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Abstract

In this work, we explore several promising aspects of generalized many-body expan-

sion (GMBE) for computing energies and energy responses of large systems. The

GMBE is recognized as one of the fragment-based methods and provides a unified

view of those methods in electronic structure theory. The four elements shared by

other fragment-based methods include a fragmentation method, a capping method,

an embedding method, and the number of layer. We utilize the last two elements as

well as the screening to approximate the non-additive many-body interactions. We

found that energy-based thresholding affords linear scaling and high accuracy with-

out embedding and multi-layer approximations. For the charge embedding scheme,

the variational electrostatic embedded one-body approximation alongside symmetry-

adapted perturbation theory proves promising for non-covalent interactions with the

newly implemented modified Hirshfeld population analysis. We are able to reduce

the cost for calculation the charge response term without compromising accuracy.

The two prominent results of the GMBE show that we can apply this fragment-based

method to relatively large systems due to its excellent parallel ability. Since the

preliminary results of frequency calculations show the robustness of finite difference

implementation, we are also looking forward to applying this methodology to energy

responses such as spectroscopies.
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CHAPTER 1

Introduction

1.1 Motivation

Characterization of ”large” systems using electronic structure theory has attracted

much attention thanks to the improvement of computing power and algorithm. How-

ever, the size of the systems is constrained by the fact that the computational time

grows exponentially. Fragment-based methodologies, hence, have emerged to ad-

dress this issue by treating supersystem problems as many-body problems involving

relatively small fragments. In addition, such methodologies can benefit from embar-

rassingly parallelization. In this work, we employ generalized many-body expansion

to approximate the supersystem by explicitly including indispensable non-additive

interactions or implicitly including them via electrostatic embedding and multi-layer

formalism. This method can apply to either non-bonded systems or covalent-bonded

systems with the capability to obtain energies and energy responses.

1



1.2 Fundamentals

1.2.1 The Generalized Many-Body Expansion (GMBE)

The GMBE that employing overlapping fragments is derived from the principle of

inclusion/exclusion; application of the GMBE requires calculations on subsystems

that are formed from intersections of fragments. In an n-body GMBE, which we call

GMBE(n), the approximate energy is

ε(n) =

(Nf
n )∑

i=1

E
(n)
i −

(Nf
n )∑

i=1

(Nf
n )∑

j>i

E
(n)
i∩j + · · ·+ (−1)(

Nf
n )+1E

(n)

i∩j∩...∩(Nf
n )

. (1.1)

Lower case indices i, j, · · · in Eq. (1.1) refer to n-mers of fragments, whose energies are

E
(n)
i , E

(n)
j , . . ., and i∩ j is the subsystem formed from the intersection of n-mers i and

j, with energy E
(n)
i∩j . For general applications, construction of i ∩ j requires severing

covalent bonds and capping the severed valencies. In addition to the GMBE, a wide

variety of energy-based fragmentation schemes exist in the literature. They can be

classified into groups according to four elements as follows: a fragmentation method,

a capping method, an embedding method, and the number of layers. We will discuss

the last two elements in Chapter 2 and 3.

1.2.2 The Traditional Many-Body Expansion (MBE)

If we only consider non-bonded clusters, the Eq. (1.1) is equivalent to the traditional

many-body expansion. The total energy

E =

Nf∑

I=1

EI +

Nf∑

I=1

∑

J<I

(EIJ − EI − EJ) + · · · (1.2)

2



is expressed as a sum of monomer energies (EI), pairwise interaction energies (EIJ −

EI −EJ), etc., becoming exact (by tautological definition) when n = Nf . We replace

indices i, j, · · · by I, J, · · · to distinguish overlapping and non-overlapping monomers.

We are aware that the Eq. (1.2) will incur basis-set superposition error (BSSE),

which is the result of unbalanced basis sets for n-body appoximation, where n > 1.

Taking fragment EIJ as an example, the näıve formula for the interaction energy is

described as

Eint = EIJ − EI − EJ (1.3)

and this results in overestimation of the interaction energy. Instead, the monomer

energies should be computed using the supersystem basis set to avoid the BSSE. The

procedure for the BSSE corrections called counterpoise (CP) is generalized as

∆EIJK··· = EIJK··· −

Nf∑

k=I,J,K,···

EIJK···
k (1.4)

where EIJK···
i represents the energy of monomer k computed with basis functions on

all monomers.

1.3 Electrostatic Embedding Scheme

1.3.1 Non-variational Embedding

In practice, we don’t include all terms in Eq. (3.1). We truncate the expansion at lower

order as the number of fragments increases combinatorially with order of truncation.

Embedding subsystems in electric field allows the MBE to account for higher order
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many-body effects. The energy expression can formulated as

E =

Nf∑

I=1

ẼI +

Nf∑

I=1

∑

J<I

(ẼIJ − ẼI − ẼJ) + · · · , (1.5)

where

ẼI = EI +
∑

J 6=I,A∈J

∑

µν

Pµν

〈
φµ

∣∣∣ 1∥∥r−RA

∥∥
∣∣∣φν

〉
qA. (1.6)

qA represents the atomic point charge in fragment J. For brevity, we’ll use (IA)µν to

indicate the electrostatic integral in Eq. (1.6). The ẼIJ can be readily understood as

ẼIJ = EIJ +
∑

K 6=IJ,A∈K

∑

µν

Pµν(IA)µνqA. (1.7)

1.3.2 Variational Embedding

The aforementioned approach is non-variational because the embedded charge, qA, is

not varied with the molecular orbital coefficients of the subsystems. The variational

version is also called “explicit polarization” (XPol) method which includes polariza-

tion effects through electrostatic embedding. For close-shell fragments, the energy of

