms in

XPS(KS) have been replaced by empirical atom-atom potentials, resulting in a cubic-

scaling method that we call XPS(KS)+D. Using a “tuned” LRC functional227,230 and

modest basis sets, the method exhibits an accuracy that is comparable to or better

than MP2, SCS-MP2, SCS(MI)-MP2, and CCSD results extrapolated to the basis set

limit. Potential energy curves for difficult systems are accurate across a range of inter-

molecular distances, with the exception of F−(H2O) at short distances. XPS(KS)+D

provides an alternative to DFT-SAPT and SAPT(DFT) methods137,161 for computing

binding energies of DNA nucleobases, and we have used these approaches together

to obtain the best estimates to date of the binding energies for nucleobase tetramers.
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Figure 6.6: Wall time required for XPol, XPS(KS), XPS(KS)+D, and supersystem
DFT calculations in stacking (adenine)n . All the calculations use LRC-ωPBEh func-
tional with CHF = 0.6 combined with the aDZ′ basis set. The wall time for the
embarrassingly paralleizable version of XPS calculations is also shown.

The low-order scaling of XPS(KS)+D makes this a promising method for use in

fragment-based drug design, although the performance for ions suggests that exten-

sions to larger basis sets, and a more extensive parameterization of the dispersion

potential, may be in order. Such work is currently underway in our group.
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CHAPTER 7

An improved treatment of empirical dispersion

and a many-body energy decomposition scheme for

the explicit polarization plus symmetry-adapted

perturbation theory (XSAPT) method7.1

7.1 Introduction

Electronic structure theory has been made a enormous progress over the past several

decades, yet the “gold standard” of chemical accuracy, CCSD(T), remains out of reach

for most systems. For calculation of non-covalent interactions, which is the topic of the

present work, CCSD(T)/aug-cc-pVTZ calculations on (H2O)20 represent the present

state-of-the-art,268 and are only feasible on massively parallel architectures. Second-

order Møller-Plesset perturbation theory (MP2) is tractable in larger systems but

overestimates binding energies in cases where the binding is dominated by dispersion

interactions.207 Various strategies have been used to correct this deficiency, including

spin-component scaled (SCS) MP2 methods,269,270 sometimes with parameters fit

specifically for non-covalent interaction energies,266 and also MP2.X methods that

combine MP2 and MP3 results in an empirical way.271 These methods achieve a

7.1This chapter appeared as a full article in the Journal of Chemical Physics, in 2013, volume 139,
pages 034107:1–16.
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mean accuracy of . 0.4 kcal/mol with respect to complete-basis CCSD(T) binding

energies,272 but scale no better than O(N5) with respect to total system size, N .

Density functional theory (DFT) is more affordable but many of the most popular

functionals afford a poor description of dispersion interactions.143,273 One strategy to

circumvent this problem is to introduce a rather large number of empirical parameters

into the functional,142,201 then optimize these parameters using data sets that include

weak interactions. The M06-2X functional142 is a popular example of this approach.

Alternatively, one might attempt to capture the dispersion interactions directly by

means of classical atom–atom potentials, typically with r−6 dependence.11,143,254 Such

approaches fall under the moniker “DFT-D”, and are often able to reproduce higher-

level calculations rather well.11,13,206,274 The ωB97X-D functional201 is a popular ex-

ample. Grimme et al.274 have recently introduced a “third generation” (DFT-D3)

correction that further improves the description of non-bonded interactions, in func-

tionals such as ωB97X-D3.13 Finally, dispersion can be introduced into DFT by means

of non-local correlation functionals.145–147 The LC-VV10 functional147 is an example

of such an approach, which has recently been shown to exhibit outstanding per-

formance for many types of intermolecular interactions.12 The description of weak

interactions in DFT has thus come a long way in the past few years, yet none of these

methods scales better than O(N3). As such, these DFT methods are still not feasible

for applications to molecular liquids or biomolecules.

Fragment-based approaches43,44,71,275–277 do provide a relatively affordable route

to computing binding energies in large systems, by partitioning the supersystem into
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subsystems (fragments). In particular, our group has developed a low-cost, monomer-

based approach that we call XPol+SAPT (XSAPT).44,54,55,65 This approach starts

from the variational explicit polarization (XPol) method,252 which is used to capture

many-body polarization effects by means of a charge-embedded, monomer-based self-

consistent field (SCF) calculation. In a subsequent step, we apply a pairwise-additive

form of symmetry-adapted perturbation theory (SAPT).115,117,149 The resulting XS-

APT method generalizes traditional SAPT from two-body to many-body systems.

The wall time for an XSAPT calculation scales as O(n) with respect to the number

of monomers, n, assuming that we have nC2 processors to run in “embarrassingly

parallel” mode for the second-order SAPT calculations, and is O(n3) even in serial

mode.55 When a Hartree-Fock (HF) description of the monomers is used in the XPol

calculation, in conjunction with a suitable basis set, errors in dimer binding energies

computed by XSAPT lie within 1 kcal/mol of high-level benchmarks.54,65

One might try to improve on this accuracy by using instead a Kohn-Sham (KS) de-

scription of intramolecular electron correlation, in what we have termed XSAPT(KS).44

However, this approach suffers from the same problem as SAPT(KS),162,208 namely,

significant overestimation of dispersion energies.54 Ironically, the dispersion and exch-

ange-dispersion terms in SAPT(KS) are not only the least accurate ones, but also the

most expensive to compute, scaling as O(N4) and O(N5), respectively, with respect

to monomer size, N . For this reason, we recently introduced XSAPT(KS)+D,55 in

which the sum-over-states (uncoupled Hartree-Fock278) dispersion formula in second-

order SAPT(KS) is replaced by empirical atom–atom potentials developed for this
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purpose by Hesselmann.16 In conjunction with a double-ζ basis set, XSAPT(KS)+D

exhibits mean errors in binding energies of < 0.5 kcal/mol for the S22A data set38

and the larger (and more balanced) S66 data set.10 In this respect, XSAPT(KS)+D is

superior to various MP2-type methods extrapolated to the complete basis-set (CBS)

limit, and methods containing triple excitations are required in order to do better.44

In traditional SAPT, the interaction energy decomposes naturally according to

ESAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + · · · .

(7.1)

All terms up to second order in the intermolecular interaction are listed explicitly,

with subscripts that denote electrostatic (elst), exchange (exch), induction (ind), and

dispersion (disp) contributions. This work is mainly focused on developing a similar

interaction-energy decomposition scheme for XSAPT, and comparing the various en-

ergy components to dimer SAPT results for the S22A.37 In the course of this analysis,

we discovered that the original XSAPT(KS)+D method does not do a good job of

reproducing individual energy components, and thus its favorable performance for

binding energies is due in no small part to error cancellation. This led us to pursue

a “second generation” dispersion correction (“+D2”), using alternative dispersion

potentials developed by Podeszwa et al.244

7.2 Theory

7.2.1 Energy decomposition scheme

The success of XSAPT is based on the fact that the many-body (MB) or non-

pairwise–additive contribution to cluster binding energies is dominated by induction
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interactions, whereas electrostatic, exchange-repulsion, and dispersion interactions

are strictly or nearly pairwise additive.8,251,279–282 In the context of XPol-SAPT, it

makes sense to define the MB contribution to the interaction energy, EMB
int , according

to

EMB
int = EXSAPT

int −
∑

A

∑

B<A

EXSAPT
AB , (7.2)

where EXSAPT
int is the overall XSAPT interaction energy and EXSAPT

AB is the interaction

energy for dimer A · · ·B. The SAPT part is pairwise additive by construction (we do

not consider the three-body SAPT terms derived by Lotrich et al.249,250). Thus, the

total SAPT interaction energy for a collection of monomers is

ESAPT
int =

∑

A

∑

B<A

ESAPT
AB . (7.3)

Addition of Eqs. (7.2) and (7.3) affords

EMB
int = EXSAPT

int − ESAPT
int −

∑

A

∑

B<A

(
EXSAPT

AB − ESAPT
AB

)
. (7.4)

The SAPT interaction energy can be decomposed as in Eq. (7.1) and substituted into

Eq. (7.4), with the result rewritten as

EXSAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + · · ·

+
∑

A

∑

B<A

(EXSAPT
AB − ESAPT

AB ) + EMB
int .

(7.5)

Equation (7.5) is the interaction-energy decomposition scheme for XSAPT. This

energy decomposition analysis requires two sets of calculations. First, traditional

SAPT calculations are performed on all pairs of monomers, to obtain pairwise elec-

trostatic, exchange, dispersion, and induction terms. Second, and XSAPT calculation

169



must be performed on the entire system, which provides not only EMB
int but also the

rest of induction terms that are missing in the first set of calculations. These are

defined by the double sum in Eq. (7.5).

It is common in SAPT calculations to solve coupled-perturbed Hartree-Fock (CP-

HF) equations and thereby include an infinite-order response correction for polariza-

tion in the presence of a frozen partner density.114 In contrast, the XSAPT method

treats polarization self-consistently in the XPol step. As such, the infinite-order

response correction for induction should be included exactly by the XPol part of

the calculation (with further induction corrections vanishing), if the XPol calcula-

tion is performed using density embedding,276 that is, if monomer SCF densities are

used to compute the electrostatic interactions between the monomers in the self-

consistent XPol calculation. We do not pursue this possibility here, but instead use

atom-centered point charges to do the embedding, as in previous work.54,55,65 This

procedure is significantly less expensive (especially if the monomers are large), and

implicitly includes some higher-order induction effects into the zeroth-order XPol

monomer energies.65 Therefore, the energy difference between XSAPT and SAPT for

all pairs of dimers [the double sum in Eq. (7.5)] partly includes the infinite-order

response correction for induction. In addition, some higher-order induction effects

are captured by the δEHF
int correction130,131 that is discussed below.

It is common to truncate the SAPT interaction energy at second order in Eq. (7.5)

and incorporate higher-order polarization effects by adding a correction

δEHF
int = EHF

int −
(
E

(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
exch-ind,resp

)
(7.6)
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to the interaction energy. The “response” (resp) subscripts indicate that the infinite-

order response correction for induction is incorporated by solving CPHF equations,

and EHF
int is the counterpoise-corrected HF binding energy for the dimer. It is rec-

ommended to include δEHF
int term in SAPT calculations involving polar monomers,

because induction corrections converge slowly for polar molecules.130,131 Furthermore,

we find that δEHF
int is necessary in traditional SAPT calculations, not only to obtain

quantitative binding energies but also to obtain qualitatively correct potential energy

surfaces for induction-dominated systems.50 In the present work, we assume that this

correction term is pairwise additive for many-body XSAPT calculations,

δEHF
int =

∑

A

∑

B<A

δEHF
AB . (7.7)

The quality of the results presented herein indicates that this assumption is quite

robust.

Adding the δEHF
int correction term to Eq. (7.5), the XSAPT interaction energy

becomes
EXSAPT

int = E
(1)
elst + E

(1)
exch + E

(2)
disp + E

(2)
exch-disp

+

[

E
(2)
ind + E

(2)
exch-ind +

∑

A

∑

B<A

δEHF
AB

+
∑

A

∑

B<A

(EXSAPT
AB − ESAPT

AB ) + EMB
int

]

.

(7.8)

Those terms in square brackets are regarded as the total induction energy, and the

total dispersion energy is E
(2)
disp+E

(2)
exch-disp. One may argue that this procedure double-

counts the higher-order induction terms since both the XPol SCF procedure and δEHF
int

are included those terms. In the charge-embedded, monomer-based SCF calculation

for XPol, both infinite-order response and higher-order corrections for induction are
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only partly included. Furthermore, we assume that the δEHF
int correction term is

pairwise for the many-body system. Thus, this approach relies partly on cancellation

of errors to provide meaningful results. However, thorough comparisons to benchmark

calculations will show that this interaction-energy decomposition scheme is accurate

and robust.

7.2.2 Second-generation dispersion potential

Our original XSAPT(KS)+D method55 was based on empirical atom–atom disper-

sion potentials developed for SAPT(KS) by Hesselmann.16 Here, we test a second-

generation (“+D2”) version of XSAPT that employs an alternative dispersion poten-

tial developed by Podeszwa et al.:244

EdlDF
disp = −

∑

i∈A

∑

j∈B
(B 6=A)

[
Cij,6

r6ij
f6(βijrij) +

Cij,8

r8ij
f8(βijrij)

]

(7.9)

where Cij,6 = (Ci,6Cj,6)
1/2 (similar for Cij,8) and βij = (βiβj)

1/2. This empirical

potential has previously been used to correct the results of a “dispersionless” density

functional (dlDF),6,244 hence the notation EdlDF
disp . The indices i and j in Eq. (7.9)

represent nuclei located on different monomers and

fn(rij) = 1− exp(−rij)
n∑

m=0

rmij
m!

(7.10)

is the Tang-Toennies damping function.283 The quantities Ci,6, Ci,8, and βi are pa-

rameters that are fit to reproduce SAPT(DFT) dispersion energies (E
(2)
disp +E

(2)
exch-disp)

for a training set of dimers.244 For hydrogen the values of these parameters depend

upon the identity of the nearest-neighbor atom.
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The Hesselmann and Podeszwa dispersion potentials were parameterized in com-

pletely different ways. Podeszwa’s dispersion force field was fitted directly to a set

of E
(2)
disp +E

(2)
exch-disp values computed using SAPT(DFT),161 for a large training set of

dimers. Hesselmann’s dispersion potential was fitted to reproduce benchmark inter-

molecular interaction energies for the S22 data set.16 Therefore, Podeszwa’s potential

seems better suited for use in our energy decomposition scheme, since it constitutes

an well-defined dispersion component. As in our previous work,55 we refer to results

using Hesselmann’s dispersion potential as XSAPT(KS)+D, whereas results using

Eq. (7.9), which are presented here for the first time, will be called XSAPT(KS)+D2.

7.2.3 Basis sets and functionals

Our tests indicate that obtaining good results for different energy components requires

triple-ζ basis sets augmented with diffuse functions. However, a large number of

diffuse functions may cause overpolarization of the monomer-based wave function

in the XPol step,284 especially for anions. As a compromise, all calculations were

evaluated using “heavy augmented” basis sets that have diffuse functions only on

non-hydrogen atoms. Our basis set of choice is the second-generation Ahlrichs triple-

ζ basis set, def2-TZVPP,197 which exhibits the smallest mean unsigned error for S22A

amongst many basis sets.54,65 We augment def2-TZVPP with diffuse functions taken

from Dunning’s aug-cc-pVTZ (aTZ) basis set. We will denote this heavy-augmented

version of def2-TZVPP as ha-TZVPP (haTZ).

We use long-range-corrected (LRC) density functionals226–228,240 to obtain cor-

rect asymptotic behavior, as in previous work.55 Specifically, we employ two LRC
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functionals based on the short-range ωPBE exchange functional.222 One of these

(LRC-ωPBEh227) also contains 20% short-range Hartree-Fock exchange, whereas the

other (LRC-ωPBE240) does not. The range separation parameter (ω) is determined

by system-specific tuning230 to satisfy the condition

εHOMO = −IP , (7.11)

where “IP” denotes the lowest ionization potential. For clusters of monomers, we

previously took ω for the supersystem to be the one corresponding to the lowest

monomer IP,55 on the assumption that the non-covalent interactions would not sig-

nificantly affect the IPs (hence the lowest monomer IP equals the cluster IP). As such,

the same value of ω was used for all monomers in the cluster calculations reported

in Ref. 55. Subsequently, we discovered that the results could be significantly im-

proved in certain cases by using different ω values for different monomers, in order

to obtain an exact asymptotic correction (AC) for each monomer unit, as is done in

the SAPT(DFT) method161 and the DFT-SAPT method.137 In the present work, we

compare these two approaches, using the designation “(AC)” whenever different ω

values are used for different monomers. Tuned ω values for the monomers considered

here are provided in the Supplementary Material.

Our tests indicate that errors for the exchange energy components increase with

increasing fraction of short-range HF exchange in the LRC functional. Furthermore,

we find that Podeszwa’s dispersion potential [Eq. (7.9)] gives lower errors for disper-

sion components as compared to Hesselmann’s potential. We expect that Podeszwa’s

potential works well with pure functionals in the short range since both exchange
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and dispersion components give lower errors. Actually, the LRC-ωPBE functional

gives better results when used with Podeszwa’s dispersion potential and the LRC-

ωPBEh functional is more suitable to use with Hesselmann’s dispersion force field,

and for this reason we use LRC-ωPBEh for XSAPT(KS)+D and LRC-ωPBE for XS-

APT(KS)+D2, with the haTZ basis set in either case. As in our previous work,55

the parameter sβ in Hesselmann’s dispersion potential16 was optimized in a basis-

set-specific way, using the S22A dimer binding energies38 as benchmarks. The fitted

values of sβ for several different basis sets are listed in the Supplementary Material.

In consideration of computational cost, it is not feasible to use a triple-ζ basis

set to do a δEHF
int calculation for large monomers, even with the pairwise-additive

approximation used here. We find that the 6-31+G(3d,3pd) basis set affords δEHF
int

estimates comparable to those obtained using triple-ζ basis sets. Comparing this

basis set to def2-TZVPP augmented with Pople diffuse sp functions on non-hydrogen

atoms, the unsigned difference in the δEHF
int corrections for S22A data set is only

0.02 kcal/mol. Thus, we use the smaller 6-31+G(3d,3pd) basis set to compute the

δEHF
int corrections throughout this work.

Previously, we showed55 that XSAPT(KS)+D combined with the partially-aug-

mented aug-cc-pVDZ′ (aDZ′) basis set157,158 outperforms MP2/CBS and related SCS-

MP2/CBS methods, so XSAPT(KS)+D/aDZ′ results are presented here as well, for

comparison. The aDZ′ and TZVPP basis sets gave the best results for the XS-

APT(HF) method,54,65 so we also include them in this work.

All XSAPT calculations reported here use smooth ChElPG embedding charges54
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for the XPol calculations and “projected” (pseudocanonical dimer) basis sets65 for the

SAPT corrections. For supersystem DFT calculations, the def2-QZVP basis set was

used. The Euler-Maclaurin-Lebedev (99,590) quadrature grid was used for all semi-

local functionals and the (75,302) grid was used for LC-VV10 calculations, except

in the case of the F−(H2O)10 clusters where considerations of cost led us to use a

(75,302) grid for the semi-local functionals and a (50,194) grid for LC-VV10.

7.2.4 Computational benchmarks

For dimer benchmarks, we use the CCSD(T)/CBS results in the S22A and S66 data

sets.10,38 (The S22A database revises the energetics of the original S22 database.186)

Benchmark results for the Ar· · ·Ne potential energy curve (dlDF+Das/aTZ level)

were taken from Ref. 6. CCSD(T)/CBS potential curves for (C6H6)2 were taken

from Ref. 5, and for F−(H2O) and Cl−(H2O) from Ref. 55.

For benchmarks of individual energy components for the S22 data set, we use the

SAPT2+(3)/aTZ results from Ref. 37, since this is the most accurate SAPT method

for S22A binding energies.117

For the F−(H2O)n and Cl−(H2O)n clusters (n ≤ 6), structures were optimized

at the MP2/aTZ level of theory and the MP2/CBS correlation energy was estimated

using a two-point (aTZ and aQZ) extrapolation. This extrapolated correlation energy

was added to the HF/aQZ energy to estimate the MP2/CBS energy. In the n = 1

case, a triples correction was added to the MP2/CBS energy, based on the difference

between CCSD(T)/aTZ and MP2/aTZ energies, and this corrected result is reported

as the CCSD(T)/CBS energy. We also optimized ten isomers of F−(H2O)10 at the
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PM7 level.285 Resolution-of-identity MP2 (RIMP2) energies in the CBS limit were

obtained as indicated above, except that the HF/aTZ and HF/aQZ energies were com-

puted in this case using a dual-basis approximation.286,287 All of the aforementioned

single-point calculations were counterpoise corrected according to the Boys-Bernardi

scheme.74 Coordinates and benchmark energetics for these halide–water clusters are

available in the Supplementary Material.

The SAPT2+(3)/aTZ calculations for F−(H2O) and Cl−(H2O) were performed

using the sapt 2008.2 program132 with integrals generated by the atmol pro-

gram.133 The PM7 geometry optimizations were performed using the mopac 2012

software.288 All other calculations were performed using a locally-modified version of

Q-Chem.242,243

7.3 Results and discussion

7.3.1 S22 and S66 data sets

Interaction energies calculated using XSAPT, traditional SAPT, the effective frag-

ment potential (EFP) method,275 and several post-HF methods are compared to

benchmark CCSD(T)/CBS results for the S22A data set in Table 7.1. The mean un-

signed error (MUE) for high-level SAPT2+(3)/aTZ calculations is 0.32 kcal/mol,37

and is just a little bit worse than the SCS(MI)-MP2/CBS and SCS-CCSD/CBS

results.38 The SAPT2+(3) and XSAPT-based results are all better than the EFP

and MP2/CBS results. As noted previously,37 EFP results are quite poor (MUE =

1.79 kcal/mol) when S22 geometries are used, but the MUE is reduced to 0.91 kcal/mol

177



Table 7.1: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), with respect to CCSD(T)/CBS benchmarks for the S22A data set along with
subsets consisting of the hydrogen-bonded dimers, dispersion-dominated dimers, and
dimers of mixed influence. All calculations were performed at S22 geometries except
one of the EFP results.

Method H-Bonded Disp.-bound Mixed All S22
XSAPT(HF)/aDZ′ 0.60 (6.55) 0.85 (32.06) 0.30 (9.32) 0.60 (16.70)
XSAPT(HF)/TZVPP 0.40 (3.63) 0.78 (21.99) 0.37 (10.09) 0.53 (12.36)
XSAPT(KS)+D/aDZ′ 0.73 (5.93) 0.38 (9.87) 0.52 (12.31) 0.53 (9.39)
XSAPT(KS)+Da 0.76 (6.54) 0.30 (7.34) 0.32 (7.26) 0.45 (7.06)
XSAPT(KS)+D (AC)a 0.62 (5.91) 0.41 (7.95) 0.40 (9.19) 0.47 (7.70)
XSAPT(KS)+D2a 0.88 (5.54) 0.99 (15.17) 0.35 (7.24) 0.75 (9.58)
XSAPT(KS)+D2 (AC)a 0.72 (4.57) 1.18 (15.88) 0.52 (11.82) 0.82 (10.99)
SAPT2+(3)b 0.42 (4.09) 0.41 (8.79) 0.13 (4.64) 0.32 (5.98)
EFP (S22 geoms.)c 2.93 (19.53) 1.70 (42.62) 0.76 (17.43) 1.79 (27.26)
EFP (EFP geoms.)d 1.97 (14.51) 0.48 (13.10) 0.34 (7.39) 0.91 (11.73)
MP2e 0.24 1.69 0.61 0.88
SCS-MP2e 1.54 0.55 0.37 0.80
SCS(MI)-MP2e 0.30 0.37 0.17 0.28
SCS-CCSDe 0.40 0.23 0.08 0.24
aUsing the ha-TZVPP basis set and the δEHF

int correction. bUsing the aTZ basis set, from Ref. 37.

cFrom Ref. 37. dUsing EFP-optimized geometries, from Ref. 37. eCBS limit, from Ref. 38.

at EFP geometries. This suggests that the XSAPT results might also improve if

XSAPT-optimized geometries were used (an assertion that is supported by some lim-

ited finite-difference optimizations54,65), but we have not explored this possibility, as

analytic gradients for XSAPT are not available.

The XPol procedure was originally developed as a “next generation” force field,9,289

where it was combined with pairwise Lennard-Jones (LJ) potentials to account for

short-range exchange repulsion and long-range dispersion interactions. LJ parameters
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were optimized in Ref. 9 at the B3LYP/6-31G(d) level using 105 hydrogen-bonded

dimers. However, we find that this XPol-LJ method affords very poor binding ener-

gies for the S22A data set, with a MUE of 3.29 kcal/mol. (The method furthermore

predicts that three of the dispersion-dominated dimers are not bound at all.) It was

argued in Ref. 9 that the LJ parameters are optimized especially for the hydrogen-

bonded systems and that XPol-LJ should provide a good description of hydrogen-

bonded interactions. However, for the H-bonded subset of S22, the MUE remains

large, 3.16 kcal/mol. This is the reason why we need to use SAPT to capture the rest

of interaction following an XPol calculation.

The results for XSAPT(KS)+D are better than those for XSAPT(KS)+D2, but

one should recall that in developing the original “+D” dispersion potential, we specif-

ically optimized one parameter (sβ) to minimize errors for S22A binding energies.

The main source of error in XSAPT(KS)+D2 comes from dispersion-dominated com-

plexes, especially the π-stacked uracil dimer and π-stacked adenine-thymine com-

plex, where the errors are 3 and 4 kcal/mol, respectively, and the primary source of

these errors is error in the dispersion component of the potential. For uracil dimer,

the D2 dispersion potential overestimates the SAPT2+(3)/aTZ dispersion energy by

1.8 kcal/mol, and for adenine-thymine by 2.0 kcal/mol. Although we do not under-

stand in detail the origin of these errors, it is noteworthy that of the 79 dimers used

as a training set for the D2 dispersion potential, the only π-stacked systems are the

sandwich isomer of benzene dimer (for which our method performs very well, as dis-

cussed below), and the pyrazine dimer.244 Thus, some refinement for larger π-stacked
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Table 7.2: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), for individual energy components of the S22 data set, with respect to bench-
marks computed at the SAPT2+(3)/aTZ level.37 All calculations were performed at
S22 geometries.

Method Electrostatic Exchange Induction Dispersion
XSAPT(HF)/aDZ′ 0.69 (10.74) 2.84 (18.87) 1.92 (61.80) 1.25 (21.95)
XSAPT(HF)/TZVPP 0.41 (7.35) 2.16 (13.43) 1.70 (58.56) 0.60 (9.04)
XSAPT(KS)+D/aDZ′ 0.64 (13.37) 3.34 (25.10) 1.86 (60.20) 1.37 (18.08)
XSAPT(KS)+Da 0.35 (7.07) 0.81 (6.16) 0.25 (14.22) 0.55 (7.96)
XSAPT(KS)+D (AC)a 0.37 (7.54) 0.98 (7.77) 0.20 (11.30) 0.62 (8.52)
XSAPT(KS)+D2a 0.32 (6.31) 0.57 (4.81) 0.23 (12.01) 0.38 (6.68)
XSAPT(KS)+D2 (AC)a 0.36 (7.16) 0.72 (6.46) 0.23 (11.11) 0.38 (6.68)
EFPb 2.03 (34.26) 2.29 (16.53) 1.71 (50.73) 0.80 (12.61)
aUsing the ha-TZVPP basis and the δEHF

int correction. bFrom Ref. 37.

systems may be in order.

If we eliminate these two π-stacked systems from the data set, then the MUE

for XSAPT(KS)+D2/haTZ (AC) is reduced to 0.34 kcal/mol for the dispersion-

dominated subset and 0.54 kcal/mol the entire S22A data set. It is not intuitively

obvious why the results for XSAPT(KS)+D are much better than the results for

XSAPT(KS)+D2 in the dispersion-dominated subset, since the “+D2” dispersion

potential is fit directly to dispersion energies (E
(2)
disp + E

(2)
exch-disp) computed using

SAPT(DFT).

The individual XSAPT energy components (electrostatics, exchange, induction,

and dispersion), listed in Table 7.2, provide a clue as to the main sources of error.

The MUE for the dispersion energy obtained using XSAPT(KS)+D2 is actually bet-

ter than the corresponding MUE for XSAPT(KS)+D. As such, the larger errors in
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XSAPT(KS)+D2 binding energies for dispersion-dominated dimers must arise from

unsatisfactory error cancellation between the different energy components. This un-

satisfactory cancellation of errors makes the XSAPT(KS)+D2 results slightly worse

than XSAPT(HF) results, as shown in Table 7.1. For XSAPT(KS)/haTZ with em-

pirical dispersion, using the exact AC for different monomers is a little bit worse

than using the same ω value for the whole system as compared to their errors with

respect to CCSD(T)/CBS benchmark for the S22A data set. The cancellation of

errors does not work so well in S22A data set when using exact AC. However, it

seems necessary to use the exact AC for different monomers for hydrogen-bonded

systems because XSAPT(KS)+D2 (AC) affords a lower MUE (0.72 kcal/mol) than

does XSAPT(KS)+D2 (0.88 kcal/mol) for the H-bonded subset of S22A.

For the XSAPT(HF)/aDZ′, XSAPT(HF)/TZVPP, and XSAPT(KS)+D/aDZ′ met-

hods, MUEs for the various energy components with respect to SAPT2+(3)/aTZ are

quite large as shown in Table 7.2. Insofar as these methods provide good results

for binding energies, it is clear that cancellation of errors must play a significant

role. XSAPT(KS)/haTZ methods with empirical dispersion potentials and δEHF
int

corrections give very good results for individual energy components, especially XS-

APT(KS)+D2. The electrostatic and exchange energies predicted by XSAPT(KS)+D

and XSAPT(KS)+D2 with exact AC are a bit worse than the corresponding results

without using exact AC, or in other words, a bit farther from the SAPT2+(3) results.
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SAPT2+(3)/aTZ was selected as a benchmark for the individual energy com-

ponents because it is the most accurate version of SAPT for the S22A binding en-

ergies.117 It is possible, however, that SAPT2+(3)/aTZ energy components do not

accurately represent the exact values, owing to truncation of either the basis set or the

perturbation series. For example, intramolecular electron correlation contributions to

the electrostatic and exchange energies in SAPT2+(3) are truncated at

ǫ
(1)
elst,resp(3) = E

(12)
elst,resp + E

(13)
elst,resp (7.12)

and

ǫ
(1)
exch(2) = E

(11)
exch + E

(12)
exch , (7.13)

respectively. However, the convergence behavior is improved if these are replaced by

ǫ
(1)
elst,resp(CCSD) and ǫ

(1)
exch(CCSD), computed at the CCSD level.235,290,291 Due to the

high computational cost for some of the larger dimers in the S22 data set, we don’t

consider this possibility in the present work, and treat SAPT2+(3)/aTZ is a good

benchmark.

Examining the EFP results in Table 7.2 (which are taken from Ref. 37), we

observe that the MUEs for the individual energy components are very large. For

two of the dispersion-dominated complexes (π-stacked benzene dimer and π-stacked

indole-benzene), the electrostatic interactions are even predicted to be repulsive by

EFP.37 On average, EFP underestimates electrostatic and induction energies in al-

most all strongly hydrogen-bonded complexes, by several kcal/mol, probably owing

to insufficient capture of charge penetration by the screening function that is applied

to the multipolar electrostatics.37 Furthermore, neglect of the charge-transfer term
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in the EFP potentials is another source of error for induction energies, especially

for hydrogen-bonded complexes.37 The exchange energies are always underestimated

by EFP, which may be caused by neglect of intramolecular correlation effects that

are captured by SAPT.37 Of the various EFP energy components, the dispersion

energy best agrees with SAPT2+(3) results, although Podeszwa’s (+D2) dispersion

potentials provide better agreement.

Another energy decomposition scheme based on the supermolecular method was

proposed long ago by Kitaura and Morokuma,292 and is conventionally known as

energy decomposition analysis (EDA). Although the definitions of different energy

components in the SAPT and EDA methods are different, they share a common term:

electrostatic interaction. Given the same molecular geometry and level of theory,

the electrostatic term calculated by SAPT should be similar to the corresponding

term computed by EDA. For the S22A data set, the MUE of the electrostatic term

calculated by EDA at the BLYP-D3/TZ2P level is 0.32 kcal/mol,293 quite similar to

XSAPT(KS)/haTZ results with empirical dispersion. In short, our interaction-energy

decomposition scheme is accurate and can be extended to many-body systems that

are not amenable to traditional SAPT energy decomposition.

Table 7.3 presents errors in binding energies, as compared to CCSD(T)/CBS

benchmarks, for the S66 data set.10 This set includes 66 weakly-bound dimers repre-

senting binding motifs commonly found in biomolecular structures, and is thought to

be more balanced than S22 with respect to different types of interactions. Although

the original S66 binding energies10 have been revised,35 the revised values are only
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Table 7.3: Mean unsigned errors (MUEs), in kcal/mol, and percent errors (in paren-
theses), with respect to CCSD(T)/CBS benchmarks for the S66 data set along with
subsets consisting of the hydrogen-bonded dimers, dispersion-dominated dimers, and
dimers of mixed influence. All calculations except the EFP ones were performed at
S66 geometries.

Method H-Bonded Disp.-bound Mixed All S66
XSAPT(HF)/aDZ′ 0.26 (3.46) 0.83 (27.66) 0.45 (11.32) 0.54 (15.27)
XSAPT(HF)/TZVPP 0.36 (6.07) 0.44 (14.51) 0.36 (7.48) 0.39 (9.86)
XSAPT(KS)+D/aDZ′ 0.28 (4.00) 0.22 (9.06) 0.34 (8.01) 0.27 (7.04)
XSAPT(KS)+Da 0.46 (5.13) 0.38 (13.46) 0.35 (7.50) 0.40 (9.11)
XSAPT(KS)+D (AC)a 0.37 (3.98) 0.34 (12.25) 0.34 (7.75) 0.35 (8.28)
XSAPT(KS)+D2a 0.49 (5.55) 0.34 (11.13) 0.47 (8.33) 0.42 (8.51)
XSAPT(KS)+D2 (AC)a 0.34 (3.15) 0.31 (10.06) 0.53 (9.69) 0.38 (7.56)
EFPb 0.79 0.65 0.35 0.61
B97-D3c 0.26 0.32 0.19 0.26
BLYP-D3c 0.40 0.46 0.31 0.39
B2PLYP-D3c 0.50 0.13 0.15 0.26
M06-2Xc 0.24 0.35 0.25 0.28
ωB97X-Dd 0.16 0.58 0.24 0.33
MP2e — — — 0.45
SCS-MP2e — — — 0.74
SCS(MI)-MP2e — — — 0.28
CCSDe — — — 0.62
SCS-CCSDe — — — 0.15
aUsing ha-TZVPP and the δEHF

int correction. bUsing EFP-optimized geometries, from Ref. 37.

cUsing def2-QZVP, from Ref. 11. dUsing 6-311++G(3df,3pd), from Ref. 13. eCBS limit, from

Ref. 10.
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marginally different; the MUE between the original and the revised binding energies

is 0.08 kcal/mol. We use the original binding energies here, to facilitate comparison

to some published ab initio and DFT results.10,11 As shown in previous work,55 the

XSAPT(KS)+D/aDZ′ method affords good cancellation of errors and gives very good

results for S66 (MUE = 0.27 kcal/mol). A few supersystem DFT methods have been

identified that yield comparable MUEs,11 including M06-2X, ωB97X-D, BLYP-D3,

and B97-D3, and also the double-hybrid B2PLYP-D3 method, and S66 error statis-

tics for these methods are listed in Table 7.3. (Note, however, that a quadruple-ζ

basis set was used in most of these DFT benchmarks,11 so these DFT calculations

are considerably more expensive than the XSAPT(KS)+D calculations.) For the -D

and -D3 functionals, the classical dispersion potential is crucial to achieving MUEs of

∼0.3 kcal/mol. In the case of B2PLYP, for example, the MUE is reduced from 1.60

to 0.26 kcal/mol when the D3 correction is added.11

For XSAPT(KS)/haTZ, in both its -D and -D2 form, we obtain MUEs of ∼

0.4 kcal/mol when the δEHF
int correction is applied. This is superior to MP2, SCS-

MP2, and CCSD results in the CBS limit, and superior also to EFP results. For

XSAPT(KS)+D2/haTZ (AC), the maximum error is about 3 kcal/mol for the π-

stacked uracil dimer. The same system affords the maximum error in the S22 data

set, and the MUE for S66 is reduced to 0.33 kcal/mol if we eliminate this problematic

complex. Using the exact AC for XSAPT not only reduces the MUE for the H-bonded

subset, as in the S22A data set, but also lowers the overall MUE as well. This suggests

that using the exact AC (i.e., different ω values for different monomers) is important
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in general purpose XSAPT calculations, as is found also in SAPT(DFT) and DFT-

SAPT calculations.162,163

7.3.2 Potential energy curves

The error statistics for S22A and S66 binding energies demonstrate that XSAPT(KS)

methods with empirical dispersion potentials provide a good description of a wide vari-

ety of non-covalent interactions at their van der Waals (vdW) minima. It is important

also to know how these methods perform across the whole range of intermolecular

distances, so in this section we examine some one-dimensional potential energy curves

(PECs).

The Ar· · ·Ne interaction potential is thought to be a difficult case since several

DFT methods, which are recommended for non-covalent interactions and which pre-

dict an accurate value of the Ar· · ·Ne binding energy at the CCSD(T) vdW mini-

mum, afford qualitatively incorrect PECs for this system.6,55 Figure 7.1 compares the

Ar· · ·Ne interaction potentials given by various methods. XSAPT(KS)+D provides

a good description of the whole range PECs for this system, with XSAPT(KS)/haTZ

+ δEHF
int affording especially good results, although using the exact AC leads to slight

overestimation of the interaction energy in the vicinity of the vdW minimum.

In Fig. 7.1(b), we also compare XSAPT(KS)+D2/haTZ to DFT results obtained

using the def2-QZVP basis set. The DFT methods selected for this comparison

have been shown to yield accurate binding energies for the dispersion-dominated

subset of S66.11,12 Of these DFT methods, M06-2X overestimates the well depth at

the minimum-energy geometry, as demonstrated previously.6 B2PLYP-D3, which has
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Figure 7.1: Potential energy curves for Ar· · ·Ne: (a) comparison of various XSAPT
methods, and (b) comparison of XSAPT and DFT methods. Benchmark results
were computed using a “dispersionless” density functional (dlDF) augmented with a
dispersion correction (the dlDF+Das/aTZ method of Ref. 6). The δEHF

int correction is
included in the XSAPT(KS)/haTZ methods with empirical dispersion potentials. For
DFT methods, the def2-QZVP basis set is used Boys-Bernardi counterpoise correction
is applied.
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the smallest MUE of any DFT-based method for the dispersion-dominated subset of

S66 (see Table 7.3), affords an Ar· · ·Ne well that is much too shallow. The popular

ωB97X-D functional201 shifts the minimum-energy distance significantly as compared

to other methods; the ωB97X-D minimum is located at a distance that is 0.4 Å too

large, and the well depth is too shallow as well. The non-local correlation functional

LC-VV10 yields a more accurate PEC than either M06-2X or ωB97X-D, consistent

with results for the S66 data set, where the MUE for the dispersion-dominated subset

is just 0.1 kcal/mol using LC-VV10.12 However, XSAPT(KS)+D2/haTZ is clearly

superior across the entire PEC.

For the remaining homo-monomer systems considered in this work (benzene dimer

and water clusters), the XSAPT(KS)+D2/haTZ methods with and without exact AC

are the same. Furthermore, the XSAPT(KS)+D/haTZ with and without exact AC

affords are very similar results, since these two methods differ only by way of slightly

different sβ parameters in the dispersion potential. For brevity, we thus limit our dis-

cussion to XSAPT(KS)/haTZ results without exact AC for homo-monomer systems.

For the halide–water clusters (hetero-monomer systems), however, we will only show

the results with exact AC, since this improves the binding energies, consistent with

results above for H-bonded systems.

Benzene dimer is considered to be a stringent test of dispersion interactions and

we consider both “sandwich” and “T-shaped” isomers, as shown in Fig. 7.2. For

the sandwich isomer, XSAPT(KS)+D2/haTZ reproduces the whole CCSD(T)/CBS

potential curve almost quantitatively. For the T-shaped isomer, XSAPT(KS)+D2/
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Figure 7.2: Potential energy curves for (a) the “sandwich” and (b) the “T-shaped”
isomer of (C6H6)2. The distance coordinate in either case is the center-to-center dis-
tance between the benzene rings. Benchmark CCSD(T)/CBS results are taken from
Ref. 5. The δEHF

int correction is included in the two XSAPT(KS)/haTZ calculations
that include empirical dispersion.
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haTZ slightly underestimates the binding energy at short intermolecular distance but

is very accurate beyond the vdW minimum. The new +D2 dispersion potentials

outperform the old ones for this system.

In Fig. 7.3, we plot PECs for F−(H2O) and Cl−(H2O), which are known to be

challenging cases for both XSAPT as well as traditional SAPT,50,55 even when third-

order corrections are included in the latter.50 Using the exact AC improves the binding

energies by about 0.1 kcal/mol for F−(H2O) and 0.3 kcal/mol for Cl−(H2O). Values of

ω, optimized according to Eq. (7.11), are 0.500, 0.475, and 0.375 bohr−1 for H2O, F−,

and Cl−, respectively, and the similarity between the H2O and F− values explains why

use of exact AC has a smaller effect for F−(H2O) than for Cl−(H2O). This provides

further evidence that the exact AC afforded by the IP condition in Eq. (7.11) is

necessary, especially for H-bonded systems.

For F−(H2O), the XSAPT(KS)+D/aDZ′ and XSAPT(KS)+D/haTZ (AC) meth-

ods greatly overestimate the interaction energy at short distance. The second-generation

method is significantly better, and in fact is in nearly quantitative agreement with

CCSD(T)/CBS results except at monomer separations much smaller than the vdW

distance, where it becomes a bit too repulsive. In previous work,50 we hypothesized

that the poorly-shaped PECs for F−(H2O) that were obtained using XSAPT(KS)+D

might originate in a low-energy FH· · ·OH− diabatic state261 that simply cannot be

captured by monomer-based methods. While such a state may ultimately lead to

other problems, we see in Fig. 7.3 that most of the error in the shape of the PEC is

eliminated when the +D dispersion potential is replaced by +D2, and the δEHF
int is
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methods with empirical dispersion potentials.
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included as well.

7.3.3 Water hexamer

The above results demonstrate the excellent performance of XSAPT(KS)+D2/haTZ

(AC) for dimers, including some very challenging ones. We next investigate whether

this good performance extends to many-body systems composed of polar monomers,

where non-pairwise–additive effects are important. We use (H2O)6 as our test sys-

tem since it marks a turning point from two- to three-dimensional hydrogen-bonding

networks and has been widely studied. We chose eight low-lying isomers from Ref.

8, where binding energies were computed at the MP2/a5Z-h level with counterpoise

corrections. (The basis set is aug-cc-pV5Z with h functions removed.)

Figure 7.4 compares the binding energies of these eight isomers, computed with

various methods. Of the XSAPT methods, XSAPT(KS)+D/aDZ′ overestimates the

binding energies with respect to the MP2/a5Z-h results, and furthermore makes rather

large errors in the relative energies and the energetic ordering of the isomers. We have

seen previously that triple-ζ basis sets are often important for H-bonded systems;

using XSAPT(KS)+D with the haTZ basis set leads to binding energies that are un-

derestimated rather than overestimated, although the relative energies are improved.

In all, however, the +D results cannot be said to be quantitative for water clusters,

but the +D2 potential affords good results for both absolute binding energies and rel-

ative isomer energies, except for a slight overstabilization of the cyclic-chair isomer.

The maximum energy difference between XSAPT(KS)+D2/haTZ and MP2/a5Z-h is

just 0.3 kcal/mol. The contribution from δEHF
int is about 10 kcal/mol and is essential
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for obtaining good results. This is consistent with recommendations to use δEHF
int for

SAPT calculations involving polar monomers.117,130,131 However, the δEHF
int correction

is not suitable for use with XSAPT(KS)+D/aDZ′ since this method’s success rests

on cancellation of errors.

In Fig. 7.4(b) we compare XSAPT to M06-2X and ωB97X-D results, as these

two functionals performed best for the H-bonded subset of S66, with MUEs of ≈

0.2 kcal/mol (see Table 7.3). For (H2O)6, however, the errors are much larger. M06-

2X overestimates the binding energies by up to about 4 kcal/mol, and ωB97X-D
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Figure 7.6: Electrostatic interaction energy for eight (H2O)6. MP2/a5Z-h results are
taken from Ref. 8.

by up to about 2 kcal/mol, consistent with another recent study.294 The LC-VV10

functional also consistently overestimates the binding energies, by about 3 kcal/mol,

although the relative energies are quite good. Despite being parameterized for H-

bonded complexes,9 the XPol-LJ results are quite poor, with binding energies that

are underestimated by up to about 5 kcal/mol. Unlike these other methods, the

performance of XSAPT(KS)+D2/haTZ for dimers does extend to this larger system.

The importance of many-body effects in (H2O)6 has been quantified recently by

Chen and Li,8 at the MP2/a5Z-h level, using localized molecular orbital energy
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decomposition analysis (LMO-EDA), which is a simplified version of the Kitaura-

Morokuma EDA scheme.292 These authors point out that the many-body effects are

dominated by polarization interactions, whereas the other energy components are

strictly or nearly pairwise additive.8 Figure 7.5 compares the many-body polariza-

tion energies for the (H2O)6 isomers considered here, computed using LMO-EDA at

the MP2/a5Z-h level8 or using our XSAPT-based energy-decomposition scheme, the

latter of which assumes that the many-body energy arises exclusively from polariza-

tion. The +D and +D2 versions of XSAPT(KS)/haTZ give very similar results for

the many-body contribution to the energy, so only the latter are shown, for clar-

ity. These results are in good agreement with the LMO-EDA results, whereas the

XSAPT(KS)+D/aDZ′ method consistently underestimates the many-body energy.

Electrostatic energies from LMO-EDA and from XSAPT(KS)-based methods are

shown in Fig. 7.6. The XSAPT(KS)/aDZ′ method greatly overestimates the elec-

trostatic energies, as compared to values extracted from MP2/a5Z-h calculations,

whereas XSAPT(KS)/haTZ methods with empirical dispersion potentials show good

agreement with LMO-EDA for the electrostatic energy. This is consistent with our

previous conclusions that triple-ζ basis sets are necessary for hydrogen-bonded sys-

tems.54,55

7.3.4 Halide–water clusters

The SAPT method does not afford chemical accuracy for strongly-interacting sys-

tems, especially ions at short intermolecular distances, where the perturbation series

converges slowly or may even diverge.50,170 As demonstrated in Fig. 7.3 and also Ref.
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Table 7.4: Binding energies (in kcal/mol) for F−(H2O) and Cl−(H2O).

Method F−(H2O) Cl−(H2O)
CCSD(T)/CBS −32.364 −15.540
MP2/CBS −32.248 −15.748
M06-2Xa −35.673 −16.298
ωB97X-Da −33.729 −15.482
LC-VV10a −35.010 −16.492
SAPT0/aDZ′ −33.926 −14.671
SAPT0/aTZ −37.571 −16.524
SAPT2+(3)/aTZ −34.072 −15.533
XSAPT(KS)+D/aDZ′ −27.437 −13.516
XSAPT(KS)+Db −36.217 −14.627
XSAPT(KS)+D (AC)b −36.204 −14.787
XSAPT(KS)+D2b −33.010 −14.686
XSAPT(KS)+D2 (AC)b −33.150 −15.046
aUsing the def2-QZVP basis set with counterpoise

correction. bUsing the ha-TZVPP basis set and the δEHF
int

correction.

55, the first-generation XSAPT(KS)+D/aDZ′ method does not afford good results

for F−(H2O) or Cl−(H2O), as PECs for these systems exhibit qualitatively incorrect

shapes at short distance. This problem is resolved by the D2 dispersion potential,

however, and the halide–water PECs have reasonable shapes and the binding energies

are accurate, as demonstrated above. In this section, we extend these anion systems

from two-body to many-body systems, investigating binding energies for X−(H2O)n

up to n = 6. All cluster geometries were optimized at the MP2/aTZ level of theory.

Since traditional SAPT is limited to dimers, we first compare the binding energies

for X−(H2O) dimers (X = F, Cl) calculated using various methods, in Table 7.4.

The difference between CCSD(T)/CBS and MP2/CBS binding energies is only
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0.1–0.2 kcal/mol for these dimers, and as such we will use MP2/CBS as a benchmark

for larger X−(H2O)n clusters. Examining the DFT results in Table 7.4, we see that

both M06-2X and LC-VV10 overestimate the binding energies, by ∼ 3 kcal/mol for

F−(H2O) and ∼ 1 kcal/mol for Cl−(H2O). Addition of the D3 correction proposed

by Grimme274 (M06-2X-D3) leads to even worse results. The ωB97X-D binding en-

ergy for Cl−(H2O) is quite accurate but that for F−(H2O) is overestimated by about

1 kcal/mol. SAPT0/aDZ′ binding energies are reasonable (errors ∼1 kcal/mol) and

are significantly better than SAPT0/aTZ results. This is consistent with SAPT0

results for other systems, where the aDZ′ basis set leads to favorable error cancella-

tion,117,157 which is why this basis set was proposed in the first place.

The high-level SAPT2+(3)/aTZ method affords almost the same binding energy

as CCSD(T)/CBS for Cl−(H2O) but overestimates the F−(H2O) binding energy by

1.7 kcal/mol, consistent with previous results where methods beyond SAPT0 were

employed.50 Coupled to the additional observation that supersystem DFT errors are

consistently larger for F−(H2O) than they are for Cl−(H2O), these results suggest that

fluoride–water is an especially challenging test of monomer-based quantum chemistry.

Examining the XSAPT results in Table 7.4, we observe that XSAPT(KS)+D/

aDZ′ underestimates the X−(H2O) binding energy, especially for X = F, but the new

XSAPT(KS)+D2/haTZ method performs much better, with errors < 1 kcal/mol

when exact AC is used. Once again, this is consistent with the need for triple-ζ

basis sets for H-bonded systems.54,55 In terms of the exact AC (versus using the

same ω value for all monomers), results with and without exact AC differ by only
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Figure 7.7: Errors in binding energies with respect to MP2/CBS benchmarks for
(a) F−(H2O)n and (b) Cl−(H2O)n, up to n = 6. The def2-QZVP basis set and
counterpoise correction was used for all DFT calculations. The δEHF

int correction is
included in the XSAPT(KS)+D2/haTZ calculations. Positive and negative errors
imply that the binding energies are over- and underestimated, respectively.
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Table 7.5: Mean unsigned errors, with respect to RIMP2/CBS benchmarks, for ten
isomers of F−(H2O)10.

Method MUE / kcal mol−1

binding relative
energy energy

M06-2Xa 9.81 1.340
ωB97X-Da 3.71 0.483
LC-VV10a 7.91 0.778
XSAPT(KS)+D2b 4.03 0.989
XSAPT(KS)+D2 (AC)b 1.68 0.751
aUsing the def2-QZVP basis set with counterpoise

correction. bUsing the haTZ basis set and the δEHF
int

correction.

0.14 kcal/mol for F−(H2O), but for Cl−(H2O) exact AC improves the binding energy

by 0.36 kcal/mol.

XSAPT(KS)+D2/haTZ results for X−(H2O)n up to n = 6, both with and without

exact AC, are compared to MP2/CBS benchmarks and to three DFT methods in

Fig. 7.7. Oddly, for F−(H2O)n the XSAPT(KS)+D2/haTZ results are slightly better

when the same ω value is used for both F− and H2O; differences between the two

approaches range up to about 1 kcal/mol and appear to grow slightly larger with

cluster size. These discrepancies may be coincidence (or some cancellation of errors),

because for Cl−(H2O)n, where the ω values optimized for Cl− and H2O are quite

different, use of the exact AC is crucial. Exact AC in this case reduces the errors

from ≈ 6 kcal/mol for Cl−(H2O)5 and Cl−(H2O)6 down to ∼ 1 kcal/mol for all cluster

sizes.
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Beran83 has suggested that errors in fragment-based calculations of molecular

clusters ought to be extensive, i.e., proportional to the number of monomer units.

In applications to water clusters, our group has indeed observed some numerical evi-

dence of a roughly-constant error per hydrogen bond, for clusters with & 5 hydrogen

bonds.65 The slight uptick in the errors for F−(H2O)n clusters, as a function of in-

creasing cluster size [Fig. 7.7(a)] reminds us of these observations. To investigate

this further, we performed calculations on a set of ten isomers of F−(H2O)10, whose

structures were taken from Ref. 71 and then optimized at the PM7 level. MUEs

for these F−(H2O)10 binding energies, with respect to RIMP2/CBS benchmarks, are

listed in Table 7.5. Results from several supersystem DFT methods are included in

Table 7.5, and in these cases the def2-QZVP basis set and Boys-Bernardi counterpoise

correction were used, consistent with other DFT results presented here.

All three DFT methods (M06-2X, ωB97X-D, and LC-VV10) afford very large

errors for these F−(H2O)10 clusters, although errors for relative isomer energies are

much smaller. M06-2X is the worst of the bunch, with a MUE of almost 10 kcal/mol

and a maximum error of about 12 kcal/mol. None of these methods comes close

to achieving “chemical accuracy” in the absolute binding energies of these clusters,

although ωB97X-D and LC-VV10 exhibit errors < 0.8 kcal/mol in the relative ener-

gies. Errors in the absolute binding energies are much larger than those observed in

a recent study of DFT methods applied to SO2−
4 (H2O)6 clusters,203 confirming the

challenging nature of fluoride–water clusters.

In contrast to these supersystem DFT results, the XSAPT(KS)+D2/haTZ (AC)
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method exhibits a much smaller MUE (1.7 kcal/mol) for the absolute binding energies,

which is much smaller than the corresponding error without exact AC. This MUE

is in line with the errors observed in smaller F−(H2O)n clusters, suggesting that the

error does not grow appreciably with cluster size, at least in the size regime n ≤ 10.

Admittedly, errors of ≈ 1.7 kcal/mol in the binding energies are larger than what we

observe in other systems, and fluoride–water clusters remain challenging even for the

improved XSAPT(KS)+D2 method. On the other hand, these systems are challenging

for supersystem DFT as well, and probably deserve to be considered more routinely

in evaluating the performance of various methods for non-covalent interactions. Our

benchmark MP2/CBS results are available in the Supplementary Material.

Although ωB97X-D performs well for Cl−(H2O)n, with errors . 0.5 kcal/mol

(superior to XSAPT-based methods), the XSAPT-based methods are far superior

for F−(H2O)n clusters, where ωB97X-D exhibits errors > 3 kcal/mol for the n = 5,

n = 6, and n = 10 cases. The M06-2X and LC-VV10 functionals yield very poor

results, even for the comparatively benign chloride–water clusters.

7.4 Conclusions

A second-generation (“D2”) version of our XPol+SAPT(KS) method with empirical

dispersion has been introduced and tested. An exact asymptotic correction (AC)

scheme, in which the AC is optimized separately for each monomer according to

the IP criterion, is found to be necessary in general to obtain good binding energies,

especially for hydrogen-bonded complexes. The XSAPT(KS)+D2/haTZ method with
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exact AC exhibits MUEs of 0.82 and 0.38 kcal/mol for S22A and S66 binding energies,

respectively, although two outliers (the π-stacked adenine-thymine and uracil-uracil

dimers) suggest that some further refinement of the empirical dispersion potentials

may be in order, using data sets that contain additional π-stacked dimers.

A variety of other challenging systems have been considered as well, including

Ar· · ·Ne, (C6H6)2, (H2O)6, Cl−(H2O)n, and F−(H2O)n. The XSAPT(KS)+D2/haTZ

method affords accurate one-dimensional potential energy scans for the dimers and

accurate relative energies for the larger clusters. In particular, this method corrects

certain qualitative problems in the short-range description of halide–water interaction

potentials that were observed in the “first generation” version of the method.55

The accuracy of XSAPT(KS)+D2/haTZ (AC) is superior to that of popular

DFT approaches for non-covalent interactions, including M06-2X, ωB97X-D, and LC-

VV10; since XSAPT is a monomer-based approach, the cost is also much lower than

the cost of supersystem DFT.55 For the very challenging halide–water clusters, XS-

APT(KS)+D2/haTZ (AC) binding energies are of moderate accuracy (1–2 kcal/mol

errors with respect to MP2/CBS results), but M06-2X and LC-VV10 yield even worse

results (errors of 8–12 kcal/mol), as does ωB97X-D for F−(H2O)n. We recommend

fluoride–water clusters as tests cases for any method intended to capture non-covalent

interactions, and our benchmark results for these systems are available in the Sup-

plementary Material.

Finally, we have introduced an interaction-energy decomposition scheme for XS-

APT that extends SAPT energy decomposition analysis to many-body systems. The
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different energy components (electrostatic, exchange, induction, and dispersion) for

the S22A data set are in very good agreement with benchmark SAPT2+(3)/aTZ

results, demonstrating that our energy decomposition scheme is robust. Using this

energy-decomposition scheme in conjunction with XSAPT(KS)+D2, the many-body

contributions to the binding energies of (H2O)6 isomers are reproduced almost per-

fectly as compared to benchmark calculations. Therefore, XSAPT(KS)+D2 (AC) not

only yields good binding energies for different non-covalent systems, but furthermore

we can decompose these binding energy into physical meaningful energy components

for many-body systems, which is not possible in traditional SAPT.
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CHAPTER 8

Accurate and efficient quantum chemistry

calculations for noncovalent interactions in

many-body systems: The XSAPT family of

methods8.1

8.1 Background

8.1.1 Quantum chemistry for non-covalent interactions

Non-covalent or “non-bonded” interactions are responsible for the properties of a

variety of complex systems ranging from the structures of both single- and double-

stranded DNA,248 drug binding to both proteins and DNA,295,296 and also crystal

engineering and crystal structure prediction.297 Electronic structure calculations of

non-covalent interactions have seen much progress in recent years, due to improve-

ments in both algorithms and computer power. In particular, symmetry-adapted

perturbation theory114–117,149,150 (SAPT) provides a natural decomposition of non-

covalent interactions into physical meaningful components (electrostatics, induction,

and dispersion), along with a corresponding exchange term for each. The dispersion

8.1This chapter appeared as a full article in the Journal of Physical Chemistry A, in 2015, volume
119, pages 235–252.
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(van der Waals) interaction is particularly interesting as it is a purely quantum-

mechanical effect arising solely from intermolecular electron correlation. Dispersion

is therefore absent at the level of Hartree-Fock molecular orbital (MO) theory, and

has historically been difficult to describe with density functional theory (DFT) as

well, because popular semilocal functionals fail to account for long-range electron

correlation.

Various strategies have been devised to incorporate dispersion into DFT, includ-

ing highly-parameterized meta-GGA298 functionals where non-bonded interactions

are included in the fitting set. The “Minnesota” family of functionals are prime ex-

amples of this approach.142 Alternatively, explicit r−2k dependence (k = 3, 4, . . .) can

be added to DFT a posteriori, via classical atom-atom potentials, in a “DFT+D”

approach popularized by Grimme.143,254,274 The ωB97X-D functional201 is one of the

best-performing examples of a DFT+D functional. Finally, “double hybrid” function-

als that mix second-order Møller-Plesset (MP2) correlation with DFT,299 and other

non-local correlation functionals,105,147 also do a better job of describing non-covalent

interactions as compared to traditional semilocal GGAs. However, the cost of these

methods scales no better than O(N3) with respect to total system size, N , which

limits their routine application to systems with . 100 atoms.

Prior to the advent of these newer DFT-based approaches, the O(N5) MP2
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method was considered the simplest way to incorporate dispersion in electronic struc-

ture calculations. MP2 performs well for hydrogen-bonded systems, and thus contin-

ues to play a vital role in the study of water clusters300 (and recently, bulk liquid wa-

ter301). However, MP2 significantly overestimates π-stacking interactions and other

dispersion-dominated interactions.186,207 This behavior stems from poor effective C6

coefficients,302,303 which at the MP2 level correspond to an uncoupled Hartree-Fock

(UCHF) description of the frequency-dependent polarizabilities for the monomers.

Moreover, slow convergence of the MP2 correlation energy to the complete basis set

(CBS) limit requires costly counterpoise correction80 to eliminate basis set superposi-

tion error (BSSE). A self-consistent treatment of double excitations, i.e., the O(N6)

coupled-cluster singles and doubles (CCSD) method, also underestimates π · · · π in-

teractions,304 and on average represents only a modest improvement upon MP2, with

errors of 0.7–1.0 kcal/mol relative to converged CCSD(T) values.272

In short, the O(N7) CCSD(T) method remains the “gold standard” for non-

covalent quantum chemistry, though there is some recent effort to explore quantum

Monte Carlo techniques as an alternative.40,305 CBS extrapolation is required to ob-

tain converged CCSD(T) results, but higher-order electron correlation effects are

consistently < 0.1 kcal/mol.33,141,306 The CCSD(T)/CBS limit can more affordably

be obtained by adding a correction

δCCSD(T) = ECCSD(T) − EMP2 (8.1)

to the MP2/CBS binding energy, as this correction is generally converged in triple-ζ
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basis sets,34 whereas the MP2/CBS extrapolation requires a basis of at least aug-

cc-pVQZ (aQZ) quality. Nevertheless, this approach remains prohibitively expen-

sive except for small systems. For example, a recent CCSD(T)/aTZ calculation on

(H2O)17 required 3.3 hours on 120,000 processors simply for the “(T)” part of the

calculation.307

The performance of various electronic structure methods that have been suggested

for non-covalent interactions, and which scale better than O(N7) is summarized in

Fig. 8.1 for the S66 data set of non-covalent dimers.10 Among these methods, the

MP2/CBS results are actually the worst, and this is a direct result of severe overes-

timation of π-stacking interactions. The best-performing method is SCS-MI-CCSD

(spin-component scaled CCSD for molecular interactions308), but its sixth-order scal-

ing is also severely limiting. The MP2C approach309–312 (MP2 with coupled disper-

sion) also affords very small errors, with only fifth-order scaling, but this method is

formulated exclusively for dimers. Finally, Fig. 8.1 shows selected DFT results using

functionals that afford good results for S66; however, this good performance is not

transferred to anionic systems such as halide–water clusters, X−(H2O)n,56 except the

ωB97X-V function as discussed below.

In view of these remarks, it is clear that quantum chemistry calculations with

sub-kcal/mol accuracy remain out of reach for large non-covalent assemblies, such

as the HIV protease + inhibitor system that is shown in Fig. 8.2. With a binding

pocket consisting of 16 nearby amino acids plus two crystallographic waters, the total

system size for a reasonable quantum chemistry model system amounts to 323 atoms,
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Figure 8.1: Mean absolute error (MAE) with respect to CCSD(T)/CBS benchmarks,
for binding energies in the S66 database10 of non-covalently-bound dimers. The vari-
ous methods are color-coded according to how their cost scales as a function of system
size. All MP2- and CCSD-based results10 are evaluated in the CBS limit. M06-2X-
D3(zero), B3LYP-D3(BJ), and B2PLYP-D3(BJ) calculations employ the def2-QZVP
basis.11 ωB97X-V and LC-VV10 calculations use aug-cc-pVTZ.12. The ωB97X-D
and ωB97X-D3(zero) calculations use the 6-311++G(3df, 3pd) basis.13 [Here, “zero”
indicates the “zero-damping” function of Ref. 14, which damps empirical dispersion
to zero as R → 0, whereas Becke-Johnson (BJ) damping damps it to a finite value.]
The counterpoise correction is employed for all methods except M06-2X-D3(zero),
B3LYP-D3(BJ), and B2PLYP-D3(BJ).
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(a) (b)

Figure 8.2: (a) Structure of the protease inhibitor indinavir bound to HIV protease,
as obtained from PDB crystal structure 1HSG.1 (b) An enlarged view of the binding
pocket, consisting of indinavir (opaque ball-and-stick model) along with 16 amino
acids and 2 crystallographic waters (translucent tubular model). [Panel (b) is repro-
duced from Ref. 2; copyright 2011 American Institute of Physics.]

or 10,626 basis functions using aug-cc-pVTZ. Fragment-based quantum chemistry

methods offer a way to surmount this predicament.43,44 This article describes a family

of fragmentation methods that we have developed in an attempt to achieve sub-

kcal/mol accuracy for non-covalent interactions, yet remain affordable enough to be

applied to systems such as the one in Fig. 8.2(b), where the monomers naturally form

fragments but the protease inhibitor molecule is 92 atoms by itself. As such, any

method that aims to describe this system must be efficient both for large fragments

as well as systems comprised of a large number of fragments.

The XSAPT family of methods that is described in this article has been devel-

oped by our group over the past several years.44,51,54–56,65 These methods employ the

variational explicit polarization (XPol) method of Xie et al.252 to generate monomer
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wave functions that include many-body polarization effects, then exploits these XPol

wave functions as zeroth-order states for various forms of SAPT. Whereas SAPT has

traditionally been limited to dimers, XSAPT extends this methodology (including its

energy decomposition analysis) to many-body systems, in an affordable way.

8.1.2 Symmetry-adapted perturbation theory (SAPT)

It is useful to review the original SAPT methodology.114–117,149 SAPT is a direct,

perturbative expansion of the intermolecular (dimer) interaction energy based on

noninteracting monomer wave functions, and BSSE is avoided because subtraction of

monomer energies is not required. A double perturbation expansion is employed, in

which intramolecular electron correlation (Møller-Plesset fluctuation potentials114,151

or a cluster ansatz154–156) is one perturbation, and the intermolecular Coulomb op-

erators comprise the other. Methods that include intramolecular correlation, such

as SAPT2+, SAPT2+(3), SAPT2+3, and SAPT(CCSD), are generally quite ac-

curate117,172 but scale no better than O(N7), the same as CCSD(T). However, an

accurate SAPT calculation may be able to use a smaller basis set as compared to

CCSD(T), owing to SAPT’s intrinsic lack of BSSE, and furthermore SAPT comes

with an informative energy decomposition.

A comparatively low-cost means to introduce intramolecular electron correlation is

to swap Kohn-Sham (KS) MOs into the SAPT formalism, an approach that has been

called SAPT(KS).208 This approach was considered and rejected more than a decade

ago, however, because it fails to yield accurate intermolecular interaction energies

due to inaccurate asymptotic behavior of the exchange-correlation (XC) potentials,
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vxc(r), that are obtained from standard functionals.162,208,209 The asymptotic (large

r) behavior should be210

vxc(r) ∼ −
1

r
+ ∆∞ , (8.2)

where the limiting (r →∞) value is210,211

∆∞ = IP + εHOMO . (8.3)

In Eq. (8.3), IP denotes the lowest ionization potential and εHOMO is the KS eigenvalue

for the highest occupied molecular orbital (HOMO). The failure of standard density-

functional approximations to satisfy Eq. (8.2) leads to large errors in SAPT(KS)

dispersion energies,54 even while the energetics of strongly hydrogen-bonded systems

are somewhat improved as compared to calculations that use HF wave functions for

the monomers.54

This failure of SAPT(KS) is partially ameliorated by using an asymptotically cor-

rect vxc to compute KS orbitals for the monomers,51,162–164 though dispersion energies

remain quite poor51,209,213,214 for the same reason that MP2 dispersion energies are

poor. It is possible to solve coupled KS equations to obtain frequency-dependent den-

sity susceptibilities for the monomers, and this improved approach was developed in-

dependently by Heßelmann and Jansen,118,137,163,164,213 who named the method DFT-

SAPT, and by Misquitta et al.,161,162,205,214,235,313 who called it SAPT(DFT). This

approach, which is closely related to MP2C, scales as O(N6) but can be reduced to

O(N5) using resolution-of-identity techniques.137,161,205,313
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8.1.3 “Extended” SAPT (XSAPT)

Most electronic structure methods for intermolecular interactions function either as

supersystem calculations, or else (like SAPT) are designed to compute pairwise inter-

actions only. Benchmark non-covalent data sets have also largely focused on dimers.

However, many-body contributions to the interaction energy are often quite signifi-

cant, especially in polar systems where non-additive interactions are dominated by

induction (i.e., polarization).8,251 For example, the many-body contribution to polar-

ization in isomers of (H2O)6 is about 10 kcal/mol, whereas electrostatic, exchange-

repulsion, and dispersion interactions are nearly pairwise additive.8,56 Likewise, elec-

tron correlation effects have often been found to be largely pairwise-additive in small

clusters of small molecules, provided that many-body induction effects are incorpo-

rated self-consistently,84 but many-body dispersion is more important in systems with

a large number of monomers.314

Although the equations for three-body SAPT have been written down,249,250,315

their cost scales as O(N7) with respect to the size of the largest trimer, whereas

the present work will focus on methods that scale as O(N3)–O(N5) with respect to

the size of the largest dimer. In recognition of the qualitative observations above,

our group has recently developed an “extended” version of SAPT in which many-

body induction and polarization effects are incorporated into the zeroth-order wave

functions by means of the XPol method.252 Other components of the intermolecular

interaction are included via pairwise SAPT. The result is a monomer-based method
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that we call XSAPT,44,54–56,65 which is aimed at doing fast calculations for non-

covalent assemblies, including molecular and ionic clusters but also protein–ligand

binding systems such as the one depicted in Fig. 8.2. The XPol procedure starts with

a charged-embedded self-consistent field (SCF) calculation on each monomer, whose

cost is therefore O(n) with respect the number of monomers, n. This is followed

by an embarrassingly-parallelizable O(n2) pairwise SAPT calculation. SAPT-style

energy decomposition analysis is available, including a term that directly measures

the many-body contribution to the interaction energy.56

8.2 Overview of XSAPT

We briefly review the theory behind XSAPT; see Ref. 54 for a detailed derivation.

We assume that covalent bonds remain intact in the fragmentation of the system, as

appropriate for non-covalent assemblies.

8.2.1 Many-body polarization: XPol

XPol is a fragment-based MO method that has been put forward as a means to obtain

the polarization term in a “next-generation” force field.252,289,316–318 Upon partitioning

the system into fragments, the XPol wave function is written as a direct product of

fragment wave functions, |Ψ〉 = |ΨA〉|ΨB〉|ΨC〉 · · · . The XPol energy is65

EXPol =
n∑

A=1

(

2
∑

a∈A

c†af
Aca + EA

nuc

)

+ Eembed , (8.4)

where the term in parenthesis is the ordinary HF energy expression for monomer A,

whose Fock matrix is fA = hA + JA − 1
2
KA. Crucially, the MOs ca for fragment A
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are represented using only those atomic orbitals (AOs) that are centered on atoms

in fragment A. This partitioning of the basis leads to O(n) scaling and furthermore

excludes BSSE, by construction. (Charge transfer between fragments is also excluded,

at least in small basis sets.) The quantity Eembed in Eq. (8.4) is an electrostatic

embedding potential that could in principle be obtained from the monomer electron

densities, ρA = |ΨA|
2, but more often consists of the charge–density interactions that

arise once each ρA is collapsed onto some set of atom-centered point charges.54,65

Upon variational minimization of Eq. (8.4) with respect to the ca, one obtains a

set of monomer SCF equations that involve a modified Fock matrix FA for monomer

A:54,65

FA
µν = fA

µν −
1

2

∑

J /∈A

qJ(IJ)µν +
∑

J∈A

MJ (ΛJ)µν . (8.5)

The second term on the right is the interaction of fragment A with the embedding

charge qJ , where (IJ)µν is a charge–density Coulomb integral involving shell pair

µν ∈ A. In the final term, MJ = ∂Eembed/∂qJ is easy to compute (see Ref. 54), and

(ΛJ)µν =
∂qJ
∂Pµν

. (8.6)

Calculation of the Λ tensor does require some non-trivial overhead when the em-

bedding charges qJ are “CHELPG” charges95 that are fit to reproduce the monomer

electrostatic potentials.54,319 This is our preferred choice, as it seems physically sound

and moreover the use of Mulliken or Löwdin charges often leads to convergence failure

in the XPol procedure, when non-minimal basis sets are employed.65,319 In any case,

the monomer XPol SCF equations (FACA = SACAεA) are iterated to self-consistency

using a “dual SCF” procedure consisting of an outer loop over monomers and an inner
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loop over SCF cycles for a particular monomer, updating the embedding charges as

each |ΨA〉 is converged.

The final term in Eq. (8.5) is equal to ∂Eembed/∂Pµν , and ensures that the con-

verged XPol energy is fully variational.44,65,252 In contrast, the fragment Fock matrix

that is traditionally used in the fragment molecular orbital (FMO) method,320,321 and

also in the electrostatically-embedded many-body expansion,45,64 is

FA
µν = fA

µν −
∑

J /∈A

qJ(IJ)µν . (8.7)

This Fock matrix does not afford a variational method, because it omits the response

of the embedding charges to changes in the fragment wave functions. As a result,

analytic gradients for FMO and other methods that use Eq. (8.7) with self-consistent

embedding charges should, in principle, require solution of coupled-perturbed equa-

tions,322,323 although these response terms have often been neglected.79,324,325 In ad-

dition, Eq. (8.7) omits the polarization work that diminishes the middle term in

Eq. (8.5) by a factor of two.326,327

8.2.2 Symmetry-adapted perturbation theory

In the original XPol method of Xie et al.,252,289 intermolecular dispersion (van der

Waals) and exchange (Pauli repulsion) interactions are incorporated using empirical

Lennard-Jones or Buckingham potentials. We find, however, that this does not afford

benchmark-quality results for non-covalent interactions,56 so we instead choose to use

the XPol fragment wave functions as zeroth-order states for application of second-

order SAPT.
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In SAPT, the Hamiltonian for the dimer A · · ·B is partitioned according to114,115

Ĥ = F̂A + F̂B + ξŴA + ηŴB + ζV̂ , (8.8)

where ŴA and ŴB are the Møller-Plesset fluctuation potentials for monomers A and

B, and V̂ consists of all Coulomb operators that couple particles on A to particles

on B. Application of (anti)symmetrized Rayleigh-Schrödinger perturbation theory

affords an energy expansion

ESAPT
int =

∞∑

ζ=1

∞∑

κ=0

(

E
(ζκ)
pol + E

(ζκ)
exch

)

(8.9)

where κ = ξ + η. The terms E
(ζκ)
pol constitute the polarization expansion,328,329 which

neglects exchange of electrons between monomers. (The term “polarization expan-

sion” is historical, and should not be confused with the way in which we use the

term “polarization” below, namely, to mean induction.) To correct this, each term in

Eq. (8.9) has a corresponding exchange term E
(ζκ)
exch arising from the antisymmetrizer

that is used to project out the Pauli-forbidden components of the interaction en-

ergy. Of these exchange terms, it has historically only been possible to evaluate E
(10)
exch

exactly,127 whereas other exchange terms are evaluated within the single-exchange

approximation, in which permutations involving more than one pair of electrons are

neglected. (The resulting formulas involve the square of the overlap matrix, S2, and

for this reason the single-exchange approximation is often called the “S2 approxi-

mation”.114,115,250) Recently, an analytic form for E
(20)
exch has been reported,174,175 but

its implementation is not yet widely available. The single-exchange approximation is

expected to be accurate at or beyond the van der Waals contact distance,115 although
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problems for anionic systems necessitate some rescaling of the higher-order exchange

interactions.50,52

Neglecting intramolecular electron correlation but treating V̂ to second order (the

so-called SAPT0 approximation117), we have

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind + E

(2)
disp + E

(2)
exch-disp . (8.10)

(We have dropped the index κ, since κ = 0.) Explicit expressions for these terms

can be found in Ref. 114 (MO basis) or Ref. 137 (AO basis). The dispersion and

exchange-dispersion terms are MP2-like in both cost and accuracy.

Finally, it is common to incorporate polarization effects beyond second order by

adding a correction term

δEHF
int = EHF

int −
(

E
(1)
elst + E

(1)
exch + E

(2)
ind,resp + E

(2)
exch-ind,resp

)

(8.11)

to the SAPT interaction energy.117 Here, EHF
int is the counterpoise-corrected HF bind-

ing energy for the dimer.

8.2.3 Combining XPol with SAPT

The partition of the dimer Hamiltonian in Eq. (8.8) can be generalized to an arbitrary

number of monomers,54

Ĥ =
∑

A

(

F̂A + ξAŴ
A
)

+
∑

A

∑

B>A

ζABV̂AB . (8.12)

with zeroth-order wave functions taken to be direct products of XPol monomer wave

functions. Modification of the SAPT perturbation is required in order to avoid double-

counting, because some part of electrostatics and polarization is already included at
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the XPol level, but this modification is straightforward.54,65 The resulting XSAPT

energy expression, including all terms through second order in the intermolecular

interactions, is44,54

EXSAPT =
n∑

A=1

[
∑

a∈A

(
2εAa − c†af

Aca
)

+ EA
nuc

]

+
∑

A

∑

B>A

(

E
[0;1AB ]
RSPT + E

[0;1AB ]
exch

+ E
[0;2AB ]
RSPT + E

[0;2AB ]
exch

)

+ E3B .

(8.13)

The superscript [0;nAB] indicates a term that is zeroth-order in the monomer fluc-

tuation potentials but nth order in the intermolecular perturbation, VAB.44,54 The

connection to traditional two-body SAPT is that

E
[0;1AB ]
RSPT = E

(1)
elst,A + E

(1)
elst,B (8.14a)

E
[0;1AB ]
exch = E

(1)
exch,A + E

(1)
exch,B (8.14b)

and

E
[0;2AB ]
RSPT = E

(2)
ind,A + E

(2)
ind,B + E

(2)
disp,AB (8.15a)

E
[0;2AB ]
exch = E

(2)
exch-ind,A + E

(2)
exch-ind,B + E

(2)
exch-disp,AB . (8.15b)

Two perturbations can couple three monomers, and second-order XSAPT thus

contains three-body induction couplings that have no analogues in dimer SAPT.54

This is the meaning of the E3B term in Eq. (8.13):

E3B =
∑

A,C

∑′

B>A

∑′

D>C

(

E
[0;1AB ,1CD]
RSPT + E

[0;1AB ,1CD]
exch

)

. (8.16)

The primed summations indicate that these terms vanish unless no more than three

of the indices A, B, C, and D are distinct. Except for some exploratory calculations
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in Ref. 54, these terms have been neglected in our previous work on XSAPT, and we

will neglect them here unless stated otherwise. Results for water clusters and halide–

water clusters, however, will demonstrate that these terms are important in large

clusters of polar monomers. In order to compute the E3B term, one must calculate all

n − 2 fragments for each unique dimer pair, which increases the computational cost

from O(n2) to O(n3). Alternatively, O(n2) scaling can be recovered (with a large

prefactor) by storing induction amplitudes on disk.54

One of the attractive features of traditional SAPT is its energy decomposition

analysis, and XSAPT extends this to many-body systems in a largely analogous

way. We include a δEHF
int correction of the form given in Eq. (8.11), whose goal is

to incorporate higher-order induction effects, and for many-body systems we assume

that this correction is pairwise additive:

δEHF
int =

∑

A

∑

B>A

δEHF
AB . (8.17)

This assumption appears to be robust.56 The SAPT interaction energy can be de-

composed as in Eq. (8.10), and the resulting XSAPT energy decomposition is56

EXSAPT
int = ESAPT

int + δEHF
int + EMB

int

+
∑

A

∑

B>A

(
EXSAPT

AB − ESAPT
AB

)
,

(8.18)

where the total SAPT interaction energy for a collection of monomers is

ESAPT
int =

∑

A

∑

B>A

ESAPT
AB . (8.19)
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The XSAPT interaction energy can be rewritten as

EXSAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
disp + E

(2)
exch-disp

+

[

E
(2)
ind + E

(2)
exch-ind +

∑

A

∑

B>A

δEHF
AB

+
∑

A

∑

B>A

(
EXSAPT

AB − ESAPT
AB

)
+EMB

int

]

.

(8.20)

Here, the terms E
(1)
elst, E

(1)
exch, etc., represent the sum of these energy components over

all pairs of dimers, and the many-body contribution to the interaction energy56

EMB
int = EXSAPT

int −
∑

A

∑

B>A

EXSAPT
AB . (8.21)

The term in square brackets in Eq. (8.18) is regarded as the total induction energy,

which includes a many-body contribution.

In dimer SAPT calculations, an infinite-order polarization correction (in the pres-

ence of a frozen partner density) can be included by solving coupled-perturbed equa-

tions.114 However, XSAPT treats polarization self-consistently and the infinite-order

response correction for induction should be included exactly, via the XPol proce-

dure, if density embedding is used.276 We prefer CHELPG embedding for reasons

of cost, however. The pairwise difference between XSAPT and SAPT in Eq. (8.18)

partly includes the infinite-order response correction for induction. An infinite-order

polarization correction is still included in δEHF
int by solving coupled-perturbed equa-

tions,179,180 which is the meaning of the “resp” (response) subscripts in Eq. (8.11).

In the language of traditional dimer SAPT, our XPol monomer wave functions are

computed in a monomer-centered basis set, which largely excludes the description of
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charge transfer between monomers and is typically less accurate than if the zeroth-

order wave functions are computed using the dimer-centered basis set.153 The correct

choice of a dimer basis is ambiguous in a many-body system, however, so we choose

instead to converge the XPol wave functions in the monomer-centered basis, then

compute the pairwise SAPT corrections in a “projected”65 (pseudocanonicalized286,330

monomer-centered) basis set.

8.2.4 XSAPT(KS)+D

Especially for strongly hydrogen-bonded systems, inclusion of intermolecular electron

correlation effects may be important,54,158 but involves methods whose cost scales

as O(N7) within the wave function-based SAPT formalism.117 SAPT(KS) represents

a low-cost way to include such effects, though asymptotic correction of the XC po-

tential is required.162,208,209 Various “splicing” schemes have been used in this con-

text,199,215,331 but result in “stray” XC potentials216 that do not correspond to any

well-defined energy functional, vAC
xc 6= δExc/δρ. This is potentially problematic in

the context of geometry optimizations,216 and fatal to any attempt to derive analytic

energy gradients.

We sidestep this problem using long-range corrected (LRC) density function-

als,219,222,224,227 which correctly reproduce the asymptotic ∼ r−1 behavior of v.xc To

achieve the proper limiting value, ∆∞ = 0 in Eq. (8.2), we apply a monomer-specific
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“tuning” procedure, as suggested by Baer and co-workers,229,230 in which the range-

separation parameter, ω, is adjusted in order to satisfy the condition

εHOMO(ω) = −IP(ω) . (8.22)

In the context of SAPT(KS), this significantly improves the quality of the various

interaction energy components as compared to benchmark results,51 and represents

a promising alternative to other AC schemes. Dispersion energies are still not of

benchmark quality, however, owing to problems with the uncoupled KS description

of dispersion.51

To correct the latter problem, we replace the second-order dispersion and exchange-

dispersion terms in SAPT with empirical atom–atom dispersion potentials,55,56 fol-

lowing along the lines of the “SAPT(KS)+D” method introduced by Heßelmann.16

This has the added benefit of reducing the scaling from O(N5) to O(N3).16 At first

glance, this approach seems similar in spirit to dispersion-corrected DFT,143 but the

separation of dispersion from other parts of the energy is much cleaner in SAPT,

whereas in DFT+D there is a potential double-counting problem for mid-range inter-

molecular distances, where the short-range DFT correlation may not have decayed

completely to zero as the (damped) long-range dispersion potentials are turning on.

Indeed, Grimme253 suggests that dispersion in DFT+D is a model-dependent quantity

with no real physical meaning.

Our original version55 of XSAPT(KS)+D used Heßelmann’s SAPT(KS)+D dis-

persion potential,16 which was fit to reproduce S22 benchmark binding energies,

and that “first generation” (+D1) approach affords an impressive MAE of only
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0.3 kcal/mol for the S66 data set.55 However, XSAPT(KS)+D1 benefits from fa-

vorable error cancellation and does not accurately reproduce individual energy com-

ponents.56 In subsequent work, we avoided fitting directly to binding energies and in-

stead pursued a second-generation (+D2) method using alternative dispersion poten-

tials developed by Podeszwa et al.,244 which were fit to reproduce distance-dependent

dispersion potentials, Edisp = E
(2)
disp + E

(2)
exch-disp, obtained from SAPT(DFT) calcula-

tions. XSAPT(KS)+D2 accurately reproduces not only total binding energies but

also individual energy components.56

Tests on the S22 and S66 data sets reveal that the primary source of errors in XS-

APT(KS)+D2 calculations comes from π-stacked complexes, where in some cases the

dispersion energy is overestimated by ∼2 kcal/mol as compared to SAPT2+(3)/aTZ

results.56 Such systems are underrepresented in the training set used to parameterize

the D2 potentials,244 and here we report for the first time a third-generation disper-

sion potential for XSAPT. (It should be stressed that our “D3” dispersion potential

is unrelated to Grimme’s “D3” correction274 for DFT.)

The new D3 dispersion potential uses the same functional form as the D2 poten-

tial,244

ED3
disp = −

∑

i∈A

∑

j∈B
(B 6=A)

[
Cij,6

r6ij
f6(βijrij) +

Cij,8

r8ij
f8(βijrij)

]

, (8.23)

where

fn(rij) = 1− exp(−rij)
n∑

m=0

rmij
m!

(8.24)

is the Tang-Toennies damping function,283 and i and j represent nuclei located on

different monomers. We take Cij,6 = (Ci,6Cj,6)
1/2, Cij,8 = (Ci,8Cj,8)

1/2, and βij =

224



(βiβj)
1/2, where Ci,6, Ci,8, and βi are parameters fit to reproduce SAPT2+(3)/aTZ

dispersion energies,

E
SAPT2+(3)
disp = E

(20)
exch-disp + E

(20)
disp + E

(21)
disp

+ E
(22)
disp(SDQ) + E

(22)
disp(T) + E

(30)
disp .

(8.25)

For hydrogen, these parameters depend upon the identity of the nearest-neighbor

atom. This is the similar procedure used in Ref. 244 to obtain the D2 potential, but

we have expanded the training set to include additional π-stacked systems as well as

the ionic systems F−(H2O) and Cl−(H2O). (The list of systems can be found in the

Supporting Information.) For the latter two systems, the halide–water distance is

short and dispersion is especially important. In these two cases, we use benchmarks

from the highest level SAPT theory, SAPT2+3(CCD)/aTZ:183,184

E
SAPT2+3(CCD)
disp = E

(20)
exch-disp + E

(2)
disp[CCD]

+ E
(22)
disp [S(CCD)] + E

(22)
disp [T(CCD)]

+ E
(30)
disp + E

(30)
exch-disp

+ E
(30)
ind-disp + E

(30)
exch-ind-disp .

(8.26)

For each dimer, we used five different geometries corresponding to intermolecular

separations ranging from 0.9–2.0 times the equilibrium separation, for a total of 370

training geometries. Values obtained for the parameters Ci,6, Ci,8, and βi are provided

in the Supporting Information (SI).

The LRC-ωPBE functional240 with monomer-specific, tuned values of ω is used in

all of our XSAPT+D3 calculations, as we have previously observed that errors in the

exchange energy components increase as short-range HF exchange is added to LRC
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functionals.56 Tuned values of ω are listed in the SI and differ, in some cases, from

values reported previously.56 In the case of thymine, for example, the optimally-tuned

value changes from ω = 0.625 a−1
0 to 0.275 a−1

0 . The large discrepancy comes from the

fact that the condition in Eq. (8.22) cannot be satisfied for some monomers and basis

sets. In such cases, we selected the closest point of approach between the εHOMO(ω)

and −IP(ω) curves. The binding energy errors for the π-stacked uracil dimer and the

adenine–thymine dimer were 3 and 4 kcal/mol, respectively, at the XSAPT(KS)+D2

level,56 and these were the outliers amongst the S22 dimers. Simply using these

newly-tuned values of ω determined in this study, the XSAPT(KS)+D2 errors for

these two systems are reduced to 2.0 and 2.5 kcal/mol, respectively. We therefore

recommend these new ω values.

8.2.5 sd-XSAPT(KS)

Introduction of empirical dispersion into XSAPT calculations reduces the scaling from

fifth-order to third-order with respect to dimer size, and is further motivated by the

fact that second-order, uncoupled dispersion energies are not nearly of benchmark

quality. An alternative approach, which scales as O(N4), is to omit the fifth-order

exchange-dispersion term in SAPT0, then scale the fourth-order dispersion term by

an empirical factor. This method was introduced recently by Ochsenfeld and co-

workers,332 who called it sd-SAPT0. We have implemented the corresponding sd-

XSAPT(KS) method, and following Ref. 332, we neglect the δEHF
int correction in this

approach.
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Using the S22B binding energies34 to fit the dispersion scaling parameter, the best-

performing combination was found to be the LRC-ωPBEh functional227 (20% short-

range HF exchange), 6-31G(d,2p) basis set, and a scaling parameter cdisp = 0.657,

in which case the root-mean-square deviation (RMSD) for S22 binding energies is

0.366 kcal/mol. That cdisp < 1 can be understood in terms of the neglect of the

repulsive exchange-dispersion interaction and the fact that second-order perturbation

theory tends to overestimate dispersion in the first place. (The double-ζ basis set also

helps in this regard, as dispersion interactions converge slowly to the basis-set limit,

and scaling back the basis set is a well-established way to reduce errors in second-order

dispersion energies,117 albeit by error cancellation.) Since the sd-XSAPT(KS) method

is based on fitting to obtain accurate total binding energies, it is not recommended

as a means to do energy decomposition analysis.

8.3 Performance benchmarks

In this section, we document timing data, the validity of the new D3 dispersion

potential, and basis-set convergence.

8.3.1 Timings

So as not to obfuscate the fact that the primary purpose of XSAPT is efficient calcu-

lation of intermolecular interactions, we lead off with data illustrating the efficiency of

the method. Figure 8.3 plots timings for XSAPT(KS)+D calculations on π-stacked

(adenine)n. Serial timings represent the total wall time required, which scales as

O(n2), whereas parallel timings represent the wall time required when the calculation
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Figure 8.3: Timings for XSAPT(KS) and supersystem DFT calculations for π-stacked
(adenine)n systems. All calculations use the LRC-ωPBE functional and the hpTZVPP
basis set.

is run in “embarrassingly parallel” mode [n(n − 1)/2 processors for n monomers, so

that all pairwise SAPT calculations can be performed simultaneously]. In the latter

mode, wall time scales as O(n) with a small prefactor. Even in serial, XSAPT(KS) is

just as efficient as supersystem DFT for n = 2 monomers, and is substantially more

efficient for larger systems. In parallel, the wall time required for an XSAPT(KS)

calculation on (adenine)10 is only about twice as large as that required for (adenine)2.

8.3.2 Validation of the D3 dispersion potential

To test the performance of the new D3 dispersion potential, we have used the D2

and D3 potentials to compute the stacking interaction between DNA base pairs in

10 different nucleobase tetramers,15 as compared to the dispersion interaction (=
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Figure 8.4: Comparison of Edisp(D2), Edisp(D3), and Edisp(DFT-SAPT) for the stack-
ing interaction in nucleobase tetramers. The DFT-SAPT benchmarks come from Ref.
15, corrected by a factor of 1.1 as suggested in Ref. 16.

E
(2)
disp + E

(2)
exch-disp) obtained from DFT-SAPT calculations. DFT-SAPT dispersion

energies from Ref. 15 were multiplied by a factor of 1.1 as an approximate correction

for basis-set incompleteness at the aTZ level, as suggested by Heßelmann.16 The

results, shown in Fig. 8.4, indicate good agreement between Edisp(D3) and Edisp(DFT-

SAPT), and the D3 dispersion potential is much closer to the benchmark as compared

to D2 results.

We note in passing that our D3 dispersion potential could be used to incorpo-

rate intramolecular correlation into the dispersion interaction at no additional cost.

Specifically, the D3 dispersion potential could be combined with MP2 according to

EMP2+D3
int = EMP2

int − E
(2)
disp − E

(2)
exch-disp + Edisp(D3) , (8.27)

in which we use MP2 to incorporate intramolecular correlation, then subtract out
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the second-order dispersion and replace it with the D3 empirical potential. This

method is similar in spirit to the MP2(CCD) method.52,173 We plan to investigate

this “MP2+D3” approach in the future.

8.3.3 Basis set convergence

The E
(1)
elst and E

(1)
exch energy components are common to both SAPT(KS) and XS-

APT(KS), and in the former case we can perform benchmark SAPT2+(3)/aTZ cal-

culations for dimers, which we have done for the representative systems F−(H2O),

(H2O)2, and both the T-shaped and parallel-displaced isomers of (C6H6)2. SAPT(KS)

results for the same systems, using either the dimer-centered or the “projected” (pseu-

docanonicalized monomer-centered) approach, were used to select an AO basis set.

[The SAPT2+(3)/aTZ benchmarks employ the dimer-centered basis.] Mean errors

in E
(1)
elst and E

(1)
exch, with respect to the SAPT2+(3)/aTZ benchmarks, are provided

in the SI for 21 different basis sets ranging from double-ζ to quadruple-ζ quality. A

brief summary is presented here.

Using the dimer-centered approach, we find that the errors are quite small for both

Dunning (aug-cc-pVXZ) and Ahlrichs (def2) basis sets, provided that diffuse functions

are included. In that case, calculations of triple-ζ quality, or possibly even double-ζ

quality, appear to be converged to the basis-set limit. Unfortunately, however, the

dimer-centered construction is ill-defined for a many-body system, which is why we

turn to the pseudocanonicalization approach.65 The data in the SI show that diffuse

functions are also essential in this approach, although in this case there remains

significant discrepancy between triple- and quadruple-ζ results. These differences are
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smaller when Ahlrichs basis sets are employed, in which case it matters little whether

the diffuse functions are drawn from the Ahlrichs, Pople, or Dunning basis sets.

In consideration of both accuracy and computational efficiency, the Ahlrichs def2-

TZVPP basis set will be the primary one used in this work, augmented with diffuse

functions either from Pople’s 6-311++G basis or else from Dunning’s aug-cc-pVTZ

(aTZ) basis. We refer to these two choices as pTZVPP and aTZVPP, respectively.

In some cases, we will omit the diffuse functions on hydrogen, to obtain “heavy-

augmented” basis sets haTZVPP and hpTZVPP. The 6-31+G(3d,3pd) basis set will

be used to compute the δEHF
int corrections and the aTZ basis set to compute the δEMP2

corrections.

8.4 Illustrative applications

The remainder of this paper is dedicated to illustrating the power and utility of

XSAPT-based methods. Details about how the benchmark calculations were ob-

tained, along with an explanation of non-standard basis set nomenclature, can be

found in the SI.

8.4.1 Biologically-relevant dimers

Since the S22 data set186 was used to fit both the D3 dispersion potential and the

scaling factor for sd-XSAPT(KS), the S66 data set10 will be used to evaluate the

accuracy of these methods. S66 consists of CCSD(T)/CBS binding energies for 66

weakly-bound dimers related to biomolecular structures, and we use the recently-

revised S66 binding energies.333 Augmented triple-ζ basis sets are essential in order
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Table 8.1: Errorsa in S66 binding energies for XSAPT(KS)+D3.

Basis Setb error / kcal mol−1

MAE Max
hpTZVPP 0.27 1.11
pTZVPP 0.26 1.20
haTZVPP 0.30 1.23
aTZVPP 0.34 1.50
haTZ 0.44 1.81
aTZ 0.51 2.19
aWith respect to CCSD(T)/CBS

benchmarks.

to obtain accurate results for individual energy components, and error statistics for

XSAPT(KS)+D3 in a variety of triple-ζ basis sets are shown in Table 8.1. The

best-performing basis sets are pTZVPP and hpTZVPP.

Figure 8.5 shows S66 error statistics for a variety of methods that exhibit reason-

ably small MAEs. The new XSAPT(KS)+D3 method slightly outperforms the previ-

ous two generations (D1 and D2), and in particular reduces the errors in the π-stacked

outliers. It is worth mentioning that the MP2C309–311 and SAPT2+(3) methods,117

which exhibit excellent performance for S66, are only formulated for dimers, and that

the Coulomb-attenuated MP2 method17,176,334 (att-MP2) contains a parameter that

was optimized using this very data set. It also bears mention that all of the methods

that outperform XSAPT(KS)+D3 exhibit at least fifth-order scaling with respect to

the size of the supersystem, whereas XSAPT(KS)+D scales as O(N3) with respect

to dimer size and O(n2) with respect to the number of monomers. XSAPT(KS)+D

also affords an energy decomposition analysis that is discussed in Section 8.4.8.
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Figure 8.5: MAEs (colored bars) and maximum errors (in black) computed for S66
binding energies with respect to CCSD(T)/CBS benchmarks. These methods are
color-coded according to how their cost scales with system size. The jun-cc-pVDZ
basis set is used for XSAPT(KS)+D1 calculations and the hpTZVPP basis set for
XSAPT(KS)+D2 and +D3 calculations. The 6-31G(d,2p) basis set is used for sd-
XSAPT(KS) and aug-cc-pVTZ basis setfor SAPT2+(3) and SAPT2+(3)(CCD). The
att-MP2 data were obtained from 17 and data for the other supermolecular methods
were obtained from Ref. 10.
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8.4.2 Potential energy curves

Comparison of the “sandwich” and “T-shaped” isomers of (C6H6)2 represents a

stringent test for theoretical models,5 since the two are stabilized by very differ-

ent types of interactions (dispersion competes with quadrupolar electrostatics). In

Figure 8.6, the XSAPT(KS)+D3 method and the ωB97X-V density functional105 re-

produce CCSD(T)/CBS potential curves for both isomers nearly quantitatively. In

contrast, the att-MP2 method shifts the minimum to shorter distances for both iso-

mers. The sd-XSAPT(KS) method significantly shortens the van der Waals contact

distance for the π-stacked isomer, while significantly underestimating the binding

energy for the T-shaped isomer.

In Figure 8.7, we plot the potential energy curves for F−(H2O) and Cl−(H2O),

which are known to be challenging cases for SAPT.50,55 CCSD(T)/CBS correlation

energies were evaluated using a two-point (aTZ, aQZ) extrapolation,73 then added

to the HF/aQZ energy to obtain the CCSD(T)/CBS results. The XSAPT(KS)+D3,

att-MP2, and ωB97X-V methods reproduce the CCSD(T)/CBS potential curves for

F−(H2O) nearly quantitatively, whereas sd-XSAPT(KS) significantly overestimates

the binding energy. These methods perform even better for Cl−(H2O), with only a

slight underestimation of the binding energy on the part of sd-SAPT(KS).

The geometry of H2O is held fixed in the calculation shown in Fig. 8.7. Upon relax-

ation of the geometry, the F−(H2O) binding energy increases from 25 to 32 kcal/mol

at the minimum-energy structure, and the XSAPT(KS)+D3 method somewhat over-

estimates the binding energy. The relaxed geometry is somewhat problematic for
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Figure 8.6: Potential energy curves for the (a) sandwich and (b) T-shaped isomers
of (C6H6)2. The distance coordinate is the center-to-center distance between the
benzene rings. Benchmark CCSD(T)/CBS results are taken from Ref. 5. The aug-
cc-pVTZ basis set is used for the att-MP2 and ωB97X-V calculations. The hpTZVPP
basis set is used for the XSAPT(KS)+D3 calculations.
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Figure 8.7: Potential energy curves for (a) F−(H2O) and (b) Cl−(H2O) at a fixed H2O
geometry. The distance coordinate is the halide-oxygen distance and the benchmark
is CCSD(T)/CBS. The aug-cc-pVTZ basis set is used for the att-MP2 and ωB97X-V
calculations. The hpTZVPP basis set is used for the XSAPT(KS)+D3 calculations.
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Figure 8.8: Binding energies for eight isomers of (H2O)6. The aTZ basis set is used
for the att-MP2 and ωB97X-V calculations, whereas the hpTZVPP basis set is used
for the XSAPT(KS)+D3 calculations. (MAEs for the whole data set, with respect to
the CCSD(T)/CBS benchmarks, are also listed for each method).

fragment-based methods, as the proton affinity of F− leads to an unusually long O–H

bond length of 1.06 Å versus 0.96 Å when the H2O geometry is optimized separately.

[For Cl−(H2O), the O–H bond length increases only to 0.98 Å upon relaxation.] We

note that other fragment based methods, such as the effective fragment potential

(EFP) method,335 must also use rigid, EFP-optimized geometries; otherwise, large

errors in non-covalent binding energies are obtained.56

8.4.3 Many-body system: (H2O)6

We next consider a cluster of polar monomers that exhibits significant many-body

polarization effects.8,251 Eight low-lying structures of (H2O)6 are considered,8 and

their CCSD(T)/CBS binding energies are evaluated using a two-point extrapolation73
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of CCSD(T)-F12 correlation energies (cc-pVDZ-F12 and cc-pVTZ-F12 basis sets,

using the corresponding near-complete auxiliary basis sets cc-pVDZ-F12-CABS and

cc-pVTZ-F12-CABS).191,192 The HF energy is evaluated using the cc-pVTZ-F12 basis

set. For comparison, the MP2 correlation energy in the CBS limit was evaluated using

a two-point (aTZ, aQZ) extrapolation,73 then added to the HF/aQZ energy to obtain

the MP2/CBS result.

Figure 8.8 compares the binding energies for isomers of (H2O)6 computed using

various methods, but sd-XSAPT(KS) results are not shown in Fig. 8.8 because this

method overestimates the binding energies by an average of 5.46 kcal/mol. This is

consistent with the fact that sd-XSAPT(KS) overestimates the binding energy of wa-

ter dimer already by 0.56 kcal/mol, hence sd-XSAPT(KS) cannot be recommended for

water clusters. The att-MP2,17,176 ωB97X-V,105 and MP2/CBS methods all afford

accurate relative energies, as does XSAPT(KS)+D3 except for a slight overstabi-

lization of the cyclic chair isomer, but the most accurate absolute binding energies

are obtained using XSAPT(KS)+D3. Total binding energies predicted using XS-

APT(KS)+D3 are more accurate than those obtained using ωB97X-V which is one

of the best DFT approaches for non-covalent interactions,105 although it should be

noted that relative energies are slightly better with ωB97X-V, which does not over

stabilize the cyclic chair.

One factor that influences the accuracy of XSAPT(KS) results is the tuning of

ω. Tuned values listed in the SI were obtained using a step size ∆ω = 0.025 a−1
0

to scan εHOMO(ω) and −IP(ω), and ω = 0.500 a−1
0 is thus determined to be the
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optimal value for H2O. However, if the step size is decreased to 0.005 a−1
0 , then the

optimal value changes to 0.485 a−1
0 . For water dimer, the binding energy changes by

only 0.07 kcal/mol between these two values, but errors accumulate as the number of

fragments increases. For isomers of (H2O)6, the difference in binding energies between

ω = 0.485 and 0.500 a−1
0 is 0.68 kcal/mol on average, but is 3.13 kcal/mol for the

isomers of (H2O)20 that are discussed below. As such, we use the more finely-tuned

value (ω = 0.485 a−1
0 ) for water clusters.

8.4.4 Larger clusters: (H2O)20

Medium-sized water clusters have long attracted interest from the quantum chem-

istry community; for example, (H2O)16,17 are considered to be transition structures

from “all-surface” to “internally solvated” arrangements of the hydrogen-bonding

network,336,337 and (H2O)20,24 are the building blocks of ice clathrates.338 Here, we

use ten low-energy isomers of (H2O)20, obtained using the TIP4P force field,339 to

benchmark the methods introduced above, and—by comparison to (H2O)6 results—

to understand whether errors increase with system size. MP2/CBS results for these

ten isomers were estimated as described in Section 8.4.3.

To estimate the CCSD(T)/CBS binding energies, we use explicitly-correlated

CCSD(T) calculations reported recently using the generalized energy-based fragmen-

tation (GEBF) method.18 We take

E
CCSD(T)
CBS ≈ EMP2

CBS + δ
CCSD(T)-F12a
MP2-F12 , (8.28)

where the correction to the MP2/CBS result is equal to the difference between the
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Figure 8.9: Binding energies for ten low-energy isomers of (H2O)20. The aTZ basis
set is used for the att-MP2 and ωB97X-V calculations and the hpTZVPP basis set is
used for XSAPT methods. The isomers are number as in Ref. 18.

CCSD(T)-F12a/aDZ and MP2-F12/aDZ binding energies that were reported in Ref.

18 using the GEBF approximation. Unlike the calculations reported in Ref. 18, which

used the GEBF approximation at both the MP2 and CCSD(T) levels of theory, we

evaluate the full MP2/CBS energy. This changes the binding energies by an average

of 1.75 kcal/mol relative to the benchmarks reported in Ref. 18, and we believe

that our CCSD(T)/CBS results for (H2O)20 are one of the most accurate binding

benchmarks for large water clusters in the literature.
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Table 8.2: MAEsa for ten low-energy isomers of (H2O)20.

Method
MAE / kcal mol−1

binding relative
energy energy

MP2/CBS 2.69 0.18
att-MP2/aTZ 3.96 0.37
ωB97X-V/aTZ 0.92 0.07
XSAPT+D3b 5.42 0.97
XSAPT+D3+E3B

b 0.57 0.69
XSAPT+D3c 3.35 0.70
XSAPT+D3+E3B

c 2.12 0.34
aWith respect to CCSD(T)/CBS

benchmarks. bUsing the hpTZVPP basis

set. cUsing the haTZVPP basis set.

Results for total binding energies are shown in Fig. 8.9, with error statistics listed

in Table 8.2. The correction to MP2/CBS in Eq. (8.28) is negative for these clusters,

and CCSD(T)/CBS total binding energies are 2.7 kcal/mol larger, on average, than

MP2/CBS binding energies. Unfortunately, XSAPT(KS)+D3 results for total binding

energies are not significantly better than MP2/CBS results in this case, and can be

worse, depending on the basis set that is used.

In an attempt to understand this loss of accuracy relative to the (H2O)6 results, we

investigated the neglected three-body induction couplings, E3B in Eq. (8.16). For iso-

mers of (H2O)6, E3B = 0.13 kcal/mol (on average) at the XSAPT(KS)+D3/hpTZVPP

level. However, E3B = 4.95 kcal/mol (on average) for the (H2O)20 isomers considered

here, and the XSAPT(KS)+D3 total binding energies are significantly improved by

the addition of this three-body correction term.
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It is evident both from the plot in Fig. 8.9 and from the error statistics in Table 8.2

that the ωB97X-V and MP2/CBS methods afford very good relative energies, as does

att-MP2. XSAPT(KS)+D3+E3B relative energies are somewhat worse, even if the

absolute binding energies are slightly more accurate, at least when the hpTZVPP

basis set is employed. The reasons for this are unclear, although in fitting the D3 po-

tential we considered a variety of intermolecular distances but only one intermolecular

orientation per monomer. Also unclear is why isomer 6 (see Fig. 8.9) poses such a

problem for XSAPT, although this same isomer has been noted to pose problems for

DFT methods as well.18 It is the most highly-coordinated of all (H2O)20 isomers con-

sidered here, so the problem may again be orientational dependence, although Wang

et al.18 suggest that both basis set and electron correlation effects must be considered

in order to obtain an accurate relative energy for this isomer. Extension of XSAPT to

larger basis sets, by means of an AO rather than an MO implementation, is currently

underway in our group and may help in this capacity.

8.4.5 Halide–water clusters

Halide–water clusters are difficult cases for popular DFT methods.56,105 Table 8.3

shows binding-energy errors, with respect to CCSD(T)/CBS benchmarks, for various

methods applied to the minimum-energy structures of X−(H2O)n=1−6, for X = F, Cl.

(Benchmarks were obtained as described for water hexamer in Section 8.4.3.)

The MP2/CBS method cannot be considered a benchmark, sub-kcal/mol level

of theory for F−(H2O)n, with a MAE of 1.0 kcal/mol and a maximum error of 1.6

kcal/mol. Errors are smaller for Cl−(H2O)n (MAE = 0.2 kcal/mol, maximum =
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Table 8.3: MAEsa for binding energies of X−(H2O)n=1−6.

Method
MAE / kcal mol−1

X = F X = Cl
MP2/CBS 1.01 0.23
att-MP2/aTZ 0.22 1.02
ωB97X-V/aTZ 0.20 0.43
XSAPT(KS)+D3b 3.32 1.72
XSAPT(KS)+D3+E3B

b 1.64 0.98
XSAPT(KS)+D3+E3B-δMP2b,c 0.70 0.59
XSAPT(KS)+D3d 3.67 1.85
XSAPT(KS)+D3+E3B

d 1.73 0.94
XSAPT(KS)+D3+E3B-δMP2c,d 0.98 0.55
aWith respect to CCSD(T)/CBS benchmarks. bUsing

the hpTZVPP basis set for XSAPT. cUsing the aug-

cc-pVTZ basis for δMP2. dUsing the haTZVPP basis

set for XSAPT.

0.3 kcal/mol). Interestingly, the att-MP2 method performs in the opposite way:

highly accurate results for F−(H2O)n, but a MAE of 1.0 kcal/mol for Cl−(H2O)n.

The ωB97X-V functional performs well for both, as shown previously.105

For XSAPT calculations of X−(H2O)n, we find that the three-body induction cou-

plings are important, reducing the errors by approximately a factor of two, although

the MAE for F−(H2O)n remains > 1 kcal/mol. Parker et al.173 have proposed a

“δMP2” correction,

δEMP2 = EMP2
int − ESAPT2

int , (8.29)

to account for missing terms such as high-order coupling between induction and dis-

persion. This correction, which we find is especially important in ionic systems,52

is equal to the difference between the counterpoise-corrected MP2 binding energy
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Figure 8.10: Binding energies for ten isomers of F−(H2O)10. The att-MP2 and ωB97X-
V calculations use the aTZ basis set and XSAPT calculations use the hpTZVPP basis
set, except that the aTZ basis set was used to evaluate the δMP2 correction.

for the dimer and the SAPT2 binding energy. In XSAPT calculations, we apply

the δEMP2 correction in a pairwise way, for dimers that include X−, and this fur-

ther reduces the errors, especially for X = F. [The SAPT2 part of δEMP2 also makes

this correction O(N6) with respect to dimer size, although this can be reduced to

O(N5) using density-fitting techniques.158] The hpTZVPP basis set works better

than the haTZVPP basis set, which may be an overpolarization problem340 in the

latter case, due to the larger number of diffuse functions haTZVPP. In any case,

MAEs of < 1 kcal/mol in total binding energies are achievable for the difficult case

of X−(H2O)n clusters, if both E3B and δEMP2 are included.
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Table 8.4: MAEsa in binding energies and relative energies of ten isomers of
F−(H2O)10.

Method
MAE / kcal mol−1

binding relative
energy energy

MP2/CBS 2.02 0.16
att-MP2/aTZ 0.96 0.17
ωB97X-V/aTZ 0.99 0.13
ωB97X-D/aTZ 4.81 0.55
LC-VV10/aTZ 7.02 0.27
M06-2X/aTZ 10.18 0.45
M06-2X-D3(zero)b/aTZ 11.53 0.47
B2PLYP/aTZ 4.32 0.32
B2PLYP-D3(zero)b/aTZ 6.90 0.17
XSAPT(KS)+D3+E3B

c 0.38 0.41
XSAPT(KS)+D3+E3B-δMP2c,d 1.28 0.41
XSAPT(KS)+D3+E3B

e 0.72 0.33
XSAPT(KS)+D3+E3B-δMP2d,e 2.31 0.32
aWith respect to CCSD(T)/CBS benchmarks. bUsing the

“zero-damping” function of Ref. 14. cUsing the hpTZVPP

basis set for XSAPT. dUsing the aTZ basis set for δMP2.
eUsing the haTZVPP basis set for XSAPT.
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We next examine relative energies for ten isomers of F−(H2O)10 that were consid-

ered in Ref. 56. The following scheme is used to obtain CCSD(T)/CBS benchmarks:

E
CCSD(T)
CBS ≈ EMP2

CBS + δ
CCSD(T)-F12
MP2-F12 . (8.30)

Here, the correction to the MP2/CBS result is equal to the difference between CCSD(T)-

F12/aDZ and MP2-F12/aDZ energies. Binding energies for a variety of XSAPT and

DFT approaches are shown in Figure 8.10, and error statistics are listed in Table 8.4.

Amongst supersystem methods, ωB97X-V and att-MP2 perform the best.

In the case of XSAPT calculations, we find that the E3B contribution is 5–

6 kcal/mol, much larger than its contribution in neutral systems, which makes sense

given that E3B is an induction correction. The δMP2 term contributes 1.6 kcal/mol

on average, but in contrast to its effect in the smaller halide–water clusters, here the

δMP2 term has a deleterious effect on the accuracy of total binding energies. This

discrepancy may arise from the manner in which we obtain the CCSD(T)/CBS bench-

marks. Specifically, we used the CCSD(T)-F12 results to extrapolate directly to CBS

limit in small halide–water clusters but the additive scheme in Eq. (8.30) is used for

F−(H2O)10. Although this additive scheme seems to work well in neutral systems, it

is not well tested for anionic systems and may not be appropriate in such cases. We

note that the deviation between XSAPT results and these putative CCSD(T)/CBS

benchmarks is typically comparable to, or smaller than, the ∼2 kcal/mol magnitude of

the δ
CCSD(T)-F12
MP2-F12 correction in Eq. (8.30) although XSAPT(KS)+D3+E3B/hpTZVPP

offers the best binding energies among all methods considered in Table 8.4.
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Even if the deviation persists, and is indeed a problem with XSAPT, we note

that the ωB97X-D, LC-VV10, M06-2X, M06-2X-D3(zero), B2PLYP, and B2PLYP-

D3(zero) supersystem methods all afford errors that are unacceptably large, and can-

not be recommended for binding energies of halide–water clusters. (While accurate

relative energies are sufficient for structure determination, accurate total binding en-

ergies in order to compute, e.g., the binding affinity of a drug molecule to a protein.)

XSAPT works better with the hpTZVPP basis set than with haTZVPP, which may

again be an overpolarization effect. Such effects are well known in QM/MM calcu-

lations, where a simple solution is a Gaussian “blurring” of point charges nearby to

the QM region.340 In future work, we plan to test a Gaussian-blurred version of the

XPol procedure.

8.4.6 CH4 in a dodecahedral (H2O)20 cage

The isolated CH4@(H2O)20 gas-phase cluster has been used as a model system to

study the interaction between methane and clathrate hydrates.342–344 A recent quan-

tum Monte Carlo (QMC) benchmark affords a binding energy of−5.3±0.5 kcal/mol,341

for CH4@(H2O)20 → CH4+(H2O)20, while various other electronic structure methods

predict binding energies ranging from −4 to −7 kcal/mol (see Table 8.5). DFT meth-

ods generally overestimate the binding energy by about 1 kcal/mol while MP2 and

MP2C afford accurate binding energies. It is therefore curious that the double-hybrid

B2PLYP functional requires an empirical dispersion correction to get anywhere close

to the benchmark binding energy. The nonlocal LC-VV10 functional also severely

underestimates the binding energy despite its very good performance for S66. The
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Table 8.5: Binding energy of CH4 to (H2O)20.

Method Binding Energy/
kcal mol−1

QMCa −5.3± 0.5
MP2/CBS −5.04
MP2C-F12a/aTZ −4.60
att-MP2/aTZ −4.01
ωB97X-V/aTZ −6.29
ωB97X-D/aTZ −6.39
LC-VV10/aTZ −1.17
M06-2X/aTZ −6.11
M06-2X-D3(zero)/aTZ −7.32
B2PLYP/aTZ −1.09
B2PLYP-D3(zero)/aTZ −6.04
DFT-SAPTa/aTZ −3.88
XSAPT(KS)+D3b −3.48
aFrom Ref. 341. bCBS extrapolation.
bUsing the hpTZVPP basis set.
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Figure 8.11: Ellipticine molecule intercalated into a GC:GC segment of DNA; binding
energies computed with various methods are shown. XSAPT calculations used three
fragments: neutral ellipticine and two single-stranded GC complexes, each with with
a −1 charge.

att-MP2, DFT-SAPT, and XSAPT(KS)+D3 methods each underestimate the bind-

ing energy somewhat. It should be noted that the DFT-SAPT calculation requires

the use of (H2O)20 as one monomer unit, whereas in XSAPT the monomers are CH4

and H2O.

8.4.7 Anti-cancer drug intercalated into DNA

Predicting accurate non-covalent interaction between biomolecules and drug candi-

dates (i.e., protein–ligand interactions) is a crucial component in drug discovery and

design, where docking345,346 (with force fields or empirical scoring functions) and

ab initio screening347,348 (with low-level quantum-chemical methods) are theoretical
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mainstays. Here, we consider intercalation of the anti-cancer agent ellipticine349 into

DNA, which involves insertion between two Watson-Crick CG base pairs, linked by

their respective phosphate sugar puckers as depicted in Fig. 8.11. The structure

depicted in the figure consists of 157 atoms, and a benchmark binding energy is

available from QMC calculations.350 The sd-XSAPT(KS) method overestimates the

binding energy by about 10 kcal/mol with respect to this benchmark.

The sd-XSAPT(KS) method ignores the exchange-dispersion component and scales

the dispersion component by a factor optimized against CCSD(T)/CBS benchmarks

for small dimers; this method may therefore overestimate binding energies in sys-

tems with very large monomers. Dispersion-corrected DFT is also known to over-

estimate binding energies in such systems,351 and can be improved in such cases by

a three-body interatomic dispersion energy (E
(3)
disp) based on the Axilrod-Teller-Muto

three-body dispersion formula.351 For ellipticine intercalated into DNA, we obtain

E
(3)
disp = 8.90 kcal/mol, and the corrected sd-XSAPT(KS)+E

(3)
disp binding energy is

−34.4 kcal/mol, which lies within the statistical error bars of the QMC benchmark.

The PBE+MBD* method,40 where “MBD*” is a many-body dispersion correction,

yields a binding energy of −35.4 kcal/mol,350 which is also within the QMC error

bars. PBE+MBD* and sd-XSAPT(KS)+E
(3)
disp are the methods that come closest to

the QMC result so far.

8.4.8 Energy decomposition

Table 8.6 shows a statistical summary of the energy components for the dimers in the

S22 and S66 data sets, as computed by XSAPT methods and also by EFP.335 The
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Table 8.6: MAEs (in kcal/mol) and percent errors (in parentheses) for individual energy components of the S22
and S66 data sets.

Method
Energy Componentsa Binding

electrostatic exchange induction dispersion Energyb

—S22—
XSAPT(KS)+D1c 0.55 (11.21) 3.00 (22.90) 1.96 (60.98) 1.55 (20.72) 0.52 (9.34)
XSAPT(KS)+D2d 0.19 (2.80) 0.45 (4.10) 0.14 (9.46) 0.39 (5.70) 0.74 (9.92)
XSAPT(KS)+D3e 0.20 (3.04) 0.44 (4.04) 0.22 (10.80) 0.12 (3.19) 0.45 (7.47)
EFP 1.77 (32.66) 2.07 (14.87) 1.81 (51.53) 0.95 (14.20) 1.79 (27.19)

—S66—
XSAPT(KS)+D3e 0.20 (3.92) 0.31 (4.42) 0.18 (9.60) 0.23 (4.50) 0.27 (7.14)
aErrors with respect to SAPT2+(3)/aTZ energy components. bError with respect to

CCSD(T)/CBS binding energy. cUsing LRC-ωPBEh/jun-cc-pVDZ with 60% short-range

HF exchange. dUsing LRC-ωPBE/haTZVPP. eUsing LRC-ωPBE/hpTZVPP.
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benchmark is SAPT2+(3)/aTZ, results of which were reported for S22 in Ref. 51

and are reported here for S66, for the first time.

For S22, MAEs for the individual energy components calculated using XSAPT(KS)

+D1 are large. As suggested above, this method shows good results for total bind-

ing energies but only due to favorable error cancellation. In contrast, the XS-

APT(KS)+D2 and+D3 methods afford very good results for individual energy com-

ponents.

In contrast to the X−(H2O)n systems, for which the hpTZVPP basis set works

slightly better than haTZVPP (possibly owing to overpolarization), here the haTZVPP

basis set affords slightly better results for induction energies. We note that charge-

transfer interactions show up in the induction energy within the SAPT formalism,

but only if the basis set is diffuse enough so that basis functions centered on monomer

A extend significantly over monomer B. This may be why the more diffuse haTZVPP

performs better here for induction energies. In neutral systems, the overpolarization

caused by diffuse basis functions is not large, and it is better to use a large basis

set in order to capture charge transfer, whereas overpolarization is more significant in

anionic systems, and the more diffuse basis leads to larger errors in binding energies.52

For the S66 dataset, XSAPT(KS)+D3 affords errors of < 5% errors for the elec-

trostatic, exchange, and dispersion components, and < 10% for the induction compo-

nent. In short, XSAPT(KS)+D3 is reliable for energy decomposition analysis. EFP,

another fragment-based method, affords errors of 1–2 kcal/mol in each of the energy

components.
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Many-body interaction, MP2/a5Z-h

Many-body polarization, MP2/a5Z-h

Many-body polarization, XSAPT(KS)+D3

Figure 8.12: Many-body interactions for isomers of (H2O)6. MP2/a5Z-h results are
taken from Ref. 8 and the hpTZVPP basis is used for XSAPT(KS)+D3 calculations.
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For the eight (H2O)6 isomers discussed in Section 8.4.3, energy components have

been quantified by Chen and Li8 at the MP2/a5Z-h level, using a localized molecular

orbital energy decomposition analysis. Many-body effects in (H2O)6 are dominated

by polarization interactions, whereas the other energy components are strictly or

nearly pairwise additive.8 Figure 8.12 compares the many-body polarization and to-

tal many-body energies for these (H2O)6 isomers, as reported by Chen and Li, to

XSAPT(KS)+D3 results. The latter method inherently assumes that the many-body

part of the interaction arises exclusively from polarization. The many-body polariza-

tion energies using XSAPT(KS)+D3 are consistently overestimated as compared to

the many-body polarization energies evaluated at the MP2/a5Z-h level, but are much

closer to the total many-body energies using MP2/a5Z-h.

8.5 Summary

Two new XSAPT-based methods based on a modified dispersion interaction, XS-

APT(KS)+D3 and sd-XSAPT(KS), are reported in this article. It has been demon-

strated that XSAPT(KS)+D3 is very successful in predicting binding energies for

a wide range of challenging systems ranging from benzene dimer to large water-

and halide–water clusters. The sd-XSAPT(KS) method performs well for large,

dispersion-bound systems, such as a ligand–DNA intercalation complex considered

here and (based on preliminary calculations) the L7 database19 of large organic

dimers. However, this method performs less well for water clusters, where the double-

ζ basis set that is used in fitting the dispersion scaling parameter cannot adequately
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describe electrostatic and induction interactions.

Based on this survey of applications, it appears that the O(n)—when run in “em-

barrassingly parallel” mode—XSAPT family of methods, and especially XSAPT(KS)+D3,

should routinely be used to explore non-covalent interactions in large assemblies of

molecules. The many-body XSAPT energy decomposition can be used to understand

the meaning of such interactions.

There is still room for progress with XSAPT, including the formulation and imple-

mentation of analytic energy gradients for geometry optimizations and simulations,

and the combination of XSAPT and TDDFT response theory for dispersion energy

along the lines of SAPT(DFT). Extension of XSAPT to include intramolecular cor-

relation based on either a Møller-Plesset114,151 or coupled-cluster formalism154–156 is

possible, as are improvements to the empirical dispersion potential and the charge

embedding scheme. Several of these lines of development are currently underway in

our group.
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CHAPTER 9

Atomic orbital implementation of extended

symmetry-adapted perturbation theory (XSAPT)

and benchmark calculations for large

supramolecular complexes

9.1 Introduction

Efficient and accurate modeling of non-covalent interactions—and in particular, dis-

persion (van der Waals) interactions—is an active topic of research in computational

chemistry, due to the importance of such interactions in the supramolecular chem-

istry of host/guest complexes, crystal packing, protein folding, and the conforma-

tional energies of large molecules in general.117,138,352–354 Density functional theory

(DFT) based on popular semilocal functions is fundamentally incapable of modeling

the long-range electron correlation effects that give rise to dispersion, which have

inherently quantum-mechanical, many-body, and non-local properties. To do better

requires either a non-local correlation functional,144,145,147 or else the addition of a

posteriori corrections. Examples of the latter approach include empirical atom–atom

dispersion potentials,143 as well as similar potentials wherein the C6 coefficients are
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determined on-the-fly based on the electron density355–358 or further include the elec-

trodynamic response effects due to the surrounding polarizable atoms by solving the

self-consistent screening equation of classical electrodynamics.359–362

On the other hand, second-order Møller-Plesset perturbation theory (MP2), while

effective at describing intermolecular interactions in systems dominated by electro-

statics and polarization,52 usually overestimates the dispersion energy, especially for

π-stacking.57,363 This is due to the fact that dispersion at the MP2 level operates

within the uncoupled Hartree-Fock (HF) approximation.278 Various strategies have

been used to address this deficiency, including spin-component scaled MP2 (SCS-

MP2),263 long-range attenuated MP2 (att-MP2),176 and a “coupled” MP2 approach

(MP2C).309,310 At present, the O(N7) coupled-cluster method with single, double,

and perturbative triple excitations [CCSD(T)], extrapolated to the complete basis-set

(CBS) limit, remains the gold standard for non-covalent interactions, with corrections

to binding energies beyond CCSD(T) being < 0.1 kcal/mol.33,141

A perturbative view of intermolecular interactions results in an alternative method

called symmetry-adapted perturbation theory (SAPT),114–117,149,150 which provides

a solid theoretical basis to resolve one of the principle shortcomings of the super-

molecular approach to non-covalent interactions, namely, basis-set superposition er-

ror (BSSE). This is bypassed in SAPT because the perturbation series computes the

binding energy directly and energy subtraction is not required. Moreover, the in-

termolecular energy in SAPT is naturally decomposable into physically-meaningful
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components. In order to obtain accurate interaction energies, intramolecular elec-

tron correlation effects must be included, which can be accomplished using either a

Møller-Plesset formalism114,151 or a coupled-cluster formulation.154–156,172,239,364 Un-

fortunately these high-level SAPT methods such SAPT2+3 or SAPT(CCSD), while

generally quite accurate,117,172 exhibit the same O(N7) scaling as CCSD(T). On the

other end of the spectrum, the SAPT0 method describes the monomers at the HF level

and uses second-order perturbation theory for the intermolecular interactions. SAPT0

has been applied to very large systems including a proflavine/DNA complex,160 pro-

tein/ligand complexes,332 and π-stacked complexes of graphene with other aromatic

molecules.365,366

Alternatively, intramolecular electron correlation can be incorporated into SAPT

in a low-cost way using Kohn-Sham (KS) orbitals for the monomers, with the re-

maining long-range intermolecular correlation handled by the perturbative expan-

sion. This approach is known as SAPT(KS).208 Proper asymptotic behavior of the

monomer DFT exchange-correlation potentials is crucial to the success of such cal-

culations,162,208,209 and we have demonstrated that this can be achieved using long-

range corrected (LRC) density functionals.51 A DFT-based alternative to SAPT(KS)

is DFT-SAPT,149,150 in which DFT response theory is used to compute frequency-

dependent polarizabilities for the monomers, which are then used to compute the

“coupled Kohn-Sham” (CKS) dispersion interaction, via a Casimir-Polder-type for-

malism. Proper asymptotic behavior of the exchange-correlation potential remains

important, and is accomplished using various “splicing” schemes.199,215,331
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Traditional SAPT is a well-defined method for dimers, and while three-body non-

additivity corrections have been derived,249,250,367 they are expensive to evaluate. For

this reason, our group has developed an “extended” version of SAPT (XSAPT),54,57,65

in which the monomer wave functions incorporate many-body polarization effects via

the variational explicit polarization (XPol) method.252 These monomer wave functions

are then used in subsequent SAPT calculations, thereby extending traditional SAPT

to many-body systems.

The computational scaling of XSAPT depends on the treatment of the disper-

sion and exchange-dispersion energies.57 The SAPT0-style treatment via second-order

perturbation theory scales as O(N5) and affords a poor description of dispersion.54

An alternative is to omit the exchange-dispersion term and then to scale the direct

dispersion term by an empirical factor, an O(N4) strategy originally introduced by

Ochsenfeld and co-workers332 in the context of SAPT0 and later implemented by

the present authors for use with XSAPT.57 A further approximation is to neglect

the dispersion term also, replacing the sum of dispersion and exchange-dispersion

energies with empirical atom–atom potentials.55–57 (This idea was originally intro-

duced in the context of traditional SAPT by Heßelmann.16) This “XSAPT(KS)+D”

method exhibits O(N3) scaling and avoids any double-counting of dispersion interac-

tions at short and medium range. (The same cannot be said of dispersion-corrected

DFT,253,254,368 except in the context of the “dispersionless” density functional de-

veloped by Szalewicz and co-workers.6,369) Three generations of empirical dispersion

potentials were developed for use in XSAPT,55–57 with the latest (“+D3”) affording
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accurate results for both total binding energies and individual energy components for

many different systems.57

For small molecules, the performance of XSAPT(KS)+D3 is typically superior

to alternative supermolecular methods with similar scaling,57 but results for systems

with large monomers have been limited. There is reason to question the validity

of atomic-pairwise dispersion potentials in systems composed of a large number of

highly polarizable centers,370 such as molecular crystals or supramolecular complexes

assembled from highly conjugated monomers.371–373 The present work therefore con-

siders examples from the latter category. Such examples often involve monomers that

are rather large, so to facilitate XSAPT(KS)+D3 calculations in these cases, we have

reformulated XSAPT in the atomic orbital (AO) basis. This formulation avoids the

four-index integral transformation that is required in the original, molecular orbital

(MO) version of the method, and exhibits O(N3) scaling with respect to dimer size.

9.2 Methods

9.2.1 Atomic orbital implementation of XSAPT

In XSAPT(KS), we consider intermolecular correlation through second order and in-

corporate intramolecular correlation via monomer DFT calculations. The interaction

energy can be written as

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp + δEHF

int .

(9.1)
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The various terms in Eq. (9.1) are discussed below, but we note here that the final

term,

δEHF
int = EHF

int −
[

E
(10)
elst (HF) + E

(10)
exch(HF)

+ E
(20)
ind,resp(HF) + E

(20)
exch-ind,resp(HF)

]

,
(9.2)

is often incorporated to capture polarization effects beyond second order, by means

of a counterpoise-corrected HF calculation of the binding energy (EHF
int ). The energy

components in Eq. (9.2) are described at the HF level, neglecting intramolecular

correlation, but a response (“resp”) correction, as described below, is included in the

second-order induction and exchange-induction terms.

The non-dispersion terms in Eq. (9.1) are

ESAPT0
non-disp = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind , (9.3)

By evaluating these terms in the AO basis, one sidesteps the need for a costly

four-index integral transformation. The AO formulation also circumvents problems

with linear dependencies (which we have encountered in large systems when using

a resolution-of-identity implementation of XSAPT), and naturally facilitates use of

linear-scaling algorithms for construction of the Coulomb (J) and exchange (K) matri-

ces. Closed-shell formulas to implement Eq. (9.1) in the AO basis were first provided

by Heßelmann et al.,137,374 and a more efficient formulation of E
(1)
exch(S2) and E

(2)
exch-ind

was introduced later by Beer.375 Open-shell formulas have been presented by Hapka

et al.376 Below, we provide both the closed-shell and open-shell AO expressions, us-

ing Beer’s formulation since it requires construction of one fewer exchange matrix for

E
(1)
exch(S2) and one fewer Coulomb matrix for E

(2)
exch-ind, as compared to Heßelmann’s
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formulation. The closed-shell AO-expression of an exact form for E
(1)
exch shown below

is based on its open-shell expression in Ref. 376. Two minor typographical errors in

Ref. 375 and 376 are corrected here.

In the AO basis, the closed-shell (CS) first-order electrostatic energy can be ex-

pressed as

[E
(1)
elst]CS = tr

(
2PAVB + 2PBVA + 4PBJA

)
+ V0 , (9.4)

where PA,B are the one-particle density matrices for monomers A and B, VA,B are

the corresponding electrostatic potentials, JA,B ≡ J[PA,B] are the Coulomb matri-

ces for monomers A and B, and V0 is the internuclear repulsion energy. Note that

tr(PBJA) = tr(PAJB), which is why Eq. (9.4) does not at first appear to be symmetric

with respect to interchange of A and B.

The corresponding open-shell (OS) version is

[E
(1)
elst]OS = tr

[

(PA
α + PA

β )VB

+ (PB
α + PB

β )(VA + JA
α + JA

β )
]

+ V0 ,
(9.5)

where σ (with σ = α or β) in the subscript indicates the σ-spin component for the

corresponding matrix.

Regarding the exchange terms in Eq. (9.1), an exact form for E
(1)
exch was written

down almost 40 years ago,127 but analytic forms of E
(2)
exch-ind and E

(2)
exch-disp were only

published recently,174,175 so the second-order exchange energies have historically al-

ways been evaluated using the “single exchange” (or “S2”) approximation.115,116 This

approximation is accurate beyond the van der Waals (vdW) contact distance,115,174,175

except when one of the monomers is an anion, in which case the E
(1)
exch(S2) and
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E
(2)
exch-ind(S2) terms must be scaled in order to obtain accurate results.50,52 (This scal-

ing is based on the ratio of the exact and S2 results for first-order exchange.)

Defining

ΩA,B = VA,B + 2 JA,B (9.6)

hA,B = ΩA,B −KA,B , (9.7)

the closed-shell exact first-order exchange energy can be expressed as

[E
(1)
exch]CS = 2 tr

(

−PAKB + TAhB + TBhA

+ TABhA + TABhB + TA(2 J[TB]−K[TB])

+ TAB(2 J[TA]−K[TA])

+ TAB(2 J[TB]−K[TB])

+ TAB(2 J[TBA]−K[TBA])
)

.

(9.8)

The matrices TA,B,AB can be obtained via back-transformed the block matrix of a

matrix D to the AO basis by the MO coefficient matrices CA and CB of monomer A

and B, respectively. They are defined as

TA = CADaa(C
A)† , (9.9)

TB = CBDbb(C
B)† , (9.10)

TAB = CADab(C
B)† , (9.11)

TBA = CBDba(C
A)† . (9.12)

The matrix D =

(
Daa Dab

Dba Dbb

)

can be calculated as

D = [1 + SAB]−1 − 1 = −SAB + (SAB)2 − (SAB)3 + · · · , (9.13)
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where SAB is the dimer overlap matrix between the occupied molecular orbitals of

both fragments. The matrix SAB can be written as SAB =

(
0 Sab

Sba 0

)

where Sab =

〈φa|φb〉 with a ∈ A and b ∈ B used to label occupied MOs belonging to fragments A

and B, respectively.

The matrices KA,B = K[PA,B] are the usual Hartree-Fock exchange matrices.

The J[X] and K[X] are Coulomb and exchange matrices formed from the generalized

density matrix X, respectively:

(J[X])µν =
∑

λσ

Xλσ(µν|λσ) , (9.14)

(K[X])µν =
∑

λσ

Xλσ(µλ|σν) . (9.15)

The corresponding open-shell version is

[E
(1)
exch]OS =

∑

σ

tr
{

−PA
σ KB

σ + TA
σ hB

σ + TB
σ hA

σ

+ TAB
σ hA

σ + TAB
σ hB

σ + TA
σ

(

J[TB
σ ]−K[TB

σ ]
)

+ TAB
σ

(

J[TA
σ ]−K[TA

σ ]
)

+ TAB
σ

(

J[TB
σ ]−K[TB

σ ]
)

+ TAB
σ

(

J[TBA
σ ]−K[TBA

σ ]
)}

+ TA
α J[TB

β ] + TA
β J[TB

α ]

+ TAB
α J[TA

β ] + TAB
β J[TA

α ]

+ TAB
α J[TB

β ] + TAB
β J[TB

α ]

+ TAB
α J[TBA

β ] + TAB
β J[TBA

α ] .

(9.16)

Errors introduced by the S2 approximation in E
(1)
exch and E

(2)
exch-ind are somewhat

cancelled by the errors arising from the S2 approximation used in the δEHF
int term, and
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the S2 approximation to the first-order exchange energy avoids the need to invert the

dimer overlap matrix. The S2 approximation will be used for all calculations reported

in this work. The first-order exchange energy within the S2 approximation can be

expressed as

[E
(1)
exch(S2)]CS = −2 tr

(

PAKB + O†hA + OhB

−PBSOΩA −OSPAΩB + OK†[O]
)

.
(9.17)

The quantity

O = PASPB (9.18)

is a generalized density matrix, with S and P denoting the overlap and density ma-

trices, respectively.

The corresponding open-shell version is:

[E
(1)
exch(S2)]OS = −

∑

σ

tr
(

PA
σ KB

σ + O†
σ h

A
σ

+ Oσ h
B
σ −PB

σ SOσΩ
A

−OσSP
A
σΩ

B + OσK
†[Oσ]

)

,

(9.19)

Construction of non-symmetric K[O] and K[TBA] is the rate-determining step in

evaluating the non-dispersion terms in SAPT0 for first-order exchange term with and

without involving S2 approximation, respectively. The cost of open-shell AO-SAPT

is twice that of the closed-shell versions, since the rate-determining step amongst the

non-dispersion terms in SAPT0 must be done for each spin density.

The second-order induction energy can be written as

E
(2)
ind = E

(2)
ind(A← B) + E

(2)
ind(B ← A), (9.20)
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where E
(2)
ind(A ← B) indicates the induction energy for monomer A due to the per-

turbing field of a frozen charge density from B. In the AO basis,

[E
(2)
ind]CS = 2 tr

(
XA ΩB + XB ΩA

)
(9.21)

where
XA

µν =
∑

ar

cAνr Ura (cAµa)
†

XB
µν =

∑

bs

cBνs Usb (cBµb)
† .

(9.22)

The quantity Ura is defined as

Ura =
Ωra

εa − εr
(9.23)

and Usb is defined similarly, with r ∈ A and s ∈ B used to label virtual MOs belonging

to fragments A and B, respectively.

The corresponding open-shell version is

[E
(2)
ind]OS = tr

(
XA

α Ω
B + XA

β Ω
B + XB

α Ω
A + XB

β Ω
A
)

(9.24)

Within the S2 approximation, the second-order exchange-induction energy for

monomer A is

[E
(2)
exch-ind(S2)(A← B)]CS

= −2 tr
(

XAKB + XASPBhA + PBSXAhB

−PBSXASPBΩA −XASO†ΩB −OSXAΩB

+ 2 O†J[XA]− 2 PBSOJ[XA]−XAK[O]

+ XASPBK†[O] + PBSXAK[O]
)

.

(9.25)

The corresponding term E
(2)
exch−ind(S2)(B ← A) is evaluated analogously.
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The E
(2)
ind and E

(2)
exch-ind terms are commonly replaced by their “response” analogues,

E
(2)
ind,resp and E

(2)
exch-ind,resp, in which coupled-perturbed Hartree-Fock (CPHF) equations

are solved in order to compute the infinite-order correction for induction arising from

a frozen partner density.179,180 The CPHF coefficients can be back-transformed to

the AO basis as U in Eq. (9.22) and substituted into the XA and XB matrices

in Eq. (9.21) and (9.25), in which case they afford the response-corrected energies

E
(2)
ind,resp and E

(2)
exch-ind,resp, respectively.

Subject to the S2 approximation, the corresponding open-shell version of the

second-order exchange-induction energy for monomer A due to the perturbing field

of a frozen charge density on monomer B is

[E
(2)
exch-ind(S2)(A← B)]OS

= −
∑

σ

tr
(

XA
σK

B
σ + XA

σSP
B
σ h

A
σ

+ PB
σ SX

A
σh

B
σ −PB

σ SX
A
σSP

B
σΩ

A

−XA
σSO

†
σΩ

B −OσSX
A
σΩ

B

+ O†
σJ[XA

σ ]−PB
σ SOσJ[XA

σ ]

−XA
σK[Oσ] + XA

σSP
B
σK

†[Oσ]

+ PB
σ SX

A
σK[Oσ]

)

+ tr
(

O†
αJ[XA

β ] + O†
βJ[XA

α ]

−PB
αSOαJ[XA

β ]−PB
β SOβJ[XA

α ]
)

.

(9.26)
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9.2.2 Intramolecular correlation using tuned LRC-DFT

The asymptotic (large r) behavior of the exchange-correlation potential is210

vxc(r) ∼ −
1

r
+ ∆∞ (9.27)

with ∆∞ → IP + εHOMO as r → ∞.210,211 Here, “IP” denotes the lowest ioniza-

tion potential and εHOMO is the KS eigenvalue for the highest occupied molecular

orbital (HOMO). To achieve proper asymptotic behavior vxc(r) ∼ −1/r, Baer and

co-workers229,230 propose to tune the range-separation parameter (ω) in LRC-DFT in

order to satisfy the condition εHOMO(ω) = −IP(ω), or in other words ∆∞ = 0.

Correct asymptotic behavior is crucial for obtaining accurate energy components

in DFT-based SAPT,162,208,209 and the non-empirical tuning procedure of Baer and

co-workers, applied separately to each monomer, affords such behavior and provides

accurate energy components.51,56,57 At the same time, tuned LRC-DFT retains the

relationship vxc = δExc/δρ that is sacrificed when using the asymptotic “splicing”

schemes199,215,331 that have traditionally been employed in DFT-based SAPT. Tuned

LRC-DFT functionals also provide a better description of properties such as po-

larizabilities and isotropic C6 coefficients, and afford smaller delocalization errors,

as compared to splicing methods.377,378 These quantities are directly related to the

SAPT energy components, and Hapka et al.378 have demonstrated that SAPT based

on tuned LRC-DFT provides better or comparable results as compared to the tra-

ditional splicing approach.378 We will denote by “ωIP” the value that satisfies the

tuning condition

εHOMO(ωIP) = −IP(ωIP) . (9.28)
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Tuned values of ωIP are available in the Supporting Information.

It should be noted that the value ωIP exhibits a troublesome dependence on system

size.379,380 An alternative method to select ω is the global density-dependent (GDD)

tuning procedure,26 in which the optimal value

ωGDD = C〈d2x〉
−1/2 (9.29)

is related to the average distance dx between an electron in the outer regions of

a molecule and the exchange hole in the region of localized orbitals, and C is an

empirical constant for a given LRC functional. Following the procedure in Ref. 26,

we determined C = 0.885 for the LRC-ωPBE functional,227 with ω = 0.3 a−1
0 . (Details

can be found in the Supporting Information.) The basis set in these calculations is

def2-TZVPP augmented with diffuse functions on non-hydrogen atoms that are taken

from Dunning’s aug-cc-pVTZ (aTZ) basis set. (Henceforth, we refer to this basis as

“haTZVPP”.) Our optimized parameter C is almost the same as that determined

in Ref. 26 (C = 0.90) for LRC-ωPBE with ω = 0.4 a−1
0 and the def2-TZVPP

basis set. Since LRC-ωPBE(ωGDD) provides a better description of polarizabilities

in polyacetylene as compared to ωIP,378 it is anticipated that using ωGDD in place of

ωIP may afford more accurate energy components, especially in conjugated systems.

(Many of the supramolecular complexes considered here fall into this category.)

9.2.3 Dispersion corrections

The expensive and inaccurate SAPT0-style description of dispersion (E
(2)
disp+E

(2)
exch-disp)

can be replaced by a third-generation dispersion potential (“+D3”) that we have
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recently developed.57 It should be emphasized that our D3 potential is unrelated

to Grimme’s D3 correction for DFT.274 Whereas the latter is a model-dependent

quantity with no real physical meaning,253 our D3 correction is a true dispersion

potential, and exhibits errors of . 0.2 kcal/mol with respect to dispersion energies

obtained from high-level SAPT calculations.57

It should be stressed that the fitting set for D3 consists of monomers containing no

more than 20 non-hydrogen atoms, whereas the molecules considered here are much

larger. It has been demonstrated that pairwise dispersion methods overestimate the

dispersion in certain supramolecular complexes and molecular crystals,371–373 in what

Dobson has classified as “type-B” non-additivity.370 Even MP2 (and thus SAPT0)

fails to capture type B effects,370 and various methods have been proposed to include

type-B non-additivity within a pairwise scheme. These include the many-body dis-

persion (MBD) method,359–362 an empirical Axilrod-Teller-Muto (ATM) three-body

dispersion term E
ATM(Grimme)
disp,3B developed by Grimme,274 and another ATM-type cor-

rection that is derived “on the fly” from the electron density.351 The latter is based

on the Tkatchenko-Scheffler (TS) formalism,358 and will be denoted here as E
ATM(TS)
disp,3B .

Preliminary results for a DNA intercalation complex suggest that these corrections,

in conjunction with sd-XSAPT(KS), afford accurate interaction energies for large

supramolecular complexes.57

In detail, the three-body ATM triple-dipole term is

EATM
disp,3B =

∑

A<B<C

CABC
9

(
3 cos θa cos θb cos θc + 1

R3
ABR

3
ACR

3
BC

)

fABC
damp (9.30)

where the θx are the internal angles in the atomic ABC triangle. The coefficients
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CABC
9 are functionals of the electron density that depend on the atom-in-molecule

CX
9 coefficients (X = A,B,C) and static polarizabilities αX

0 , which in turn depend

on the free-atom quantities CX
9,free and αX

0,free. Hirshfeld volume partitioning356 is used

to determine the atomic volume ratio relative to that of the free atom:

vX =
V X

V X
free

. (9.31)

The C9 coefficient and polarizability for atom X are then taken to be

CX
9 = (vX)3 CX

9,free

αX
0 = vX αX

0,free

. (9.32)

The damping function fABC
damp in Eq. (9.30) is a product of two-body Tang-Toennies

damping functions,

fABC
damp = fAB

6 fAC
6 fBC

6 , (9.33)

with

fAB
6 (RAB) = 1− e−bABRAB

6∑

k=0

bkABR
k
AB

k!
(9.34)

and a range parameter bAB = 0.31×RAB
vdW + 3.43 a−1

0 . Here, RAB
vdW = RA

vdW +RB
vdW is

a sum of atom-in-molecule vdW radii that are again obtained from the corresponding

free-atom quantities using Hirshfeld volume partitioning:

RX
vdW = (vX)1/3 RX

vdW,free . (9.35)

To obtain total electron densities for calculating E
ATM(TS)
disp,3B , one must perform

separate calculations on the dimer as well as both monomers. Then

E
ATM(TS)
disp,3B (int) = E

ATM(TS)
disp,3B (dimer)− E

ATM(TS)
disp,3B (mono1)

− E
ATM(TS)
disp,3B (mono2) .

(9.36)
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To save time for large dimers, average hybridized values of α0, C9, and RvdW are

sometimes determined in advance and used to estimate E
ATM(TS)
disp,3B .351 We denote this

as E
ATM(TS)
disp,3B (param), the use of which sidesteps the need for a self-consistent field

calculation on the dimer.

It has been argued that inclusion of a three-body dispersion term may overestimate

the extent to which the two-body dispersion should be reduced, and that contributions

up to sixth order are necessary for a converged dispersion interaction.40 However, the

C8R
−8 term is also included in our D3 dispersion potential, whereas this term is

omitted in the MBD* approach of Tkatchenko et al.40 The magnitude of the C8R
−8

term is roughly 1/3 that of the C6R
−6 term,255 and we expect that the C8R

−8 term

reduces the overcompensation caused by E
ATM(TS)
disp,3B .

As a “control experiment”, we tested the combination of E
ATM(TS)
disp,3B with our D2

and D3 dispersion potentials,51,57 for the S66 data set, and we find that the addition

of E
ATM(TS)
disp,3B to XSAPT(KS)+D changes the mean absolute errors (MAEs) in S66

interaction energies by no more than 0.12 kcal/mol for these dimers, This is consistent

with the high-quality results that we obtain using XSAPT(KS)+D2 and +D3 in small

molecules, where atom-wise non-pairwise-additive dispersion is not important.

On the other hand, our empirical dispersion potentials do not explicitly include

“type-A” non-additive effects, in which crowding by neighboring atoms results in a

reduction in atomic polarizabilities and thus dispersion energies.370 Type A effects

are accounted for by methods such as the Tkatchenko-Scheffler correction358 and

the Becke-Johnson exchange-dipole model (XDM),355,357 because these corrections

272



depend directly on the electron density. Grimme’s D3 correction274 also includes

type A effects because its atomic dispersion parameters depend upon the number of

bonds. Within XSAPT, type-A non-additivity is included implicitly via the XPol

charge-embedding step, wherein the electron density of each fragment is squeezed by

the neighboring charges, thereby reducing the dispersion interaction.

9.2.4 Data sets

The L7 (Ref. 19) and S12L (Ref. 20) data sets are used here to assess the perfor-

mance of various methods on large organic complexes. Structures and nomenclature

for these complexes are shown in Fig. 9.1. The L7 binding energies range from 2–

27 kcal/mol, and were revised recently by Hansen et al.21 using the domain-based

local pair natural orbital (DPLNO) approximation to CCSD(T),381–384 extrapolated

to the CBS limit. These new benchmarks, which are the ones used here, come with

estimated uncertainties of approximately ±1 kcal/mol.21,353 Although Calbo et al.385

have also recently revised the L7 benchmarks, differences as large as 4.9 kcal/mol

are observed with respect to the Hansen benchmarks. The most like reason for these

discrepancies are differences in the truncation thresholds used in the DLPNO proce-

dure,384 as discussed in Ref. 21.

The S12L data set consists of 12 host/guest complexes assembled from six host

molecules and two guests each. Whereas six of seven L7 complexes are dispersion-

dominated (see Fig. 9.1), the S12L complexes incorporate hydrogen bonding, disper-

sion, π-stacking, and cation-dipole binding. Benchmark gas-phase binding energies
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CBH C2C2PD C3A

C3GCGCGC GGG PHE

2a 2b 3a 3b

4a 5a 5b

6a 6b 7b

(a) L7

(b) S12L

parallel-displaced 
 coronene dimer

 parallel-stacked 
octadecane dimer

      adenine/
circumcoronene

  Watson-Crick
guanine:cytosine 
    base pairs

  π-stacked 
   guanines

phenylalanine
      trimer

   Watson-Crick
guanine:cytosine/ 
 circumcoronene

   tweezers/
     TCNQ

        tweezers/
   dicyanobenzene

    pincers/
       NBD

    pincers/
       TNF

   buckycatcher/
        C

   amide macrocycle/
       BQ

   amide macrocycle/
    GLH

   cucurbit[6]uril/
         BuNH4

   cucurbit[6]uril/
         PrNH4

   cucurbit[7]uril/
ADOH

4b

   buckycatcher/
        C60 70

7a

   cucurbit[7]uril/
FECP

–12.1 (D) –1.9 (D) –22.5 (M) –27.4 (D)

–16.1 (D)–19.9 (D)–10.9 (D)

–29.0 (M) –20.8 (D) –23.5 (D) –20.3 (D)

–28.4 (D) –29.8 (D) –33.4 (M) –23.3 (M)

–82.2 (M) –80.1 (E) –24.2 (D)– 131.5(M)

Figure 9.1: Structures of the complexes in the (a) L7 and (b) S12L data sets,19,20

with benchmark binding energies (in kcal/mol) taken from Ref. 21 (for L7) and
Ref. 22 (for S12L, except that the benchmark from 7a is taken from Ref. 23).
The coloring system is as follows: white spheres (hydrogen), gray (carbon), dark
blue (nitrogen), red (oxygen), green (chlorine), and orange (iron). The designations
“D”, “E”, and “M” indicate, respectively, cases where the intermolecular interactions
are dispersion-dominated, electrostatics-dominated, or of mixed character. (Case D
means |Eelst/Edisp| > 2, case E means |Eelst/Eelst| < 1/2, and case M is the in-
termediate regime.7) These classifications are based on energetics computed at the

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD)/hpTZVPP level.
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for S12L have been obtained by back-correcting experimental free energies of asso-

ciation,20,23 using semi-empirical harmonic vibrational frequencies and COSMO-RS

solvation energies.386 The back-corrected binding energies range from 20–132 kcal/mol

with estimated uncertainties of ∼ 2 kcal/mol,20,23 which is thought mainly to arise

from the solvation correction, which is 1.4 kcal/mol on average.22 Quantum Monte

Carlo (QMC) binding energies with narrow statistical error bars have been deter-

mined for six of the S12L systems (2a, 2b, 4a, 5a, 6a, and 7b).40 The MAE between

these six QMC benchmarks and the latest back-corrected experimental benchmarks

is 1.6 kcal/mol,22 versus 2.4 kcal/mol when compared to older, back-corrected exper-

imental benchmarks,20 which provides another suggestion as to the level of accuracy

that can be anticipated from the benchmarks. The newer benchmarks from Ref. 22

are used for all S12L complexes except 7a, for which only the older benchmark from

Ref. 20 is available.

9.2.5 Computational methods

The L7 and S12L data set will be examined using both XSAPT(KS)+D3 and sd-

XSAPT(KS). We will also examine dispersion energies obtained from DFT-SAPT

calculations.42 The non-dispersion terms in these calculations were performed in the

cc-pVTZ basis set (abbreviated TZ hereafter), whereas the dispersion terms were ex-

trapolated to the CBS limit using a two-point cc-pVDZ→ cc-pVTZ scheme (DZ,TZ),

then multiplying the CBS limit by a factor of 1.08 to account for basis-set incom-

pleteness.24

Regarding basis sets, this dependence was tested at the SAPT(KS)/LRC-ωPBE
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Table 9.1: Mean absolute percentage errorsa for F−(H2O), (H2O)2, and the T-shaped
and parallel-displaced isomers of (C6H6)2.

Basis Set
MAPE (%)

E
(1)
elst E

(1)
exch

dimer-centered TZ 10.0 4.0
pseudocanonicalb hpTZVPPc 5.1 4.7
pseudocanonicalb aQZVPPd 3.4 3.9
aWith respect to SAPT2+(3)/aTZ benchmarks.

bEquivalent to the “projected” basis of Ref. 65.

cBasis set is def2-TZVPP augmented with diffuse

functions on non-hydrogen atoms, taken from Pople

basis sets.

dBasis is def2-QZVPP augmented with diffuse

functions taken from aug-cc-pVQZ.

level using a few representative systems. Error with respect to SAPT2+(3)/aTZ

benchmarks, for the energy components E
(1)
elst and E

(1)
exch, are shown in Table 9.1 for

several different basis sets. Although the pseudocanonicalized65 quadruple-ζ basis

set performs the best, the hpTZVPP basis is only slightly inferior and for reasons of

cost will be used here for all XSAPT(KS)+D3 calculations. (This basis also affords

good results in small-molecule XSAPT calculations.56,57) The def2-TZVPP basis set

is used for Fe in complex 7a.

A scaling factor of cdisp = 0.657 was used in previous sd-XSAPT(KS)/6-31G(d,2p)

calculations using IP tuning, and essentially the same value (cdisp = 0.661) was op-

timized here in the ωGDD case using the S22 data set, with essentially the same

RMSD (0.37 kcal/mol versus 0.34 kcal/mol, respectively). We will use the former

value for sd-XSAPT(KS) calculations based on IP tuning, and the latter value for
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sd-XSAPT(KS) calculations based on ωGDD tuning.

For the δEHF
int correction in Eq. (9.2), the 6-31+G(3d,3pd) basis set is used for the

L7 complexes, as in previous work,56 whereas for S12L we use the δEHF
int corrections

computed in the TZ basis and reported in Ref. 42. For the two smallest systems

in S12L (2a and 2b), we have verified that the δEHF
int correction computed using

6-31+G(3d,3pd) differs by at most 0.1 kcal/mol from the TZ value in Ref. 42.

The LRC-ωPBE functional227 (no short-range HF exchange) and the LRC-ωPBEh

functional227,240 (20% short-range HF exchange) are used for the XSAPT(KS)+D3

and sd-XSAPT(KS) calculations, respectively, with monomer-specific tuned ω values

in either case. Atom-centered ChElPG charges,54,319 computed on-the-fly from the

monomer wave functions, are used to do the XPol embedding.54,65 Then, the con-

verged XPol wave functions are used to compute the pairwise SAPT corrections in a

projected (pseudocanonicalized) basis set, which captures some intermolecular charge-

transfer interactions.65 The supersystem calculation needed to evaluate E
ATM(TS)
disp,3B (int)

in Eq. (9.36) was performed at the PBE/hpTZVPP level, as in previous work.351 The

D2 and D3 dispersion potentials are not parameterized for iron, nor is E
ATM(TS)
disp,3B (int),

so in complex 7a involving ferrocene the pairwise dispersion potentials involving Fe

are set to zero.

Benchmark binding energies for S12L include monomer deformation (or relax-

ation) energies, which are not included in XSAPT calculations. In principle we could

compute them using the same density functionals that we employ for the monomers

in the XSAPT calculations, however these functionals are not dispersion corrected
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so the results are suspect in cases where the monomers are large. Instead, we turn

to results from Ref. 42 where the S12L deformation energies were computed using

a nonlocal DFT functional (NLDFT),148 and also using MP2 and spin-component

scaled (SCS) MP2. These methods deviate from one another, and from additional

B97M-V/aTZ results computed here, by as much as 11 kcal/mol (see the Supporting

Information). For reasons of cost, the B97M-V calculations for complexes 4a, 4b, 7a,

and 7b use the “heavy augmented” haTZ basis set, which differs from aTZ by removal

of the diffuse functions on hydrogen. MAEs for S12L binding energies, with respect

to the back-corrected experimental benchmarks of Ref. 22, are 2.4 (NLDFT), 6.4

(SCS-MP2), and 15.9 kcal/mol (MP2). Hence we select NLDFT to compute the the

deformation energies, and note that the B97M-V/aTZ deformation energies reported

here differ from the NLDFT results in Ref. 42 by no more than 2.8 kcal/mol.

Finally, results for several DFT and MP2-based methods will also be shown for

comparison. The ωB97X-V and B97M-V functionals are among the best-performing

DFT methods for non-covalent interactions,57,105,202 and we will report ωB97X-V/ and

B97M-V/aTZ results without counterpoise correction. An Euler-Maclaurin-Lebedev

quadrature grid (Nr = 75, NΩ = 302) is used to evaluate the semi-local part of these

functionals and the SG-1 grid91 is used for the VV10 nonlocal correlation part.

Closely related to MP2 is the SAPT0 method117 and the empirically-scaled sSAPT0

method.173 (The latter has been called the “bronze standard” of SAPT.173) These

two methods will be tested for L7 using the jun-cc-pVDZ (jaDZ) basis set, also
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known as aug-cc-pVDZ′ and which removes some diffuse functions relative to aug-cc-

pVDZ.157,158 This basis is selected because it often affords favorable error cancellation

for MP2-type methods.157,158 Lastly, the low-cost HF-3c method387 will be tested for

both L7 and S12L. HF-3c consists of a minimal-basis Hartree-Fock calculation with

three empirical corrections: for dispersion, for BSSE, and for basis-set incompleteness.

All calculations except SAPT0, sSAPT0, and HF-3c were performed using a

locally-modified version of Q-Chem.97 [An MO implementation of XSAPT(KS)+D3

is available in Q-Chem v. 4.3 and the AO implementation reported here will be avail-

able in v. 4.4.] The SAPT0 and sSAPT0 calculations performed using the beta5

version of the Psi4 program,187 and the HF-3c calculations were performed using the

Orca program,188 v. 3.0.3.

A few final notes concerning supramolecular DFT, MP2, and XSAPT calculations

warrant mention. First, we set the self-consistent field (SCF) convergence criterion to

τSCF = 10−7 a.u., two orders of magnitude tighter than the Q-Chem default, because

we have observed that the binding energies of the buckycatcher complexes (4a and

4b in S12L) change by several kcal/mol as the threshold is tightened from the Q-

Chem default of τSCF = 10−5 a.u. Furthermore, and at great cost, we set the integral

screening threshold to τints = 10−12 a.u. to avoid negative eigenvalues in the overlap

matrix. These could be circumvented, in principle, and a looser threshold used for

integral screening, if the overlap matrix were computed with a separate threshold,

but that capability is not yet implemented.

ChElPG charges were computed based on Lebedev grid using a “head space”
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of 3.0 Å (see Ref. 319) with radial shells spaced ∆r = 0.25 Å apart for L7 and

∆r = 0.50 Å for S12L. For L7, each Lebedev shell is a (110,590) grid and for S12L it

is (86,434).

9.3 Results and discussion

9.3.1 L7 Data set

Wave Function Methods

MAEs, mean deviations (MDs), and maximum errors in binding energies for the L7

data set, using a variety of supersystem methods, are listed in Table 9.2. (Many

of these are taken from the literature19,177,385,388–390 but summarized here for ease

of comparison; the HF-3c, ωB97X-V, and B97M-V calculations are new.) As ex-

pected, MP2/CBS is unreliable for these dispersion-bound complexes, with a MAE of

8.9 kcal/mol and a MD of −8.9 kcal/mol, indicating that this method grossly overes-

timates dispersion energies. This is especially true for the π-stacked parallel-displaced

coronene dimer (C2C2PD in Fig. 9.1), whose binding energy is overestimated by a

factor of two, an error of 19.1 kcal/mol. This problem is mitigated by including

half of the MP3 correlation energy: the MP2.5/CBS method reduces the MAE to

1.8 kcal/mol with a maximum error of 3.0 kcal/mol, albeit at O(N6) cost.

Alternatively, spin-component scaling tends to improve the performance of MP2

for non-covalent interactions. In the original SCS-MP2 method,263 the same- and

opposite-spin scaling parameters were optimized using high-quality reaction energies,

although they have also been optimized for molecular interaction (MI) using S22
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Table 9.2: Mean absolute errors, mean deviations, and maximum absolute errors in
L7 binding energies,a computed using various supersystem methods.

Method
error (kcal/mol)

MAE MD max
—Wave Function Methods—

MP2/CBSb 8.94 −8.94 19.08
MP2.5/CBSb 1.77 −1.76 3.00
SCS-MP2/CBSb 2.80 −1.79 7.63
SCS(MI)-MP2/CBSb 5.19 −4.83 11.81
MP2C/CBSb 0.99 −0.99 2.32
att-MP2/aTZc 1.71 −0.99 2.53
att-SCS-MP2/aTZc 1.32 0.13 2.96
HF-3c 1.35 −1.10 2.37

HF-3c+E
ATM(Grimme)
disp,3B 1.02 −0.02 1.78

—DFT Methods—

PBE-TSd,e,f 3.80 −3.80 5.55
PBE-TS/HId,e,g 3.27 −3.27 7.43
TPSS+D3BJ/def2-QZVPb 1.08 −1.07 1.73
B3LYP+D3BJ/def2-QZVPb 2.61 −2.61 3.89
M06-2X+D30/def2-QZVPb 1.51 −0.65 3.13
M06-2X/def2-QZVPb 2.69 2.44 6.19
PW6B95+D3BJ/def2-QZVPb 0.84 −0.53 2.31

PW6B95+D3BJ+E
ATM(Grimme)
disp,3B /

0.90 0.56 1.69
def2-QZVPb

B2PLYP+D3BJ/def2-TZVPh,i 0.98 −0.28 2.15
B2PLYP+NL/def2-TZVPh,i 1.72 −1.42 2.86
PBE-XDM/pc-2-spdj 2.33 1.34 5.49
LC-ωPBE-XDM/pc-2-spdj 1.42 −1.41 2.57
ωB97X-D/aTZ (CP)k 2.49 −2.49 3.44
ωB97X-V/aTZ 2.43 −2.43 3.76
B97M-V/aTZ 2.30 −2.30 3.65
B97M-V/aTZ (CP) 1.42 −1.42 2.71
aWith respect to CCSD(T)/CBS benchmarks.21,353

bFrom Ref. 19.
cFrom Ref. 177.
dFrom Ref. 388.
eUsing a plane-wave basis set.
fWith TS dispersion (Hirshfeld).
gWith TS dispersion (iterative Hirshfeld).
hFrom Ref. 385
iWith E

ATM(Grimme)
disp,3B .

jFrom Ref. 390.
kFrom Ref. 389.
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interaction energies, in a method called SCS(MI)-MP2.? For the L7 data set, SCS-

MP2 actually outperforms SCS(MI)-MP2, with an MAE of 2.8 kcal/mol for the former

and 5.2 kcal/mol for the latter. This suggests that SCS-MP2 is more suitable for

general applications as compared to SCS(MI)-MP2, or perhaps that the SCS(MI)-

MP2 scaling parameters should be re-optimized using larger molecules. Nevertheless,

the SCS-MP2/CBS method still overestimates the binding energy of C2C2PD by

7.63 kcal/mol.

MP2’s deficiency for dispersion-bound complexes is the result of its uncoupled

HF treatment of dispersion. In the MP2C method,309,310 the dispersion component

of an MP2 calculation is replaced by a more accurate dispersion energy calculated

using DFT response theory. [The cost of evaluating the dispersion energy scales

as O(N4) if resolution-of-identity techniques are used,310 although the overall cost

remains O(N5).] MP2C exhibits a MAE of 1.0 kcal/mol for L7, with a maximum

error of 2.3 kcal/mol.

We have focused on CBS results in this discussion owing to the slow convergence

of MP2 interaction energies with respect to the one-particle basis set. This conver-

gence problem is ameliorated by the attenuated MP2 (att-MP2) method,176 which

attenuates (at long range) the Coulomb operator used in the correlation energy cal-

culation. This method not only improves the strongly overbound π-stacking energies,

but also removes significant BSSE so that the method is accurate in a finite basis

set. Promising results are obtained using the aTZ basis set,17 and the att-MP2/aTZ
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method affords a MAE of 1.7 kcal/mol for L7, comparable to MP2.5/CBS but with-

out the O(N6) terms or the need for quadruple-ζ results for CBS extrapolation. The

SCS concept can be incorporated into attenuated MP2 (att-SCS-MP2),177 and for L7

this method affords a MAE of 1.3 kcal/mol with a maximum error of 3.0 kcal/mol.

At the other end of the spectrum of computational cost, we find that the minimal-

basis HF-3c method affords a MAE of only 1.4 kcal/mol, which is further reduced

to just 1.0 kcal/mol by adding the E
ATM(Grimme)
disp,3B three-body dispersion correction.

(The dispersion correction included in HF-3c is Grimme’s D3 correction,387 hence the

three-body correction is anticipated to be necessary in large complexes, even given

the parameterized nature of HF-3c.) The mean deviation for HF-3c+E
ATM(Grimme)
disp,3B is

practically zero, indicating no significant bias. Thus, HF-3c seems like a promising

method for screening of large structures, e.g., in computational drug design.

In summary, the best MP2-based methods for the L7 data set are MP2C/CBS

and att-SCS-MP2/aTZ, and obviously the latter is far more efficient. In fact, the

favorable performance of the MP2C/CBS approach may be a coincidence, since the

calculations reported in Ref. 19 used only double- and triple-ζ basis sets for the CBS

extrapolation, and performed the DFT response calculations (to evaluate the coupled

Kohn-Sham dispersion correction) in the small 6-31G*(0.25) basis set. Especially

promising is the performance of the low-cost HF-3c+E
ATM(Grimme)
disp,3B method, which is

comparable to that of the best wave function methods discussed above, with an MAE

of only 1.0 kcal/mol.
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Table 9.3: Atomic three-body dispersion energies (in kcal/mol) for L7 complexes,
using two versions of the Axilrod-Teller-Muto triple-dipole scheme.

System E
ATM(TS)
disp,3B E

ATM(Grimme)
disp,3B

CBH 2.53 0.73
GGG 1.09 0.26
C3A 5.08 1.23
C3GC 9.04 2.31
C2C2PD 7.72 1.72
GCGC 3.73 1.02
PHE 1.16 0.39

DFT Methods

Traditional semi-local DFT does not describe the nonlocal dispersion interaction, but

the pairwise Tkatchenko-Scheffler (TS) dispersion model358 can be directly combined

with semi-local functionals to capture dispersion interactions. For example, the PBE

functional predicts that five of the L7 dimers are unbound (with the octadecane dimer

and phenylalanine trimer being the exceptions), but the PBE-TS binds these species

and affords a MAE of 3.8 kcal/mol for the binding energies. The mean deviation

(−3.8 kcal/mol) demonstrates that the TS model overcorrects in these cases. The

MAE is reduced, but only to 3.3 kcal/mol, using a TS dispersion model based on the

iterative Hirshfeld partitioning scheme (PBE-TS/HI in Table 9.2).391 This suggests

that a dispersion correction beyond the pairwise TS approach is needed to improve

the description of intermolecular interactions in large supramolecular complexes.

The EATM
disp,3B correction accounts for atomic three-body dispersion effects, and the

size of this term for each of the L7 dimers is listed in Table 9.3. The larger π-stacked
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systems (C3A, C2C2PD, and C3GC) afford large, repulsive values of E
ATM(TS)
disp,3B , of

up to 9 kcal/mol for C3GC, whereas the E
ATM(Grimme)
disp,3B corrections are considerably

smaller. We will show below that E
ATM(TS)
disp,3B is more suitable to combine with our

pairwise D3 potential to reproduce dispersion energies calculated using DFT response

theory. Adding the EATM
disp,3B correction to PBE-TS or PBE-TS/HI reduces the MAEs

for L7 to 2.2 and 3.1 kcal/mol, respectively (see Table 9.2).

Among DFT methods that incorporate Grimme’s D3 dispersion correction,274

the PW6B95 hybrid meta-GGA functional392 performs the best, with a MAE of

0.8 kcal/mol (Table 9.2). This is consistent with the good performance of PW6B95

+ D3BJ for the S66 data set.11 [Here, “D3BJ” indicates use of the Becke-Johnson

(BJ) damping function for the D3 dispersion correction.14] PW6B95+D3BJ has also

been recommended for use in calculations involving water clusters,393 biomolecules,394

transition metal catalysts,395 large host/guest complexes,20,22,396 and geometry op-

timizations.397 Addition of the E
ATM(Grimme)
disp,3B term to PW6B95+D3BJ slightly in-

creases the mean errors for L7 but decreases the maximum error. We conclude that

PW6B95+D3BJ should be reasonably accurate for a wide range of applications.

With the exception of the phenylalanine trimer, all of the L7 systems are unbound

at the B3LYP level,389 but Grimme’s D3 overcorrects and the B3LYP+D3BJ method

overestimates the L7 binding energies with a MAE of 2.6 kcal/mol. A non-empirical

meta-GGA functional, TPSS, affords accurate results when combined with Grimme’s

D3 (MAE = 1.1 kcal/mol). The highly parametrized M06-2X functional only success-

fully captures middle-range (but not long-range) non-local correlation, and affords a
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MAE of 2.7 kcal/mol. In these large complexes, the long-range correlations are im-

portant and long-range correlation must be added to M06-2X via an empirical disper-

sion correction. The M06-2X+D30 method (where “0” indicates the “zero damping”

function274) gives reasonable results for L7, with a MAE of 1.5 kcal/mol. The Becke-

Johnson XDM dispersion correction, with two different density functionals, affords

MAEs of 1.4 and 2.3 kcal/mol that are comparable to—but not significantly better

than—the performance of the best DFT-D3 methods.

The ωB97X-D/aTZ201 with counterpoise correction overestimates the binding en-

ergies of the L7 complexes with a MAE of 2.5 kcal/mol.389 Considering a more mod-

ern collection of non-local dispersion-corrected functionals, B97M-V202 and ωB97X-

V105 functionals combined with aTZ basis set each overestimate the binding energies

of the L7 complexes, with MAEs of 2.3, 2.4 kcal/mol, respectively, even though

B97M-V and ωB97X-V afford quite accurate results for many other non-covalent

systems.57,105,202 The overestimation of non-local dispersion-corrected functional in

large complexes partly comes from the BSSE. By using the counterpoise correction

in B97M-V/aTZ calculations, its MAE reduces to 1.4 kcal/mol. For the C2C2PD

system, B97M-V with and without counterpoise correction yield binding energies of

−21.5 and −22.3 kcal/mol, as compared to the benchmark value of −20.0 kcal/mol.

The BSSE in C2C2PD system contributes 0.8 kcal/mol error in B97M-V calcula-

tions. Given that these functionals accurately reproduce the binding energy of the

π-stacked benzene dimer105,202 (which is, admittedly, about ten times smaller than

the binding energy of C2C2PD), the coronene dimer appears to be a challenging test
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for non-covalent interactions with non-local vdW functionals. Note also that for the

largest of the L7 complexes (C3GC), which contains ≈4,000 aTZ basis functions, the

B97M-V calculation is about six times faster than the ωB97X-V calculation, due to

the absence of HF exchange.

The VV10 non-local correlation functional (included in ωB97X-V and B97M-V)

is also rather expensive to evaluate for large systems, and less-expensive alternatives

are of interest. Among the DFT methods tested here, the PW6B95+D3BJ approach

is unique in the fact that it is able to reproduce the benchmark binding energies for

both benzene dimer and C2C2PD. Moreover, according to Hujo and Grimme,398,399

self-consistent evaluation of the non-local part of the functional is rarely necessary,

and can accurately be approximated in the final step using the converged electron

density from the semi-local part of the functional. Such a strategy has been used

in the context of double-hybrid density functionals, replacing the D3BJ dispersion

potential in B2PLYP+D3BJ+E
ATM(Grimme)
disp,3B by non-self-consistent VV10. However,

this replacement slightly increases the MAE, from 1.0 kcal/mol to 1.7 kcal/mol.385

(X)SAPT Methods

Next, we turn from supersystem methods to SAPT-based methods, for which L7 error

statistics are listed in Table 9.4. SAPT and XSAPT afford similar results (which, for

dimers, is by design65), so we mainly focus XSAPT results in the following discussion.

We first note the importance of dispersion in these systems, as evidenced by the

poor performance of SAPT0 and its scaled-dispersion counterpart, sSAPT0, which
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Table 9.4: Mean absolute errors, mean deviations, and maximum absolute errors in
L7 binding energies,a computing using (X)SAPT-based approaches.b,c

Method
error (kcal/mol)

MAE MD max
—SAPT-Based Methods—

SAPT0/jun-cc-pVDZ 5.47 −4.51 11.68
sSAPT0/jun-cc-pVDZ 5.47 −4.51 11.74

—XSAPT-Based Methods—
XSAPT(KS)+D3(ωIP) 3.18 −2.77 6.16
XSAPT(KS)+D3(ωGDD) 3.50 −3.11 6.49
sd-XSAPT(KS)(ωIP) 2.47 −1.84 4.17
sd-XSAPT(KS)(ωGDD) 1.96 −1.23 2.73

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωIP) 1.57 1.57 3.99

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) 1.38 1.23 3.88

sd-XSAPT(KS)+E
ATM(TS)
disp,3B (ωIP) 2.73 2.50 5.27

sd-XSAPT(KS)+E
ATM(TS)
disp,3B (ωGDD) 3.33 3.10 6.68

XSAPT(KS)+D3+E
ATM(Grimme)
disp,3B (ωIP) 2.30 −1.67 4.43

XSAPT(KS)+D3+E
ATM(Grimme)
disp,3B (ωGDD) 2.61 −2.01 4.76

sd-XSAPT(KS)+E
ATM(Grimme)
disp,3B (ωIP) 1.66 −0.75 2.51

sd-XSAPT(KS)+E
ATM(Grimme)
disp,3B (ωGDD) 1.15 −0.14 2.72

aWith respect to CCSD(T)/CBS benchmarks.21,353

bAll complexes treated as dimers.

cThe jun-cc-pVDZ basis set is used for (s)SAPT0

calculations, hpTZVPP for (X)SAPT(KS)+D2/D3,

and 6-31G(d,2p) for sd-XSAPT(KS).

288



exhibit errors as large as 12 kcal/mol. Even the MAEs (5.5 kcal/mol for both meth-

ods) are larger than those documented in previous SAPT0/jaDZ benchmarks for

smaller molecules,173 despite the favorable error cancellation in MP2-type dispersion

that comes from using the jaDZ basis.157,158

Moving on to the XSAPT results, we note that both XSAPT(KS)+D3 and sd-

XSAPT(KS) binding energies are improved, in nearly all cases, by including a three-

body dispersion term, either E
ATM(TS)
disp,3B or E

ATM(Grimme)
disp,3B . The TS version of this

three-body correction works better with XSAPT(KS)+D3 while the Grimme ver-

sion performs better with sd-XSAPT(KS). As shown below for S12L, by comparison

to dispersion energies computed using DFT response theory, the TS version of the

three-body ATM correction affords superior results (as compared to E
ATM(Grimme)
disp,3B )

when combined with our D3 two-body dispersion potential. As such, the better per-

formance of Grimme’s three-body correction in the context of sd-XSAPT(KS) may

arise from error cancellation.

Examining the best of these three-body, dispersion-corrected XSAPT methods—

namely XSAPT(KS)+D3+E
ATM(TS)
disp,3B and sd-XSAPT(KS)+E

ATM(Grimme)
disp,3B —we find that

better results are obtained using ωGDD rather than ωIP to tune the range-separation

parameter. This observation is consistent with the expectation that ωGDD should

provide a better description of SAPT energy components, an expectation that is in

turn based on the observation that LRC-ωPBE(ωGDD) affords a better description of

polarizabilities as compared to the corresponding ωIP approach.378 The largest differ-

ence in tuned ω values (ωGDD versus ωIP) for XSAPT(KS)+D3 occur for the largest
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L7 monomer, circumcoronene, which is interesting in light of the documented depen-

dence of ωIP on system size.379,380 For circumcoronene, the difference between ωIP and

ωGDD is 0.071 a−1
0 .

The best XSAPT methods in Table 9.4 are XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD)

and sd-XSAPT(KS)+E
ATM(Grimme)
disp,3B (ωGDD), with MAEs of 1.4 and 1.2 kcal/mol, re-

spectively. These two methods are comparable to the best supersystem methods in

Table 9.2. Although we also applied XSAPT(KS)+D2 to the L7 data set, the result-

ing MAEs were found to be at least 0.2 kcal/mol larger than the corresponding D3

results, consistent with our previous observation that XSAPT(KS)+D3 is generally

superior to +D2 for both total binding energies and dispersion energies.57 In Fig. 9.2,

we summarize the performance of various electronic structure methods for L7.

The ratios −Ecomp/Eint, where Ecomp is an energy component obtained from XS-

APT energy decomposition analysis and Eint is the total XSAPT interaction energy,

can be used to categorize the nature of the association interaction.56 These ratios,

computed at the XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) level, are shown in Fig. 9.3 and

the individual energy components can be found in the Supporting Information. Ac-

cording to this analysis, all of the L7 complexes are dispersion-dominated except for

the hydrogen-bonded phenylalanine trimer (PHE), where the electrostatic interac-

tion is slightly larger than the dispersion interaction. This is consistent with Hobza’s

classification7 (used in Fig. 9.1) that classifies PHE as having “mixed” interactions

(dispersion and electrostatics of comparable importance).

In the (X)SAPT calculations discussed thus far, each system is treated as a dimer
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Figure 9.2: Mean absolute error (MAE), with respect to CCSD(T)/CBS benchmarks,
for L7 binding energies. The MP2.5, SCS-MP2, and MP2C energies are extrapolated
to the basis set limit whereas the att-SCS-MP2 and ωB97X-V calculations use the
aTZ basis set without counterpoise correction. The ωB97X-D and B97M-V energies
using the aTZ basis set are corrected with counterpoise correction. The D3BJ and
E

ATM(Grimme)
disp,3B dispersion corrections are applied to PW6B95/def2-QZVP calculations.

The E
ATM(TS)
disp,3B correction is added to the XSAPT(KS)+D2/D3 calculations, which

employ the hpTZVPP basis set; for the HF-3c calculations the E
ATM(TS)
disp,3B correction

is also included but is evaluated using a minimal basis set. The E
ATM(Grimme)
disp,3B is used

in the sd-XSAPT(KS) calculations, along with the 6-31G(d,2p) basis set. The ωGDD

tuning procedure is used in all XSAPT(KS) variants.
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Figure 9.3: Ratio of each energy contribution relative to the total interaction energy,
computed at the XSAPT(KS)+D3+E

ATM(TS)
disp,3B (ωGDD)/hpTZVPP level, for the L7 data

set.

Table 9.5: Binding energies (in kcal/mol) for the trimers and tetramers from L7,

computed at the XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD)/hpTZVPP level.

System Two-bodya Many-body
GGG −1.51 −1.59
C3GC −24.51 −25.87
PHE −22.79 −22.78
GCGC −12.33 −13.21
aTreated as dimers, as in Table 9.4.
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even though the GGG, C3GC, and PHE complexes contain three monomers and

GCGC contains four. In these calculations, we have used the π-stacked guanine

dimer as one monomer in GGG, the hydrogen-bonded GC base pair as one monomer

in GCGC and in G3GC (where it interacts with circumcoronene, in the latter exam-

ple), and phenylalanine dimer as one monomer in PHE. Using XSAPT, however, we

can treat each fragment as a monomer, and in Table 9.5 the best XSAPT method

from Table 9.4, which is XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD), is used to compute the

binding energies of the four complexes that consist of more than one monomer, using

a many-body treatment.

For the GGG and PHE complexes, the binding energies are essentially the same

in either treatment. The monomers in these two systems are arranged into layers

(with each layer being a monomer), and the interaction between the second and third

layer is only slightly disturbed by the presence of the first layer. For GCGC, the

difference between the two-body and the many-body approach is 0.9 kcal/mol and

for C3GC it is 1.4 kcal/mol, differences that may stem from the assumption that

the δEHF
int correction is pairwise-additive in many-body systems, and the related fact

that the δEHF
int correction used in XSAPT is obtained from two-body SAPT without

electrostatic embedding using a dimer-centered basis.56 Furthermore, the infinite-

order response correction for induction is assumed to be implicitly include in the XPol

step with negligible double-counting of higher-order corrections for induction.56 These

assumptions appear to be robust, since XSAPT affords very good binding energies for
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systems including water clusters and halide–water clusters,57 and moreover the many-

body XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) treatment slightly reduces the MAE for L7

as compared to the strictly pairwise treatment. Hence, the XSAPT can be used as

an accurate and efficient quantum-mechanical method for non-covalent interactions

in many-body systems.

9.3.2 S12L Data set

Error statistics for S12L, using a variety of supersystem and (X)SAPT-based meth-

ods, are compiled in Table 9.6 and will be discussed below. Note that the mean

deviations in Table 9.6 are uniformly negative, indicating that these methods con-

sistently overbind the S12L dimers with respect to both QMC and back-corrected

experimental benchmarks. The latter benchmarks are consistently larger than the

QMC ones, by an average of 1.6 kcal/mol, which explains why the errors in Table 9.6

are slightly larger when the comparison is to QMC benchmarks.

Although∼1 kcal/mol is often used as the standard for “chemical accuracy”, this is

too stringent a standard for binding energies of large supramolecular complexes, where

deviations of 2–3 kcal/mol are to be expected.400 Estimated uncertainties for back-

corrected experimental binding energies in S12L are 2 kcal/mol,20,23 while the average

statistical error in the QMC benchmarks is 1.2 kcal/mol.40 In view of errors of this

magnitude, Heßelmann’s NLDFT approach,148 the PW6B95+D3BJ+E
ATM(Grimme)
disp,3B

method, DFT-SAPT, MP2C, and XSAPT(KS)+E
ATM(TS)
disp,3B (ωGDD) with dispersion cal-

culated by D3 or DFT response theory [disp(CKS)] can be considered as acceptable
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Table 9.6: Mean absolute errors, mean deviations, and maximum absolute errors for
S12L binding energies with respect to back-corrected experimental results20,22 and
QMC benchmarks.40

Method
error (kcal/mol)

Experiment QMC
MAE MD max MAE MD max

—Supersystem Methods—
MP2/CBSa 15.90 −15.90 53.28 17.87 −17.87 52.98
SCS-MP2/CBSa 6.36 −2.96 25.23 7.19 −5.05 27.65
MP2C/CBS [(DZ,TZ) extrapolation]a,b 1.78 −0.98 6.87 3.21 −3.21 9.47
MP2C/CBS [1.08×(DZ,TZ)]a,b 4.36 −4.36 12.61 6.40 −6.40 15.21
NLDFT/def2-QZVPa 2.35 −1.08 5.48 3.05 −2.93 8.08
PW6B95+D3BJ/def2-QZVP(-g,-f)c,d 2.75 −2.35 6.60 4.57 −4.40 9.20

PW6B95+D3BJ+E
ATM(Grimme)
disp,3B /def2-QZVP(-g,-f)c,d 1.48 −0.18 3.40 2.78 −2.28 6.00

B2PLYP+D3BJ+E
ATM(Grimme)
disp,3B /def2-TZVPe 3.62 −0.92 12.33 4.00 −3.89 14.78

B2PLYP+NL+E
ATM(Grimme)
disp,3B /def2-TZVPe 5.22 −5.22 17.91 6.74 −6.74 20.00

PBE-XDM/pc-2-spdf 2.28 2.00 4.40 1.22 −0.05 2.70
LC-ωPBE-XDM/pc-2-spdf 5.61 −5.61 11.70 7.65 −7.65 14.20

ωB97X-D3+E
ATM(Grimme)
disp,3B /def2-QZVP(-g,-f)g 2.16 −1.29 5.04 4.08 −4.08 5.82

B97M-V/aTZ 6.07 −6.07 12.78 7.51 −7.51 14.74
B97M-V/aTZ (CP) 4.20 −4.17 9.58 5.79 −5.79 11.80
HF-3c 5.39 −3.92 11.38 6.51 −4.90 11.57

HF-3c+E
ATM(Grimme)
disp,3B 3.86 −1.74 8.01 4.73 −2.78 9.21

—(X)SAPT-Based Methods—
DFT-SAPT [(DZ,TZ) extrapolation]a,b,h,i 2.86 2.13 6.29 1.99 −0.43 4.89
DFT-SAPT [1.08×(DZ,TZ)]a,b,h,i 2.10 −1.56 7.64 3.87 −3.87 10.13
XSAPT(KS)+D2(ωIP)

b,j 9.63 −9.623 18.50 12.19 −12.19 21.10
XSAPT(KS)+D2(ωGDD)b,j 8.37 −8.37 18.72 10.70 −10.70 21.10

XSAPT(KS)+D2+E
ATM(TS)
disp,3B (ωIP)

b,j 2.71 −1.60 8.99 4.59 −4.59 8.99

XSAPT(KS)+D2+E
ATM(TS)
disp,3B (ωGDD)b,j 1.73 −0.76 5.32 3.13 −3.13 7.92

XSAPT(KS)+D3(ωIP)
b,j 10.92 −10.92 21.56 14.02 −14.02 24.16

XSAPT(KS)+D3(ωGDD)b,j 9.67 −9.67 21.86 12.57 −12.57 24.38

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωIP)

b,j 4.80 −2.89 8.16 6.42 −6.42 10.76

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD)b,j 3.33 −1.64 8.39 4.97 −4.97 10.99

XSAPT(KS)+disp[CKS,(DZ,TZ)](ωIP)
b,h,j 2.24 0.52 7.08 2.50 −2.45 7.08

XSAPT(KS)+disp[CKS,(DZ,TZ)](ωGDD)b,h,j 2.26 1.77 5.53 1.74 −0.99 3.64
XSAPT(KS)+disp[CKS,1.08×(DZ,TZ)](ωIP)

b,h,j 3.65 −3.17 10.34 5.89 −5.89 10.34
XSAPT(KS)+disp[CKS,1.08×(DZ,TZ)](ωGDD)b,h,j 2.27 −1.91 6.29 4.43 −4.43 8.89
sd-XSAPT(KS)(ωGDD)b,k 6.28 −6.04 25.61 7.40 −7.40 26.34

sd-XSAPT(KS)+E
ATM(Grimme)
disp,3B (ωGDD)b,k 5.38 −3.87 22.11 6.23 −5.29 23.14

sd-XSAPT(KS)+E
ATM(TS)
disp,3B (ωGDD)b,k 5.56 1.98 11.13 4.51 0.20 12.94

aFrom Ref. 42.
bUsing the NLDFT deformation energies from Ref. 42.
cThe f functions on hydrogen and g functions on other atoms are removed.
dFrom Ref. 20.
eFrom Ref. 385.
fFrom Ref. 390.
gFrom Ref. 22.
hDFT-SAPT dispersion energies [“disp(CKS)”] were extrapolated to the CBS limit using
a (DZ,TZ) scheme.42
iUsing cc-pVTZ for the non-dispersion terms.
jUsing the hpTZVPP basis set.
kUsing the 6-31G(d,2p) basis set.
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Figure 9.4: Mean absolute errors (MAE) in S12L binding energies, with respect
to QMC and back-corrected experimental benchmarks. The SCS-MP2 and MP2C
energies have been extrapolated to the CBS limit whereas the NLDFT and B97M-
V calculations used the def2-QZVP and aTZ basis sets, respectively, except that the
B97M-V calculations use the haTZ basis set for 4a, 4b, 7a, and 7b. The counterpoise
correction is used to remove the BSSE in B97M-V calcualtions. The PB6B95 calcula-
tions use the def2-QZVP(-g-f) basis, which omits g and f functions, and include the

E
ATM(Grimme)
disp,3B correction. This correction is included in the HF-3c calculations as well,

but is evaluated using a minimal basis set, consistent with HF-3c itself. XSAPT(KS)
calculations use the hpTZVPP basis set and the ωGDD tuning procedure, and include

the E
ATM(TS)
disp,3B (ωGDD) correction. Here, “+TD” means dispersion energies are calcu-

lated by DFT-SAPT at the CBS limit using the 1.08×(DZ,TZ) extrapolation scheme
of Ref. 24.
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methods for very large supramolecular calculations, as summarized in Fig. 9.4. A

detailed analysis can be found below.

Atomic-Pairwise Dispersion Potentials

To address the validity of atomic-pairwise dispersion potentials in the much larger

S12L complexes, we compare the D2 and D3 dispersion energies to those computed

using DFT response theory, with results shown in Table 9.7. In general, both the

TS and Grimme variants of the three-body dispersion terms greatly reduce the errors

in the pairwise dispersion potentials, though the E
ATM(TS)
disp,3B correction performs bet-

ter in both the D2 and the D3 case. Surprisingly, D2-based potentials give smaller

errors than the corresponding D3-based potentials, in contrast to previous results

for S22 and S66 and for stacking complexes of nucleobase tetramers.57 [In Ref. 57,

the atomic-pairwise dispersion potentials were benchmarked against SAPT2+(3) and

DFT-SAPT results.] Two possible explanations come to mind. First, the D2 disper-

sion potential is known to slightly overestimate the dispersion energy, especially for

π-stacked systems, as compared to dispersion benchmarks,57 whereas the D3 poten-

tial resolves this overestimation. Hence, the repulsive E
ATM(TS)
disp,3B term is more suitable

to combine with D2 than D3. Alternatively, the DFT-SAPT dispersion benchmarks

in Table 9.7, which were taken from Ref. 42, may not be accurate enough.

According to Ref. 42, two factors influence the quality of DFT-SAPT disper-

sion benchmarks. First, the coupled value of E
(2)
exch-disp is not obtained from DFT

response theory but rather via empirical scaling of the uncoupled value. A scaling

factor of 0.686 was obtained by fitting E
(2)
exch-disp for molecules in the S22 data set,
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Table 9.7: Mean and maximum absolute errors for the S12L data set,a comparing
D2 and D3 dispersion potentials.

Dispersion potentials
error (kcal/mol)
MAE max

—D2 Potential—
D2 6.46 12.43

D2+E
ATM(TS)
disp,3B 1.66 3.87

D2+E
ATM(TS)
disp,3B (param) 0.75 2.36

D2+E
ATM(Grimme)
disp,3B 4.39 9.23

—D3 Potentials—
D3 7.75 15.69

D3+E
ATM(TS)
disp,3B 2.18 4.81

D3+E
ATM(TS)
disp,3B (param) 2.97 5.02

D3+E
ATM(Grimme)
disp,3B 5.66 12.30

aWith respect to DFT-SAPT/CBS

dispersion energies extrapolated using

the 1.08 × (DZ,TZ) scheme of Ref. 42.
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with R2 = 0.9993 for the fit. It is possible, however, that the relationship between

the coupled and uncoupled values of E
(2)
exch-disp is different in large molecules where

dispersion plays a more prominent role. Second, DFT-SAPT dispersion energies were

extrapolated to CBS limit using only double- and triple-ζ basis sets, then multiplied

by an empirical factor of 1.08 (again, obtained from S22 benchmarks24) to account

for residual basis-set incompleteness. Thus, the superior performance of D2 in com-

parison to the DFT-SAPT dispersion energies for the S12L data set may come from

error cancellation. The E
ATM(TS)
disp,3B (param) correction, combined with D3 dispersion,

slightly degrades the dispersion energies as compared to D3+E
ATM(TS)
disp,3B . On the other

hand, D2+E
ATM(TS)
disp,3B (param) is superior to D2+E

ATM(TS)
disp,3B , which may indicate error

cancellation in the D2 results. The performance of both D2 and D3 combined with

XSAPT(KS) will be further discussed below.

Supersystem Approaches

Let us now discuss the errors for the supersystem methods, which are listed in Ta-

ble 9.6 and summarized in Fig. 9.4. The MP2/CBS method significantly overestimates

the binding energies, as expected, with errors as large as 53 kcal/mol, whereas SCS-

MP2/CBS reduces the MAE dramatically, to 6–7 kcal/mol depending on which set of

benchmarks is used. MP2C/CBS can achieve a MAE as low as 2–3 kcal/mol, using a

(DZ,TZ) extrapolation.42 However, application of the empirical scaling factor of 1.08

that is suggested in Ref. 42 to account for basis-set incompleteness considerably

degrades the quality of the results, increasing the MAEs to 4–6 kcal/mol depending

on the choice of benchmarks. Note that the S12L benchmarks have been revised since
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the study in Ref. 42 that suggested this scaling factor, and results obtained with the

new benchmarks thus call this factor into question. Simply using the (DZ,TZ) extrap-

olation, with the small 6-31G*(0.25) basis set for the coupled Kohn-Sham response

equations, affords a MAE of 1.0 kcal/mol for L7 and 2–3 kcal/mol for S12L.

Heßelmann’s non-local functional148 (“NLDFT”) and the PW6B95+D3BJ ap-

proach both perform well for S12L, with MAEs of 2–3 kcal/mol in the former case

and no larger than 4.6 kcal/mol in the latter case, again depending on whether the

QMC or the back-corrected experimental benchmarks are selected. Addition of the

three-body E
ATM(Grimme)
disp,3B correction to PW6B95+D3BJ reduces the MAE by more

than 1 kcal/mol, and PW6B95+D3BJ+E
ATM(Grimme)
disp,3B appears to be a promising DFT

approach for use in large complexes. The B2PLYP+NL+E
ATM(Grimme)
disp,3B method, in-

troduced quite recently,385 overestimates the S12L binding energies by 5–7 kcal/mol.

Other non-local density functionals perform less well. B97M-V/aTZ with coun-

terpoise correction calculations overbind most of the S12L complexes, with MAEs of

4.2–5.8 kcal/mol depending on which set of benchmarks is used for comparison, and

either value is larger than the MAE observed when B97M-V/aTZ is applied to the L7

data set. The maximum deviation is for complex 4b, and is 9.6 kcal/mol respect to

back-corrected experimental benchmark; this maximum error is also larger than the

maximum error for L7. It is important to correct BSSE in these large complexes, and

the maximum counterpoise correction in S12L complexes comes from complex 4b with

3.2 kcal/mol BSSE. Without counterpoise correction, the MAE of B97M-V/aTZ cal-

culations increases to 6.1–7.5 kcal/mol depending on which set of benchmarks is used
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for comparison, and the maximum deviation increases to 12.8 kcal/mol for complex

4b. The non-local ωB97X-V functional was similar in its performance to B97M-V for

the L7 data set, but is considerably more expensive due to the inclusion of Hartree-

Fock exchange and as such we only consider B97M-V calculations in S12L complexes.

We note, however, that ωB97X-D3 with a quadruple-ζ basis set affords a MAE of

2.2 kcal/mol for S12L,22 much smaller (for the same set of benchmarks) than the

4.2 kcal/mol MAE of B97M-V/aTZ.

Finally, considering XDM-based methods we find that the favorable performance

of the LC-ωPBE-XDM for the L7 data set does not carry over to S12L, and in the

latter case this approach exhibits a MAE of 5.6–7.6 kcal/mol. PBE-XDM performs

reasonable well in both L7 and S12L data sets with MAEs of ∼ 2 kcal/mol in both

data sets, and in particular exhibits the smallest MAE with respect to the QMC

benchmarks for S12L, of all methods compared in Table 9.6. However, the strong

dependence of the XDM correction on the choice of underlying functional, which has

been noted previously,390 is somewhat bothersome.

(X)SAPT-Based Methods

Turning to the SAPT- and XSAPT-based results, we note first that the maximum

difference between the ωGDD and ωIP tuning procedures (= 0.218 a−1
0 , for for the

benzoquinone guest molecule in complex 5a) is much larger than for the L7 data

set. Error statistics are again listed in Table 9.6 and Fig. 9.4. Some of these results

are labeled “XSAPT(KS)+disp(CKS)”, by which we mean that dispersion energies

are computed at the coupled Kohn-Sham (CKS) level based on DFT response theory
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Figure 9.5: Ratio of each energy contribution relative to the total interac-
tion energy for the S12L data set, computed at the XSAPT(KS)+D3+E

ATM(TS)
disp,3B

(ωGDD)/hpTZVPP level.

(as in DFT-SAPT), but are then combined with an XSAPT(KS) description of the

remaining energy components.

The ratios −Ecomp/Eint, for each energy component Ecomp according to the XS-

APT decomposition analysis,56 are plotted in Fig. 9.5 as computed at the XSAPT(KS)

+D3+E
ATM(TS)
disp,3B (ωGDD) level. (The raw data can be found in the Supporting Informa-

tion.) Almost all of the systems are dominated by dispersion except complexes 5a, 6a,

6b and 7a, where the dispersion remains large but is not dominant. The electrostatic

and induction interactions have about the same pattern across all complexes although

the mixed-type dimers 5a and 5b have slightly larger electrostatic and induction con-

tributions. On the other hand, most complexes have large exchange-repulsion and
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attractive dispersion, with no clear pattern. The non-dispersion part of the interac-

tion energy is positive for all complexes except 6a, 6b, and 7b, whose non-dispersion

energies are −54.0, −57.2, and −70.5 kcal/mol, respectively. Clearly, accurate de-

scription of dispersion interactions is very important for structure determination and

stabilization in these complexes involving large monomers.

DFT-SAPT affords a good description of binding energies for S12L (see Table 9.6),

with a MAEs of 2–3 kcal/mol, depending on the benchmarks. For reasons of cost,

these calculations42 use a (DZ,TZ) extrapolation to the CBS limit, and in Ref. 42 it is

suggested to multiply the extrapolated energies by an empirical factor of 1.08, to ac-

count for basis-set incompleteness, and this correction slightly reduces the MAE with

respect to the back-corrected experimental benchmarks, by 0.8 kcal/mol, although

the maximum error increases by 1.4 kcal/mol. (Note that the benchmarks have been

updated since the ones that were used in Ref. 42 to determine the empirical correc-

tion factor.21,22) With respect to the QMC benchmarks, however, empirical scaling

seriously degrades the quality of the DFT-SAPT/CBS results, increasing the MAE

from 2.0 to 3.9 kcal/mol and increasing the maximum error from 4.9 to 10.1 kcal/mol.

As such, this empirical scaling factor appears to be ill-advised.

For reasons of cost, we have performed fifth-order scaling SAPT0/jaDZ calcula-

tions only the two smallest S12L complexes, 2a and 2b, obtaining binding energies of

−43.3 and −27.2 kcal/mol, respectively. These are too large by 14.3 and 6.4 kcal/mol,

respectively, as compared to the back-corrected experimental results. This is consis-

tent with the overstabilization of the L7 complexes at the SAPT0/jaDZ level (see

303



Table 9.8: Atomic three-body dispersion energies for S12L.

System
energy (kcal/mol)

E
ATM(TS)
disp,3B E

ATM(TS)
disp,3B (parm)

a
E

ATM(Grimme)
disp,3B

b

2a 8.04 6.53 1.80
2b 5.65 4.62 1.20
3a 10.46 8.58 1.80
3b 6.42 5.33 0.70
4a 13.40 11.28 3.20
4b 14.48 12.14 3.50
5a 3.80 2.93 1.00
5b 3.46 2.72 1.00
6a 5.59 4.04 2.20
6b 4.48 3.28 1.80
7a 11.43 7.90 4.60
7b 9.13 6.32 3.30
aValues are estimated using the average hybridized

values of α, C9, and RvdW without requiring any

supersystem calculations.

bFrom Ref. 23.

Table 9.2), and also consistent with L7 results is the fact that the “bronze standard”

(empirically scaled) sSAPT0/jaDZ approach affords essentially the same binding en-

ergies (−43.2 and −27.1 kcal/mol). The error cancellation facilitated by the use of

the jaDZ basis in small systems117,157,158 does not extend to larger ones.

The three-body dispersion correction E
ATM(TS)
disp,3B , which is as large as 9.0 kcal/mol

for the C3GC complex in L7 (Table 9.3), is even larger for S12L complexes, up

to 14.5 kcal/mol for complex 4b (Table 9.8). Incorporation of E
ATM(TS)
disp,3B into XS-

APT(KS) + D3(ωGDD) reduces the MAE by one third, from 9.7 to 3.3 kcal/mol. As

was found for the L7 data set, better XSAPT(KS) results are obtained using ωGDD as
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Table 9.9: Mean absolute deviations and maximum deviations in DFT-SAPT energy
components for the S12L data set, versus those obtained using XSAPT(KS).

Component
deviation (kcal/mol)

ωIP tuning ωGDD tuning
MAE max MAE max

E
(1)
elst 0.70 1.87 0.67 2.07

E
(1)
exch 2.23 6.13 0.77 1.82

compared to ωIP. To investigate the latter point in more detail, Table 9.9 compares

how the first-order electrostatic and exchange energy components in XSAPT(KS)

deviate from the corresponding DFT-SAPT energy components,42 when either ωIP

or ωGDD tuning is employed. For E
(1)
exch, the latter tuning scheme affords results that

are much more consistent with DFT-SAPT, and is hence recommended for (X)SAPT

calculations that employ LRC functionals to describe the monomers.

The XSAPT(KS)+disp(CKS) results in Table 9.6 use CKS dispersion energies

computed using asymptotically-corrected density functionals.42 The CKS dispersion

energies are extrapolated to the CBS limit using a (DZ,TZ) scheme, both with and

without the scaling factor of 1.08 suggested in Ref. 42. Using ωGDD tuning for the

density functional, we obtain a MAE of 2.3 kcal/mol for S12L as compared to the

back-corrected experimental benchmarks. This makes the XSAPT(KS)+disp(CKS)

approach superior to XSAPT(KS)+D3, even when three-body dispersion terms are

included in the latter. The accuracy of XSAPT(KS)+disp(CKS) is similar to that

of DFT-SAPT itself (see Table 9.6). These results support the notion that CKS
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dispersion energies should be more accurate than atom–atom dispersion potentials.

Regarding the empirical scaling factor in the CBS extrapolation, we find that

XSAPT(KS)+disp(CKS) performs better without this factor (MAE = 1.7 kcal/mol)

than with it (MAE = 4.4 kcal/mol), as compared to the QMC benchmarks. For both

this method and the closely-related DFT-SAPT approach, the mean deviations are

negative when the scaling factor is included by positive when it is omitted. This

suggests that the factor of 1.08 that was fitted using small systems leads to overcor-

rection in larger systems; an optimal scaling factor for S12L probably lies between

1.00 and 1.08.

Interestingly, all XSAPT(KS)+D2 methods perform better than the correspond-

ing +D3 approaches, with the best version of the former being XSAPT(KS) + D2

+ E
ATM(TS)
disp,3B (ωGDD), with a MAE of 1.7 kcal/mol. In fact, the +D2+E

ATM(TS)
disp,3B treat-

ment of dispersion outperforms the +disp(CKS) approach, which should in principle

be more accurate, suggesting that the +D2+E
ATM(TS)
disp,3B correction may benefit from

some error cancellation. The best of the sd-XSAPT methods, sd-XSAPT(KS)(ωGDD),

affords MAEs of 6–7 kcal/mol that remain as large as ∼5 kcal/mol when three-body

dispersion corrections are included.

A Closer Look at a Few Examples

Within the S12L data set, the largest E
ATM(TS)
disp,3B contribution is from dimers 4a

(13.4 kcal/mol) and 4b (14.5 kcal/mol), which are the buckycatcher complexes with

C60 and C70, and the smallest contributions occur in the amide macrocycle complexes

5a (3.8 kcal/mol) and 5b (3.5 kcal/mol). Whether atomic non-pairwise-additive
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dispersion effects are important depends upon the shape, topology, and conjuga-

tion of a given host/guest complex. Let us analyze the two extreme cases: the

buckycatcher/C60 (C60@C60H28) complex, 4a, which has been widely used as a strin-

gent test of theoretical methods for describing dispersion,20,23,40,42,246,274,373,385,401,402

and the amide macrocycle/benzoquinone complex, 5a, whose intermolecular interac-

tions are classified as being of mixed type. Binding energies for these two complexes,

computed at various levels of theory, are provided in Table 9.10.

Methods listed in Table 9.10 overestimate the binding energy of the buckycatcher/

C60 complex by anywhere from 2–53 kcal/mol as compared to QMC benchmarks.

MP2 performs exceptionally poorly, as expected, with an MP2/CBS binding en-

ergy that is 53 kcal/mol too large, whereas the SCS-MP2/CBS and MP2C/CBS ap-

proaches afford binding energies that are overestimated by “only” 28 and 10 kcal/mol,

respectively. These errors may be due in part to residual BSSE arising from the

fact that a (DZ,TZ) extrapolation is used in these cases; for the C2C2PD complex,

(aTZ,aQZ) extrapolation has been shown to reduce MP2 binding energies as com-

pared to the CBS limit estimated using (DZ,TZ) extrapolation.202

The B2PLYP+D3BJ+E
ATM(Grimme)
disp,3B and B2PLYP+NL+E

ATM(Grimme)
disp,3B methods385

overestimate the binding energy of 4a by 15 and 20 kcal/mol, respectively, which

is likely an artifact of the uncoupled MP2 treatment of dispersion in these double

hybrids, which is especially problematic in π-stacked systems. This can be remedied

by instead using attenuated MP2 correlation in the double hybrid functionals,177

although we have not attempted such calculations here.
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Table 9.10: Binding energies of complexes 4a and 5a from the S12L data set.

Method
binding energy

(kcal/mol)
4a 5a

Experimenta −28.4 −33.4
QMCb −25.8±1.5 −33.4±1.0

HF-3c+E
ATM(Grimme)
disp,3B −34.2 −27.6

MP2/CBSc −78.8 −39.5
SCS-MP2/CBSc −53.5 −30.1
MP2C/CBSc,d −35.3 −35.4

B2PLYP+D3BJ+E
ATM(Grimme)
disp,3B /

−40.6 −33.1
def2-TZVPe

B2PLYP+NL+E
ATM(Grimme)
disp,3B /

−45.8 −35.2
def2-TZVPe

NLDFT/def2-QZVPc −33.9 −33.0

PW6B95+D3BJ+E
ATM(Grimme)
disp,3B /

−31.8 −31.9
def2-QZVP(-g,-f)a

PBE+MBD∗b −28.3 −33.8
DFT-SAPTc,d,f,g −35.9 −34.5
XSAPT(KS)+D3(ωGDD)d,h −50.2 −38.2
XSAPT(KS)+D3 −36.8 −34.4

+E
ATM(TS)
disp,3B (ωGDD)d,h

XSAPT(KS)
−34.7 −37.1

+disp(CKS)(ωGDD)d,f,h

PBE-XDM/pc-2-spdi −27.5 −30.7
B97M-V/aTZ (CP) −37.6 −35.2
aFrom Ref. 22.

bFrom Ref. 40.

cFrom Ref. 42.

dUsing NLDFT deformation energies from Ref. 42.

eFrom Ref. 385.

fDFT-SAPT dispersion energies [+disp(CKS)] were

extrapolated using the 1.08×(DZ,TZ) scheme of Ref. 42.

gUsing the cc-pVTZ for the non-dispersion terms.

hUsing the hpTZVPP basis set.

iFrom Ref. 390.
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Heßelmann’s NLDFT functional along with the PW6B95+D3BJ+E
ATM(Grimme)
disp,3B

approach each perform pretty well, overestimating the binding energy of 4a by 8 and

6 kcal/mol, respectively, as compared to QMC benchmark. B97M-V/aTZ with coun-

terpoise correction overestimates the binding energy of 4a by 12 kcal/mol. The best

methods for 4a in Table 9.10 are PBE+MBD* and PBE-XDM, which only overesti-

mate the binding energy by 2.5 and 1.7 kcal/mol, respectively. The DFT-SAPT and

XSAPT(KS)+disp(CKS)(ωGDD) methods overestimate the binding energy by 10 and

9 kcal/mol, respectively, which is probably at least partially due to uncertainty in the

DFT-SAPT dispersion energies at the CBS limit, owing to use of the aforementioned

1.08×(DZ,TZ) extrapolation procedure.

The E
ATM(TS)
disp,3B correction is very important in 4a, reducing the error in the XS-

APT(KS)+D3 binding energy from 24 to 11 kcal/mol. The remaining 11 kcal/mol

may come from the lack of dynamical dielectric screening effects in the dispersion co-

efficients of the pairwise D3 dispersion potential.373 Such dynamical screening effects

are very important in large supramolecular and solid-state calculations; for example,

the C6 dispersion coefficients are reduced by a factor of 1.6−1.8 in diamond and sil-

icon relative to free atoms.373,403 The dynamical screening effect in complex 4a, as

computed using the PBE+TS-vdW method, is +9 kcal/mol,373 which comes from the

reduction of C6 coefficients in C60 by a factor of 1.1−1.3 after forming the host-guest

complex 4a.373 Combining the 9 kcal/mol dynamical screening effect in 4a with the

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) binding energy affords −27.8 kcal/mol, which is

close to both the QMC and the experimental benchmarks.
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For the mixed-type complex 5a, there are hydrogen bonds between host and

guest molecules although dispersion still plays a prominent role. All of the meth-

ods in Table 9.10 agree well with the QMC benchmark, and the maximum deviation

is only 6 kcal/mol, for MP2/CBS. The XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) binding

energy lies within the statistical error bars of the QMC benchmark. The aforemen-

tioned dynamical screening effect for 5a, computed using the PBE+TS-vdW method,

is only 0.1 kcal/mol,373 which is probably the reason for the good performance of

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD).

Finally, let us discuss complexes 6a and 6b whose binding energies are consis-

tently overestimated by the methods considered here. The guest molecule is a cation

in these two examples, and the cation/dipolar binding leads to a large errors in con-

tinuum solvation energies (up to 6 kcal/mol, according to the estimates in Ref. 22),

which are used to back-correct the solution-phase experiments to obtain gas-phase

binding energies. This is likely the reason why 6a has the largest deviation (at 3.6

kcal/mol) between the QMC and the back-corrected experimental benchmark. In

particular, it has been demonstrated that the inclusion of counter-ions, leading to

overall neutral charge, generally improves the results as compared to the experimen-

tal free energies.396,404–406 COSMO-RS solvation energies for multiply-charged species

are also improved by including counter-ions,405 and the most recent S12L benchmarks

(used herein) do use counter-ions in some cases.22

The XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) method overestimates the binding ener-

gies of 6a and 6b by 2.6 and 1.9 kcal/mol, respectively. We have recently observed
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some problems with XPol charge embedding for systems involving ions, and pre-

liminary results suggest that significantly improved results for ion–molecule binding

energies are obtained using Gaussian blurring of the embedding point charges. (This

has been seen in other contexts as well.407) Here, however, XSAPT(KS) + D3 +

E
ATM(TS)
disp,3B (ωGDD) with Gaussian blurring slightly increases the overestimation of the

6a and 6b binding energies, so the point-charge embedding is not the culprit. As com-

pared to the more accurate QMC benchmark, XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD)

overestimates the binding energy for 6a by 3.8 kcal/mol, and replacing its dis-

persion potential by disp(CKS) reduces the error to 1.2 kcal/mol. Even in this

electrostatically-dominated system, and accurate description of dispersion interac-

tions is important if quantitative results are required.

One final remark bears mention. In XSAPT calculations, the polarized wave func-

tion for each fragment is used for the subsequent SAPT calculations, and typically the

dipole moment of this polarized wave function is larger than that of the unpolarized

one, often significantly. For example, upon polarizaton by the neighboring charges,

the dipole moment of circumcoronene in C3GC increases from 0.09 D to 2.48 D, and

the dipole moment of C70 in C70@C60H28 increases from 0.01 D to 1.39 D. For the

cation complexes 6a and 6b, the dipole moment for the host molecule increases from

approximately zero to almost 7 D, because the guest is a cation. (Dipole moments of

the polarized and unpolarized wave functions can be found in the Supporting Infor-

mation.) The polarized wave functions generated in the XPol step should capture the

environmental effects created by the rest of fragments and can in principle be used
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density-based schemes for describing dispersion, such as the TS-vdW model.358 This

should capture some many-body dispersion effects without the need for supersystem

calculations. We are currently investigating such an approach.

9.4 Conclusions

Accurate description of dispersion interactions is important for modeling large, supra-

molecular assemblies, and here we have examined two data sets consisting mostly of

dispersion-dominated complexes. Using an AO implementation of XSAPT, we have

examined the performance of XSAPT(KS)+D3 based on a LRC-DFT description

of the monomers. As in previous work,51,56,57 monomer-specific tuning of the range

separation parameter is essential, and here we find that the GDD tuning procedure26

is superior to the more traditional IP tuning scheme.230 Optimally-tuned values of ω

differ by as much as 0.218 a−1
0 between these two methods. We therefore recommend

the use of LRC-ωPBE based on ωGDD for both SAPT and XSAPT calculations.

The Axilrod-Teller-Muto three-body dispersion correction, E
ATM(TS)
disp,3B , provides

a significant improvement for binding energies computed using XSAPT(KS)+D3,

reducing MAEs from 3.5 kcal/mol for L7 and 9.7 kcal/mol for S12L to 1.4 and

3.3 kcal/mol, respectively. Remaining errors arise primarily from the absence of

dynamical dielectric screening effects370 in the D3 pairwise dispersion coefficients,

which become very important when the monomers are large. For example, the bind-

ing energy of the buckycatcher/C60 complex [4a in Figure 9.1(b)] computed at the

XSAPT(KS)+D3+E
ATM(TS)
disp,3B (ωGDD) level is −36.8 kcal/mol as compared to a QMC
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benchmark of −25.8±1.5 kcal/mol.40 Addition of the +9 kcal/mol dynamical screen-

ing effect predicted by PBE+TS-vdW method373 reduces the aforementioned XSAPT

result to −27.8 kcal/mol, which is close to the QMC benchmark.

Concerning the application of supersystem methods to L7 and S12L, we find

that the newly-developed B97M-V functional,202 with an aTZ basis set and coun-

terpoise correction scheme, affords a MAE of 1.4 and 4.2 kcal/mol, respectively, for

L7 and S12L complexes. Its maximum error in S12L is up to 9.6 kcal/mol, de-

spite the fact that this functional performs well for many other non-covalent sys-

tems,52,57,105 including difficult cases involving ions.52 Modeling of large complexes

must therefore still be considered difficult even with the latest DFT functionals. How-

ever, the best supersystem method that we have found for these large complexes is

PW6B95+D3BJ+E
ATM(Grimme)
disp,3B , with MAEs of 0.9 kcal/mol for L7 and 1.5 kcal/mol

for S12L. The low-cost, empirically-corrected HF-3c+E
ATM(Grimme)
disp,3B method performs

reasonable well, yielding MAEs of 1.0 kcal/mol for L7 and 3.9 kcal/mol for S12L.
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CHAPTER 10

A Simple Correction for Non-Additive Dispersion

within Extended Symmetry-Adapted Perturbation

Theory

10.1 Introduction

The developments of accurate and efficient dispersion models have mitigated the

failure of semi-local and hybrid density functionals in dispersion descriptions,408,409

which have become popular in this decade.143,273 Density functional theory added

with dispersion potential (DFT+D) methods provide an efficient way to understand

complex molecular systems, in systems such as biomolecules, supramolecules, and

condensed matter.352,410 The simplest way to account for the dispersion is to use

atomic pairwise-additive contributions from localized multipoles:

Edisp = −
∑

i>j

(

C ij
6

R6
ij

+
C ij

8

R8
ij

+
C ij

10

R10
ij

+ · · ·

)

(10.1)

where Rij is the interatomic distance for atoms i and j. For each pair of atoms,

such as atoms i and j, C ij
6 is dipole−dipole dispersion coefficient, C ij

8 represents

dipole−quadrupole dispersion coefficient, C ij
10 expresses quadrupole−quadrupole and

dipole−octupole dispersion coefficients, and so on. The dispersion coefficients can

be determined by appealing to ab initio calculations274,358,411–413 or at least partly
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based on fitting to a benchmark training set.6,16,57,244,253,254,368,414,415 Eq. (10.1) is

well-defined for well-separated atoms at long ranges but diverges to −∞ at small in-

teratomic separation. Thus, a damping function has been used to avoid the divergence

at short range and to avoid double-counting of correlation effects which have already

been partly captured by the main body of density functionals at short range.143 These

damping functions often include several functional-dependent parameters to control

their domain for the specific density functional.143

In the early stage of DFT+D methods, the dispersion potentials did not explicitly

include non-additive effects which measure the departure of the benchmark disper-

sion from the dispersion in Eq. (10.1) based on gas-phase C ij
n coefficients.370 In other

words, the gas-phase C ij
n dispersion coefficients are predetermined and constant quan-

tities which are independent of molecular environment during molecular simulations.

The first step to fix this departure is to introduce the environment-dependent C ij
n

coefficients. The environment-dependent C ij
n coefficients are identified as “type-A”

non-additive effects,370 in which crowding or squeezing by neighboring atoms results

in a reduction in atomic polarizabilities and thus dispersion energies. Type-A effects

are accounted for by methods such as the Tkatchenko-Scheffler (TS) correction358 and

the Becke-Johnson exchange-hole dipole model (XDM)412 because these corrections

depend directly on the local electron density. Grimme’s D3 correction274 also includes

type-A effects because its atomic dispersion parameters depend upon the number of

bonds, i.e. the hybridization of atoms.

An alternative way to obtain dispersion interactions is based on symmetry-adapted
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perturbation theory (SAPT)115 where its dispersion is genuine at all distances and dif-

ferent from those add-on dispersion models used in DFT. The SAPT calculation can

be performed economically by using Kohn-Sham (KS) orbitals for the monomers to in-

corporate intramolecular electron correlation. The approach is known as SAPT(KS).208

By using asymptotically corrected DFT, such as long-range corrected (LRC) DFT,

the accurate predication of the non-dispersion components of the energy can be

achieved;51 however, errors in SAPT(KS) dispersion energies remain unacceptably

large. Accurate dispersion can be computed by an alternative DFT-based SAPT

method, DFT-SAPT149,150 where the “coupled” Kohn-Sham” (CKS) dispersion inter-

action is calculated via a Casimir-Polder-type formalism based on frequency-dependent

polarizabilities for the monomers. The computational scaling of SAPT is still high

since the second-order dispersion and the corresponding exchange-dispersion scale at

minimum O(N4
f ) and O(N5

f ), respectively, with respect to the fragment size Nf . An

approximation is to omit those dispersion and exchange-dispersion terms by replacing

the sum of them with empirical atom−atom potentials where the parameters are fit-

ted to reproduce accurate dispersion interactions calculated by DFT-SAPT6,244 and

high-level SAPT2+(3).57 Those SAPT-based dispersion potentials (“+D”) avoid any

double-counting of dispersion interactions at short and medium range, and represent

genuine dispersion interactions in all range, whereas it is not the case of the add-

on dispersion potentials in dispersion-corrected DFT.253,254,368 This SAPT(KS)+D

method based on LRC-DFT for monomers exhibits O(N3
f ) scaling and affords good

results for small data sets as well as the whole potential energy curve for the benzene
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dimer.51 The latest version of SAPT-based empirical dispersion potentials (“+D3”)

was developed by our group.57 Our SAPT-based “+D3” dispersion potential is unre-

lated to Grimme’s +D3 correction for DFT274 except that each is the third-generation

of such a correction.

The traditional SAPT method was generalized to many-body systems by our

group via the combination of explicit polarization (XPol) method252 and SAPT. This

many-body SAPT method is called “extended” version of SAPT (XSAPT).54,57,65

The combination of XSAPT based on the monomer description by LRC-DFT and

empirical dispersion potentials, XSAPT(KS)+D, affords accurate binding energies

and individual energy components for many different systems.55–57 The drawback of

SAPT-based dispersion potentials are that their parameters are predetermined and

independent of molecular environment in many-body systems similar to early stage

DFT+D methods.253,254,368

In this work, the environment-dependent dispersion contraction (DC) effect is

introduced within the XSAPT scheme. In the following section, the prescription

for estimating the magnitude of DC within the XSAPT scheme is presented. Then,

we evaluate the significance of DC using XSAPT in many-body systems. A brief

conclusion can be found in the last section.

10.2 Computational details

Within XSAPT, type-A non-additivity is included implicitly via the XPol charge-

embedding step, wherein the electron density of each fragment is squeezed by the
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neighboring charges, thereby reducing the dispersion interaction. The dispersion

energy difference based on XSAPT (with charge embedding) and SAPT (without

charge embedding),

EDC−full
disp = [E

(2)
disp + E

(2)
exch-disp]XSAPT

− [E
(2)
disp + E

(2)
exch-disp]SAPT,

(10.2)

should account for the squeezing effects (dispersion contraction, DC) by the neigh-

boring charges where E
(2)
disp and E

(2)
exch-disp are second-order dispersion and exchange-

dispersion terms, repsectively. The calculation of E
(2)
exch-disp with O(N5

f ) scaling is

much more expensive than the calculation of E
(2)
disp with O(N4

f ) scaling, and it is not

practical to use XSAPT in systems with large size of monomers if the E
(2)
exch-disp term

is explicitly included. In practice, E
(2)
exch-disp is generally several times smaller than

E
(2)
disp and decays exponentially with respect to the separation of monomers. Thus, it

is expected that [E
(2)
exch-disp]XSAPT and [E

(2)
exch-disp]SAPT terms cancel out (at least par-

tially), and leads to a computationally favorable, O(N4
f ) scaling, way to estimate DC

effect,

EDC−part
disp = [E

(2)
disp]XSAPT − [E

(2)
disp]SAPT. (10.3)

EDC−full
disp and EDC−part

disp are used to distinguish the estimation of DC effect by using

Eq. (10.2) and (10.3), respectively. Although the CKS method and a very large basis

set have to used to obtain accurate intermolecular dispersion energy,153 the dispersion

energy difference in Eq. (10.2) and (10.3) should converge faster and is less sensitive to

the method involved. A similar idea using the rapid convergence in energy difference
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between the CKS and uncoupled Hartree-Fock dispersion energies has been success-

fully used in MP2C method.311 In this work, the DC energies in Eq. (10.2) and (10.3)

are calculated by uncoupled SAPT(KS) method, and the basis-set dependence for

DC energies will be tested in section 10.3.2. Thorough comparisons to benchmark

calculations, as presented in section 10.3.2, support the accuracy and robustness of

using uncoupled SAPT(KS) method and double-ζ basis set to estimate DC energies

according to Eq. (10.2) or (10.3). Then the scaling of XSAPT(KS)+D3+DC method

is O(N3
f ) using a triple-ζ basis set for the non-dispersion terms, and O(N5

f ) or O(N4
f )

using a double-ζ basis set for the DC terms which depend on using Eq. (10.2) or (10.3),

respectively.

The widely studied (H2O)6 cluster with eight isomers,41 anionic X(H2O)n=1−6

clusters (X = F−, Cl−, and SO2−
4 ), and cationic M(H2O)n=1−6 clusters (M = Li+, Na+,

and K+) are employed in this work to study the importance of DC in different sizes

and charges of clusters. Our “+D3” parameters were extended to include Li, Na, and

K. The values for those parameters and the details of fitting procedures are shown in

the Supporting Information for this paper. Larger clusters, ten isomers of F−(H2O)10

and ten isomers of (H2O)20, are used in the analysis to see the contributions of DC

in such large clusters.

The geometries of F−(H2O)n=1−6, Cl−(H2O)n=1−6, and F−(H2O)10 are taken from

Ref. 57. The geometries of (H2O)6 and (H2O)20 are taken from Ref. 8 and 18, respec-

tively. The starting global minima of SO2−
4 (H2O)n=3−6 optimized using basin-hopping
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Monte Carlo are taken from Ref. 416, and subsequently those structures were opti-

mized at the resolution-of-identity (RI) MP2/aug-cc-pVDZ level. In the rest of the

paper, aug-cc-pVXZ basis sets are abbreviated as aXZ. For completeness, the global

minima of SO2−
4 (H2O)n=1−2 were obtained manually at the same level of method

although SO2−
4 (H2O)n=1−2 structures are unstable in the gas phase with respect to

electron autodetachment.417,418 The geometries of cation M(H2O)n=1−6 clusters were

optimized to obtain global minima manually at the method of TPSS functional419

with Grimme’s D3 dispersion correction274 using Becke−Johnson damping14 com-

bined with def2-TZVPP basis set.197

The starting geometries of building blocks for clathrate hydrates, (H2O)20, (H2O)24,

and (H2O)28, are taken from Ref. 25. Then, small guest molecules, CH4 at (H2O)20,

CH4 at (H2O)24, and tetrahydrofuran (THF) at (H2O)28, are put into water cages

for doing geometry optimizations at the level of B97M-V/6-31+G(d) with freezing

oxygen atoms on cages.

All binding energies in this work are based on the monomer geometries in clusters,

and the monomer relaxation energies are not considered. The binding energies at

the level of CCSD(T) (coupled cluster singles and doubles with perturbative triples)

extrapolated to complete basis-set (CBS) limit for (H2O)6, (H2O)20, F−(H2O)n=1−6,

Cl−(H2O)n=1−6, and F−(H2O)10 are taken from Ref. 57. For the SO2−
4 (H2O)n=1−6
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clusters, the MP2 correlation energies in the CBS limit were estimated using a two-

point (aTZ/aQZ) extrapolation, and this correlation energy was added to the Hartree-

Fock/aQZ energy to estimate the MP2/CBS energy. Then, a triples correction,

δ
CCSD(T)
MP2 = ECCSD(T) − EMP2 , (10.4)

based on def2-TZVPP basis set was added to MP2/CBS energy to compute the

CCSD(T)/CBS energy.

For the three alkali−water clusters, the MP2/CBS energies were estimated at a

similar way but using def2-TZVPP and def2-QZVPP basis sets to alkali atoms for

triple- and quadruple-ζ basis sets, respectively, in the corresponding procedures. The

δ
CCSD(T)
MP2 correction is evaluated using def2-TZVPP basis set for alkali atoms and

heavy-aug-cc-pVTZ basis set for the remaining atoms, in which the diffuse functions

on hydrogen in aug-cc-pVTZ are removed.

For the three cages of clathrate hydrates with small guest molecules, the MP2/CBS

were also estimated at a similar way as SO2−
4 (H2O)n=1−6 clusters but using def2-

TZVPP and def2-QZVPP basis sets for triple- and quadruple-ζ basis sets, respec-

tively, in the corresponding procedures. The δ
CCSD(T)
MP2 correction is evaluated using

def2-TZVP basis set, but CCSD(T) energies are calculated at the domain based local

pair-natural orbital (DLPNO) scheme382,383 with tight PNO of truncation thresh-

old384 which approaches the canonical CCSD(T) results within 1 kJ/mol.420 All ge-

ometries in Cartesian coordinates and the corresponding CCSD(T)/CBS binding en-

ergies are available in Supporting Information.
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Some modern popular density-functional methods including PW6B95-D3 (zero

damping),274,392 M11,421 ωB97X-D3,13 ωB97X-V,105 and B97M-V202 will be tested

because they have shown good performance for non-covalent interactions.11,105,202,203,422

A series of DFT methods recommended for clathrate hydrates344 will also be tested

here for the interactions between water cages and guest molecules. The def2-TZVPPD

basis set197,423 was used in those DFT calculations.

The LRC-ωPBE functional,227,240 which has no short-range HF exchange, is used

in all XSAPT(KS) calculations. Two ways to tune the range-separation parameter

(ω) in LRC-ωPBE are used in this work. They are ωIP tuning230 which adjusts ω to

make the lowest ionization potential (IP) equal the minus HOMO (highest occupied

molecular orbital) energy, and ωGDD tuning26,60 where ω is global density-dependent

(GDD) and is related to the average distance between an electron in the outer regions

of a molecule and the exchange hole in the region of localized orbitals. The advantage

of using LRC functional in XSAPT is that the exchange-correlation (XC) potential

is the functional derivation of the XC energy.51 On the other hand, Chai et al.217

developed an asymptotically-corrected (AC) model potential called a strictly localized

Fermi−Amaldi (LFAs) scheme which can be directly added to any semi-local density

functional, and the corrected XC potential is still the functional derivation of the XC

energy. The LFAs scheme combined with PBE functional is tested here for the first

time in the context of XSAPT(KS).
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The individual energy components for dimers in S22 and S66 data sets10,186 calcu-

lated by XSAPT(KS) energy decomposition scheme56 based on different density func-

tionals are compared with the benchmark SAPT2+(3)/aTZ energy components117 to

test the performance of those functionals. The SAPT2+(3)/aTZ individual energy

components for dimers in S22 data set are taken from Ref. 51, and the individual

energy components for dimers in S66 data set are shown here for the first time.

In this work, XSAPT(KS)+D3 calculations were employed hpTZVPP basis set

(def2-TZVPP augmented with diffuse functions on non-hydrogen atoms that are

taken from Pople basis sets) which was recommended in our previous works.56,57

Although the tuning ω values are dependent on monomer’s geometry, those tun-

ing ω values used in this work are based on the monomers optimized at the level

of RIMP2/aug-cc-pVDZ. Those tuned values of ωIP and ωGDD are available in the

Supporting Information.

The TPSS geometry optimizations, DLPNO-CCSD(T) and MP2 calculations for

clathrate hydrates were performed using the Orca program,188 v. 3.0.3, with TightSCF

convergence. In TPSS calculations, the RI approximation424 for the Coulomb inte-

grals matching default auxiliary basis sets425 was applied to speed up the computa-

tions, and the numerical quadrature grid in ORCA denoted as Grid4 was used. The

SAPT2+(3), and the single-point MP2 and CCSD(T) calculations for SO2−
4 (H2O)n=1−6

and alkali−water clusters were performed using the beta5 version of the Psi4 pro-

gram.187 The RI-JK algorithm426 for SCF parts and RI approximation for correlation

parts are employed in all MP2 and CCSD(T) calculations in this work.
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For those DFT and XSAPT(KS) calculations, the SCF convergence criterion is

set to τSCF = 10−7 a.u. and the integral screening threshold is set to τints = 10−12 a.u.

A fairly dense Euler-Maclaurin-Lebedev quadrature grid (Nradial = 75, Nangular = 302)

has been employed in those supersystem DFT calcualtions. All supersystem single-

point calculations are eliminated basis-set superposition error (BSSE) by using coun-

terpoise (CP) correction.80 All XSAPT(KS) calculations reported here use smooth

atom-centered ChElPG embedding charges54 for the XPol calculations and “pro-

jected”65 (pseudocanonicalized286,330 monomer-centered) basis sets for the SAPT cor-

rections. ChElPG charges were computed based on Lebedev grid using a “head space”

of 3.0 Å (see Ref. 319) with radial shells spaced ∆r = 0.25 Å apart where each Lebe-

dev shell consists of a (110,590) grid. The non-dispersion terms in XSAPT(KS) cal-

culations are efficiently evaluated in the atomic-orbital AO basis, in a way that scales

no worse than cubically with respect to system size,60 and the dispersion energy is

evaluated by our third-generation, SAPT-based dispersion potential (“+D3”).57 All

DFT and XSAPT(KS) calculations were performed using a locally-modified version

of Q-Chem.97

10.3 Results and discussion

10.3.1 Asymptotically-corrected density functionals for XS-
APT(KS)

First, we compare the performance of a series of density functionals in XSAPT en-

ergy decomposition.56 Fig. 10.1 shows the mean absolute errors (MAEs) of the non-

dispersion energy components for the dimers in S22 and S66 data sets, as computed by
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Figure 10.1: Mean absolute errors (MAEs) in kcal/mol for individual energy compo-
nents, which are electrostatics (Elst), exchange (Exch), and Induction (Ind), of the
(a) S22 and (b) S66 data sets using XSAPT(KS) based on a series of density func-
tionals and SAPT0 methods with respect to SAPT2+(3)/aTZ energy components.
The hpTZVPP basis set is used for XSAPT(KS) calculations and the jaDZ basis set
is used for SAPT0 calculations.
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XSAPT(KS)/hpTZVPP methods and also by SAPT0/jun-cc-pVDZ (jaDZ) method

with respect to the O(N7) scaling SAPT2+(3)/aTZ method.

For S22, MAEs for the electrostatics (Elst) and induction (Ind) energy components

calculated using XSAPT(KS) are similar in all density functionals tested here. For

the exchange (Exch) energy component calculated using XSAPT(KS), MAEs decrease

in the order, PBE > LFAs-PBE/LRC-ωPBE > LRC-ωPBE(ωIP/ωGDD), due to an

improvement of asymptotical XC potentials. Thus, tuning is necessary in LRC-DFT

to obtain accurate energy components in (X)SAPT(KS).51 MAEs for both tuning

methods, LRC-ωPBE(ωIP/ωGDD), are about 0.2 kcal/mol for Elst and Ind, and 0.4

kcal/mol for Exch. Although the LFAs-PBE method is computational efficient,217

its MAE for Exch energy component is about 1.5 times worse than the MAE using

tuned LRC-ωPBE. The SAPT0 combined with jaDZ basis set has been suggested

to use in large systems160 since it provides fortuitous error cancellation between the

overestimation of the uncoupled Hartree-Fock dispersion and the underestimation due

to basis set incompleteness error for providing good total binding energies.157 MAEs

of SAPT0/jaDZ individual energy components are all worse than the corresponding

energy components using XSAPT(KS)/hpTZVPP with all tested density function-

als. Although SAPT0/jaDZ provides poor performance for energy decomposition, it

still has been used to do energy decomposition in different kinds of systems.160,427

MAEs of dispersion energy components for the dimers in the S22 data set are 0.1

and 1.5 kcal/mol for SAPT-based D3 dispersion potential and SAPT0/jaDZ method,

respectively.
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Figure 10.2: Mean absolute errors (MAEs) in kcal/mol with respect to CCSD(T)/CBS
benchmarks, for binding energies in the S22 and S66 data sets using XSAPT(KS)+D3,
SAPT0, and SAPT2+(3) methods. The hpTZVPP basis set is used for XS-
APT(KS)+D3 calculations. The jaDZ and aTZ basis sets are used for SAPT0 and
SAPT2+(3) calculations, respectively.

For S66, XSAPT(KS)/hpTZVPP and SAPT0/jaDZ show similar performance as

in S22 except the MAE of Exch energy components using XSAPT(PBE)/hpTZVPP

is larger than the corresponding MAE using SAPT0/jaDZ. MAEs of dispersion en-

ergy components for the dimers in S66 are 0.2 and 1.4 kcal/mol for SAPT-based D3

dispersion potential and SAPT0/jaDZ method, respectively.

MAEs of total binding energies using XSAPT(KS)+D3, SAPT0/jaDZ, and SAPT2

+(3)/aTZ with respect to CCSD(T)/CBS for the dimers in S22 and S66 data sets are

shown in Fig. 10.2. In XSAPT(KS), the tuned LRC-ωPBE(ωIP/ωGDD) methods still
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outperform PBE, LFAs-PBE, and untuned LRC-ωPBE methods. Both SAPT2+(3)

and CCSD(T) methods have seventh-order scaling but BSSE-free SAPT2+(3) method

is not required to use a very large basis set to remove BSSE where it is required for

all supersystem methods. MAEs of SAPT2+(3)/aTZ with respect to CCSD(T)/CBS

are 0.3 and 0.2 kcal/mol, respectively, for S22 and S66 data sets. The O(N3
f ) scal-

ing XSAPT(KS)+D3/hpTZVPP method using tuned LRC-ωPBE(ωIP/ωGDD) is only

slightly worse than the expensive O(N7
f ) scaling SAPT2+(3)/aTZ method in total

energy computations. SAPT0/jaDZ provides good error cancellation for total binding

energies, and is comparable to the performance of XSAPT(KS) using untuned LRC-

ωPBE. Furthermore, SAPT0/jaDZ provides total binding energies with smaller MAEs

than XSAPT(KS) using PBE or LFAs-PBE functionals. Thus, XSAPT(KS)+D3

method using tuned LRC-ωPBE(ωIP/ωGDD) for monomer description provides accu-

rate results for both total binding energies and individual energy components. In the

rest of the work, all XSAPT(KS)+D3 results are based on LRC-ωPBE(ωIP/ωGDD)

for monomer description.

10.3.2 Basis set dependence of dispersion contraction

To find a small basis set for computational efficiency in dispersion contraction which

includes O(N4
f ) scaling dispersion and O(N5

f ) exchange-dispersion terms, the disper-

sion contraction was evaluated using an extensive series of double-ζ basis sets. We

have selected three anionic clusters, which are F−(H2O)6, Cl−(H2O)6, and SO2−
4 (H2O)6,

with large DCs for this test, and the corresponding DCs are 2.66, 1.60, and 3.08

kcal/mol, respectively, computed by XSAPT(KS)/hpTZVPP using tuned LRC-ωPBE
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(ωIP). Since LRC-ωPBE using ωIP and ωGDD tunings show similar results in this test,

only the ωIP data are shown here. Fig. 10.3 shows the mean absolute percentage

error (MAPE) for XSAPT(KS) using a series of double-ζ basis set using both DC-full

[Eq. (10.2)] and DC-part [Eq. (10.3)] schemes as compared to XSAPT(KS)/hpTZVPP

using DC-full scheme. The basis sets are ordered by increasing the numbers of basis

functions, which is a easy way to see the convergence of the calculation with respect

to the basis set size.

Using DC-full [Eq. (10.2)] scheme, the results converge smoothly by increasing the

size of double-ζ basis set. The MAPE for aug-cc-pVDZ basis set is only 2.3%. Using

DC-part [Eq. (10.3)] scheme, the smallest MAPE is at 6-31+G(d) basis set with 5.3%,

then the MAPE keeps increasing by increasing the size of basis set. In the DC-full

scheme, the good performance relies on the convergence of both dispersion energy

difference and exchange-dispersion energy difference in Eq. (10.2). Thus, a large

basis set has to use in DC-full scheme to hold this delicate balance for dispersion

and exchange-dispersion terms. Omitting the part from exchange-dispersion energy

difference in large basis set damages this balance and generates large MAPE in DC-

part scheme. Luckily, the 6-31+G(d) basis set gives pretty good results in DC-part

scheme based on fortuitous error cancellation, and we will subsequently use it in the

rest of the work to test its performance.
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Figure 10.3: Mean absolute percentage errors (MAPEs) in the test set includ-
ing F−(H2O)6, Cl−(H2O)6, and SO2−

4 (H2O)6 complexes obtained using DC-full
[Eq. (10.2)] and DC-part [Eq. (10.3)] in a series of basis sets as compared to DC-
full using hpTZVPP basis set. All calculations are used XSAPT(KS) with tuned
LRC-ωPBE(ωIP).

10.3.3 Anionic X(H2O)n=1−6 (X = F−, Cl−, and SO2−
4 ) and

cationic M(H2O)n=1−6 (M = Li+, Na+, and K+)

Fig. 10.4 shows MAEs of binding energies for XSAPT(KS)+D3 and supersystem

methods. In XSAPT(KS)+D3 method based on tuned LRC-ωPBE, ωGDD tuning

works slightly better (0.89 kcal/mol on average) than ωIP tuning in anionic clusters.

On the other hand, ωIP tuning works slightly better (0.38 kcal/mol on average) than

ωGDD tuning in cationic clusters. For the whole set of clusters, ωIP and ωGDD tunings

offer MAEs with 1.90 and 1.64 kcal/mol, respectively.

The performance of XSAPT(KS)+D3 is improved by including the DC correction

except ωIP tuning in Na+(H2O)n and K+(H2O)n, and ωGDD tuning in K+(H2O)n.
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DFT calculations with CP corrections. MAEs for the whole data set are also listed
for each method.
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Especially, MAEs in anionic clusters are largely reduced by including DC corrections.

For example, MAEs in F−(H2O)n clusters are reduced from 3.36 and 2.39 kcal/mol

to 1.40 and 0.61 kcal/mol by including DC corrections in XSAPT(KS) calculations

using ωIP and ωGDD tunings, respectively. In Ref. 57, we blamed the large errors

of XSAPT(KS)+D3 in halide-water clusters because of missing the three-body in-

duction couplings and “δMP2” term52,173 which accounts for the high-order coupling

between induction and dispersion. Including those coupling corrections in anionic

systems makes it expensive to use XSAPT(KS) methods in systems with large size of

monomers. Here we show that the large errors in anionic clusters actually come from

the missing squeezing effects of dispersion in many-body systems and its contribu-

tion is up to 3 kcal/mol in SO2−
4 (H2O)6 cluster. Hence, it is essential to include DC

correction for capturing dispersion squeezing effect in many-body systems. Then, the

XSAPT(KS)+D3+DC method with O(N5
f ) scaling affords MAEs with 1.12 and 0.90

kcal/mol by using ωIP and ωGDD tunings, respectively, for the whole ionic data set.

The O(N5
f ) scaling of DC-full correction can be replaced by DC-part correction with

only O(N4
f ) scaling in a 6-31+G(d) double-ζ basis set as shown in Sec. 10.3.2. By

using DC-part correction with 6-31+G(d) basis set in XSAPT(KS)+D3+DC method,

the MAEs change marginally and the corresponding MAEs are 1.10 and 0.95 kcal/mol.

Thus, the scaling of XSAPT(KS)+D3+DC is O(N3
f ) for the non-dispersion terms us-

ing a triple-ζ basis set and O(N4
f ) for the DC-part correction using a double-ζ basis

set.

The MP2/CBS method affords the MAE with < 1 kcal/mol for all ionic clusters
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except F−(H2O)n with a MAE of 1.01 kcal/mol, and its MAE for the whole ionic

data set is 0.44 kcal/mol. The ωB97X-V and PW6B95-D3 are the only two methods

which afford MAEs with < 1 kcal/mol for all ionic clusters, and the corresponding

MAEs for the whole ionic data set are 0.42 and 0.54 kcal/mol, respectively. The

ωB97X-D3 method does not work well in ionic clusters especially in cationic clusters

where the MAE is up to 4.68 kcal/mol in Li+(H2O)n. The M11 method shows similar

performance as ωB97X-D3 in anionic clusters but performs better in cationic clus-

ters. The highly parametrized M11 and dispersion-corrected ωB97X-D3 functionals

are long-range-corrected, and affords MAEs of 1.26 and 2.30 kcal/mol, respectively.

The non-local dispersion B97M-V calculation is much faster than the ωB97X-V cal-

culation, due to the absence of HF exchange, however, the neglect of HF exchange

degrades its performance in cationic clusters. For the whole set of ionic clusters,

B97M-V performs about two times worse than ωB97X-V. Hence, it is important to

incorporate both long-range correction and non-local dispersion in DFT simultane-

ously for accurate binding descriptions in different kinds of systems. This may be the

reason why ωB97X-V shows good performance in both cationic and anionic clusters,

and its good performance can extend in large size of clusters also as shown below.

The good performance of PW6B95-D3 is only coincidence here since it shows pretty

large errors in (H2O)20 clusters as shown below.

10.3.4 (H2O)6, (H2O)20, and F−(H2O)10

Eight low-lying structures8 of (H2O)6 are considered here. Fig. 10.5 compares the

binding energies for isomers of (H2O)6 computed using various methods. XSAPT(KS)
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Figure 10.5: Binding energies for eight isomers of (H2O)6 using (a) XSAPT(KS)+D3
and (b) supersystem methods. The hpTZVPP basis set is used for XSAPT(KS)+D3
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+ D3 shows MAEs of 0.99 and 0.38 kcal/mol by using ωIP and ωGDD tunings, re-

spectively. The corresponding MAEs move to 0.33 and 0.98 kcal/mol by includ-

ing DC corrections. Using the DC-part correction with 6-31+G(d) basis set, XS-

APT(KS)+D3+DC slightly degrades to 0.45 and 1.10 kcal/mol in ωIP and ωGDD

tunings, respectively.

For the relative energies calculated by CCSD(T)/CBS, isomer bag is 0.35 kcal/mol

more stable than isomer cyclic chair, and isomer cyclic boat1 is 0.10 kcal/mol more

stable than isomer cyclic boat2. XSAPT(KS)+D3 (ωIP/ωGDD) gives the reverse pre-

diction that isomer cyclic chair is 0.20 kcal/mol more stable than isomer bag, and

isomer cyclic boat1 and isomer cyclic boat2 have the same binding energies. XS-

APT(KS)+D3+DC (ωIP/ωGDD) still indicates that isomer cyclic chair is more stable

than isomer bag by 0.10 kcal/mol, but isomer cyclic boat1 is 0.04 kcal/mol more

stable than isomer cyclic boat2 where it matches the binding order computed by

CCSD(T)/CBS.

Those supersystem methods shown in Fig. 10.5 give MAEs < 1 kcal/mol except

ωB97X-D3 where its MAE is 1.54 kcal/mol. ωB97X-V and PW6B95-D3 are the two

best methods in (H2O)6 binding predictions, and their binding MAEs are only 0.27

kcal/mol. However, PW6B95-D3 predicts that isomer cyclic chair is 0.05 kcal/mol

more stable than isomer bag where the binding energy order is reverse as compared

to CCSD(T)/CBS results. M11 also predicts the wrong binding energy order between

isomers cyclic chair and bag, furthermore, isomers prism and cage are too stable in

M11 prediction. MP2/CBS, ωB97X-V, B97M-V, and ωB97X-D3 give the correct
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Table 10.1: MAEs in binding energies and relative energies for ten low-energy isomers
of (H2O)20 with respect to CCSD(T)/CBS benchmarks. The hpTZVPP basis set is
used for XSAPT(KS)+D3 and DC calculations, and the def2-TZVPPD basis set is
used for DFT calculations with CP corrections. The relative energy for each isomer
is relative to the lowest energy isomer 1.

Method
MAE / kcal mol−1

binding relative
energy energy

—supersystem methods—
MP2/CBS 2.68 0.19
ωB97X-V 1.68 0.07
B97M-V 2.86 0.33
ωB97X-D3 6.12 0.33
M11 10.20 1.06
PW6B95-D3 6.31 0.29

—XSAPT methods—
XSAPT(KS)+D3 (ωIP) 6.42 1.02
XSAPT(KS)+D3+DC (ωIP) 1.21 0.87
XSAPT(KS)+D3 (ωGDD) 3.48 1.02
XSAPT(KS)+D3+DC (ωGDD) 1.88 0.88

binding order for all (H2O)6 isomers. ωB97X-V is the best method to accurately

predict both absolute and relative binding energies.

Ten low-energy isomers of (H2O)20,
18,339 obtained using the TIP4P force field,428

are used here to see whether errors increases with system size. Results for total bind-

ing energies are shown in Fig. 10.6, with error statistics listed in Table 10.1. All su-

persystem methods underbind all isomers of (H2O)20 except ωB97X-D3 which largely

overbinds all isomers. MP2/CBS, ωB97X-V, and B97M-V methods perform reason-

able well with MAEs of 2.68, 1.68, and 2.86 kcal/mol, respectively. ωB97X-D3, M11,

and PW6B95-D3 methods perform poor in large (H2O)20 clusters with MAEs of 6.12,
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Figure 10.6: Binding energies for ten low-energy isomers of (H2O)20 using (a) XS-
APT(KS)+D3 and (b) supersystem methods. The hpTZVPP basis set is used for
XSAPT(KS)+D3 and DC calculations, and the def2-TZVPPD basis set is used for
DFT calculations with CP corrections. MAEs for the whole data set, with respect
to the CCSD(T)/CBS benchmarks, are also listed for each method. The isomers are
number as in Ref. 18.
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Table 10.2: The contributions of MAEs with respect to CCSD(T)/CBS average bind-
ing energies in (H2O)6 and (H2O)20 clusters. The hpTZVPP basis set is used for
XSAPT(KS)+D3 and DC calculations, and the def2-TZVPPD basis set is used for
DFT calculations with CP corrections.

Method
percentage error
(H2O)6 (H2O)20

—supersystem methods—
MP2/CBS 0.7% 1.4%
ωB97X-V 0.6% 0.8%
B97M-V 0.8% 1.4%
ωB97X-D3 3.3% 3.1%
M11 1.9% 5.1%
PW6B95-D3 0.6% 3.2%

—XSAPT methods—
XSAPT(KS)+D3 (ωIP) 2.1% 3.2%
XSAPT(KS)+D3+DC (ωIP) 0.7% 0.6%
XSAPT(KS)+D3 (ωGDD) 0.8% 1.8%
XSAPT(KS)+D3+DC (ωGDD) 2.1% 0.9%
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10.20, and 6.31 kcal/mol, respectively. The performance of PW6B95-D3 is very good

in (H2O)6 with a MAE of 0.27 kcal/mol, but decays very fast in (H2O)20 with a MAE

of 6.31 kcal/mol. As in (H2O)6, XSAPT(KS)+D3 (ωGDD) performs better in (H2O)20

than XSAPT(KS)+D3 (ωIP). The XSAPT(KS)+D3 (ωIP/ωGDD) errors can be sig-

nificantly reduced by using the DC correction. XSAPT(KS)+D3+DC (ωIP) and XS-

APT(KS)+D3+DC (ωGDD) give MAEs of 1.21 and 1.88 kcal/mol, respectively. Using

the DC-part correction with 6-31+G(d) basis set, the MAE of XSAPT(KS)+D3+DC

(ωGDD) slightly increases to 2.23, but the MAE of XSAPT(KS)+D3+DC (ωIP) slightly

decreases to 0.93 kcal/mol.

The average binding energies at the level of CCSD(T)/CBS are −46.95 and

−198.16 for (H2O)6 and (H2O)20, respectively. The contributions of MAEs with

respect to CCSD(T)/CBS average binding energies in (H2O)6 and (H2O)20 clusters

are shown in Table 10.2. The binding percentage errors from (H2O)6 to (H2O)20

clusters are increased at the level of MP2/CBS, B97M-V, M11, PW6B95-D3, XS-

APT(KS)+D3 (ωIP), and XSAPT(KS)+D3 (ωGDD), but are decreased at the level

of XSAPT(KS)+D3+DC (ωGDD). ωB97X-V, ωB97X-D3, and XSAPT(KS)+D3+DC

(ωIP) show similar binding percentage errors in both (H2O)6 and (H2O)20 clusters.

M11 and PW6B95-D3 methods are not recommended to use in water clusters since

their binding errors increase about three and five times, respectively, from (H2O)6 to

(H2O)20 clusters. ωB97X-V and XSAPT(KS)+D3+DC (ωIP) are the only two meth-

ods which show small binding percentage errors (< 1%) in both (H2O)6 to (H2O)20

clusters.
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All supersystem methods afford very good relative energies except M11. The

relative energy for each isomer is relative to the lowest energy isomer 1. The relative

energies of XSAPT(KS)+D3 (ωIP/ωGDD) are somewhat worse. MAEs of relative

energies for M11 and XSAPT(KS)+D3 (ωIP/ωGDD) are about 1 kcal/mol. Including

the DC corrections to XSAPT(KS)+D3 slightly decreases the MAE to about 0.9

kcal/mol although the absolute binding energies of XSAPT are significantly improved

by including the DC corrections. In Fig 10.6(a), isomer 6 has the largest relative error

in XSAPT(KS)+D3 (ωIP/ωGDD) (about 2.7 kcal/mol), and can be slightly reduced

to about 2.3 kcal/mol by employing DC corrections. Isomer 6 is the most highly

coordinated of all (H2O)20 isomers considered here, and it has been noted that isomer

6 also has the largest relative error for some DFT methods as indicated by Wang et

al.18 Such errors may come form the D3 dispersion potential, and CKS dispersion for

XSAPT may correct this problem. This work is currently underway in our group.

Finally, large anionic clusters F−(H2O)10 with ten isomers are considered here.

Results for total binding energies are shown in Fig. 10.7, with error statistics listed

in Table 10.3. Among supersystem methods, ωB97X-V and B97M-V perform the

best with MAEs of 0.24 and 0.15 kcal/mol, respectively. MAEs of the rest of su-

persystem methods are in the range of 1 to 5 kcal/mol. The relative energies of

supersystem methods are quite accurate with MAEs of 0.3 kcal/mol except ωB97X-

D3 and M11 which show MAEs of 0.46 and 0.77 kcal/mol, respectively. The relative

energy for each isomer is relative to the lowest energy isomer 6. Both MAEs for
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Table 10.3: MAEs in binding energies and relative energies for ten isomers of
F−(H2O)10 with respect to CCSD(T)/CBS benchmarks. The hpTZVPP basis set
is used for XSAPT(KS)+D3 and DC calculations, and the def2-TZVPPD basis set is
used for DFT calculations with CP corrections. The relative energy for each isomer
is relative to the lowest energy isomer 6.

Method
MAE / kcal mol−1

binding relative
energy energy

—supersystem methods—
MP2/CBS 2.02 0.31
ωB97X-V 0.24 0.32
B97M-V 0.15 0.31
ωB97X-D3 4.96 0.46
M11 1.65 0.77
PW6B95-D3 1.00 0.32

—XSAPT methods—
XSAPT(KS)+D3 (ωIP) 5.71 0.56
XSAPT(KS)+D3+DC (ωIP) 1.38 0.38
XSAPT(KS)+D3 (ωGDD) 3.48 0.53
XSAPT(KS)+D3+DC (ωGDD) 0.91 0.37

342



(a) (H
2
O)

20
@CH

4
(b) (H

2
O)

24
@CH

4
(c) (H

2
O)

28
@THF

Figure 10.8: Lowest-energy structures for three classes of building blocks in clathrate
hydrates with small guest molecules: (a) (H2O)20 with CH4, (b) (H2O)24 with CH4,
and (c) (H2O)28 with THF. The initial geometries of (H2O)20, (H2O)24, and (H2O)28
are taken from Ref. 25. The host-guest complexes were subsequently optimized at
the level of B97M-V/6-31+G(d) with freezing oxygen atoms on cages.

absolute and relative binding energies of XSAPT(KS)+D3 (ωIP/ωGDD) can be ef-

fectively reduced by using DC corrections. MAEs for absolute binding energies of

XSAPT(KS)+D3+DC (ωIP) and XSAPT(KS)+D3+DC (ωGDD) are 1.38 and 0.91

kcal/mol, respectively, and the corresponding MAEs for relative binding energies are

0.38 and 0.37 kcal/mol. Using the DC-part correction with 6-31+G(d) basis set, the

MAE of XSAPT(KS)+D3+DC (ωGDD) slightly increases to 0.98, but the MAE of XS-

APT(KS)+D3+DC (ωIP) slightly decreases to 1.32 kcal/mol. Thus, DC correction

is essential to include in XSAPT(KS)+D3 for improving both absolute and relative

binding energies.
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Table 10.4: The absolute binding energies, and their MAEs and MAPEs with respect to CCSD(T)/CBS
benchmarks for (H2O)20@CH4, (H2O)24@CH4, and (H2O)28@THF. The hpTZVPP basis set is used for XS-
APT(KS)+D2/D3 and DC calculations, and the def2-TZVPPD basis set is used for DFT calculations with
CP corrections.

Method
binding energy / kcal mol−1

(H2O)20@CH4 (H2O)24@CH4 (H2O)28@THF MAE (kcal mol−1) MAPE
—supersystem methods—

CCSD(T)/CBS −4.88 −4.32 −12.98 – –
MP2/CBS −5.01 −4.42 −13.32 0.19 2.60%
ωB97X-V −6.47 −5.69 −15.92 1.97 29.02%
B97M-V −5.78 −4.77 −14.39 0.92 13.29%
ωB97X-D3 −7.68 −6.43 −16.51 2.82 44.55%
M11 −5.97 −3.23 −9.61 1.85 24.53%
PW6B95-D3 −6.35 −5.65 −14.87 1.57 25.24%

—DFT recommended in previous studies—
revPBE 6.60 3.50 6.10 12.79 187.82%
B3LYP 3.35 2.11 1.73 9.79 143.67%
B3LYP-D −5.90 −4.32 −14.10 0.72 9.91%
PBE-D −5.73 −4.80 −13.95 0.77 12.01%
B97-D −4.61 −4.35 −12.99 0.10 2.01%
BLYP-D3 −7.29 −5.35 −15.98 2.15 32.22%
M05-2X −5.86 −4.83 −12.56 0.64 11.72%
M06-2X −6.27 −4.10 −11.24 1.12 15.69%
ωB97X-D −6.52 −5.10 −14.55 1.33 21.32%

—XSAPT(KS)+D2 methods—
XSAPT(KS)+D2 (ωIP) −5.14 −4.85 −13.85 0.55 8.11%
XSAPT(KS)+D2+DC (ωIP) −4.91 −4.68 −13.38 0.26 3.99%
XSAPT(KS)+D2 (ωGDD) −5.04 −4.80 −13.79 0.49 6.97%
XSAPT(KS)+D2+DC (ωGDD) −4.81 −4.63 −13.31 0.24 3.72%

—XSAPT(KS)+D3 methods—
XSAPT(KS)+D3 (ωIP) −3.53 −3.78 −12.53 0.78 14.55%
XSAPT(KS)+D3+DC (ωIP) −3.30 −3.60 −12.06 1.07 18.67%
XSAPT(KS)+D3 (ωGDD) −3.44 −3.73 −12.48 0.84 15.69%
XSAPT(KS)+D3+DC (ωGDD) −3.20 −3.56 −12.00 1.14 19.85%
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10.3.5 Small guest molecules in clathrate hydrates

Clathrate hydrate can be used to trap gas (guest) molecules by its hydrogen-bonded

polyhedral cage-like water framework (host), and such host-guest complex is consid-

ered as a potential fuel storage material.429–431 Two cubic structures, type I and type

II, of clathrate hydrates are generally formed, and the hexagonal cubic structure as

type H is rarely formed. In this work, only water cages in type I and type II are consid-

ered. Type I is formed by two kinds of water cages which are (H2O)20 (12 pentagonal

faces; 512) and (H2O)24 (12 pentagonal and 2 hexagonal faces; 51262). Type II is also

formed by two kinds of water cages which are 512 and (H2O)28 (12 pentagonal and

4 hexagonal faces; 51264).430,432 The type of guest molecules inside the host cages of

clathrate hydrates depends upon the cavity sizes and shapes. Furthermore, the lattice

of host cage in clathrate hydrates can be maintained by the interactions between the

host cages and guest molecules under suitable temperature-pressure conditions.432

There are lots of theoretical studies related to the binding interactions between

host water cages and guest molecules. revPBE,433 B3LYP, B3LYP-D, M05-2X,434

B97-D,254 ωB97X-D,201 and vdW-DF144 functionals were used without benchmark-

ing the binding interactions with respect to accurate high-level of methods at CBS

limit.343,435–446 HF and MP2 with small basis sets were also favorable in those calcula-

tions.443,447–450 The intermolecular interactions between 512 and methane have been

benchmarked for various DFT methods with respect to MP2 using only double-ζ to

triple-ζ basis set extrapolation scheme,342,344 which is known to be inadequate.451

Among various DFT methods, B97-D,254 ωB97X-D,201 M06-2X,434 and PBE-D were
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recommended to be suitable methods for interactions between 512 and methane,344,452

and they subsequently used to study interactions for different combinations of water

cages and guest molecules.452–455 BLYP-D3 was also suggested to use in cage-guest

interaction in clathrate hydrates by studying a variety of guest species in 512 with

respect to only CCSD/CBS benchmark.456 To the best of our knowledge, the accu-

rate high-level benchmark based on quantum Monte Carlo (QMC) is only available

for intermolecular interaction between 512 and methane.341 Thus, it is essential to

have accurate high-level benchmarks for intermolecular interactions between various

sizes of cages and guest molecules.

The water cages 512 and 51262 are used here as methane hosts in various MP2,

DFT, and XSAPT computations with respect to CCSD(T)/CBS benchmark. The

hydrogen storage can be achieved under industrially attainable conditions by encap-

sulating THF in 51264 to stabilize the type II clathrate hydrate.457 The water cage

51264 is used here as THF host to study the interactions between them. The geome-

tries of (H2O)20@CH4, (H2O)24@CH4, and (H2O)28@THF optimized at the level of

B97M-V/6-31+G(d) are shown in Fig. 10.8. Results for total binding energies using

various methods with error statistics are listed in Table 10.4.

MP2/CBS gives binding energies of −5.01, −4.42, and −13.32 kcal/mol, respec-

tively, for (H2O)20@CH4, (H2O)24@CH4, and (H2O)28@THF. The δ
CCSD(T)
MP2 correc-

tion is equal to the binding energy difference of DLPNO-CCSD(T)/def2-TZVP and

MP2/def2-TZVP methods, and the corresponding values are 0.14, 0.10, and 0.34

kcal/mol. The repulsive correction of δ
CCSD(T)
MP2 makes CCSD(T)/CBS have slightly
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smaller binding energy than MP2/CBS in all three cases. Although the geometries of

(H2O)20@CH4 are different in Ref. 341 and this work, we still compare the high-level

binding results used in the two studies here. In Ref. 341, MP2 binding energy at CBS

limit was obtained by extrapolation energies from aug-cc-pVDZ, aug-cc-pVTZ, and

aug-cc-pVQZ basis sets to CBS limit, and results a binding energy of −5.04 kcal/mol.

MP2/CBS binding energies in both works are almost the same. The δ
CCSD(T)
MP2 correc-

tion in Ref. 341 was estimated by the two- and three-body binding energy difference

of the CCSD(T)-F12b193 and MP2-F12458 levels with the VTZ-F12459 basis set. The

corresponding δ
CCSD(T)
MP2 corrections truncated at the two- and three-body of many-

body expansion (MBE) were −0.90 and −0.14 kcal/mol, respectively. The δ
CCSD(T)
MP2

corrections are attractive in Ref. 341 based on MBE and repulsive in this work based

on full calculations. The sign difference in both δ
CCSD(T)
MP2 corrections means that two-

and three-body truncation are not enough and higher-body contributions of δ
CCSD(T)
MP2

in Ref. 341 are important. The QMC calculations in Ref. 341 gave a binding

energy of −5.3 ± 0.5 kcal/mol for (H2O)20@CH4. Our corresponding CCSD(T)/CBS

result is −4.88 kcal/mol which is within statistical uncertainty of QMC.341 Thus, the

CCSD(T)/CBS binding energies in this work for the three cage-guest complexes are

expected to give reliable binding benchmarks. To the best of our knowledge, it is

the first time to have supersystem CCSD(T)/CBS benchmarks for bindings between

various sizes of water cages and guest molecules.

The small δ
CCSD(T)
MP2 corrections make MP2/CBS as a reliable method to study

interactions between water cages and guest molecules. The MAE and MAPE for
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Table 10.5: MAEs and MAPEs with respect to CCSD(T)/CBS benchmarks us-
ing B97-D combined with 6-311++G(2d,2p) and def2-TZVPPD basis sets for
(H2O)20@CH4, (H2O)24@CH4, and (H2O)28@THF. The calculations with and without
CP corrections are included in each level of theory.

basis set CP MAE/kcal mol−1 MAPE
6-311++G(2d,2p) NO 1.69 21.66%
6-311++G(2d,2p) YES 0.17 3.29%
def2-TZVPPD NO 0.42 5.15%
def2-TZVPPD YES 0.10 2.01%

MP2/CBS are 0.19 kcal/mol and 2.60%, respectively. The revPBE and B3LYP pre-

dict unbound in all three complexes, and it is not suitable to use them in mod-

eling of clathrate hydrates. Including the add-on dispersion correction254 greatly

improves the binding results. The MAEs for B3LYP-D and PBE-D are 0.72 and 0.77

kcal/mol, respectively. The functionals with Grimme’s D3 dispersion correction,274

BLYP-D3, ωB97X-D3, and PW6B95-D3, give slightly large MAEs of 2.15, 2.82, and

1.57 kcal/mol, respectively. The three functionals, ωB97X-D, M06-2X, and B97X-D,

recommended344 in binding between (H2O)20 and CH4, show MAEs of 1.33, 1.12,

and 0.10 kcal/mol, respectively. Only B97-D functional is reliable in binding between

water cages and guest molecules with MAPE of only 2%. However, B97-D func-

tional in Ref. 344 was recommended to use with 6-311++G(2d,2p) basis set without

CP correction. The results of B97-D with 6-311++G(2d,2p) and def2-TZVPPD ba-

sis sets are shown in Table 10.5 including both with and without CP corrections.

B97-D/6-311++G(2d,2p) without CP correction gives large MAE and MAPE of 1.69

kcal/mol and 21.66%, respectively. B97-D combined with Ahlrichs’s def2-TZVPPD
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gives small MAE and MAPE of 0.42 kcal/mol and 5.15%, respectively, even without

CP correction. Errors can be largely reduced by including CP corrections in both

methods, especially in 6-311++G(2d,2p) basis set, and def2-TZVPPD basis set still

works better with B97-D than 6-311++G(2d,2p) basis set. Thus, the CP correction

is highly suggested to use with B97-D to remove BSSE.

It is interesting that the MAE is larger in the newer generation of Minnesota-class

functional. Among M05-2X, M06-2X and M11, M05-2X works the best with a MAE

of 0.64 kcal/mol, and M11 works the worst with a MAE of 1.85 kcal/mol. ωB97X-D

and ωB97X-D3 have similar trends in which the old generation of ωB97X-D works

better than the new generation of ωB97X-D3. The two non-local dispersion function-

als, ωB97X-V and B97M-V, does not work better than some of the old generation

dispersion-corrected functionals, such as M05-2X, B97X-D, and B3LYP-D, and the

corresponding MAEs are 1.97 and 0.92 kcal/mol, respectively. Although ωB97X-V

works well in many different system in the previous sections, it does show large er-

rors in some systems, such as the binding interactions between water cages and guest

molecules which provide target systems for future functional development.

XSAPT(KS)+D3 (ωIP/ωGDD) gives a MAE of 0.8 kcal/mol. Including the DC

correction slightly degrades the performance with a MAE of 1.1 kcal/mol. On the

other hand, XSAPT(KS)+D2 (ωIP/ωGDD) works surprisingly well with a MAE of

0.5 kcal/mol. Including the DC correction further improves the performance with a

MAE of 0.25 kcal/mol and a MAPE of 4%. Using the DC-part correction with 6-

31+G(d) basis set, the MAE of XSAPT(KS)+D2+DC slightly increases to 0.46 and
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Table 10.6: Individual energy components of (H2O)20@CH4, (H2O)24@CH4, and
(H2O)28@THF complexes using XSAPT(KS)+D2+DC (ωIP)/hpTZVPP.

XSAPT
energy component / kcal mol−1

(H2O)20 (H2O)24 (H2O)28
@CH4 @CH4 @THF

Electrostatics −2.87 −1.13 −5.65
Exchange 8.92 3.69 11.52
Induction −1.09 −0.37 −2.04
Dispersion −9.86 −6.87 −17.20
Total −4.91 −4.68 −13.38

0.39 kcal/mol, respectively, by using ωIP and ωGDD tunings.

All supersystem methods and XSAPT(KS)+D2 in Table 10.4 show the encapsu-

lation of methane in the (H2O)20 cage to be more favorable than in the (H2O)24 cage.

The trend has been shown before by using M05-2X and B97X-D.343 The reverse trend

shown by XSAPT(KS)+D3 makes it unsuitable to use in clathrate hydrate systems.

Due to the small MAE and MAPE, XSAPT(KS)+D2+DC (ωIP/ωGDD), and super-

system B97-D with CP correction are recommended to be use in clathrate hydrate

systems. The computational cost of XSAPT is much lower than those supersystem

methods since the maximal sizes of calculations in XSAPT are only for two-body

H2O-H2O or H2O-guest systems.

The XSAPT(KS)+D2+DC (ωIP) analysis56 of the contributions to the binding

energy for the three cage-guest systems is reported in Table 10.6. As compared
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the binding components in (H2O)20@CH4 and (H2O)24@CH4, electrostatics and in-

duction are similar in both systems. CH4 is at the center of (H2O)20 and is in-

clined to one side of (H2O)24; therefore, CH4 has larger exchange and dispersion

interactions with (H2O)20 than with (H2O)24. The net binding energy is larger in

(H2O)20@CH4 than in (H2O)24@CH4. The total binding energy between (H2O)28 and

THF is larger than binding interactions between CH4 and the two water cages since

the host-guest interaction is stronger for polar guest molecules than for non-polar

molecules. (H2O)28@THF has larger energy components in all species as compared

to CH4 in (H2O)20 and (H2O)24. The larger electrostatics and induction may come

from the hydrogen-bonded interaction between THF and H2O. Due to the large size

of THF, it has large exchange and dispersion interactions with (H2O)28. The net total

binding energy is −13.38 kcal/mol in (H2O)28@THF, and is much larger than CH4

in (H2O)20 and (H2O)24. Such large binding energy between THF and (H2O)28 has

been used to stabilize the type II clathrate hydrate.457 It is expected that different

kinds of auxiliary guest molecules for stabilizing water cages can be found in the

future through theoretical design to achieve gas storage in clathrate hydrates under

industrially attainable conditions.

10.4 Conclusions

A dispersion contraction (DC) has been introduced to include non-additive disper-

sion effects in XSAPT(KS)+D where the dispersion potentials are environment-

independent and the squeezing effect by neighboring atoms is not captured. The
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DC effect can be obtained by the squeezing effects from the neighboring charges, and

is calculated by dispersion energy difference based on XSAPT (with charge embed-

ding) and SAPT (without charge embedding). However, the second-order dispersion

and exchange-dispersion terms in DC correction scales as O(N4
f ) and O(N5

f ), re-

spectively. The full DC scheme is denoted as DC-full with O(N5
f ) scaling, and the

aug-cc-pVDZ basis set is accurate enough to reproduce DC-full at a triple-ζ basis

set. If only second-order dispersion is considered in DC correction, such scheme is

denoted as DC-part with O(N4
f ) scaling. The 6-31+G(d) basis set is accurate enough

for DC-part to capture the DC effect based on fortuitous error cancellation. The

scaling of XSAPT(KS)+D+DC method is O(N3
f ) using a triple-ζ basis set for the

non-dispersion terms, and O(N4
f ) using a double-ζ basis set for the DC corrections.

The DC correction is especially important in clusters with polar molecules, for ex-

ample, the DC contributions are 3, 4, and 5 kcal/mol in SO2−
4 (H2O)6, F−(H2O)10,

and (H2O)20 clusters, respectively. Thus, it is important to include DC correction in

XSAPT(KS)+D3 to achieve chemical accuracy (energies within about 1 kcal/mol).

For example, XSAPT(KS)+D3+DC with ωIP tuning gives MAEs of 1.1, 0.3, 1.2, 1.4

kcal/mol for ionic X/M(H2O)n=1−6 (X = F−, Cl−, and SO2−
4 and M = Li+, Na+, and

K+), (H2O)6, (H2O)20, and F−(H2O)10 clusters, respectively. A series of DFT meth-

ods recommended for non-covalent interactions have also been tested in this work.

ωB97X-V is the only DFT method recommended to be used, and its corresponding

MAEs are 0.4, 0.3, 1.7, and 0.2 kcal/mol. However, XSAPT(KS)+D3+DC with ωIP
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tuning and ωB97X-V do not work well in clathrate hydrates, and the correspond-

ing MAEs are 1.1 and 2.0 kcal/mol, respectively, as compared to CCSD(T)/CBS

benchmarks where it is the first time to have CCSD(T)/CBS benchmarks for the

interactions between various sizes of water cages and guest molecules. On the other

hand, XSAPT(KS)+D2+DC with ωIP tuning and B97-D work surprisingly well in

clathrate hydrates with MAEs of 0.3 and 0.1 kcal/mol, respectively, therefore, it is

recommended to use both methods in clathrate hydrates. One should note that the

DC definition used here does not include any non-additive effects in noble gas clusters

(one noble gas atom as a monomer) since each noble gas atom has zero charge.

The energy components and total binding energies for XSAPT(KS) based on a se-

ries of PBE-based functionals have also been tested here with respect to SAPT2+(3)/

aTZ and CCSD(T)/CBS benchmarks, respectively. For S22 and S66, all tested

functionals perform similar in electrostatics and induction, and the tuned LRC-

ωPBE performs much better in exchange than PBE, asymptotically-corrected LFAs-

PBE, and untuned LRC-ωPBE. As compared to CCSD(T)/CBS total binding ener-

gies, XSAPT(KS)+D3 with tuned LRC-ωPBE also performs better than the rest of

functionals, and is comparable with SAPT2+(3)/aTZ. XSAPT(KS)+D3 with tuned

LRC-ωPBE provides both accurate energy components and total binding energies.

SAPT0/jun-cc-pVDZ provides large errors for all energy components, but it gives

reasonable total binding due to fortuitous error cancellation.
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CHAPTER 11

Energy decomposition analysis with a well-defined

charge-transfer term for interpreting

intermolecular interactions

11.1 Introduction

As compared to closed-shell complexes, non-covalent interactions are less well un-

derstood in molecule–radical and radical–radical complexes, and in open-shell cases

one might expect charge transfer (CT) effects to be significant. Open-shell hydrogen

bonds in radical complexes regulate electron transfer processes in many enzymes,460

wherein the alf-filled orbital acts as a proton acceptor, forming a single-electron hydro-

gen bond.461 Stabilization of this bond is thought to depend significantly upon elec-

tron transfer from the half-filled orbital into the σ∗ orbital of the H-bond donor,462

and the strength of the single-electron H-bond can be controlled via substituents

added to the proton donor or acceptor. Protonation of the donor, e.g., H3O
+ · · ·CH3

rather than H2O · · ·CH3, can significantly increase single-electron H-bond strength.

This can be explained in terms of the reduced distance between proton donor and

acceptor as well as a lowering of the σ∗ energy, both of which make H-bonding CT

interactions more favorable.463 Variations in the strength of molecule–radical interac-

tions can significantly influence both the rate and outcome of chemical reactions,464

354



e.g., by reducing the reactivity of the radical, resulting in high product selectivity,465

for enantioselective organocatalysis.466,467

Despite the presumed importance of CT interactions in non-covalent complexes,

direct experimental measurements of the magnitude of the CT contribution to the

interaction energy are scarce. For closed-shell, binary gas-phase complexes involving

H2O, there are a few high-resolution molecular beam scattering experiments that,

in conjunction with charge-displacement analysis and back-corrected intermolecu-

lar model potentials, have been used to obtain experimental values for the absolute

magnitude of the CT interaction energy.29,468,469 CT energies extracted from these

experiments are approximately proportional to the amount of charge that is trans-

ferred, averaged over all orientations of the two monomers,29,468,469 which is seen also

in some theoretical analyses.28,470 Stereospecific CT energies are very difficult to esti-

mate from experiment,29,468,469 thus a reliable CT interaction energy from theoretical

calculations would be quite useful, but this has proven to be problematic.

Good electronic structure calculations can provide accurate values for the total

non-covalent interaction energy between small- to medium-sized molecules, or be-

tween fragments of larger molecules.57,206,272,471,472 What is often desired, however, is

a partition of the interaction energy into physically meaningful components, such as

electrostatic interactions, Pauli (or “exchange”) repulsion, induction (also know as

polarization), dispersion (the London or van der Waals interaction), and CT. Such

a partition may aid in predicting how a certain chemical modification will alter the

interaction energy, but unfortunately any such partition comes with some degree of
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Figure 11.1: Schematic illustration of why the distinction between the CT and the
induction energy in SAPT depends strongly on the basis set. In (a), the basis set is
small and therefore most MOs are localized on one monomer or the other. Excitation
from an occupied MO (in blue) centered on monomer 1 to a virtual MO (in green)
creates or enhances a dipole moment whose formation is driven by its interaction with
monomer 2; this is the epitome of induction. A CT interaction, in contrast, involves
excitation from an occupied MO on monomer 1 into a virtual orbital associated with
monomer 2, as in (b). In (c), however, the basis set has been enlarged such that the
virtual orbitals on each monomer extend over the other. The distinction between the
excitations in (a) and (b) thus becomes muddled, as does the distinction between
induction and CT.

arbitrariness. This has given rise to quite a number of energy decomposition analysis

(EDA) methods;292,473–484 see Refs. 485 and 486 for recent reviews.

This work is focused specifically on intermolecular interactions, and for such cases

an EDA that we find particularly attractive is symmetry-adapted perturbation the-

ory (SAPT).115,117,149,150 This approach computes the interaction energy ∆EAB of the

356



A · · ·B dimer system directly, via perturbation theory, rather than by energy dif-

ference (∆EAB = EAB − EA − EB), and is therefore free of the artifactual basis-set

superposition error (BSSE) that ordinarily leads to dramatic overestimation of ∆EAB

except when very large basis sets are employed.46,80 The structure of the perturbation

series provides a nature decomposition of the interaction energy into electrostatic,

exchange (or Pauli) repulsion, induction, and dispersion components, each with a

well-defined basis-set limit.117 Unfortunately, the CT contribution is not separated

in this decomposition but rather is subsumed within the induction term, for reasons

that are illustrated schematically in Fig. 11.1. When the basis set is small, there

is a clear distinction between excitations (perturbations) that represent polarization

originating in the presence of the other monomer, versus those that should be catego-

rized as inter-monomer CT, but this distinction disappears as the unoccupied orbitals

centered on one monomer begin to overlap significantly with those centered on the

other monomer. For this reason, attempts to isolate the CT energy in SAPT tend to

be strongly basis-set dependent,117,487 and it can be argued that within this frame-

work the CT energy should vanish in the limit of a complete basis set.487 Attempts

to define the CT energy with EDAs based on self-consistent field (SCF) calculations

face similar difficulties,478,488 since the MOs on one monomer will inevitably spread

to the other as the quality of the basis set is improved.

For these reasons, there is need for a simple and reliable EDA for intermolecular

interactions that includes a well-defined CT contribution, as an interpretative tool

for non-covalent chemistry. Ideally, such an EDA should afford CT energies that
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correlate with chemical intuition in obvious cases. For example, the CT energy should

decrease as a function of intermolecular separation. As suggested and demonstrated

in previous computational studies of alkyl and aryl radicals,30 CT energies should

correlate linearly with (IE − EA)−1, where IE is the ionization energy of the donor

species and EA is the electron affinity of the acceptor. Finally, the CT energy should

not depend strongly on the choice of basis set, at least for medium- and high-quality

basis sets.

In this study, we compare the results from several popular EDA approaches that

define an explicit CT interaction energy. These CT energies are compared to those

obtained from constrained DFT (cDFT),489 wherein one assigns a particular number

of electrons to each monomer within a supermolecular (dimer) DFT calculation, then

uses this reference state to quantify net electron flow upon assemblage of the complex

from its constituent monomers. Very recently, this has been suggested as a means to

define a CT contribution to the interaction energy that is only weakly dependent on

the choice of basis set.490 We will demonstrate that the combination of this cDFT

approach with SAPT provides meaningful and robust definitions for all of the various

components of the intermolecular interaction energy, and thus may be very useful for

providing a theoretical basis for the “chemical intuition” of non-covalent interactions.
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11.2 Theory

11.2.1 ALMO-EDA

In this work, we compare SAPT and cDFT to a popular SCF-based EDA, namely, the

absolutely-localized MO (ALMO-EDA) procedure of Head-Gordon and co-workers,478

which is equivalent to the block-localized wave function EDA of Gao and co-workers.483

In this approach, the MOs on a given monomer are constrained to be formed from

linear combinations of Gaussian basis functions centered on the same monomer, hence

“absolutely localized”. This offers certain advantages relative to some other EDAs,

as it allows for a fully self-consistent and variational treatment of polarization and at

the same time rigorously separates CT from polarization. (Despite this separation,

basis-set dependence persists in the definition of the CT interaction energy.478,488)

The total energy in ALMO-EDA is partitioned according to478

∆EALMO = ∆EALMO
FRZ + ∆EALMO

POL + ∆EALMO
CT , (11.1)

where the components on the right are the “frozen density” energy, the polarization

energy, and the CT energy, respectively. (For simplicity, the energy associated with

geometric distortion of the monomers is omitted in this work.) The ∆EALMO
FRZ term

includes electrostatics, dispersion, and Pauli repulsion. It is based on an antisymmet-

ric product of monomer wave functions (the Heitler-London wave function) that is

not variationally optimized, as that optimization would amount to polarization. The

polarization term is computed as the energy difference between the frozen-density

state and the variationally-optimized intermediate state (ΨALMO), using the “SCF
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for molecular interactions” (SCF-MI) procedure.491 Finally. the CT term is defined

as

∆EALMO
CT = E[Ψ]− E[ΨALMO] + ∆EBSSE (11.2)

where Ψ is the fully-optimized SCF wave function for the dimer and ∆EBSSE is the

counterpoise correction.80

11.2.2 SAPT

When Kohn-Sham (KS) orbitals are used in second-order SAPT,51,378 the total inter-

molecular interaction energy can be written as

E
SAPT(KS)
int = E

(1)
elst(KS) + E

(1)
exch(KS) + E

(2)
ind,resp(KS)

+ E
(2)
exch-ind,resp(KS) + E

(2)
disp(KS)

+ E
(2)
exch-disp(KS) + δEHF

int .

(11.3)

The superscripts indicate the order in perturbation theory, and the “KS” indicates

that intramolecular correlation is incorporated in a low-cost way via DFT calculations

for the monomers. The δEHF
int correction captures polarization effects beyond second

order:
δEHF

int = EHF
int −

[

E
(10)
elst (HF) + E

(10)
exch(HF)

+ E
(20)
ind,resp(HF) + E

(20)
exch-ind,resp(HF)

]

.
(11.4)

Here, EHF
int is the counterpoise-corrected Hartree-Fock (HF) binding energy, and the

remaining energy components in Eq. (11.4) represent second-order SAPT applied to

monomers described at the HF level. If desired, response (“resp”) corrections can

be included in the induction and exchange-induction terms in Eqs. (11.3) and (11.4),

in order to capture orbital relaxation effects,179,180 at some additional cost. In this
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study, the coupled induction and exchange-induction energies with orbital relaxation

in SAPT(KS) are approximated as51

E
(2)
ind,resp(KS) = E

(2)
ind(KS)

+
[
E

(20)
ind,resp(HF)− E

(20)
ind (HF)

]
(11.5)

and
E

(2)
exch-ind,resp(KS) = E

(2)
exch-ind(KS)

+
[
E

(20)
exch-ind,resp(HF)− E

(20)
exch-ind(HF)

]
.

(11.6)

Second-order dispersion is the most expensive term in second-order SAPT(KS),

and is also the least accurate.54,56 (Other terms scale no worse than cubically with

respect to system size.137,375,376) As in previous work,55–57 we will therefore replace

the SAPT(KS) dispersion energy

Edisp = E
(2)
disp(KS) + E

(2)
exch-disp(KS) (11.7)

with our third-generation, SAPT-based dispersion potential (“+D3”).57 This is an

empirical atom–atom dispersion potential that is fit to reproduce high-level SAPT2+3

dispersion energies for a training set of dimers. (Note that the +D3 dispersion po-

tential for SAPT is unrelated to Grimme’s +D3 correction for DFT.274) Because the

dispersion term is easily separable in SAPT, there is no double-counting problem in

SAPT(KS)+D as there is in DFT+D, and the empirical dispersion potential in SAPT

represents genuine dispersion interactions, in contrast to the empirical Grimme cor-

rections.253 This is an especially important point in the context of EDA, because it

means that we can take the SAPT-based +D3 correction seriously as the dispersion

contribution to the interaction energy.
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It has been suggested that a CT energy can be extracted from the SAPT induction

energy by taking the difference between SAPT calculations in which the monomer

wave functions are computed using the full dimer-centered basis set (DCBS), versus

only the monomer-centered basis set (MCBS):117,487

∆ESAPT
CT =

[
E

(2)
ind,resp(DCBS) + E

(2)
exch-ind,resp(DCBS)

]

−
[
E

(2)
ind,resp(MCBS) + E

(2)
exch-ind,resp(MCBS)

]
.

(11.8)

In principle, however, ∆ESAPT
CT → 0 in the limit of a complete basis set.492

Recently, Řezáč et al.490 have shown that the higher-order induction terms that

are included via the δEHF
int correction in Eq. (11.4) are dominated by CT, and these

authors suggest an alternative “SAPT+δSCF” procedure to define CT:

∆ESAPT+δSCF
CT = ∆ESAPT

CT + δEHF
int . (11.9)

This should at least provide an upper bound for the CT interaction in second-order

SAPT, since the two energy components in Eq. (11.9) are the only places where CT

can appear.

11.2.3 Constrained DFT

Yet another way to define the CT interaction energy is to use the difference between

the DFT energy of the fully-relaxed dimer system and the energy of a CT-free refer-

ence state that is constructed as a superposition of atomic densities, with the resulting

molecular densities constrained to integer numbers of electrons using cDFT:489,493,494

∆EcDFT
CT = EDFT − EcDFT . (11.10)
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We expect this definition to exhibit a far weaker dependence on the basis set, as

compared to the ALMO- or SAPT-based schemes, because here the basis set serves

only to describe the density, and individual MOs need not be assigned to one monomer

or the other. The value of ∆EcDFT
CT will still depend on how the electron densities

of the two monomers are partitioned in real space,490 e.g., using Mulliken, Löwdin,

Hirshfeld, or Becke atomic charges. The Mulliken and Löwdin partitions cannot be

recommended for CT analysis, because they are (atomic) orbital-based.490

11.3 Computational details

BSSE must be removed in variational approaches such as ALMO-EDA,478 which

we accomplish via counterpoise correction.80 The value of ∆EcDFT
CT is only weakly

dependent on basis set, as shown here and in Ref. 490, which indicates that the

BSSE approximately cancels in Eq. (11.10), hence no further correction is applied to

cDFT calculations.

In ALMO-EDA, the frozen-density energy contains electrostatics, Pauli repulsion,

and dispersion. As a result, the this term can be rather sensitive to the choice of den-

sity functional, due to the inconsistent treatment of dispersion from one functional

to the next. While it is tempting to want to use pairwise empirical dispersion poten-

tials (“DFT+D”) in this capacity, it should be recognized that the +D correction is,

in Grimme’s words, a “model-dependent quantity with no real physical meaning”,253

due to subtleties in the damping function and double-counting of correlation effects in

the middle-distance regime.143 In systems such as M+ · · ·C6H6, the empirical DFT+D
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potentials differ quite substantially from the pure dispersion potentials that we use in

SAPT(KS), predicting a dispersion energy for K+ · · ·H2O that is 7 times larger than

the SAPT dispersion potential predict, for example.486

Recognizing the double-counting problem inherent in DFT+D, Szalewicz and co-

workers6 developed a “dispersionless” density functional (dlDF) by re-parameterizing

M05-2X using a data set in which dispersion interactions were specifically removed by

subtracting SAPT(DFT)149,150 dispersion energies. This affords a relatively clean way

to separate the dispersion energy in a DFT calculation, and one that we shall examine

here. In particular, we can combine dlDF with the dispersion potentials used in SAPT

to obtain a DFT+D-type approach (dlDF+D3) with no double-counting problem.

ALMO and cDFT calculations reported here use either the B3LYP functional495,496

or the ωB97X-D3 functional.13 The cDFT calculations use the Becke partition of the

charges, as in Ref. 497. SCF-MI calculations (needed for ALMO-EDA) are based on

the locally-projected equations of Stoll et al.,498 as implemented by Khaliullin et al.491

For SAPT(KS), we use the LRC-ωPBE functional,227,240 which has no short-range HF

exchange, in conjunction with “ωGDD” tuning of the range-separation parameter.26

The SCF convergence criterion is set to 10−7 a.u. and the integral screening thresh-

old is set to 10−12 a.u., using a fairly dense Euler-Maclaurin-Lebedev quadrature

grid (Nradial = 75, Nangular = 302). In the SAPT calculations, the h functions have

been removed from aug-cc-pV5Z and both the h and i functions are removed from

aug-cc-pV6Z. In the ALMO and cDFT calculations, the i functions in aug-cc-pV6Z

are removed. All calculations were performed using a locally-modified version of
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Q-Chem.97

11.4 Results and discussion

11.4.1 (H2O)2

The water dimer, which exhibits very little CT,499 is a prototypical system for ap-

plication of EDA to understand hydrogen bonding. Using a series of aug-cc-pVXZ

basis sets, X = 2–6, we find that the electrostatic, exchange, and induction energies

in SAPT are basically converged at the triple-ζ level, changing by < 0.05 kJ/mol

for X > 3. The ALMO-EDA polarization energy, however, changes by 1.8 kJ/mol

between X = 3 and X = 6. This lack of convergence is a troubling feature, given the

simplicity of the system.

Both experiments29,468,469 and calculations28,470 suggest that the CT interaction

energy is approximately proportional to the amount of charge that is transferred, when

averaged over the relative orientations of the interacting partners. The proportionality

constant, k (energy per unit of transferred charge) can be estimated from state-of-

the-art molecular-beam scattering experiments; the best estimate for Xe · · ·H2O is

k = 2.6 meV/me−.29 The authors of Ref. 29 suggest that the same value of k

is also appropriate for the water dimer, in which case a CT energy for the water

dimer of 3.6 kJ/mol is obtained based on the 14.6 me− of charge that is transferred,

according to charge-displacement analysis.499 ALMO-EDA based on a coupled-cluster

wave function [ALMO(CCSD)/aug-cc-pVTZ] affords a CT energy of 3.5 kJ/mol.27

For reasons of cost, ALMO(CCSD) has only been applied to small, closed-shell dimers
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Figure 11.2: CT energies for (H2O)2 using a sequence of aug-cc-pVXZ basis sets, at
the RI-MP2/aug-cc-pVDZ geometry of the dimer. The ωB97X-D3 functional is used
for the ALMO(DFT) and cDFT calculations, and the LRC-ωPBE functional (with
ωGDD tuning26) is used for the SAPT and SAPT+δEHF

int calculations. (Here “δSCF”
denotes the δEHF

int correction of Eq. (11.4).)

in triple-ζ basis sets or smaller.27

Unsurprisingly, CT energies for the orbital-based EDAs (SAPT and ALMO) are

far more dependent on basis set as compared to the other energy components, as

shown in Fig. 11.2. Whereas the cDFT value of the CT energy is converged in a

triple-ζ basis set, the SAPT- and ALMO-based values change by 1–3 kJ/mol between

triple- and hextuple-ζ. Moreover, the cDFT value of ≈ 3 kJ/mol is much closer to

the experimental estimate as compared to ALMO(DFT) and SAPT. Řezáč et al.490
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report a similar cDFT value (3.3 kJ/mol) using a different functional, basis set, and

charge partition scheme.

As discussed above, ∆ESAPT
CT should vanish in the complete-basis limit but for

(H2O)2 it remains > 1 kJ/mol in magnitude even in the aug-cc-pV6Z basis set, which

illustrates just how slowly atom-centered basis sets converge to the basis-set limit.

In contrast, ∆ESAPT+δSCF
CT (Eq. (11.9)) need not vanish in the basis-set limit, as the

δEHF
int need not vanish and typically converges in triple-ζ basis sets.

Figure 11.3(a) compares the CT interaction energies computed using cDFT ver-

sus ALMO-EDA. Use of B3LYP versus ωB97X-D3 makes only a minor difference

of ≈ 1 kJ/mol in the ALMO-EDA case, and essentially no difference in the cDFT

case. Figure 11.3(b) examines the amount of charge that is actually transferred in the

ALMO calculations, using ALMO charge-transfer analysis.28 Although the two func-

tionals in question differ by about 0.5 me− in their predictions (with B3LYP predicting

slightly more CT), the dependence on basis set is virtually identical and also quite

dramatic, decreasing monotonically as the basis set is enlarged. Only 2.3 me− is trans-

ferred at the B3LYP/aug-cc-pV5Z level (consistent with results in Ref. 470), which

seems unrealistic in comparison to the 14.6 me− estimated from charge-displacement

analysis. (The latter reliably reproduces the exponential decay of CT as a function of

intermolecular separation.29,499) As compared to the experimental results discussed

above, it is interesting to note that ALMO-EDA underestimates the fraction of an

electron that is transferred, yet overestimates the CT interaction energy, indicating

that the proportionality constant k must be significantly overestimated as compared
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Figure 11.3: (a) CT energies for water dimer in a sequence of aug-cc-pVXZ basis sets.
(b) Amount of charge that is transferred, as predicted by ALMO(DFT).
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to the value estimated from experiment.

11.4.2 H3N · · ·BH3

The ammonia–borane complex is prototypical of dative bonding in a Lewis acid/base

complex. It is a strongly-interacting system, with SAPT electrostatic, exchange, and

induction energies ranging from −200 to −500 kJ/mol, at least nine times larger

than the corresponding energy components in water dimer. As in (H2O)2, these en-

ergy components are essentially converged in a triple-ζ basis set, changing by at most

0.8 kJ/mol beyond aug-cc-pVTZ. For ALMO-EDA, the frozen-density and polariza-

tion energies range from −100 to −300 kJ/mol, and are at least 25 times larger then

the corresponding components in water dimer. However, the ALMO-EDA polariza-

tion energy is not converged at the triple-ζ level, and changes by 36.3 kJ/mol upon

enlarging the basis set from aug-cc-pVTZ to aug-cc-pV6Z. (The frozen-density energy

changes only by 0.9 kJ/mol). This is consistent with the idea that the polarization

energy is increasingly contaminated by charge transfer in the SCF-MI procedure, as

the size of the basis set increases.488

CT energies for H3N · · ·BH3 are shown in Fig. 11.4 as a function of basis set.

For reference, the ALMO(CCSD)/aug-cc-pVDZ level of theory affords an estimate

of −59.4 kJ/mol for the CT interaction.27 The cDFT result is close to this value,

at about −61 kJ/mol for all basis sets. CT energies from SAPT and ALMO(DFT)

exhibit significant basis set dependence, however, with the SAPT result ranging from

−54.7 kJ/mol (aug-cc-pVDZ) to −1.2 kJ/mol (aug-cc-pV6Z), again converging to-

wards zero in the basis-set limit. The δEHF
int term converges to about −44 kJ/mol in
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Figure 11.4: CT energies for H3N · · ·BH3 (RI-MP2/aug-cc-pVDZ geometry), in a
sequence of aug-cc-pVXZ basis sets. The ωB97X-D3 functional is used for the
ALMO(DFT) and cDFT calculations and the LRC-ωPBE functional is used for the
SAPT and SAPT+δSCF. The solid black cross represents the ALMO(CCSD)/aug-
cc-pVDZ result.27

aug-cc-pVTZ, meaning that the SAPT+δEHF
int method affords a non-zero CT energy

even in the basis-set limit. The CT energy predicted by ALMO(DFT) ranges from

−121.9 kJ/mol (aug-cc-pVDZ) to −47.5 kJ/mol (aug-cc-pV6Z), decreasing monoton-

ically with basis size but not in a manner that suggests it will converge to zero.

Figure 11.5(a) compares cDFT and ALMO CT energies in the same sequence of

basis sets, and Fig. 11.5(b) plots the fraction of an electron that is actually trans-

ferred from ammonia to borane. Comparing ωB97X-D3 to B3LYP, we find that these

quantities have only a weak dependence on the functional, but in the ALMO case

both quantities are strongly dependent on the basis set. The fraction of the electron

that is transferred ranges from 43.2 me− (ωB97X-D3/aug-cc-pVDZ) to 9.5 me− (aug-

cc-pV6Z), with a large decrease in the CT interaction energy across the same range
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Figure 11.5: (a) CT energies for H3N · · ·BH3 using ALMO(DFT) and cDFT in a
variety of basis sets. (b) Amount of charge that is transferred, as predicted by ALMO
CT analysis.28
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of basis sets. In contrast, cDFT results are basically independent on the basis set

used.

11.4.3 Xe · · ·H2O

Experimental data on CT interaction energies for H2O, NH3, and H2S in com-

plexes with small molecules (N2, O2, H2) and rare-gas atoms are available from

high-resolution, gas-phase scattering experiments from which angle-averaged inter-

molecular potentials can be extracted.29,468,469 Amongst these complexes, the CT

interaction energy is largest in Xe · · ·H2O, at −0.98 kJ/mol,29 which amounts to

about 40% of the total interaction energy. The experiments afford a best-fit conver-

sion factor k = 2.6 meV/me− and theoretical charge-displacement analysis suggests

3.9 me− of charge is transferred from Xe to H2O. Figure 11.6 shows CT energies in

Xe · · ·H2O computed using ALMO, cDFT, and SAPT-based methods in two different

basis sets. The ALMO(DFT) method dramatically overestimates the experimental

CT energy in a triple-ζ basis set and affords a much different result in quadruple-ζ

basis set.

According to ALMO-based CT analysis, the ALMO(DFT) calculation transfers

1.8 me− (triple-ζ) or 0.8 me− (quadruple-ζ), as compared to 3.9 me− in charge-

displacement analysis,29 nevertheless the ALMO CT interaction energy is larger than

the experimental one. As with water dimer, this suggests that ALMO(DFT) signif-

icantly overestimates the value of k. (It has previously been suggested that ALMO

may underestimate the CT energy due to mixing in with polarization,30 but the

minuteness of the polarization energy for Xe · · ·H2O means this is not the case here.)
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Figure 11.6: CT energies for Xe · · ·H2O, using the ωB97X-D3 functional for the
ALMO(DFT) and cDFT calculations and the LRC-ωPBE functional for the SAPT
and SAPT+δSCF. The “TZ” basis set is aug-cc-pVTZ for H2O and def2-TZVPPD
for Xe, and “QZ” is aug-cc-pVQZ for H2O and def2-QZVPPD for Xe. The geometry
of the complex is taken from Ref. 29.

Given the dramatic basis-set dependence of the ALMO CT energy, as compared to

the cDFT approach, the latter seems more reliable even though both calculations err

by the same amount (in opposite directions) when a quadruple-ζ basis set is used.

11.4.4 M+ · · ·H2O

Although it is difficult to obtain reliable reference data to assess the accuracy of

various models for the CT interaction energy, an EDA should at least produce results

that agree with chemical intuition in obvious cases, exemplified here by M+ · · ·H2O

complexes with M = Li, Na, or K. We call these “obvious” cases because we expect

that the smaller alkali metal cations should approach more closely to H2O and thus

more effectively withdraw charge, hence we expect the CT energy to decrease as one
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SAPT+δSCFSAPTALMOcDFT

Figure 11.7: CT energies for M+ · · ·H2O. The ωB97X-D3 functional is used for
the ALMO(DFT) and cDFT calculations, and the LRC-ωPBE functional is used for
SAPT and SAPT+δSCF. The aug-cc-pVQZ basis set is used for H2O and the def2-
QZVPPD basis set is used for M+. Geometries are optimized at the RI-MP2 level
using the analogous double-ζ basis sets.

moves down the Group I cations, due to increasing ion–molecule distance. Results in

Fig. 11.7 reveal that only cDFT reproduces this anticipated trend.

In contrast, ALMO calculations show no trend at all. Different results (in different

basis sets) for these same systems have been reported in ALMO calculations by Phipps

et al.,486 who found that the CT energy was largest for K+ even in the smallest basis

set employed in that study. In the quadruple-ζ basis set used here, the ALMO CT

energy is largest for Li+. Phipps et al. argue that the unphysical behavior they

observe might be an artifact of counterpoise correction, but in our calculations the

counterpoise corrections for M = Li, Na, and K amount to only 0.06, 0.09, and

0.14 kJ/mol, respectively, all of which are small in comparison to the ALMO CT

energies reported in Fig. 11.7.

374



cDFT (R2 = 0.98)

ALMO (R2 = 0.88)

SAPT (R2 = 0.90)

SAPT+δSCF (R2 = 0.85)

–20

–40

–60

–80

0

–100

C
T

 E
n
e
rg

y
 (

k
J
/m

o
l)

C2
H4

... F
2

N
H3

... F
2

C2
H2

... C
lF

N
H3

... C
l2

H
C
N
... C

lF

H2
O
... C

lF

N
H3

... S
O

2

N
H3

... C
lF

N
M

e3
... S

O
2

N
H3

... B
H3

N
M

e3
... B

H3

Figure 11.8: CT energies computed using the def2-QZVPPD basis set. The ωB97X-
D3 functional is used for the cDFT and ALMO calculations, and LRC-ωPBE is used
for the SAPT and SAPT+δSCF calculations. Also listed are the R2 goodness-of-fit
parameters for a linear fit of the CT energy versus the fractional charge δq that is
transferred, as determined using NPA atomic charges. The four dimers on the far
right are the only ones for which δq > 0.1 e−.

The SAPT CT energies are also rather strange, as they are repulsive for Li+ and

Na+ and exhibit precisely the opposite trend (in magnitude) as observed using cDFT.

The δEHF
int correction is negative for Li+ and K+ but positive for Na+ · · ·H2O, with

the result that the SAPT+δEHF
int CT energies (like ALMO) show no consistent trend

across Group I. In short, none of the orbital-based definitions of the CT energy follow

the expected trend across Group I, but this trend is reproduced by cDFT.
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11.4.5 Charge-transfer complexes

Řezáč et al.490 have assembled a set of 11 dimers that span a wide range of CT

energies and used them to test the performance of cDFT using GGA and meta-

GGA functionals (but not hybrids); we will use the same data set to test the methods

examined here. Following Ref. 490, we estimate the fractional charge transfer δq using

atomic charges from natural population analysis94 (NPA) at the HF/cc-pVTZ level.

Figure 11.8 plots the CT energies for this data set. All of the methods examined here

are in rough agreement (and exhibit similar trends) only in cases where δq < 0.1 e−,

but in the four cases where δq is larger, the CT energies (and even the trends) vary

widely. Of the methods in Fig. 11.8, cDFT affords the best linear correlation between

δq and the CT interaction energy, with a goodness-of-fit R2 = 0.98.

11.4.6 Cation–alkyl radical complexes

Next we examine CT energies for open-shell systems in order to make contact with

the rich chemistry of radicals. Complexes involving alkyl radicals such as CH•
3 and

(CH3)3C
•, stabilized by cations (H3O

+ or NH+
4 in this work) are interesting model

systems for understanding the stabilization of transition structures in reactions in-

volving proteins.462,500 These complexes are also interesting from the standpoint of

CT analysis, since electron-deficient radicals often have energetically low-lying singly-

occupied MOs than can accept some fraction of an electron from a donor molecule.

To compare open- versus closed-shell interactions, we will also examine the corre-

sponding closed-shell species, CH4 and (CH3)3CH. The 8 complexes considered here
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Figure 11.9: Complexes of CH•
3, (CH3)3C

•, CH4, and (CH3)3CH with H3O
+ or NH+

4 .
Geometries are taken from Ref. 30.

are shown in Fig. 11.9, and have previously been examined using ALMO-EDA in

Ref. 30. That study used B3LYP, whereas we use ωB97X-D3, which systematically

reduces the CT interaction energies by an average of 2.5 kJ/mol. This is consistent

with the idea that ωB97X-D3 reduces delocalization error,408,501 which manifests in

EDA as an exaggeration of CT interactions.502,503

Chemically and qualitatively, one expects the CT interaction energy to be de-

termined by the IE of the donor species and the EA of the acceptor, with a strong

dependence on intermolecular distance and mutual orientation.462 In Fig. 11.10 we

plot CT interaction energies versus the inverse donor-acceptor gap, (IE−EA)−1. Very

good linear correlations are obtained, with R2 values close to unity for each method

examined. (The R2 values using SAPT alone are a bit smaller, although R2 ≈ 1 upon

377



(a) 

(b) 

(IE–EA)–1 (eV–1)

0.15 0.20 0.25 0.30 0.35 0.40

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

–20

–40

–60

–80

0

–100C
T

 E
n

e
rg

y
 (

k
J
/m

o
l)

–120

–10

–20

0

C
T

 E
n

e
rg

y
 (

k
J
/m

o
l)

–30

–40

H3O+

NH4
+

cDFT (R2 = 0.994)

ALMO (R2 = 0.906)

SAPT (R2 = 0.869)

SAPT+δSCF (R2 = 0.960)

cDFT (R2 = 0.999)

ALMO (R2 = 0.972)

SAPT (R2 = 0.929)

SAPT+δSCF (R2 = 0.998)

Figure 11.10: CT energies for the cation–molecule and cation–radical complexes in
Fig. 11.9, plotted as a function of the inverse donor–acceptor gap. The ωB97X-
D3/def2-QZVPPD level of theory is used for ALMO and cDFT calculations, and
LRC-ωPBE/def2-QZVPPD is used for SAPT and SAPT+δSCF. Also listed are R2

values for linear fits of the data, with the linear fit shown for cDFT.
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addition of the δEHF
int correction.) Note in particular that cDFT affords the best fits

of all, with R2 > 0.99. This suggests an easy way to estimate the magnitude of the

CT energy, based on calculations performed on the isolated species.

11.4.7 Nucleophile–C6H
•+
5 complexes

Interaction between oxidized aromatic rings (such as damaged DNA bases) and nucle-

ophiles (such as water or alcohol) play key roles in many biochemical reactions.504,505

The aryl radical, C6H
•+
5 , has two different binding sites that behave differently dur-

ing nucleophilic aromatic substitution reactions at the radical center.506 ALMO-EDA

has previously been used to examine these “on-top” versus “side-on” configurations

in complexes spanning a wide range of IEs,30 and we will examine the same complexes

here. These complexes are depicted in Fig. 11.11.

CT energies for C6H
•+
5 with 8 different nucleophiles oriented in the on-top position

are plotted versus (IE − EA)−1 in Fig. 11.12. Linear fits of the data afford R2 ≈ 1

but we note in particular that inclusion of the δEHF
int term in the SAPT calculation

improves the value of R2 significantly, as was the case for the cation–alkyl radical

complexes. While the correlations are significant, the various energy decompositions

yield very different values for the CT energy, especially when the IE/EA gap is small.

Excluding the SAPT results without δEHF
int (since the CT energies in this approach

are all relatively small), the remaining three methods examined in Fig. 11.12 span a

range of 39 kJ/mol for C6H
•+
5 · · ·PH3, the system for which the gap is smallest.

relationship with the inverse gap, regardless of which EDA is used; see the data

in Table S2 of the Supporting Information. Values of the CT interactions for these
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(a) On-Top

(b) Side-On

CH3COOH CH3OH CH3CN H2O

PH3 NH3 CH3Cl HBr

CH3COOH CH3OH

CH3CN H2O

Figure 11.11: C6H
•+
5 complexes with various nucleophiles in the “on-top” and “side-

on” configurations. Geometries are taken from Ref. 30.

380



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

(IE–EA)–1 (eV–1)

cDFT (R2 = 0.987)

ALMO (R2 = 0.968)

SAPT (R2 = 0.884)

SAPT+δSCF (R2 = 0.958)

–20

–40

–60

–80

0

–100C
T

 E
n

e
rg

y
 (

k
J
/m

o
l)

–120

Figure 11.12: CT energies for C6H
•+
5 complexes with various nucleophiles in the “on-

top” configuration, as a function of the inverse gap (IE − EA)−1, where IE is the
ionization energy of the nucleophile and EA denotes the electron affinity of C6H

•+
5 ,

that is, the IE of benzene. (IE and EA data are taken from Ref. 31.) The ωB97X-
D3/def2-QZVPPD method is used for the ALMO and cDFT calculations and LRC-
ωPBE/def2-QZVPPD is used for SAPT and SAPT+δSCF.

configurations range from −4.0 to −5.6 kJ/mol in cDFT calculations, considerably

smaller than the values for the on-top orientations in Fig. 11.12, which is probably

due to unfavorable overlap. It may be that a strong linear relationship simply does

not emerge over such a small energy range, since only four side-on complexes are

considered.

The binding energy of C6H
•+
5 · · ·H2O is nearly the same in both the on-top and

side-on orientations, and has previously been analyzed using ALMO-EDA with the

conclusion that the side-on interaction is dominated by the frozen density term while

the on-top interaction has a large CT component.30 (Note that the information avail-

able from ALMO-EDA is limited because the frozen density term contains all energy

components except polarization and CT.) We repeated the B3LYP calculations from
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Table 11.1: ALMO energy componentsa for C6H
•+
5 · · ·H2O in two orientations.

Orientation Functional
Energy Component (kJ/mol)

FRZ POL CT DISPb Total

On-Top
B3LYP −11.1 −7.9 −17.0 −36.0

ωB97X-D3 −21.6 −8.4 −12.1 −42.1
dlDF −4.9 −8.3 −8.0 −20.1 −41.3

Side-On
B3LYP −25.3 −6.9 −4.7 −36.9

ωB97X-D3 −30.4 −7.2 −4.0 −41.5
dlDF −20.8 −6.8 −3.5 −11.1 −42.2

a6-311++G(3df,3pd) basis set. bThe dispersion energy is

normally unavailable for ALMO, but for dlDF is evaluated

at the SAPT2+3(CCD)/aug-cc-pVTZ level for the closed-

shell C6H6 · · ·H2O complex.

Ref. 30 for these two isomers, and in Table 11.1 we also report ALMO-EDA using

ωB97X-D3 and the dlDF functional. All three functionals predict similar values for

the total binding energy, and all three predict a frozen-density energy that is larger

in the side-on orientation but a CT energy that is larger in the on-top configuration.

(The ωB97X-D3 functional does predict less CT as compared to B3LYP, consistent

with a larger delocalization error for the latter functional.) However, the dlDF ap-

proach predicts a frozen-density energy that is far less attractive as compared to

the other two functionals, which is compensated by the dispersion energy. For use

with dlDF, we estimate the dispersion energy via a high-level SAPT2+3(CCD)/aug-

cc-pVTZ calculation for the closed-shell C6H6 · · ·H2O complex, since SAPT beyond

second order has only been implemented for closed-shell systems. Calculations using
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Table 11.2: Energy components for C6H
•+
5 · · ·H2O based on open-shell SAPT.a

Orientation
Energy Component (kJ/mol)

ELST EXCH
IND

DISPc Total
Total CTb

On-Top −48.5 43.2 −17.2 −10.1 −20.1 −42.6
Side-On −46.7 25.1 −10.9 −4.0 −11.1 −43.5
aUsing LRC-ωPBE/def2-QZVPPD for the ELST, EXCH,

and IND components. bBased on cDFT at the level of

ωB97X-D3/def2-QZVPPD. cEvaluated at the

SAPT2+3(CCD)/aug-cc-pVTZ level for C6H6 · · ·H2O.

the Becke-Johnson exchange-dipole model (XDM),355,357 which is available for open-

shell systems, suggest that substituting the closed-shell system changes the dispersion

energy by < 1 kJ/mol; see the Supporting Information. Unfortunately, it is not possi-

ble to analyze these discrepancies amongst functionals in any greater detail, because

the frozen-density energy cannot be further decomposed in ALMO-EDA, whereas

SAPT provides a more detailed energy decomposition.

SAPT results for the two C6H
•+
5 · · ·H2O complexes are listed in Table 11.2. As in

the DFT calculations discussed above, the binding energies for the two orientations

are similar in either orientation, but in the SAPT case we obtain a more detailed

picture. According to SAPT, the electrostatic interactions are similar, but the on-top

configuration is destabilized by Pauli repulsion (EXCH) to a much greater extent.

This is consistent with a shorter intermolecular distance in the on-top configuration

(3.2 Å versus 4.5 Å center-of-mass distances), and explains why the frozen-density

energies in Table 11.1 are less stabilizing in the on-top case, as the Pauli repulsion is
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contained in this term.

A final remark is that we expect the CT interaction to correlate roughly with the

degree of overlap between the donor and acceptor orbitals, which we may judge in

the ALMO-EDA case by examining the correlation between the CT energy and the

frozen-density energy (which contains the Pauli repulsion), and in the SAPT case as

the correlation between the cDFT CT energy and the SAPT exchange energy. These

two comparisons are plotted in Fig. 11.13 for both the on-top and side-on orientations

of the C6H
•+
5 · · · nucleophile data set. In the SAPT case, CT is strongly correlated

with the exchange energy (R2 = 0.95) but less so in ALMO-EDA, perhaps because the

exchange energy is mixed up with electrostatics and dispersion in the frozen-density

energy.

11.4.8 C10H
•+
8 · · ·C6H6

A final example is the complex between benzene and the naphthalene radical cation,

for which ∆H◦ − 33 ± 4 kJ/mol has recently been measured experimentally.32 This

and related cation radical dimers of aromatic hydrocarbons are good model systems

to understand the basis of photoconductivity and ferromagnetism in organic ma-

terials.507–509 Enthalpies of binding for the homo-dimers C6H
•+
5 · · ·C6H6 (∆H◦ =

71 kJ/mol) and C10H
•+
8 · · ·C10H8 (∆H◦ = 74.5 kJ/mol) are much larger,510 and the

smaller binding energy for C10H
•+
8 · · ·C6H6 has been explained in terms of a large de-

gree of charge delocalization in naphthalene as compared to benzene, which reduces

the CT interaction in the former.32 The large difference in IE between naphthalene

(8.1 eV) and benzene (9.2 eV) is taken as evidence of the lack of charge-resonance
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Figure 11.13: (a) CT energies from cDFT versus SAPT exchange energies, and
(b) CT energies from ALMO-EDA versus ALMO frozen-density energies, for all 12
C6H

•+
5 · · · nucleophile complexes in Fig. 11.11. The ωB97X-D3/def2-QZVPPD level of

theory is used for the ALMO and cDFT calculations and LRC-ωPBE/def2-QZVPPD
is used for SAPT EXCH calculations. Linear fits and corresponding R2 values are
indicated.
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(a) F0 (3.4Å) (b) V0 (4.8Å) (c) S0 (5.7Å)

Figure 11.14: Lowest-energy structures for each of three classes of isomers of
C10H

•+
8 · · · C6H6: (a) face-to-face, (b) V-shaped, and (c) face-to-side. Geometries

are taken from Ref. 32 and the value in parenthesis represents the distance between
monomer centers of mass.

interaction in (naphthalene)•+ · · · benzene,32 whereas this effect is obviously in play

for the homo-dimers. Given such a large difference in IEs, however, one would not ex-

pect much CT either, but ALMO-EDA with the M11/cc-pVTZ functional421 predicts

a surprisingly large CT interaction for this complex in a face-to-face arrangement.32

Three different isomers of C10H
•+
8 · · ·C6H6 (as shown in Fig. 11.14) will be considered

here, in order to assess whether this unusually large CT interaction is a general trend

or an artifact of ALMO-EDA.

ALMO-EDA results for these three isomers, using both ωB97X-D3 and dlDF, are

listed in Table 11.3. The polarization interaction is similar for all three isomers but

the frozen-density term varies, and results for the two functionals are quite different.

Using dlDF we can safely disentangle the dispersion energy from the frozen-density

energy, and we accomplish this using an atom–atom dispersion potential that is fit
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Table 11.3: ALMO-EDA resultsa for three isomers of (naphthalene)•+ · · · (benzene).

Isomer Functional Energy Component (kJ/mol)
FRZb POL CT DISPc Total

F0
ωB97X-D3 15.2 −14.0 −17.7 −24.6 −41.1
dlDF-D3 57.3 −9.4 −16.0 −66.9 −35.0

V0
ωB97X-D3 −1.6 −15.0 −6.9 −14.4 −38.0
dlDF-D3 22.2 −10.9 −7.1 −36.2 −32.0

S0
ωB97X-D3 −3.1 −12.4 −5.8 −11.1 −32.4
dlDF-D3 16.5 −8.9 −5.4 −29.2 −27.1

adef2-TZVPPD basis set. bDISP energy subtracted from

FRZ for ωB97X-D3. cComputed using the Grimme-style

D3 correction for ωB97X-D3, and using the SAPT-based

+D3 potential of Ref. 57 for dlDF-D3.

to high-level SAPT calculations for a training set of small dimers, namely, the +D3

potential of Ref. 57. Results suggest that the face-to-face F0 arrangement exhibits a

dispersion interaction about twice as large as the other two configurations, which is

consistent with results for benzene dimer,511 where π-stacked configurations exhibit

larger dispersion interactions as compared to T-shaped configurations. This, in turn,

is due to the rapid decay of dispersion with distance and the fact that stacked config-

urations put more of the π electron clouds of the two monomers into close proximity.

Despite the empirical nature of the Grimme-style D3 correction in ωB97X-D3,

as discussed in Section 11.3, we have listed the value of this correction as the DISP

energy for ωB97X-D3 in Table 11.3, and subtracted this value from the FRZ energy.

Whereas the frozen-density term in dlDF is repulsive for all three isomers, once the D3
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Table 11.4: CT interaction energies (in kJ/mol) for (naphthalene)•+ · · · (benzene).

Method F0 V0 S0
cDFTa −9.0 −6.4 −5.0
ALMOa −17.7 −6.9 −5.8
SAPTb −0.5 −0.4 −0.3
SAPTb+δEHF

int −17.4 −8.8 −6.4
aωB97X-D3/def2-TZVPPD level.

bLRC-ωPBE/def2-TZVPPD level

with ωGDD tuning.

correction is subtracted from the FRZ energy in the case of ωB97X-D3, this frozen-

density contribution is far less repulsive (for isomer F0) or even slightly attractive (for

V0 and S0). That the total binding energies are about the same for both functionals

is a consequence of the fact that the dispersion correction in ωB97X-D3 is much less

attractive than the one in dlDF-D3. Given the documented accuracy of the SAPT-

based +D3 correction,57 this example provides a vivid illustration of why empirical

DFT+D dispersion corrections should not be conflated with true dispersion energies.

Considering the dlDF+D3 results, we see that the frozen-density term is twice as

repulsive for the F0 isomer than for the other two isomers, consistent with the shorter

intermolecular separation in this case (see Fig. 11.14). However, the ALMO(dlDF)

calculations still do not separate electrostatics from Pauli repulsion.

Consistent with results in Ref. 32, our ALMO-EDA calculations with two different

functionals suggest a CT interaction that is twice as large in F0 as in V0, and three

times as large as that in S0. This is what the authors of Ref. 32 call “the unexpectedly

high CT” in the face-to-face arrangement. Other estimates of CT interaction energies
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Table 11.5: Energy components for three isomers of C10H
•+
8 · · ·C6H6 based on open-

shell SAPT(KS)+D3/cDFT calculations.

Isomer
Energy Component (kJ/mol)

ELSTa EXCHa IND
DISPc Total

Totala CTb

F0 −39.3 79.4 −25.2 −9.0 −66.9 −52.0
V0 −29.2 41.7 −19.1 −6.4 −36.2 −42.8
S0 −25.3 33.4 −15.1 −5.0 −29.2 −36.1
aFrom SAPT(KS) using LRC-ωPBE/def2-TZVPPD

bUsing cDFT at the ωB97X-D3/def2-TZVPPD level.

cUsing the SAPT-based +D3 potential of Ref. 57.

for these three dimers can be found in Table 11.4. By themselves, SAPT values for the

CT energies are negligible in all three isomers, but are larger (and similar to ALMO-

EDA results) when the δEHF
int correction is included. However, the more reliable cDFT

approach affords CT energies that are considerably smaller and amount to 22% of

the total interaction energy for F0 and 15% for S0. This should be compared to

ALMO(ωB97X-D3) results where 43% of the F0 interaction energy is assigned to CT

and 18% for S0. As such, cDFT calculations do not support the idea of unusually

large CT in the face-to-face arrangement, suggesting that such a result may be an

artifact of an orbital-based definition of CT.

In Table 11.5, we put forward a hybrid energy decomposition scheme (as applied

to C10H
•+
8 · · ·C6H6) in which a SAPT(KS)+D3 calculation is used to obtain the

electrostatic, Pauli repulsion, induction, and dispersion components, with the latter

corresponding precisely to the SAPT-based +D3 correction.57 At this level, the CT
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energy is contained within the induction term, but can be separated by defining

the CT interaction based on a cDFT calculation. We propose that the SAPT(KS)

induction energy, less the cDFT estimate of the CT energy, be taken as the actual

(CT-free) induction energy.

In a previous ALMO-EDA study of C10H
•+
8 · · ·C6H6,

32 it was observed that F0 has

the smallest (least attractive) frozen-density interaction, consistent with our ALMO-

EDA results in Table 11.3. This fact was previously attributed to electrostatics,32

with the authors speculating that perhaps the charge–quadrupole interaction is small-

est in the F0 isomer. However, with SAPT we can extract the actual electrostatic

component, which in ALMO is buried in the frozen density term, and we find that the

SAPT electrostatic energy is actually most stabilizing for F0. This is consistent with

SAPT2+/aug-cc-pVTZ results for protonated benzene dimer,512 which exhibits simi-

lar geometric binding motifs: in that system, the electrostatic interaction is strongest

in the parallel-displaced arrangement that is qualitatively similar to the F0 isomer of

C10H
•+
8 · · ·C6H6.

The energy decomposition in Table 11.5 paints an interesting picture of the balance

of forces that determine the relative energies of F0, V0, and S0. The F0 isomer

exhibits the largest dispersion interaction, as a result of the relatively close proximity

of the π-electron clouds as compared to the V0 and S0 isomers. This is probably also

the reason why the induction interaction is most favorable in F0, due to polarization

of benzene’s π electrons from the positive charge on the naphthalene cation. At

the same time, F0 exhibits the shortest intermolecular separation (measured as the
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distance between monomer centers of mass), and hence the largest value of the Pauli

repulsion, and this partially offsets the more favorable electrostatic, induction, and

dispersion interactions, to the point where total interaction energies amongst the

three isomers are not so disparate. We also note that the CT contributions to the

binding energies (computed using our hybrid SAPT/cDFT scheme) are rather small,

consistent with chemical intuition given the large difference in IEs between the two

monomers.

11.5 Conclusions

We have examined several orbital-based EDAs that are designed to decompose in-

termolecular interaction energies into physically-meaningful components. These have

been compared to constrained DFT calculations, specifically in the context of how

these methods interpret CT interactions. Based on applications to a variety of very

different systems, the cDFT approach is the only one that we can recommend for

evaluating the CT interaction energy, for a variety of reasons:

• It exhibits very little basis-set dependence. This stands in contrast to orbital-

based (ALMO-EDA or SAPT) definitions, for which the definition of the CT

interaction energy depends strongly on the basis set.

• It provides quantitative CT results for (H2O)2, H3N · · ·BH3, and Xe · · ·H2O, as

compared to the best values in the literature, including experimental estimates

of the CT interaction energy.
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• It provides the correct trend in CT across Group I in M+ · · ·H2O complexes (M

= Li, Na, or K), whereas ALMO and SAPT do not.

• Predicted CT energies exhibit excellent correlation with the inverse donor-

acceptor gap, (IE−EA)−1, for a variety of complexes whose binding is dominated

by CT.

• It can rationalize the relative binding energies for isomers of the radical cation

complex (naphthalene)•+ · · · (C6H6), and resolves an anomaly wherein ALMO-

EDA predicts curiously large CT interaction energies that do not correlate with

IE/EA differences.

Moreover, CT interaction energies computed with the cDFT procedure endorsed here,

which is based on hybrid functionals, correlate better with the amount of charge that

is transferred, as compared to the alternative cDFT procedure used by Řezáč et al.490

that employs GGA functionals.

In summary, we recommend a composite SAPT(KS)+D3/cDFT procedure as a

robust procedure for EDA. Within this approach, the SAPT(KS) calculation provides

the electrostatic, Pauli repulsion (“exchange”), and induction (polarization) energies,

although the latter contains the CT energy. Polarization and CT are separated by

using cDFT to define the latter, in a manner that is only weakly dependent on basis

set and has a well-defined, non-zero value in the limit of a complete basis . Finally, the

dispersion energy is provided by the accurate SAPT-based +D3 atom–atom dispersion

potential,57 which has been fit to high-level third-order SAPT calculations. If the
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+D3 potential is suspect, the dispersion energy could be computed directly using

third-order SAPT, albeit at increased cost.

393



CHAPTER 12

Conclusion and Future Directions

Since binding interactions in biological and materials systems are too large to model in

full with high accuracy quantum chemistry, we must make intelligent approximations

in order to make a computationally feasible model. This has led us to develop a

fragmentation approach called XSAPT where the full system is divided into small

subsystems and the computational bottleneck in the full system can be eliminated.

We demonstrated that the XSAPT fragmentation method based on long-range-

corrected Kohn-Sham (KS) orbitals combined with dispersion potentials (+D), XS-

APT(KS)+D, not only reduces the computational cost (only linear scaling) with re-

spect to the numbers of fragments but also obtains the accurate binding energy (with

chemical accuracy) between molecules. The accuracy of XSAPT(KS)+D method is

typically superior to alternative ab initio methods with similar scaling.

For the biologically-relevant data set, XSAPT(KS)+D method exhibits reasonably

small errors and compete with other high-level wavefunction methods. It also bears

mention that all of the methods that outperform the XSAPT(KS)+D method exhibit

at least O(N5
s ) with respect to the size of the whole system, whereas the XSAPT(KS)

family of methods scale as O(N3
f ) with respect to size of a fragment. For the real
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application, we consider intercalation of the anti-cancer agent ellipticine into DNA,

which involves insertion between two Watson-Crick CG base pairs, linked by their

respective phosphate sugar puckers which consists of 157 atoms. The binding energy

predicted by our XSAPT method is within the statistical error bars of the quantum

Monte Carlo benchmark. Thus, the accurate binding energy between DNA and drug

molecule can be reached. Furthermore, the XSAPT method has also been applied in

molecular and ionic clusters, clathrates, and supramolecular complexes.

Moreover, the monomer-based nature of XSAPT calculations makes them triv-

ially parallelizable, such that wall times scale linearly with respect to the number of

monomer units. These characteristics make XSAPT a promising method for use in

different fields, such as in fragment-based drug design to prescreen of large numbers

of potential drug molecule.

A number of future extensions of this work are currently underway and will be re-

ported in the near future. We summarize them here. XSAPT can potentially be used

in drug design. We will use low-cost classical molecular dynamics method to generate

a series of reasonable binding positions between drug molecules and the binding pocket

of biomolecules, and build a molecular binding library. Then, XSAPT can be used to

predict the placement and binding energy of the drug-biomolecule in that library and

compare the performance of those traditional empirical scoring functions. Hopefully,

our efficient and accurate XSAPT method can replace the low-level empirical scoring

functions or better empirical scoring functions can be designed based on our XSAPT

method in the future. The XSAPT methodology can also be extended to be used in
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molecular crystals by implementing Ewald summation for the long-range Coulomb

interactions. Finally, dispersion terms in XSAPT can be calculated in full ab initio

way based on frequency-dependent density susceptibilities (FDDS). In principle, XS-

APT combined with these FDDS-based dispersion interactions should improve the

accurate description of intermolecular interactions. The research described in this

dissertation along with these continuing efforts opens the door to both qualitative

and quantitative studies of noncovalent interactions by XSAPT-based methods in

clusters, biomolecules, and condensed-phase systems.
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APPENDIX A

Supporting Information for: “Understanding the

many-body expansion for large systems”

Tables A.1 and A.2 present what we believe is a nearly exhaustive list of MBE(2) and

MBE(3) results from the literature, subject to the following caveats:

• We consider only clusters with N > 10 monomers.

• We only consider cases where the MBE calculation was compared against a

supersystem benchmark computed at the same level of theory.

• Multi-layer methods, and those based on overlapping fragments, have been ex-

cluded from this comparison for simplicity, although many such benchmarks for

water clusters can be found in the literature.72,78,513–518

That said, direct comparison of the various literature calculations presented in these

tables must proceed with caution. In particular, the results in the tables correspond

to different structures (e.g., the 16-mer examined in Ref. 519 is different from the

one considered here). Differences in electrostatic embeddings and, in a few cases, the

use of two H2O molecules per fragment are noted in footnotes to Tables A.1 and A.2.

Unless care is taken to ensure that all of these points are addressed similarly between
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implementations, finite-precision issues can easily cause a user to obtain results that

are different from those in the literature.48
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Table A.1: Mean absolute errors (in kcal/mol) in EE-2B interaction energies for
(H2O)N clusters, as predicted by various fragment-based methods. Only published
calculations with N > 10 are considered.

N Ref. Method
Basis Set

STO-3G 3-21G 6-31G* 6-31++G** 6-311++G(3df,2p) other

16

519 HFa 0.15 5.70 4.97 1.00
519 HFa,b 0.10 4.12 3.54 0.42
520 B3LYPa 9.83 6.78
520 B3LYPa,b 7.06 4.42
517 MP2a 4.64 2.88 10.88
87 CCSD(T) 3.59c

20
517 MP2a 6.20 4.00 14.00
521 MP2c 2.01c

21 84 MP2 2.97d

32

519 HFa 0.48 15.66 13.2 4.51
519 HFa,b 0.43 13.1 10.69 3.22
520 B3LYPa 26.27 23.58
520 B3LYPa,b 21.5 18.28
517 MP2a 10.56 12.16 26.88

57 72 B3LYP 20.52e

64

519 HFa 1.29 38.6 32.73 12.06
519 HFa,b 0.94 27.37 23.15 8.81
520 B3LYPa 65.63 64.24
520 B3LYPa,b 46.85 48.2
517 MP2a 22.4 27.52

aEE is defined to be density embedding at close range, density embedding with the Mulliken

approximation at mid-range, and Mulliken point-charge embedding at long range.522

bTwo water molecules per fragment.
cBasis set is aug-cc-pVTZ.
dBasis set is aug-cc-pVTZ for oxygen and cc-pVTZ for hydrogen.
eBasis set is 6-31+G(d,2p).
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Table A.2: Mean absolute errors (kcal/mol) in EE-3B interaction energies for water
clusters, as predicted by various fragment-based methods. Only published calcula-
tions with N > 10 are considered.

N Ref. Method
Basis Set

STO-3G 3-21G 6-31G* 6-31++G** 6-311++G(3df,2p) other

16

519 HFa 0.01 0.28 0.39 1.17
519 HFa,b 0.01 0.23 0.26 0.40
520 B3LYPa 0.51 3.12
520 B3LYPa,b 0.36 0.78
517 MP2a 1.44 0.80 0.64
87 CCSD(T) 1.52c

20 517 MP2a 1.8 0.40 0.40
521 MP2d 1.56c

21 84 MP2 0.38e

32

519 HFa 0.04 0.80 1.33 3.71
519 HFa,b 0.02 0.57 0.93 1.67
520 B3LYPa 1.85 14.71
520 B3LYPa,b 1.36 0.39
517 MP2a 3.52 2.24 1.28

64 517 MP2a 6.4 3.2
aEE is defined to be density embedding at close range, density embedding with the Mulliken

approximation at mid-range, and Mulliken point-charge embedding at long range.522

bTwo water molecules per fragment.
cBasis set is aug-cc-pVTZ.
dEE uses point dipoles instead of point charges.
eBasis set is aug-cc-pVTZ for oxygen and cc-pVTZ for hydrogen.
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APPENDIX B

Supporting Information for: “Breakdown of the

single-exchange approximation in third-order

symmetry-adapted perturbation theory”B.1

B.1 CCSD(T)/CBS benchmarks

B.1.1 Helium dimer

The CCSD(T) single-point energy calculations were carried out at each point on

potential energy curves using the aug-cc-pVTZ (aTZ) and aug-cc-pVQZ (aQZ) basis

sets. Then the CCSD(T) interaction energies calculated by both basis sets were

extrapolated to the complete basis set (CBS) limit by using the two-point scheme

suggested by Halkier et al.:190,523

ECBS(X, Y ) =
X3EX − Y 3EY

X3 − Y 3
(B.1)

where X = 4 (aQZ) and Y = 3 (aTZ) in this case.

B.1.2 Anion–water and water–water dimers

In this case, MP2/aTZ and MP2/aQZ single-point energy calculations were carried

out at each point on the potential energy curves and extrapolated to the CBS limit

B.1This chapter appeared as the Supporting Information to the full article in the Journal of Physical
Chemistry A, in 2012, volume 116, pages 3042–3047.
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Figure B.1: Comparison of performance of different levels of SAPT on the He · · ·He
system. SAPT2+3 dSCF means the interaction energies are calculated at the
SAPT2+3 level with E

(30)
ind and E

(30)
exch−ind substituted by δE

(2)
int . R is the distance

between two helium atoms.

using Eq. (B.1). From these MP2/CBS energies, a triples correction was estimated by

comparing MP2 and CCSD(T) results in the aug-cc-pVTZ basis set. The CCSD(T)/

CBS result is thus estimated according to

ECBS[CCSD(T)] = ECBS[MP2] + EaTZ[CCSD(T)]− EaTZ[MP2] . (B.2)

This procedure is based on the assumption that the difference between interaction

energies by CCSD(T) and MP2 converges rapidly with respect to basis set.

B.2 Additional figures

A variety of potential energy curves for F−(H2O) were presented in the paper. Below,

we plot all of the same quantities for Cl−(H2O), HO−(H2O), (H2O)2, and He2.
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Figure B.2: SAPT decomposition of the interaction energy of the He · · ·He system
into different orders of electrostatic (elst), induction (ind), and dispersion (disp) with

their corresponding exchange (exch) contributions. SAPT0+E
(30)
ind +E

(30)
exch−ind means

the interaction energies are calculated at the SAPT0 level plus E
(30)
ind and E

(30)
exch−ind.

R is the distance between two helium atoms.

Figure B.3: The supermolecular Hatree-Fock interaction energies EHF
int and ap-

proximate Hartree-Fock interaction energies composed by SAPT terms in second
(E

[2]
SAPT−HF) and third (E

[2]
SAPT−HF) order for He · · ·He system. R is the distance be-

tween two helium atoms.
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Figure B.4: Comparison of performance of different levels of SAPT on the Cl− · · ·H2O
system. SAPT2+3 E30 exch-ind scaled means the interaction energies are calculated
at the SAPT2+3 level with E

(30)
exch−ind scaled by Eq. (7). SAPT2+3 dSCF means the

interaction energies are calculated at the SAPT2+3 level with E
(30)
ind and E

(30)
exch−ind

substituted by δE
(2)
int . R is the distance between chloride and oxygen atom.

Figure B.5: SAPT decomposition of the interaction energy of the Cl− · · ·H2O system
into different orders of electrostatic (elst), induction (ind), and dispersion (disp) with
their corresponding exchange (exch) contributions. SAPT0+E30 ind+E30 exch-ind

means the interaction energies are calculated at the SAPT0 level plus E
(30)
ind and

E
(30)
exch−ind. R is the distance between chloride and oxygen atom.
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Figure B.6: The supermolecular Hatree-Fock interaction energies EHF
int and ap-

proximate Hartree-Fock interaction energies composed by SAPT terms in second
(E

[2]
SAPT−HF) and third (E

[2]
SAPT−HF) order for Cl− · · ·H2O system. R is the distance

between chloride and oxygen atom.

Figure B.7: Comparison of performance of different levels of SAPT on the
OH− · · ·H2O system. SAPT2+3 E30 exch-ind scaled means the interaction en-
ergies are calculated at the SAPT2+3 level with E

(30)
exch−ind scaled by Eq. (7).

SAPT2+3 dSCF means the interaction energies are calculated at the SAPT2+3 level
with E

(30)
ind and E

(30)
exch−ind substituted by δE

(2)
int . R is the distance between two oxygen

atoms.
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Figure B.8: SAPT decomposition of the interaction energy of the OH− · · ·H2O system
into different orders of electrostatic (elst), induction (ind), and dispersion (disp) with
their corresponding exchange (exch) contributions. SAPT0+E30 ind+E30 exch-ind

means the interaction energies are calculated at the SAPT0 level plus E
(30)
ind and

E
(30)
exch−ind. R is the distance between two oxygen atoms.

Figure B.9: The supermolecular Hatree-Fock interaction energies EHF
int and ap-

proximate Hartree-Fock interaction energies composed by SAPT terms in second
(E

[2]
SAPT−HF) and third (E

[2]
SAPT−HF) order for OH− · · ·H2O system. R is the distance

between two oxygen atoms.
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Figure B.10: Comparison of performance of different levels of SAPT on the
H2O · · ·H2O system. SAPT2+3 E30 exch-ind scaled means the interaction ener-
gies are calculated at the SAPT2+3 level with E

(30)
exch−ind scaled by Eq. (7).

SAPT2+3 dSCF means the interaction energies are calculated at the SAPT2+3 level
with E

(30)
ind and E

(30)
exch−ind substituted by δE

(2)
int . R is the distance between two oxygen

atoms.

Figure B.11: SAPT decomposition of the interaction energy of the H2O · · ·H2O sys-
tem into different orders of electrostatic (elst), induction (ind), and dispersion (disp)
with their corresponding exchange (exch) contributions. SAPT0+E30 ind+E30 exch-

ind means the interaction energies are calculated at the SAPT0 level plus E
(30)
ind and

E
(30)
exch−ind. R is the distance between two oxygen atoms.
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Figure B.12: The supermolecular Hatree-Fock interaction energies EHF
int and ap-

proximate Hartree-Fock interaction energies composed by SAPT terms in second
(E

[2]
SAPT−HF) and third (E

[2]
SAPT−HF) order for H2O · · ·H2O system. R is the distance

between two oxygen atoms.
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APPENDIX C

Supporting Information for: “Accurate description

of intermolecular interactions involving ions using

symmetry-adapted perturbation theory”C.1

Summary

• Errors engendered by the single-exchange approximation (SEA) for various ex-

change energies terms are listed in Table C.1 (aDZ basis set) and Table C.2

(aQZ basis set). These should be compared to the aTZ results in Table III of

the paper.

• For the AHB21 data set, the δMP2 correction as well as the scaled-exchange

corrections [pex(α = 2)− 1]E
(20)
exch-ind,resp and [pex(α = 2)− 1]tE

(22)
exch-ind are shown

in Figure C.1 (aDZ basis set) and Figure C.2 (aQZ basis set). These should be

compared to the aTZ results in Fig. 3 of the paper.

• For the CHB6 data set, the δMP2 correction as well as the scaled-exchange

corrections [pex(α = 2)− 1]E
(20)
exch-ind,resp, and [pex(α = 2)− 1]tE

(22)
exch-ind are shown

in Figure C.3 (aDZ basis set) and Figure C.4 (aQZ basis set). These should be

compared to the aTZ results in Fig. 3 of the paper.

C.1This chapter appeared as the Supporting Information to the full article in the Journal of Chem-

ical Theory and Computation, in 2015, volume 11, pages 2473–2486.
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• Table C.3 shows the performance of the SAPT2+3-δMP2/aug-cc-pVXZ method

(for X = D, T, Q), as applied to AHB21, for different versions of the scaling

of the second-order exchange energies. These varieties include no scaling at all,

or else α = 1 or α = 3 in Eq. (4) of the paper. For comparison, with the aTZ

basis the value α = 2 affords a MAE of 0.49 kcal/mol (see Table IV).
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Table C.1: Mean absolute errors (MAEs) and maximum errors in exchange ener-
gies based on HF-SAPT/aDZ and DFT-SAPT/aDZ with the S2 approximation for
the AHB21 and CHB6 data sets, with respect to exchange energies without the S2

approximation.

Exchange error / kcal mol−1

Term MAE Maximum
value system

——AHB21——
HF-SAPT

E
(10)
exch(S2) 1.04 6.31 Cl−(HCl)

E
(20)
exch-ind,resp(S2) 1.01 8.22 Cl−(HCl)

pex(α = 2.07)E
(20)
exch-ind,resp(S2) 0.08 0.36 F−(HF)

E
(20)
exch-disp(S2) 0.07 0.35 F−(HF)

tE
(22)
exch-ind(S2) 0.13 0.63 Cl−(HCl)

pex(α = 2)tE
(22)
exch-ind(S2) 0.01 0.09 F−(HF)

DFT-SAPT

E
(1)
exch(S2) 1.14 6.30 Cl−(HCl)

E
(2)
exch-ind(S2) 1.27 9.02 Cl−(HCl)

pex(α = 2.06)E
(2)
exch-ind(S2) 0.09 0.61 Cl−(HCl)

E
(2)
exch-disp(S2) 0.12 0.53 F−(HF)

——CHB6——
HF-SAPT

E
(10)
exch(S2) 0.03 0.05 Li+(C6H6)

E
(20)
exch-ind,resp(S2) 0.06 0.08 Li+(C6H6)

pex(α = 2.20)E
(20)
exch-ind,resp(S2) 0.00 0.01 K+(C6H6)

E
(20)
exch-disp(S2) 0.00 0.01 K+(C6H6)

tE
(22)
exch-ind(S2) 0.00 0.01 K+(H2O)

pex(α = 2)tE
(22)
exch-ind(S2) 0.00 0.01 Li+(H2O)

DFT-SAPT

E
(1)
exch(S2) 0.03 0.05 Li+(H2O)

E
(2)
exch-ind(S2) 0.06 0.08 Li+(C6H6)

pex(α = 2.19)E
(2)
exch-ind(S2) 0.00 0.01 K+(C6H6)

E
(2)
exch-disp(S2) 0.00 0.01 K+(C6H6)
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Table C.2: Mean absolute errors (MAEs) and maximum errors in exchange ener-
gies based on HF-SAPT/aQZ and DFT-SAPT/aQZ with the S2 approximation for
the AHB21 and CHB6 data sets, with respect to exchange energies without the S2

approximation.

Exchange error / kcal mol−1

Term MAE Maximum
value system

——AHB21——
HF-SAPT

E
(10)
exch(S2) 1.05 6.36 Cl−(HCl)

E
(20)
exch-ind,resp(S2) 1.06 8.51 Cl−(HCl)

pex(α = 2.04)E
(20)
exch-ind,resp(S2) 0.07 0.31 F−(HF)

E
(20)
exch-disp(S2) 0.07 0.35 F−(HF)

tE
(22)
exch-ind(S2) 0.09 0.47 F−(HF)

pex(α = 2)tE
(22)
exch-ind(S2) 0.01 0.06 F−(HF)

DFT-SAPT

E
(1)
exch(S2) 1.15 6.32 Cl−(HCl)

E
(2)
exch-ind(S2) 1.33 9.34 Cl−(HCl)

pex(α = 2.07)E
(2)
exch-ind(S2) 0.09 0.84 Cl−(HCl)

E
(2)
exch-disp(S2) 0.11 0.51 F−(HF)

——CHB6——
HF-SAPT

E
(10)
exch(S2) 0.03 0.05 Li+(H2O)

E
(20)
exch-ind,resp(S2) 0.06 0.10 Li+(C6H6)

pex(α = 2.19)E
(20)
exch-ind,resp(S2) 0.00 0.01 K+(C6H6)

E
(20)
exch-disp(S2) 0.00 0.01 K+(C6H6)

tE
(22)
exch-ind(S2) 0.00 0.01 K+(H2O)

pex(α = 2)tE
(22)
exch-ind(S2) 0.00 0.00 Li+(H2O)

DFT-SAPT

E
(1)
exch(S2) 0.03 0.06 Li+(H2O)

E
(2)
exch-ind(S2) 0.07 0.10 Li+(H2O)

pex(α = 2.19)E
(2)
exch-ind(S2) 0.00 0.01 K+(C6H6)

E
(2)
exch-disp(S2) 0.00 0.01 K+(C6H6)
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Figure C.1: Magnitude of the δMP2 correction and the scaled-exchange corrections
[pex(2.0)− 1]E

(20)
exch-ind,resp and [pex(2.0)− 1]tE

(22)
exch-ind, for the AHB21 data set using the

aDZ basis set.
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Figure C.2: Magnitude of the δMP2 correction and the scaled-exchange corrections
[pex(2.0)− 1]E

(20)
exch-ind,resp and [pex(2.0)− 1]tE

(22)
exch-ind, for the AHB21 data set using the

aQZ basis set.
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Figure C.3: Magnitude of the δMP2 correction, the exchange correction [pex(α) −

1]E
(20)
exch-ind,resp, and [pex(α)− 1]tE

(22)
exch-ind, where pex(α) is the scaling factor and α = 2

is employed, for the CHB6 data set, using the aDZ basis set.
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Figure C.4: Magnitude of the δMP2 correction, the exchange correction [pex(α) −

1]E
(20)
exch-ind,resp, and [pex(α)− 1]tE

(22)
exch-ind, where pex(α) is the scaling factor and α = 2

is employed, for the CHB6 data set, using the aQZ basis set.
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Table C.3: MAEs (in kcal/mol) for the AHB21 data set computed at the SAPT2+3-

δMP2 level with different scaled versions of the exchange corrections E
(20)
exch-ind,resp and

tE
(22)
exch-ind.

Basis Set
all AHB21 X− · · ·H+ · · ·X− only

no
α = 1 α = 3

no
α = 1 α = 3

scaling scaling
aDZ 0.96 1.03 1.17 1.00 1.24 1.76
aTZ 0.49 0.45 0.36 1.80 1.54 0.96
aQZ 0.73 0.66 0.53 2.63 2.35 1.73
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APPENDIX D

Supporting Information for: “Symmetry-adapted

perturbation theory with Kohn-Sham orbitals

using non-empirically tuned, long-range-corrected

density functionals”D.1

D.1 Range separation parameters

Tables D.1 and D.2 list the “tuned” value of the range separation parameter, ω, for

each of the monomers considered in this work. These values were tuned using the aug-

cc-pV6Z basis set for He, the aug-cc-pV5Z basis set for Ne, the aug-cc-pVQZ basis set

for the SS41 data set, and the aug-cc-pVTZ basis set for both the S22 and S66 data

sets. Optimized values are computed separately for the LRC-ωPBE functional240 and

the LRC-ωPBEh functional.227

D.1This chapter appeared as the Supporting Information to the full article in the Journal of Chem-

ical Physics, in 2014, volume 140, pages 044108:1–8.
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D.2 Benchmark energy components for the SS41 data set

Energy components for SS41 computed at the SAPT2+(3)/aug-cc-pVQZ level are

listed in Table D.3. The SAPT2+(3) is defined as follows:117

ESAPT2+(3) = E
(10)
elst + E

(12)
elst,resp + E

(13)
elst,resp

+ E
(10)
exch + E

(11)
exch + E

(12)
exch

+ E
(20)
ind,resp + E

(20)
exch-ind,resp + tE

(22)
ind + tE

(22)
exch-ind + δEHF

int,resp

+ E
(20)
disp + E

(20)
exch-disp + E

(21)
disp + E

(22)
disp + E

(30)
disp .

(D.1)

The energy components are grouped as follows:37

Eelectrostatic = E
(10)
elst + E

(12)
elst,resp + E

(13)
elst,resp , (D.2)

Eexchange = E
(10)
exch + E

(11)
exch + E

(12)
exch , (D.3)

Einduction = E
(20)
ind,resp + E

(20)
exch-ind,resp + tE

(22)
ind + tE

(22)
exch-ind + δEHF

int,resp , (D.4)

Edispersion = E
(20)
disp + E

(20)
exch-disp + E

(21)
disp + E

(22)
disp + E

(30)
disp . (D.5)
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ω/bohr−1

Monomer LRC-ωPBE LRC-ωPBEh
—He2 and Ne2—

He 1.025 0.900
Ne 0.800 0.650

—SS41 molecules—
Ar 0.550 0.475
ethene 0.375 0.300
methane 0.450 0.400
borane 0.475 0.425
ethyne 0.400 0.350
water 0.500 0.400
methanol 0.425 0.350
CH3F 0.500 0.425
ethane 0.425 0.375
F2 0.675 0.550
formaldehyde 0.450 0.350
formamide 0.375 0.300
formic acid 0.400 0.325
CH3NH2 0.400 0.325
ammonia 0.450 0.350
HCN 0.450 0.400
HF 0.600 0.500

Table D.1: Tuned range separation parameters for various monomers in He2, Ne2, and
SS41 data set. The basis sets used are aug-cc-pV6Z basis set for He, aug-cc-pV5Z for
Ne, and aug-cc-pVQZ basis set for the monomers in the SS41 data set.
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ω/bohr−1

Monomer LRC-ωPBE LRC-ωPBEh
—S22 molecules—

adenine 0.275 0.225
2-aminopyridine 0.300 0.225
benzene 0.275 0.225
ethyne 0.400 0.350
ethene 0.350 0.300
methane 0.450 0.400
formamide 0.375 0.300
formic acid 0.425 0.325
water 0.500 0.400
HCN 0.550 0.500
indole 0.275 0.225
ammonia 0.450 0.350
phenol 0.300 0.250
pyrazine 0.375 0.300
2-pyridoxine 0.300 0.250
thymine 0.625 0.525
uracil 0.475 0.375

—S66 molecules—
methylamine 0.400 0.325
methanol 0.425 0.350
AcNH2 0.350 0.275
AcOH 0.375 0.300
cyclopentane 0.425 0.375
neopentane 0.300 0.250
pentane 0.300 0.250
peptide 0.325 0.250
pyridine 0.300 0.225

Table D.2: Tuned range separation parameters for various monomers. The aug-cc-
pVTZ basis set in each case.
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system Electrostatics Exchange-Repulsion Induction Dispersion Total
—A24 dimers—

H2O-NH3 -10.99 11.25 -3.76 -3.06 -6.57
H2O dimer -7.90 7.59 -2.35 -2.37 -5.03
HCN dimer -5.91 4.10 -1.54 -1.74 -5.10
HF dimer -6.41 6.04 -2.36 -1.83 -4.56
NH3 dimer -4.75 4.48 -0.86 -2.04 -3.17
HF-CH4 -1.39 2.51 -1.25 -1.50 -1.62
NH3-CH4 -0.95 1.42 -0.38 -0.93 -0.83
H2O-CH4 -0.70 1.06 -0.27 -0.80 -0.71
CH2O dimer -6.57 8.43 -2.37 -4.28 -4.78
H2O-C2H4 -3.45 4.38 -1.28 -2.08 -2.42
CH2O-C2H4 -1.70 2.55 -0.49 -2.09 -1.73
C2H2 dimer (TS) -1.83 2.06 -0.54 -1.31 -1.62
NH3-C2H4 -1.67 2.35 -0.48 -1.51 -1.31
C2H4 dimer (TS) -0.84 2.11 -0.30 -2.02 -1.06
CH4-C2H4 -0.42 0.92 -0.13 -0.87 -0.50
BH3-CH4 -1.50 3.88 -1.08 -2.68 -1.38
CH4-C2H6 (non-linear) -0.36 1.22 -0.07 -1.66 -0.86
CH4-C2H6 (linear) -0.23 0.87 -0.05 -1.23 -0.64
CH4-dimer -0.20 0.77 -0.04 -1.09 -0.56
Ar-CH4 -0.17 0.59 -0.03 -0.79 -0.41
Ar-C2H4 -0.23 0.72 -0.05 -0.74 -0.31
C2H4-C2H2 -0.32 3.68 -0.25 -2.11 1.00
C2H4 dimer (PS) -0.52 4.45 -0.28 -2.40 1.25
C2H2 dimer (PS) 0.23 3.04 -0.21 -1.89 1.17

—S22 dimers—
HCOOH dimer -32.23 40.78 -18.90 -10.04 -20.38
HCONH2 dimer -25.39 27.79 -11.25 -8.10 -16.95

—S66 dimers—
H2O-CH3OH -8.82 9.15 -2.88 -3.11 -5.65
H2O-CH3NH2 -12.07 12.84 -4.31 -3.53 -7.06
CH3OH dimer -8.92 9.67 -3.04 -3.53 -5.84
CH3OH-CH3NH2 -12.69 14.41 -4.81 -4.66 -7.74
CH3OH-H2O -7.78 7.78 -2.45 -2.66 -5.11
CH3NH2-CH3OH -4.12 4.85 -1.11 -2.77 -3.15
CH3NH2 dimer -5.82 7.04 -1.65 -3.85 -4.28
CH3NH2-H2O -12.21 13.25 -4.44 -4.00 -7.40
C2H2-H2O -3.93 3.37 -1.01 -1.54 -3.11

—X40 dimers—
CH4-F2 -0.37 0.93 -0.13 -0.91 -0.48
CH3F-CH4 -0.37 1.09 -0.11 -1.42 -0.80
CH3F dimer -1.45 1.29 -0.23 -1.33 -1.72
HF-CH3OH -13.85 14.04 -6.34 -3.58 -9.74
HF-CH3NH2 -23.29 25.65 -11.82 -5.23 -14.69
CH3F-CH3OH -5.18 5.36 -1.39 -2.65 -3.86

Table D.3: The energy components and total binding energies calculated by
SAPT2+(3)/aug-cc-pVQZ method for SS41 data set.
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APPENDIX E

Supporting Information for: “ Accurate

intermolecular interactions at dramatically

reduced cost: XPol+SAPT with empirical

dispersion”E.1

Optimized values of the range separation parameter, ω, for use with the LRC-ωPBEh

functional are provided in Table E.1 for each monomer unit consider in this work.

Figure E.1 shows some Ar· · ·Ne potential energy curves computed at various levels

of theory.

E.1This chapter appeared as the Supporting Information to the full article in the Journal of Physical
Chemistry Letters, in 2012, volume 3, pages 3241–3248.

421



Table E.1: The optimized range separation parameters (ω) for monomers.

Monomer ω (bohr−1) Ionization Potential (eV)
adeninea 0.05 9.8587
2-aminopyridine 0.10 8.2416
benzene 0.10 9.2163
ethyne 0.15 11.1043
ethene 0.15 10.2657
methane 0.20 14.2371
formamidea 0.05 10.1339
formic acida 0.05 11.3846
water 0.10 12.3393
HCN 0.35 13.9377
indole 0.10 7.8064
ammonia 0.10 10.6694
phenol 0.10 8.5962
pyrazine 0.20 10.4075
2-pyridoxine 0.10 8.3881
thymine 0.25 10.0360
uracil 0.20 10.0986
acetate 0.05 3.9296
formaldehyde 0.10 10.7603
guanidinium 0.05 16.1640
imidazoliuma 0.05 17.1969
methylamine 0.10 9.5708
methylammonium 0.20 20.6299
methanol 0.10 10.9272
AcNH2

a 0.05 9.6747
AcOHa 0.05 10.7562
cyclopentane 0.20 11.7103
neopentane 0.10 11.3508
pentane 0.10 11.3075
peptidea 0.05 9.4611
pyridine 0.10 9.6925
aThis monomer does not meet the condition εHOMO = −IP.

Therefore, we set ω = 0.05 bohr−1 to let them as close as possible.
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Figure E.1: Potential energy curves for Ar· · ·Ne, computed using the aug-cc-pVTZ
basis set with counterpoise correction.
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APPENDIX F

Supporting Information for: “An improved

treatment of empirical dispersion and a

many-body energy decomposition scheme for the

explicit polarization plus symmetry-adapted

perturbation theory (XSAPT) method”F.1

F.1 Parameters

Table F.1 lists the “tuned” value of the range separation parameter, ω, for each of

the monomers considered in this work. These values were tuned using the haTZVPP

basis set (a “heavy augmented” version of def2-TZVPP as described in the paper),

and optimized values for both the LRC-ωPBE240 and LRC-ωPBEh227 functionals

are listed. The “h” in LRC-ωPBEh indicates that the short-range exchange func-

tional is a hybrid, and in our previous paper on XSAPT(KS)+D,55 we used 60%

Hartree-Fock exchange in the short-range ωPBEh component of this functional. This

choice afforded good binding energies, but such a large value leads to errors in the

exchange components of the interaction energy, as discussed in the present paper.

F.1This chapter appeared as the Supporting Information to the full article in the Journal of Chem-

ical Physics, in 2013, volume 139, pages 034107:1–16.
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In the second-generation (D2) version of the method, we use 20% Hartree-Fock ex-

change with LRC-ωPBEh (and 0% with LRC-ωPBE), which is consistent with the

original parameterization of these functionals.227,240 Notably, whereas in Ref. 55 we

encountered seven cases in the S22 data set where the ω-tuning condition

εHOMO(ω) = −IP(ω) (F.1)

could not be met, because the εHOMO(ω) and −IP(ω) curves did not cross, we en-

counter no such cases in the present work.

Table F.2 lists the fitted values of the sβ parameter for use in Hesselmann’s disper-

sion potential,16 which is the one used in our previous paper.55 This is the potential

called “+D” (as opposed to “+D2”) in this work. Values of sβ in Table F.2 were

optimized to reproduce S22A binding energies, in a basis-set-specific way.

F.2 Water hexamer benchmarks

We next wish to explain our choice of binding energy benchmarks for isomers of

(H2O)6. As mentioned in the paper, a primary goal in examining (H2O)6 is to make

comparison to energy decomposition analysis (EDA) results in Ref. 8, as a means to

validate XSAPT-based EDA. These EDA benchmarks were computed at the MP2/

a5Z-h//MP2/aTZ level and do not include monomer relaxation energy. On the other

hand, prediction of binding energies is a major focus of this work and the most

accurate binding energy benchmarks for (H2O)6 are probably the ones in Ref. 41,

which were computed at the CCSD(T)/CBS//MP2/haTZ level. (The customized

basis sets used in these benchmarks are defined as follows: a5Z-h means aug-cc-pV5Z

425



with h functions omitted, whereas haTZ is means aug-cc-pVTZ for oxygen and cc-

pVTZ for hydrogen.)

Benchmark binding energies for eight isomers of (H2O)6, taken from the afore-

mentioned references, are listed in Table F.3. The same eight isomers of (H2O)6 are

considered in both papers, differing only in whether the aTZ of haTZ basis was used

for the MP2 geometry optimizations. The presence or absence of diffuse functions

on the hydrogen atoms likely makes very little difference in the actual geometries, as

confirmed in Ref. 8. Three sets of binding energies are taken from Ref. 8, with

each set computed at the MP2/a5Z-h//MP2/aTZ level of theory but differing based

on whether counterpoise correction is included and whether monomer relaxation is

included. In Ref. 41, monomer relaxation is always included but counterpoise cor-

rection is not (because all results are extrapolated to the CBS limit); MP2/CBS//

MP2/haTZ and CCSD(T)/CBS//MP2/haTZ results are shown. Table F.4 lists some

energy differences between these benchmarks.

Our strategy for benchmarking XSAPT(KS)+D2 in the case of (H2O)6 is as fol-

lows. We will use the MP2/aTZ geometries from Ref. 8, because those are the

geometries at which the EDA has been performed, and for comparing energy compo-

nents to XSAPT(KS)+D2 results we will use the MP2/a5Z-h EDA results in Ref.

8. On the other hand, we should examine binding energies as well (since we examine

binding energies for all of the other systems considered in this paper), and we wish to

do this at the same set of geometries, namely, the MP2/aTZ ones. To obtain approx-

imate CCSD(T)/CBS //MP2/aTZ binding energies benchmarks, we add a triples
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correction

δCCSD(T) = BECCSD(T) − BEMP2 (F.2)

to the counterpoise-corrected MP2/a5Z-h//MP2/aTZ binding energies from Ref. 8.

This correction is computed using the CCSD(T)/CBS and MP2/CBS binding energies

(BEs) from Ref. 41. Finally, because we have computed (H2O)6 binding energies at

a variety of levels of theory without considering monomer relaxation (i.e., the binding

energy is computed relative to monomers that retain their cluster geometries), we

subtract the monomer relaxation energies δrelax that are computed at the MP2/a5Z-h

level in Ref. 8 and listed in Table F.4.

The resulting “corrected” binding energies are listed in Table F.5, under the col-

umn titled “+ triples − relaxation”. (In the paper, this is the data set labeled “MP2/

a5Z-h + δCCSD(T)” in Fig. 4.) The primary source of error in these data, relative to a

true CCSD(T)/CBS //MP2/aTZ benchmark, is likely the fact that we have not ex-

trapolated the MP2 energy to the basis-set limit, but rather have simply used MP2/

a5Z-h values. Table F.4 shows the difference, δMP2, between the MP2/a5Z-h //MP2/

aTZ binding energies from Ref. 8 and the MP2/CBS//MP2/haTZ results from Ref.

41; this difference is consistently 0.7–0.8 kcal/mol in magnitude for the eight isomers

that are considered. The differences in cluster geometries likely have a very minor

impact on this difference, so most of δMP2 probably arises from basis-set incomplete-

ness at the a5Z-h level. (The MP2/CBS results in Ref. 41 are converged to within

0.1 kcal/mol of MP2-R12 calculations performed in a modified aug-cc-pV5Z basis,41

and are therefore likely within 0.1 kcal/mol of the actual basis-set limit.) Residual
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basis-set superposition error is unlikely a major contribution to δMP2, since the MP2/

CBS binding energies are larger than the counterpoise-corrected MP2/a5Z-h values

(see Table F.5), and counterpoise-corrected binding energies converge from below in

this system.46

Lastly, we may consider simply using the CCSD(T)/CBS//MP2/haTZ binding

energy benchmarks from Ref. 41 at the MP2/aTZ geometries from Ref. 8. To

compare with other results in the paper, we want binding energies using unrelaxed

monomer geometries, so the CCSD(T)/CBS binding energies in Ref. 41 have been

corrected using the MP2/a5Z-h values of δrelax in Table F.4. These results constitute

the final column of data in Table F.5, which is the data set labeled “CCSD(T)/CBS/

/MP2/haTZ” in Fig. 4 of the paper.

F.3 Halide–water benchmarks

Figure F.1 shows binding energies for the ten F−(H2O)10 isomers that were consid-

ered in the paper, computed at various levels of theory including the benchmark

RI-CCSD(T)/CBS results. (Geometries of these isomers have been optimized at the

B3LYP/6-31G* level and Cartesian coordinates, in Angstroms, are provided as part

of this Supplementary Material, in a separate text file.) This figure also serves to

document that, for the most part, the various XSAPT and DFT methods considered

here parallel the benchmark results, meaning that relative isomer energies are pre-

dicted more accurately than are absolute binding energies, for which there are some

systematic errors.
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RI-MP2/CBS and RI-CCSD(T)/CBS binding energies for F−(H2O)n and Cl−(H2O)n,

up to n = 6, are shown in Tables F.6 and F.7. These geometries were optimized at the

RI-MP2/aug-cc-pVTZ level and are available elsewhere in this Supplementary Mate-

rial. Both two- and three-body approximations to the triples correction, δRI−CCSD(T),

are shown for comparison; the three-body approximation is used as the benchmark

in this work. Table F.8 provides the analogous information for F−(H2O)10 isomers

whose geometries were optimized at the B3LYP/6-31G* level.
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Figure F.1: Binding energies for ten isomers of F−(H2O)10 isomers optimized at the
B3LYP/6-31G* level. The RI-CCSD(T)/CBS benchmarks are compared to DFT/
def2-QZVP results (computed using Boys-Bernardi counterpoise correction) and to
XSAPT(KS)+D2/results (computed using the δEHF

int correction).
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ω/bohr−1

Monomer LRC-ωPBE LRC-ωPBEh
—S22 molecules—

adenine 0.275 0.225
2-aminopyridine 0.300 0.225
benzene 0.275 0.225
ethyne 0.400 0.350
ethene 0.350 0.300
methane 0.450 0.400
formamide 0.375 0.300
formic acid 0.425 0.325
water 0.500 0.400
HCN 0.550 0.500
indole 0.275 0.225
ammonia 0.450 0.350
phenol 0.300 0.250
pyrazine 0.375 0.300
2-pyridoxine 0.300 0.250
thymine 0.625 0.525
uracil 0.475 0.375

—S66 molecules—
methylamine 0.400 0.325
methanol 0.425 0.350
AcNH2 0.350 0.275
AcOH 0.375 0.300
cyclopentane 0.425 0.375
neopentane 0.300 0.250
pentane 0.300 0.250
peptide 0.325 0.250
pyridine 0.300 0.225

—Misc. molecules & ions—
Ar 0.550 0.475
Ne 0.800 0.650
F− 0.475 0.375
Cl− 0.375 0.300

Table F.1: Tuned range separation parameters for various monomers.
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Basis set sβ
aug-cc-pVDZ′ 0.7267a

TZVPP 0.8439a

haTZVPP 0.8587b

haTZVPP (AC) 0.8547b

aFrom Ref. 55.
bIntroduced in this work.

Table F.2: Values of the dimensionless parameter sβ used in the “first generation”
XSAPT(KS)+D method. These values have been optimized against binding energies
in the S22A data set, using a KS functional equal to LRC-ωPBEh with 60% short-
range Hartree-Fock exchange and a tuned value of ω. The exact AC scheme uses
monomer-specific values of ω; in other cases, ω is tuned according to Eq. (F.1) using
the lowest supersystem IP.

Chen & Li (Ref. 8) Bates & Tschumper (Ref. 41)
MP2/a5Z-h MP2/CBS CCSD(T)/CBS

Includes BSSE correction? Yes Yes No No No
Includes relaxation energy? No Yes Yes Yes Yes
prism −47.41 −45.05 −46.09 −45.86 −45.92
cage −47.33 −44.98 −46.05 −45.80 −45.67
book1 −47.15 −44.73 −45.79 −45.53 −45.20
book2 −46.87 −44.41 −45.46 −45.22 −44.90
cyclic chair −46.27 −43.94 −44.95 −44.65 −44.12
bag −46.41 −43.83 −44.89 −44.63 −44.30
cyclic boat1 −45.29 −42.95 −43.96 −43.66 −43.13
cyclic boat2 −45.17 −42.87 −43.87 −43.58 −43.07

Table F.3: Comparison of binding energies (in kcal/mol) for isomers of (H2O)6. All
three sets of calculations from Ref. 8 are performed at the MP2/a5Z-h//MP2/
aTZ level but differ depending on whether or not the Boys- Bernardi counterpoise
correction was applied, and whether or not monomer relaxation is included in the
binding energy. The calculations from Ref. 41 use MP2/haTZ geometries, and
single-point energies at both the MP2/CBS and CCSD(T)/CBS level are listed here.
All data come from Refs. 8 and 41.
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isomer correction / kcal mol−1

δMP2
a δCCSD(T)

b δMP2+ δrelax
d

δCCSD(T)
c

prism −0.81 −0.06 −0.87 2.36
cage −0.82 +0.13 −0.69 2.35
book1 −0.80 +0.33 −0.47 2.42
book2 −0.81 +0.32 −0.49 2.46
cyclic chair −0.71 +0.53 −0.18 2.33
bag −0.80 +0.33 −0.47 2.58
cyclic boat1 −0.71 +0.53 −0.18 2.34
cyclic boat2 −0.71 +0.51 −0.20 2.30
aDifference between MP2/CBS and MP2/a5Z-h

binding energies.
bDifference between CCSD(T)/CBS and MP2/CBS

binding energies.
cThe sum of these two corrections equals the difference

between CCSD(T)/CBS and MP2/a5Z-h binding energies.
dMonomer relaxation energy, estimated from counterpoise-

corrected MP2/a5Z-h results.

Table F.4: Various differences in binding energies that can be extracted from the
data in Table F.3. See the footnotes and the text for an explanation of each quantity.
Note that δMP2 includes the effects of the slightly different geometries used in Ref. 8
versus those in Ref. 41.
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isomer binding energy / kcal mol−1

MP2/a5Z-h results CCSD(T)/CBS
MP2/a5Z-h// +triples +triples −relaxationd

MP2/aTZa correctionb −relaxationc

prism −45.05 −45.11 −47.47 −48.28
cage −44.98 −44.85 −47.20 −48.02
book1 −44.73 −44.40 −46.82 −47.62
book2 −44.41 −44.09 −46.55 −47.36
cyclic chair −43.94 −43.41 −45.74 −46.45
bag −43.83 −43.50 −46.08 −46.88
cyclic boat1 −42.95 −42.42 −44.76 −45.47
cyclic boat2 −42.87 −42.36 −44.66 −45.37
aCounterpoise-corrected result including monomer relaxation (see Table F.3).
bMP2/a5Z-h result plus δCCSD(T) from Table F.4.
cMP2/a5Z-h result plus δCCSD(T) minus δrelax from Table F.4.
dCCSD(T)/CBS//MP2/haTZ result from Ref. 41, corrected to remove monomer

relaxation using MP2/a5Z-h values of δrelax.

Table F.5: MP2/a5Z-h//MP2/aTZ binding energies from Ref. 8 and “corrected”
values based on CCSD(T) results in Ref. 41. See the footnotes and the text for an
explanation of the corrections.
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n binding energy / kcal mol−1 δRI−CCSD(T) / kcal mol−1

RI-MP2/CBS RI-CCSD(T)/CBS two-body three-body
1 −32.25 −32.32 −0.07 —
2 −51.86 −52.22 −0.44 −0.36
3 −69.08 −70.07 −1.27 −0.99
4 −83.82 −85.11 −1.53 −1.29
5 −99.52 −100.97 −1.82 −1.45
6 −114.75 −116.21 −1.83 −1.46

Table F.6: Binding energies for isomers of F−(H2O)n, computed at the RI-MP2/CBS
and RI-CCSD(T)/CBS levels using RI-MP2/aug-cc-pVTZ geometries. Also shown is
the triples correction, δRI−CCSD(T), computed using either a two-body or a three-body
approximation. and the corresponding two-body and three-body triples corrections
δRI−CCSD(T) are also provided. The RI-CCSD(T)/CBS binding energy is the sum of
RI-MP2/CBS binding energy (obtained by extrapolation) and the three-body triples
correction.

n binding energy / kcal mol−1 δRI−CCSD(T) / kcal mol−1

RI-MP2/CBS RI-CCSD(T)/CBS two-body three-body
1 −15.75 −15.48 0.27 —
2 −31.28 −30.94 0.30 0.34
3 −47.72 −47.50 0.02 0.22
4 −58.38 −58.10 0.16 0.28
5 −74.92 −74.58 0.10 0.34
6 −86.91 −86.45 0.21 0.46

Table F.7: Binding energies for isomers of Cl−(H2O)n, computed at the RI-MP2/CBS
and RI-CCSD(T)/CBS levels using RI-MP2/aug-cc-pVTZ geometries. Also shown is
the triples correction, δRI−CCSD(T), computed using either a two-body or a three-body
approximation. and the corresponding two-body and three-body triples corrections
δRI−CCSD(T) are also provided. The RI-CCSD(T)/CBS binding energy is the sum of
RI-MP2/CBS binding energy (obtained by extrapolation) and the three-body triples
correction.
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n binding energy / kcal mol−1 δRI−CCSD(T) / kcal mol−1

RI-MP2/CBS RI-CCSD(T)/CBS two-body three-body
1 −166.67 −168.46 −2.47 −1.79
2 −166.68 −168.47 −2.47 −1.79
3 −165.15 −166.93 −2.29 −1.79
4 −165.54 −167.36 −2.38 −1.82
5 −166.89 −168.64 −2.33 −1.74
6 −169.50 −171.02 −2.17 −1.52
7 −167.06 −168.81 −2.33 −1.75
8 −163.91 −165.97 −2.73 −2.07
9 −160.73 −162.75 −2.81 −2.03
10 −165.72 −167.34 −2.06 −1.63

Table F.8: RI-MP2/CBS and RI-CCSD(T)/CBS binding energies for ten different
isomers of F−(H2O)10. Geometries were optimized at the B3LYP/6-31G* level and
the numbering scheme reflects the order of these isomers in the Cartesian coordinate
file that is provided as part of this Supplementary Material. The corresponding two-
body and three-body triples corrections δRI−CCSD(T) are also provided. RI-CCSD(T)/
CBS binding energy are the sum of the RI-MP2/CBS binding energy (obtained by
extrapolation) and the three-body triples correction.
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APPENDIX G

Supporting Information for: “Accurate and

efficient quantum chemistry calculations for

noncovalent interactions in many-body systems:

The XSAPT family of methods”G.1

G.1 Basis set convergence tests

Table G.1 shows the errors in the first-order energy components E
(1)
elst and E

(1)
exch,

with respect to SAPT2+(3)/aTZ benchmarks. The errors are averages over four

representative systems: F−(H2O), (H2O)2, and the T-shaped and parallel-displaced

isomers of (C6H6)2. Results are shown for 21 different AO basis sets, using either the

dimer-centered SAPT basis or else the “projected” (pseudocanonicalized monomer-

centered) SAPT basis.

G.2 Tuned values of the range separation parameter

Table G.2 lists the tuned value of the range separation parameter, ω, for each of the

monomers considered in this work. These values were tuned using the LRC-ωPBE/

hpTZVPP method.

G.1This chapter appeared as the Supporting Information to the full article in the Journal of Physical
Chemistry A, in 2015, volume 119, pages 235–252.
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G.3 Empirical dispersion parameters

In addition to high-level SAPT2+(3)/aTZ, a more robust treatment of dispersion

based on a coupled-cluster approach is available.183,184 The error in the dispersion

energy for the parallel-displaced benzene dimer is about 0.5 kcal/mol for SAPT2+3/

aDZ as compared to SAPT2+3(CCD)/aDZ.117 Our own tests on the S66 data set

suggest that the MAE in dispersion energies between the SAPT2+(3)/aTZ and

SAPT2+(3)(CCD)/aTZ methods is about 0.19 kcal/mol. The maximum discrepancy

occurs for the π-stacked uracil dimer, for which the SAPT2+(3)/aTZ method over-

estimates the dispersion energy by 0.8 kcal/mol as compared to SAPT2+(3)(CCD)/

aTZ. Furthermore, SAPT2+(3)(CCD)/aTZ works slightly better than SAPT2+(3)/

aTZ for the total binding energy. In comparison to the CCSD(T)/CBS benchmarks

for S66 binding energies, the SAPT2+(3)(CCD)/aTZ method affords a MAE of

0.13 kcal/mol and the SAPT2+(3)/aTZ method affords a MAE of 0.20 kcal/mol. Due

to some favorable error cancellation, however, the XSAPT(KS)+D method that is fit

to SAPT2+(3) dispersion energies performs slightly better than the corresponding

method whose dispersion potentials are fit to SAPT2+(3)(CCD) dispersion energies.

For this reason, and in consideration of computational efficiency, we use SAPT2+(3)/

aTZ as our dispersion benchmark for the purpose fo fitting the D3 dispersion poten-

tial. The sole exceptions to this protocol are the two anionic systems, F−(H2O) and

Cl−(H2O), for which SAPT2+(3)(CCD)/aTZ is used as the benchmark.

The training set used to determine the D3 parameters consists of 74 dimers: 22
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dimers from the S22 data set,186 22 dimers from the X40 data set,36 13 dimers con-

taining divalent sulfur,524 8 dimers proposed by Zhao and Truhlar525 in the KB49

data set526 (without the H2S dimer, which is already included as part of the divalent-

sulfur data set), and 9 additional dimers optimized at the MP2/aTZ level, including

HCl· · ·H2O, HCl· · ·NH3, HF· · ·CH3SH, HF· · ·H2O, HF· · ·H2S, HF· · ·HCl, HF· · ·NH3,

F−· · ·H2O, and Cl−· · ·H2O. For each dimer, 5 different radial geometries correspond-

ing to the same angular configuration were considered. For the 22 dimers from the

X40 dataset and the 13 dimers containing divalent sulfur, each dimer contains five

data points with relative displacements of 0.90, 1.00, 1.25, 1.50, and 2.00 with respect

to the equilibrium geometry. For the rest of dimers, each dimer contains five data

points with relative displacements of 0.9, 1.0, 1.2, 1.5, and 2.0 with respect to the

equilibrium geometry. There are 370 training geometries in total.

The parameters of D3 were optimized using the least-squares method with devi-

ations

χ2 =
1

370

[
370∑

i=1

(

E
(i)
disp(D3)− E

(i)
disp(SAPT)

)2
]

, (G.1)

where E
(i)
disp is the dispersion energy for the ith dimer, computed either using the

benchmark SAPT calculation or else the D3 dispersion potential. We used a genetic

algorithm followed by simplex optimization to fit the parameters, and the final devi-

ation was χ = 0.1377 kcal/mol. Optimized values of C6,i, C8,i, and βi are listed in

Table G.3.
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G.4 New benchmarks

Benchmark binding energies for (H2O)6, (H2O)20, F−(H2O)n≤6, Cl−(H2O)n≤6, and

F−(H2O)10 are shown in Tables G.4, G.5, G.6, G.7, and G.8, respectively. The (H2O)6

geometries are available from Ref. 8, where they were optimized at the MP2/aug-

cc-pVTZ level, and the (H2O)20 structures are available from Ref. 339, where they

were optimized using the TIP4P force field. Coordinates for the remaining structures

are available in this work, as a separate attachment. For X−(H2O)n structures with

n ≤ 6, the geometries were optimized at the RIMP2/aug-cc-pVTZ level; F−(H2O)10

geometries were optimized at the B3LYP/6-31G* level.

G.5 Software

All XSAPT, att-MP2, and DFT calculations were performed using a locally-modified

copy of Q-Chem v. 4.2.97 [The att-MP2 and XSAPT(KS)+D2 methods are avail-

able in the current release of Q-Chem, v. 4.2, and the XSAPT(KS)+D3 and sd-

XSAPT methods will be released in v. 4.3 in 2015.] CCSD(T)-F12 calculations

for (H2O)6, F−(H2O)n≤6, and Cl−(H2O)n≤6 were performed using Orca 3.0.2,188

and the CCSD(T)-F12 and MP2-F12 calculations for (H2O)20 and F−(H2O)10 were

performed using Molpro 2012.1.189 All terms in δEHF
int , along with the CCSD(T)

calculations for X−(H2O) and the rest of the MP2 and CCSD(T) calculations, were

performed using Psi4 v. beta5.187 All supersystem calculations are counterpoise

corrected, with the exception of the DFT and att-MP2 calculations, as well as the

CCSD(T)-F12 and MP2-F12 calculations for (H2O)20 and F−(H2O)10.
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AO Basis Set
DCBS Projected

E
(1)
elst E

(1)
exch E

(1)
elst E

(1)
exch

cc-pVDZ 17.73 8.65 30.46 51.52
cc-pVTZ 10.05 3.98 18.38 29.51
cc-pVQZ 7.51 3.16 12.07 15.94

heavy-aug-cc-pVDZ 3.58 3.97 10.76 10.46
heavy-aug-cc-pVTZ 3.93 4.47 7.09 8.02
heavy-aug-cc-pVQZ 3.95 4.55 4.81 5.15

aug-cc-pVDZ 3.17 4.31 9.71 14.55
aug-cc-pVTZ 3.95 4.52 6.81 8.04
aug-cc-pVQZ 3.94 4.57 4.85 5.15

def2-SVP 16.91 8.77 30.15 50.69
def2-TZVPP 7.85 2.95 11.76 13.93
def2-QZVPP 5.40 4.01 6.80 6.99

def2-SVPD 5.46 4.74 23.53 24.21
def2-TZVPPD 3.97 4.52 9.42 7.01
def2-QZVPPD 4.05 4.56 7.11 6.50

aug-def2-TZVPP 3.90 4.50 4.63 4.69
aug-def2-QZVPP 3.94 4.55 3.37 3.86

heavy-aug-def2-TZVPP 3.91 4.48 4.52 4.53
heavy-aug-def2-QZVPP 4.00 4.55 3.64 3.98

Pople-def2-TZVPP 4.54 4.27 4.98 4.46
heavy-Pople-def2-TZVPP 4.58 4.25 5.09 4.72

Table G.1: Mean absolute percentage errors (in kcal/mol) for the energy com-

ponents E
(1)
elst and E

(1)
exch computed using SAPT(KS)/LRC-ωPBE, as compared to

SAPT2+(3)/aTZ benchmarks. The test systems are F−(H2O), (H2O)2, and the T-
shaped and parallel-displaced isomers of (C6H6)2. Results are shown for both the
dimer-centered SAPT basis (DCBS) as well as the “projected” (pseudocanonicalized
monomer-centered) basis, only the latter of which is appropriate for XSAPT.
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Monomer
ω / a−1

0

∆ω = 0.025 a−1
0 ∆ω = 0.005 a−1

0

—S22 molecules—
adenine 0.275 —
2-aminopyridine 0.300 —
benzene 0.275 —
ethyne 0.400 —
ethene 0.350 —
methane 0.450 —
formamide 0.475 —
formic acid 0.425 —
water 0.500 0.485
HCN 0.450 —
indole 0.275 —
ammonia 0.450 —
phenol 0.275 —
pyrazine 0.375 —
2-pyridoxine 0.300 —
thymine 0.275 —
uracil 0.300 —

—S66 molecules—
methylamine 0.400 —
methanol 0.450 —
AcNH2 0.450 —
AcOH 0.375 —
cyclopentane 0.450 —
neopentane 0.300 —
pentane 0.325 —
peptide 0.350 —
pyridine 0.325 —

—ions—
F− 0.475 0.480
Cl− 0.375 0.370

Table G.2: Tuned values of the range separation parameter, ω, for various monomers,
where the tuning was performed at the LRC-ωPBE/hpTZVPP level. In a few cases,
a finer spacing of ∆ω = 0.005 a−1

0 was used to scan the εHOMO(ω) and −IP(ω) curves,
and in these cases we used the more finely-tuned value of ω.
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Element
C6/ C8/ β/

J nm6 mol−1 J nm8 mol−1 a−1
0

H–C 0.0087 1.9024 0.3962
H–N 0.0670 2.4646 0.3245
H–O 0.0847 3.3700 0.3021
H–F 0.0272 0.8556 0.3904
H–S 0.0000 18.5511 0.2456
H–Cl 0.0001 4.1514 0.3122
C 2.4618 0.0109 4.4611
N 1.2111 0.0059 8.0263
O 0.5450 0.0010 10.4192
F 0.3468 0.0005 12.8513
S 14.1799 0.0075 8.4090
Cl 19.6013 0.0001 15.8640

Table G.3: Fitting parameters that define the D3 dispersion potential for various
elements. Note that the hydrogen parameters depend upon the atom to which it is
bonded.

Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
prism −48.31 −48.22
cage −48.02 −48.13
book1 −47.61 −47.93
book2 −47.33 −47.65
cyclic chair −46.52 −47.02
bag −46.87 −47.19
cyclic boat1 −45.52 −46.04
cyclic boat2 −45.42 −45.91

Table G.4: Binding energies isomers of (H2O)6, using geometries from from Ref. 8.
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Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −200.54 −197.97
2 −199.20 −196.68
3 −198.93 −196.51
4 −197.89 −195.02
5 −198.15 −195.58
6 −198.17 −195.24
7 −197.67 −194.62
8 −197.44 −194.90
9 −197.03 −194.29
10 −196.59 −193.92

Table G.5: Binding energies isomers of (H2O)20, using geometries from from Ref. 18.

n
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −32.31 −32.25
2 −52.27 −51.86
3 −70.14 −69.09
4 −85.24 −83.84
5 −101.09 −99.53
6 −116.58 −114.98

Table G.6: Binding energies for optimized (MP2/aTZ) geometries of F−(H2O)n.
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n
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −15.50 −15.75
2 −31.01 −31.30
3 −47.62 −47.74
4 −58.20 −58.40
5 −74.73 −74.94
6 −86.86 −87.16

Table G.7: Binding energies for optimized (MP2/aTZ) geometries of Cl−(H2O)n.

Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −169.02 −166.97
2 −169.03 −166.98
3 −168.01 −165.93
4 −169.07 −167.06
5 −169.91 −167.98
6 −171.42 −169.68
7 −169.92 −167.99
8 −166.65 −164.34
9 −163.59 −161.25
10 −168.22 −166.47

Table G.8: Binding energies for optimized (B3LYP/6-31G*) geometries of ten differ-
ent isomers of F−(H2O)10.
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APPENDIX H

Supporting Information for: “Atomic orbital

implementation of extended symmetry-adapted

perturbation theory (XSAPT) and benchmark

calculations for large supramolecular complexes”

H.1 Tuned values of the range separation parameters

Tuned values of ω for complexes in L7 and S12L, using both the ωIP and ωGDD tuning

procedures, are shown in Tables H.1 and H.2. For the ωGDD tuning procedure, there

is in addition a cutoff value (µ) to define the region of localized molecular orbitals; see

Ref. 26. Following that work, we use ω = 0.3 a−1
0 as an initial guess, then determine

µ to normalize 〈d2x〉. A series of molecules was used to determine the constant C in

ωGDD = C〈d2x〉
−1/2 , (H.1)

and subsequently ωGDD and µ were determined for each molecule of interest (with C

fixed), with results in Tables H.1 and H.2.
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H.2 Energies and other properties

Listed in Table H.3 are binding energies for complexes in L7 and S12L, computed us-

ing XSAPT(KS)+D3(ωIP), XSAPT(KS)+D3(ωGDD), sd-XSAPT(KS)(ωIP), and sd-

XSAPT(KS)(ωGDD). Also shown are binding energies computed at the ωB97X-

V/aTZ and B97M-V/(h)aTZ levels of theory.

Components of the interaction energies for L7 and S12L are shown in Table H.4,

computed using the XSAPT(KS)+D3+E
ATM(TS)
disp,3B /hpTZVPP(ωGDD) method.

Deformation energies for the S12L complexes, computed at various levels of theory,

are shown in Table H.5.

Dipole moments for the polarized and unpolarized wave functions for molecules

in the L7 and S12L data sets are listed in Tables H.6 (for L7) and H.7 (for S12L),

where they are computed using XSAPT(KS)(ωGDD).
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Table H.1: Tuned values of the range separation parameter, ω (in units of a−1
0 ) for the

L7 data set, at two different LRC-DFT levels of theory. For ωGDD tuning there is also
a cutoff, µ (see Ref. 26) that is listed in parentheses. A spacing of ∆ω = 0.025 a−1

0

was used to scan the εHOMO(ω) and −IP(ω) curves for ωIP.

Complex ωIP
a ωGDD (µ)a ωIP

b ωGDD (µ)b

guanine 0.275 0.316 (0.072) 0.250 0.338 (0.075)
guanine dimer 0.250 0.289 (0.047) 0.225 0.313 (0.051)
cytosine 0.300 0.328 (0.082) 0.250 0.359 (0.083)
adenine 0.275 0.316 (0.078) 0.250 0.338 (0.080)
Watson-Crick GC 0.250 0.291 (0.051) 0.225 0.314 (0.055)
circumcoronene 0.175 0.246 (0.033) 0.150 0.266 (0.036)
coronene 0.225 0.271 (0.053) 0.175 0.289 (0.055)
octadecane 0.250 0.260 (0.038) 0.200 0.269 (0.040)
phenylalanine 0.250 0.290 (0.054) 0.200 0.308 (0.057)
phenylalanine dimer 0.225 0.268 (0.037) 0.200 0.285 (0.037)
aLRC-ωPBE/hpTZVPP. bLRC-ωPBEh/6-31G(d,2p).
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Table H.2: Tuned values of the range separation parameter, ω (in units of a−1
0 ) for

the S12L data set, calculated at the level of LRC-ωPBE/hpTZVPP. For ωGDD tuning
there is also a cutoff, µ (see Ref. 26) that is listed in parentheses. A spacing of
∆ω = 0.025 a−1

0 was used to scan the εHOMO(ω) and −IP(ω) curves for ωIP.

System Complex ωIP ωGDD (µ)
2a/2b host 0.175 0.248 (0.032)
2a guest 0.225 0.296 (0.057)
2b guest 0.275 0.313 (0.080)
3a/3b host 0.175 0.251 (0.027)
3a guest 0.200 0.296 (0.048)
3b guest 0.250 0.315 (0.063)
4a/4b host 0.225 0.234 (0.029)
4a guest 0.200 0.243 (0.038)
4b guest 0.200 0.237 (0.035)
5a/5b host 0.300 0.236 (0.023)
5a guest 0.600 0.332 (0.079)
5b guest 0.400 0.336 (0.082)
6a/6b host 0.425 0.256 (0.027)
6a guest 0.375 0.339 (0.085)
6b guest 0.375 0.360 (0.091)
7a/7b host 0.375 0.248 (0.024)
7a guest 0.200 0.288 (0.045)
7b guest 0.275 0.304 (0.067)
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Table H.3: Binding energies (in kcal/mol) for L7 and S12L complexes computed
at various XSAPT and DFT levels of theory. The hpTZVPP basis set is used for
XSAPT(KS)+D3, and the 6-31G(d,2p) basis set for sd-XSAPT(KS). The aTZ basis
set is used for DFT calculations except the B97M-V calculations use the haTZ basis
set for 4a, 4b, 7a, and 7b. Deformation energies for DFT methods are computed
using the corresponding functional. Deformation energies for XSAPT-based methods
are computed using the NLDFT functional.

System
XSAPT(KS)+D3 sd-XSAPT(KS)

ωB97X-V B97M-V B97M-V (CP)
(ωIP) (ωGDD) (ωIP) (ωGDD)

—L7—

GGG −2.50 −2.60 −1.47 −1.08 −2.52 −2.33 −1.94
C2C2PD −26.06 −26.39 −24.07 −21.70 −22.40 −22.32 −21.54
GCGC −15.68 −16.06 −14.96 −13.93 −15.61 −15.46 −14.51
PHE −23.36 −23.96 −24.48 −24.43 −26.26 −25.87 −25.21
CBH −9.45 −9.55 −9.12 −8.45 −12.55 −12.40 −11.72
C3A −20.11 −20.46 −18.42 −17.09 −17.73 −17.47 −16.56
C3GC −33.03 −33.56 −31.17 −28.52 −30.70 −31.05 −29.27

—S12L—

2a −39.24 −40.92 – −34.76 −34.62 −32.85 −31.23
2b −25.80 −26.73 – −22.15 −22.79 −21.88 −20.58
3a −27.11 −28.80 – −29.19 – −29.85 −27.11
3b −23.02 −24.28 – −23.57 – −22.88 −20.95
4a −49.96 −50.18 – −52.14 – −40.54 −37.60
4b −51.35 −51.66 – −55.41 – −42.58 −39.38
5a −44.86 −38.21 – −36.29 – −36.70 −35.16
5b −26.60 −24.67 – −24.82 – −25.67 −24.30
6a −94.47 −90.35 – −82.16 – −87.07 −85.79
6b −90.19 −86.49 – −78.70 – −82.58 −81.49
7a −146.54 −142.60 – −134.32 – −142.09 −139.85
7b −38.51 −37.72 – −25.62 – −34.74 −33.05
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Table H.4: Interaction energy components for L7 and S12L complexes computed
using the XSAPT(KS)+D3+E

ATM(TS)
disp,3B /hpTZVPP(ωGDD) method, in kcal/mol. The

interaction types are dispersion-dominated (“D”), electrostatics-dominated (“E”), or
of mixed influence (dispersion and electrostatics, “M”).

System Elst Exch Ind Disp Totala Type
—L7—

GGG 2.70 6.52 −1.29 −9.43 −1.51 D
C2C2PD −7.85 26.65 −2.46 −35.00 −18.67 D
GCGC −8.94 24.62 −1.93 −26.09 −12.33 D
PHE −27.56 31.93 −11.01 −16.15 −22.79 M
CBH −3.54 14.75 −1.24 −16.99 −7.02 D
C3A −7.58 19.95 −1.96 −25.79 −15.38 D
C3GC −13.08 37.49 −4.42 −44.50 − 24.51 D

—S12L—
2a −27.23 53.17 −11.84 −50.07 −35.97 M
2b −17.18 36.60 −6.01 −36.15 −22.74 D
3a −22.41 58.02 −7.29 −59.36 −31.04 D
3b −18.77 38.05 −5.83 −42.38 −28.92 D
4a −26.95 69.02 −7.23 −72.88 −39.43 D
4b −28.11 73.25 −8.17 −76.39 −38.03 D
5a −48.50 69.21 −20.36 −41.33 −40.98 M
5b −33.53 54.73 −12.43 −35.68 −26.92 M
6a −68.15 39.00 −24.80 −35.70 −89.65 M
6b −65.78 33.26 −24.69 −30.26 −87.46 E
7a −104.05 57.97 −24.43 −67.96 −138.47 M
7b −10.07 29.28 −3.05 −45.82 −29.67 D
aRelaxation energies are not included.
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Table H.5: Deformation energies for complexes in S12L datasets computed at the
NLDFT/def2-QZVP, MP2/CBS, SCS-MP2/CBS, and B97M-V/aTZ levels. The
B97M-V results are new; the rest are from Ref. 42.

System
deformation energy (kcal/mol)

NLDFT MP2 SCS-MP2 B97M-V
2a 3.08 3.25 3.12 3.56
2b 1.66 2.03 1.82 2.08
3a 12.70 23.63 17.67 15.11
3b 11.06 21.34 15.60 13.86
4a 1.24 1.24 1.21 0.99
4b 2.24 2.56 2.55 1.72
5a 6.58 8.05 7.21 7.60
5b 5.72 6.49 5.66 6.21
6a 4.90 4.09 4.37 5.01
6b 5.45 4.53 4.86 5.62
7a 7.30 0.48 2.49 6.08
7b 1.08 0.14 0.33 0.21
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Table H.6: Dipole moments (in Debye) for molecules in the L7 data set computed at
the XSAPT(KS)/hpTZVPP(ωGDD) level.

Complex Fragment Unpolarized Polarized Difference
GGG guanine 6.98 6.29 −0.68

guanine dimer 13.31 12.51 −0.80
C2C2PD coronene 0.00 0.72 0.72

coronene 0.00 0.72 0.72
GCGC Watson-Crick guanine-cytosine 5.94 6.57 0.63

Watson-Crick guanine-cytosine 5.94 6.57 0.62
PHE phenylalanine 2.12 3.25 1.13

phenylalanine dimer 2.46 3.76 1.29
CBH octadecane 0.00 0.05 0.05

octadecane 0.00 0.05 0.05
C3A adenine 2.62 2.79 0.17

circumcoronene 0.36 1.11 0.76
C3GC Watson-Crick guanine-cytosine 6.27 6.55 0.28

circumcoronene 0.09 2.48 2.39
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Table H.7: Dipole moments (in Debye) for molecules in the L7 data set computed at
the XSAPT(KS)/hpTZVPP(ωGDD) level.

Complex Fragment Unpolarized Polarized Difference
2a host 1.36 1.66 0.30

guest 0.51 0.60 0.08
2b host 1.22 1.67 0.45

guest 0.10 0.48 0.38
3a host 15.44 16.43 1.00

guest 1.22 0.95 −0.27
3b host 15.71 17.35 1.64

guest 4.92 6.29 1.37
4a host 1.48 1.52 0.04

guest 0.02 1.30 1.28
4b host 1.54 1.49 −0.05

guest 0.01 1.39 1.38
5a host 0.71 0.79 0.08

guest 0.23 0.28 0.05
5b host 0.71 0.82 0.11

guest 0.02 0.05 0.03
6a host 0.35 6.58 6.24

guest 13.28 14.29 1.01
6b host 0.26 6.62 6.36

guest 12.78 13.94 1.16
7a host 0.11 0.29 0.17

guest 1.25 1.50 0.25
7b host 0.08 0.12 0.04

guest 1.74 1.66 −0.07
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APPENDIX I

Supporting Information for: “A Simple Correction

for Non-Additive Dispersion within Extended

Symmetry-Adapted Perturbation Theory”

I.1 Tuned values of the range separation parameter

Table I.1 lists the tuned value of the range separation parameter, ω, for each of the

monomers considered in this work using ωIP and ωGDD tunings. These values were

tuned using the LRC-ωPBE/hpTZVPP method based on the monomer geometries

optimized at the level of RIMP2/aug-cc-pVDZ.

I.2 Empirical dispersion parameters

We use SAPT2+(3) combined with def2-QZVPP basis set for Li, Na, and K ele-

ments and aug-cc-pVTZ basis set for the remaining elements as our dispersion bench-

mark for the purpose of fitting the D3 dispersion parameters for Li, Na, and K

elements. The training set used to determine the their D3 parameters consists of 21

dimers optimized at the RIMP2 method combined with def2-QZVPP basis set for Li,

Na, and K elements and aug-cc-pVTZ basis set for the remaining elements, includ-

ing Li+· · ·C6H6, Na+· · ·C6H6, K+· · ·C6H6, Li+· · ·C2H2, Na+· · ·C2H2, K+· · ·C2H2,
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Li+· · ·C2H4, Na+· · ·C2H4, K+· · ·C2H4, Li+· · ·CH3NH2, Na+· · ·CH3NH2, K+· · ·CH3

NH2, Li+· · ·CH3OH, Na+· · ·CH3OH, K+· · ·CH3OH, Li+· · ·H2O, Na+· · ·H2O, K+· · ·

H2O, Li+· · ·NH3, Na+· · ·NH3, and K+· · ·NH3. For each dimer, 5 different radial ge-

ometries corresponding to the same angular configuration were considered. Each

dimer contains five data points with relative displacements of 0.9, 1.0, 1.2, 1.5, and

2.0 with respect to the equilibrium geometry. There are 105 training geometries in

total.

The parameters of D3 were optimized using the least-squares method with devi-

ations

χ2 =
1

105

[
105∑

i=1

(

E
(i)
disp(D3)− E

(i)
disp(SAPT)

)2
]

, (I.1)

where E
(i)
disp is the dispersion energy for the ith dimer, computed either using the

benchmark SAPT calculation or else the D3 dispersion potential. The dispersion

parameters for H, C, N, and O elements obtained before57 are set as constants during

the fitting. We used a genetic algorithm followed by simplex optimization to fit the

parameters, and the final deviation was χ = 0.1310 kcal/mol. Optimized values of

C6,i, C8,i, and βi are listed in Table I.2.

I.3 Benchmark energy components for the S66 data set

Energy components for S66 computed at the SAPT2+(3)/aug-cc-pVTZ level are

listed in Table I.3, Table I.4, and Table I.5 for hydrogen bonded, dispersion bonded,
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and mixed complexes, respectively. The SAPT2+(3) is defined as follows:117

ESAPT2+(3) = E
(10)
elst + E

(12)
elst,resp + E

(13)
elst,resp

+ E
(10)
exch + E

(11)
exch + E

(12)
exch

+ E
(20)
ind,resp + E

(20)
exch-ind,resp + tE

(22)
ind + tE

(22)
exch-ind + δEHF

int,resp

+ E
(20)
disp + E

(20)
exch-disp + E

(21)
disp + E

(22)
disp + E

(30)
disp .

(I.2)

The energy components are grouped as follows:37

Eelectrostatic = E
(10)
elst + E

(12)
elst,resp + E

(13)
elst,resp , (I.3)

Eexchange = E
(10)
exch + E

(11)
exch + E

(12)
exch , (I.4)

Einduction = E
(20)
ind,resp + E

(20)
exch-ind,resp + tE

(22)
ind + tE

(22)
exch-ind + δEHF

int,resp , (I.5)

Edispersion = E
(20)
disp + E

(20)
exch-disp + E

(21)
disp + E

(22)
disp + E

(30)
disp . (I.6)

I.4 Binding benchmarks

CCSD(T)/CBS benchmark binding energies for clusters (H2O)6, F−(H2O)10, and

(H2O)20 are shown in Tables I.6, I.7, and I.8, respectively. CCSD(T)/CBS benchmark

binding energies for clusters F−(H2O)n≤6, Cl−(H2O)n≤6, SO2−
4 (H2O)n≤6, Li+(H2O)n≤6,

Na+(H2O)n≤6, and K+(H2O)n≤6 are shown in Tables I.9.

The (H2O)6 geometries are available from Ref. 8, where they were optimized

at the MP2/aug-cc-pVTZ level, and the (H2O)20 structures are available from Ref.

339, where they were optimized using the TIP4P force field. For F−(H2O)n≤6 and

Cl−(H2O)n≤6 structures, the geometries were optimized at the RIMP2/aug-cc-pVTZ

level; For SO2−
4 (H2O)n≤6, the geometries were optimized at the RIMP2/aug-cc-pVDZ
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level; For Li+(H2O)n≤6, Na+(H2O)n≤6, and K+(H2O)n≤6 structures, the geometries

were optimized at the TPSS/def2-TZVPP level; F−(H2O)10 geometries were opti-

mized at the B3LYP/6-31G* level. Coordinates for all structures are available in this

work, as a separate attachment.
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Monomer ωIP / a−1
0 ωGDD / a−1

0

adenine 0.271 0.316
2-aminopyridine 0.293 0.326
benzene 0.280 0.337
ethyne 0.397 0.428
ethene 0.359 0.420
methane 0.454 0.443
formamide 0.460 0.406
formic acid 0.412 0.429
water 0.502 0.488
HCN 0.452 0.472
indole 0.267 0.306
ammonia 0.440 0.450
phenol 0.292 0.330
pyrazine 0.367 0.350
2-pyridoxine 0.294 0.335
thymine 0.284 0.325
uracil 0.295 0.336
MeNH2 0.397 0.404
MeOH 0.438 0.421
AcNH2 0.453 0.371
AcOH 0.381 0.384
cyclopentane 0.420 0.331
neopentane 0.287 0.324
pentane 0.365 0.320
peptide 0.341 0.347
pyridine 0.316 0.349
F− 0.480 0.447
Cl− 0.372 0.324
SO42− 0.344 0.316
Li+ 2.006 1.305
Na+ 1.049 0.839
K+ 0.755 0.589

Table I.1: Tuned values of the range separation parameter, ω, for various monomers
optimized at the level of RIMP2/aug-cc-pVDZ, where the tuning was performed at
the LRC-ωPBE/hpTZVPP level using ωIP and ωGDD tuning procedures.

458



Element
C6/ C8/ β/

J nm6 mol−1 J nm8 mol−1 a−1
0

Li 0.0002 0.0220 0.7674
Na 0.0184 0.6891 0.5271
K 0.4950 25.5348 0.4024

Table I.2: Fitting parameters that define the D3 dispersion potential for for Li, Na,
and K elements.
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system Electrostatics Exchange-Repulsion Induction Dispersion Total
—S66 hydrogen bonded dimers—

H2O-H2O -7.77 7.57 -2.32 -2.32 -4.84
H2O-MeOH -8.79 9.28 -2.88 -3.07 -5.46
H2O-MeNH2 -12.09 13.03 -4.32 -3.51 -6.90
H2O-peptide -12.37 13.16 -4.44 -4.53 -8.19
MeOH-MeOH -8.90 9.81 -3.05 -3.50 -5.65
MeOH-MeNH2 -12.72 14.61 -4.83 -4.63 -7.57
MeOH-peptide -12.59 14.24 -4.74 -5.31 -8.39
MeOH-H2O -7.75 7.89 -2.45 -2.64 -4.95
MeNH2-MeOH -4.11 4.92 -1.11 -2.75 -3.05
MeNH2-MeNH2 -5.83 7.15 -1.66 -3.83 -4.17
MeNH2-peptide -6.88 8.47 -1.98 -5.20 -5.59
MeNH2-H2O -12.22 13.43 -4.46 -3.97 -7.23
peptide-MeOH -7.87 8.27 -2.41 -4.24 -6.26
peptide-MeNH2 -10.84 12.12 -3.75 -5.08 -7.54
peptide-peptide -11.21 12.27 -3.91 -6.10 -8.95
peptide-H2O -6.67 6.07 -1.85 -2.75 -5.21
uracil-uracil-bp -25.98 29.77 -12.50 -9.38 -18.09
H2O-pyridine -11.21 12.18 -4.13 -3.74 -6.91
MeOH-pyridine -11.85 13.56 -4.60 -4.63 -7.51
AcOH-AcOH -32.36 40.13 -18.06 -10.06 -20.36
AcNH2-AcNH2 -25.54 27.98 -11.11 -8.23 -16.91
AcOH-uracil -30.57 35.30 -15.64 -9.70 -20.61
AcNH2-uracil -28.86 31.11 -13.28 -9.07 -20.10

Table I.3: The energy components and total binding energies calculated by SAPT2+(3)/aug-cc-pVTZ method
for the hydrogen bonded subset of S66 data set.
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system Electrostatics Exchange-Repulsion Induction Dispersion Total
—S66 dispersion bonded dimers—

bz-bz-pi -1.47 6.23 -0.68 -6.94 -2.86
pyridine-pyridine-pi -2.93 7.29 -0.82 -7.53 -3.99
uracil-uracil-pi -8.93 12.61 -1.85 -12.59 -10.76
bz-pyridine-pi -2.33 6.92 -0.77 -7.33 -3.51
bz-uracil-pi -4.75 10.10 -1.18 -10.25 -6.08
pyridine-uracil-pi -5.79 10.04 -1.26 -10.31 -7.33
bz-ethene -0.79 4.22 -0.49 -4.13 -1.19
uracil-ethene -3.12 5.74 -0.59 -5.34 -3.31
uracil-ethyne -3.91 5.56 -0.63 -4.88 -3.86
pyridine-ethene -1.47 4.78 -0.54 -4.39 -1.62
pentane-pentane -1.80 6.07 -0.51 -7.57 -3.80
neopentane-pentane -1.30 4.30 -0.39 -5.26 -2.65
neopentane-neopentane -0.75 2.92 -0.29 -3.71 -1.83
cyclopentane-neopentane -1.29 4.29 -0.40 -5.07 -2.47
cyclopentane-cyclopentane -1.47 4.82 -0.44 -5.98 -3.06
bz-cyclopentane -2.24 6.15 -0.66 -6.88 -3.63
bz-neopentane -1.75 4.72 -0.55 -5.40 -2.97
uracil-pentane -2.75 7.55 -0.89 -9.08 -5.18
uracil-cyclopentane -2.21 6.43 -0.66 -7.97 -4.41
uracil-neopentane -2.44 5.49 -0.55 -6.46 -3.97
ethene-pentane -1.05 3.41 -0.35 -3.97 -1.97
ethyne-pentane -1.13 3.03 -0.34 -3.26 -1.71
peptide-pentane -2.56 6.86 -0.99 -7.79 -4.48

Table I.4: The energy components and total binding energies calculated by SAPT2+(3)/aug-cc-pVTZ method
for the dispersion bonded subset of S66 data set.
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system Electrostatics Exchange-Repulsion Induction Dispersion Total
—S66 mixed dimers—

bz-bz-ts -1.84 4.23 -0.62 -4.79 -3.01
pyridine-pyridine-ts -2.78 4.91 -0.79 -5.06 -3.72
bz-pyridine-ts -2.32 4.45 -0.77 -4.87 -3.50
bz-ethyne -2.19 3.29 -0.89 -3.24 -3.03
ethyne-ethyne -1.83 2.10 -0.54 -1.31 -1.58
bz-AcOH-ohpi -4.07 6.27 -2.07 -5.02 -4.89
bz-AcNH2 -4.82 6.51 -1.68 -4.54 -4.53
bz-H2O -2.89 3.81 -1.11 -3.12 -3.31
bz-MeOH -3.32 5.33 -1.32 -4.87 -4.18
bz-MeNH2 -2.42 4.65 -0.75 -4.71 -3.23
bz-peptide -3.90 6.49 -1.47 -6.51 -5.39
pyridine-pyridine-chn -4.75 5.81 -1.47 -4.10 -4.51
ethyne-H2O -3.91 3.41 -1.01 -1.52 -3.03
ethyne-AcOH -7.06 8.45 -2.68 -3.77 -5.06
pentane-AcOH -1.71 4.73 -0.59 -5.46 -3.03
pentane-AcNH2 -2.31 6.01 -1.06 -6.35 -3.71
bz-AcOH -3.12 5.87 -0.87 -5.80 -3.93
peptide-ethene -2.69 4.64 -0.83 -4.20 -3.08
pyridine-ethyne -5.92 6.13 -1.91 -2.62 -4.32
MeNH2-pyridine -4.31 6.49 -1.13 -4.96 -3.91

Table I.5: The energy components and total binding energies calculated by SAPT2+(3)/aug-cc-pVTZ method
for the mixed subset of S66 data set.
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Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
prism −48.31 −48.22
cage −48.02 −48.13
book1 −47.61 −47.93
book2 −47.33 −47.65
cyclic chair −46.52 −47.02
bag −46.87 −47.19
cyclic boat1 −45.52 −46.04
cyclic boat2 −45.42 −45.91

Table I.6: Binding energies isomers of (H2O)6, using geometries from from Ref. 8.

Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −169.02 −166.97
2 −169.03 −166.98
3 −168.01 −165.93
4 −169.07 −167.06
5 −169.91 −167.98
6 −171.42 −169.68
7 −169.92 −167.99
8 −166.65 −164.34
9 −163.59 −161.25
10 −168.22 −166.47

Table I.7: Binding energies for optimized (B3LYP/6-31G*) geometries of ten different
isomers of F−(H2O)10.
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Isomer
Binding Energy / kcal mol−1

CCSD(T)/CBS MP2/CBS
1 −200.54 −197.97
2 −199.20 −196.68
3 −198.93 −196.51
4 −197.89 −195.02
5 −198.15 −195.58
6 −198.17 −195.24
7 −197.67 −194.62
8 −197.44 −194.90
9 −197.03 −194.29
10 −196.59 −193.92

Table I.8: Binding energies isomers of (H2O)20, using geometries from from Ref. 18.

n
CCSD(T)/CBS Binding Energy / kcal mol−1

F−(H2O)n Cl−(H2O)n SO2−
4 (H2O)n Li+(H2O)n Na+(H2O)n K+(H2O)n

1 −32.31 −15.50 −32.12 −34.43 −23.92 −17.89
2 −52.27 −31.01 −60.33 −64.15 −44.93 −33.73
3 −70.14 −47.62 −81.37 −87.81 −63.47 −49.33
4 −85.24 −58.20 −105.15 −105.35 −78.48 −62.57
5 −101.09 −74.73 −126.44 −120.59 −93.01 −78.12
6 −116.58 −86.86 −144.62 −134.75 −107.27 −92.35

Table I.9: Binding energies for clusters F−(H2O)n, Cl−(H2O)n, SO2−
4 (H2O)n,

Li+(H2O)n, Na+(H2O)n, and K+(H2O)n. F−(H2O)n and Cl−(H2O)n clusters were
optimized at the level of RIMP2/aug-cc-pVTZ. SO2−

4 (H2O)n clusters were optimized
at the level of RIMP2/aug-cc-pVDZ. Li+(H2O)n, Na+(H2O)n, and K+(H2O)n were
optimized at the level of TPSS/def2-TZVPP.
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APPENDIX J

Supporting Information for: “Energy

decomposition analysis with a well-defined

charge-transfer term for interpreting

intermolecular interactions”

J.1 Examination of basis-set dependence

J.1.1 Set of 11 charge-transfer complexes

In Fig. J.1 we examine the basis-set dependence of CT energies for this set of com-

plexes. For this comparison, we choose the 6-311++G(3df,3pd) basis set, which

is used frequently in ALMO-EDA,30 along with def2-TZVPPD and def2-QZVPPD,

which have been recommended for the cDFT scheme.490 The cDFT method exhibits

essentially no basis set dependence, whereas the basis-set dependence of the ALMO

and SAPT methods is significant for the four complexes where the extent of CT

is large (δq > 0.1 e−). CT energies for ALMO and SAPT vary by as much as

26.7 kJ/mol (ALMO-EDA) and 16.5 kJ/mol (SAPT) for the H3N · · ·BH3 complex.

For the ALMO-EDA and SAPT calculations, the maximum deviations amongst the

three basis sets occurs between def2-TZVPPD and def2-QZVPPD, indicating once

again the extreme dependence on basis set size associated with these definitions of

CT.
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J.1.2 Cation–alkyl radical complexes

Using the same three basis sets for this set of 8 complexes, we once again find that the

cDFT method exhibits very mild basis-set dependence, with CT energies that vary

by no more than 1.4 kJ/mol amongst these three basis sets. ALMO-EDA results, in

contrast, vary by as much as 27.3 kJ/mol across these basis sets and SAPT results

vary by as much as 8.2 kJ/mol. The large basis-set dependence of the ALMO-EDA

results cannot be explained by BSSE, as the counterpoise corrections are no larger

than 2.5 kJ/mol.

J.1.3 Nucleophile–C6H
•+
5 complexes

In most cases, CT energies calculated using B3LYP are greatly overestimated as

compared to the those computed using ωB97X-D3. For example, the mean un-

signed deviation for ALMO-EDA CT energies, comparing B3LYP/ and ωB97X-D3/

6-311++G(3df,3pd) results is 9.3 kJ/mol, and the corresponding mean unsigned de-

viation for cDFT calculations is 6.0 kJ/mol. We attribute the larger B3LYP values of

the CT energies to greater delocalization error with this functional, which is known

to exaggerate the extent of CT.502,503

Examining the same three basis sets considered above for this set of 12 complexes,

we find that the maximum basis-set deviation in the CT energy is 4.5 kJ/mol for

ALMO-EDA and 2.1 kJ/mol for cDFT. For SAPT and SAPT+δSCF, the maximum

deviations are 3.7 and 3.9 kJ/mol, respectively, for C6H
•+
5 · · ·HBr and C6H

•+
5 · · ·PH3.

As in all of the results reported in this work, cDFT results are far less dependent on
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the choice of basis set as compared to orbital-based EDAs.

J.2 Exchange-dipole model for C6H
•+
5 · · ·H2O

The high-level SAPT2+3(CCD)/aug-cc-pVTZ method was used to estimate the dis-

persion energy (for use with dlDF) for the C6H
•+
5 · · ·H2O complex. These calculations

were performed using the Psi4 program,187 and because this method is only avail-

able for closed-shell species, we substitute the closed shell C6H6 · · ·H2O complex for

these calculations. To assess the magnitude of this approximation, we turn to the

Becke-Johnson exchange-dipole model (XDM),355,357 a DFT-based way to compute

dispersion interactions that is available for both closed- and open-shell species. At

the B3LYP/aug-cc-pVTZ level of theory, we find that the XDM dispersion energy

for the open-shell C6H
•+
5 · · ·H2O complex is smaller than that of the closed-shell

C6H6 · · ·H2O complex, but only by 0.7 kJ/mol (on-top orientation) or 0.3 kJ/mol

(side-on orientation). Assuming that these differences are transferable to SAPT cal-

culations, they amount to only 3% of the SAPT2+3(CCD)/aug-cc-pVTZ dispersion

energy for C6H6 · · ·H2O, in either orientation. This justifies our use of the closed-shell

complex to obtain an accurate dispersion correction to augment the dlDF functional.

J.3 Charge-transfer interactions in alkyl and aryl complexes

CT energies in alkyl and aryl complexes are shown in Tables J.3 and J.2, respectively.
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Figure J.1: CT energies computed in a variety of basis sets using (a) cDFT with
the ωB97X-D3 functional, (b) ALMO-EDA using the ωB97X-D3 functional, and (c)
SAPT with and without the δEHF

int (“δSCF”) correction, using the LRC-ωPBE func-
tional.
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Cation
Alkyl (IE− EA)−1/ CT Energy / kJ mol−1

Species eV−1 cDFT ALMO SAPT SAPT+δSCF

H3O
+

CH4 0.12 −30.30 −22.05 −2.73 −17.50
(CH3)3CH 0.16 −41.55 −32.42 −3.37 −28.80
CH•

3 0.18 −45.46 −48.84 −7.34 −41.75
(CH3)3C

• 0.42 −122.52 −96.96 −13.89 −124.98

NH+
4

CH4 0.13 −11.22 −7.11 −0.78 −5.21
(CH3)3CH 0.17 −14.06 −10.06 −1.05 −7.80
CH•

3 0.20 −16.91 −20.97 −2.84 −14.81
(CH3)3C

• 0.51 −33.71 −37.53 −4.92 −32.16

Table J.1: CT energies for the cation–alkyl complexes.

Orientation Nucleophile (IE− EA)−1/ CT Energy / kJ mol−1

eV−1 cDFT ALMO SAPT SAPT+δSCF

On-Top

PH3 1.59 −80.34 −118.69 −9.10 −93.07
NH3 1.20 −63.45 −88.72 −10.05 −77.17
CH3COOH 0.71 −28.76 −30.69 −3.04 −27.33
CH3OH 0.63 −24.14 −29.69 −2.64 −22.48
CH3Cl 0.50 −17.49 −23.73 −1.79 −15.46
HBr 0.41 −17.93 −27.44 −2.00 −16.76
CH3CN 0.34 −14.53 −16.65 −1.82 −17.89
H2O 0.30 −10.14 −11.86 −1.34 −10.78

Side-On

CH3COOH 0.71 −4.60 −3.00 −0.65 −3.54
CH3OH 0.63 −5.28 −5.13 −1.05 −5.85
CH3CN 0.34 −5.55 −6.16 −1.31 −7.18
H2O 0.30 −3.95 −4.27 −0.91 −4.36

Table J.2: CT energies for C6H
•+
5 · · · nucleophile complexes, considering two orienta-

tions.
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[128] G. Cha lasiǹski and B. Jeziorski, Mol. Phys. 32, 81 (1976).

[129] E. G. Hohenstein, H. M. Jaeger, E. J. Carrell, G. S. Tschumper, and C. D.

Sherrill, J. Chem. Theory Comput. 7, 2842 (2011).

[130] K. Patkowski, K. Szalewicz, and B. Jeziorski, J. Chem. Phys. 125, 154107:1

(2006).

[131] K. Patkowski, K. Szalewicz, and B. Jeziorski, Theor. Chem. Acc. 127, 211

(2010).

[132] R. Bukowski et al., SAPT2008: An Ab Initio Program for Many-Body

Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Inter-

action Energies, University of Delaware and University of Warsaw, 2008.

480



[133] V. Saunders and M. Guest, ATMOL Program Package, SERC Daresbury

Laboratory, Daresbury, Great Britain.

[134] A. J. Sadlej, Mol. Phys. 39, 1249 (1980).
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[273] J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901:1 (2012).

[274] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104:1

(2010).

491



[275] M. S. Gordon, L. V. Slipchenko, H. Li, and J. H. Jensen, Annu. Rep. Comput.

Chem. 3, 177 (2007).

[276] D. G. Fedorov, T. Nagata, and K. Kitaura, Phys. Chem. Chem. Phys. 14, 7562

(2012).

[277] S. Wen, K. Nanda, Y. Huang, and G. J. O. Beran, Phys. Chem. Chem. Phys.

14, 7578 (2012).

[278] S. M. Cybulski and M. L. Lytle, J. Chem. Phys. 127, 141102:1 (2007).
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