XPol is

E =
∑

A

[
2
∑

a

c†a

(
hA + JA −

1

2
KA

)
c†a + EA

nuc

]
+ Eembed. (1.8)

Expression in the bracket of eq. 2.1 represents the Hatree Fock energy for each frag-

ment expanded in absolutely localized molecular orbitals. Eembed is the sum of frag-

ment embedded energies via electrostatic interactions. The corresponding Fock ma-

trix can be written as

FA = fA
µν −

1

2

∑

J 6∈A

(IJ)µνqJ +
∑

I∈A

∂Eembed

∂qI

∂qI
∂Pµν

. (1.9)

The ∂qI
∂Pµν

provides the charge response due to the variational of MO coefficient.
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1.4 Multi-Layer appoximations

With the same goal of electrostatic embedding, multi-layer approaches try to include

non-additive interactions by using lower level of theory, e.g. Hartree-Fock, on the

supersystem. The most renowned example is the ONIOM-type formalism.

Esubsys = ELow
supersys + (EHigh

subsys − ELow
subsys) (1.10)

The EHigh
subsys is truncated Eq. (3.1) calculated with high level of theory while ELow

subsys is

computed with low level of theory.
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CHAPTER 2

Intermolecular energy decomposition analysis in

large supramolecular complexes using

symmetry-adapted perturbation theory

In our previous studies8, charge embedding for two-body, three-body, and four-body

expansion performs comparable to or worse than the non-embedding scheme. How-

ever, the variational charge embedded one-body expansion, the XPol, combining

with the (anti)symmetry-adapted perturbation theory has become a promising tool

to model non-covalent interactions. The “extended” version of symmetry-adapted

perturbation theory (XSAPT), developed in our group over the past several years,

extends traditional SAPT to noncovalent complexes larger than dimers, affording ac-

curate interaction energies and a physically meaningful decomposition thereof. The

original implementation of XSAPT is based on charges that are fit to reproduce

molecular electrostatic potentials, which becomes a computational bottleneck in large

systems. Charge embedding based on modified Hirshfeld atomic charges is reported

here, which dramatically lowers the computational cost without compromising accu-

racy. This is especially beneficial in XSAPT calculations where the monomers are

large, and calculations are presented on systems that include a DNA intercalation

complex and the binding of a drug molecule to an enzyme.

6



2.1 Introduction

Quantum-based modeling of non-covalent interactions for large systems has become

possible thanks to increases in computing power, but hardware improvements alone

are insufficient to tackle the large supramolecular complexes of interest in drug discov-

ery, which involve binding of ligands to proteins or DNA.9,10 A plethora of fragment-

based methodologies has emerged to address this issue by reducing the supersystem

problem to a many-body problem involving relatively small fragments.11–19 Along

these lines, our group has been working on extended symmetry-adapted perturba-

tion theory (XSAPT),1,6,7,20–23 an accurate and efficient monomer-based method for

computing intermolecular interaction energies that also generalizes traditional SAPT

energy decomposition analysis (EDA) to the case of more than two monomers.

2.2 Theory

2.2.1 The XSAPT

Our XSAPT approach combines traditional dimer SAPT calculations with the vari-

ational explicit polarization or “XPol” method24 to obtain the monomer wave func-

tions. In this way, many-body polarization is included in the unperturbed monomer

wave functions my means of self-consistent electrostatic embedding.21 For closed-shell

fragments, the XPol energy expression is

E =
∑

A

[
2
∑

n

(cAn )
†
(
hA + JA − 1

2
KA

)
cAn + EA

nuc

]
+ Eembed . (2.1)

The expression in square brackets represents the Hartree-Fock energy for monomer

A, expressed in terms of “absolutely localized” molecular orbitals (MOs) cn.
25 The
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final term, Eembed, is the sum of electrostatic embedding energies. The Fock matrix

corresponding to Eq. (2.1) is

FA = fA
µν −

1

2

∑

B 6=A

∑

b∈B

qb(IB)µν +
∑

a∈A

∂Eembed

∂qa

∂qa
∂Pµν

(2.2)

where fA
µν is the Fock matrix for isolated monomer A and

(IB)µν =
〈
φµ

∣∣∣ 1∥∥r−RB

∥∥
∣∣∣φν

〉
. (2.3)

is a one-electron integral representation the electrostatic potential generated by the

Gaussian function-pair φµrφνr at the point RB.

We use the “SAPT0” energy formula,26 which includes the intermolecular pertur-

bation through second order:

ESAPT0
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind

+ E
(2)
disp + E

(2)
exch-disp .

(2.4)

To include intramolecular electron correlation effects in an efficient fashion we adopt

the SAPT(KS) variant of this theory,27 where “KS” indicates that the MOs are

obtained from Kohn-Sham density functional theory (DFT). SAPT(KS) dispersion

energies are especially sensitive to problems with the asymptotic behavior of the

exchange-correlation (XC) functional,21,27 but by using range-separated hybrid func-

tionals that are tuned for each monomer,1,7,27 one can achieve dispersion energies that

are no worse than Hartree–Fock-based SAPT0, while the other energy components

are improved.27

XSAPT approximates the total interaction energy in a pairwise fashion based on

Eq. (2.4), but non-pairwise-additive polarization effects are included from the XPol
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wave functions.23 The electrostatics, exchange, and (exchange-)induction contribu-

tions to Eq. (2.4) can be evaluated at O(N3) cost but the dispersion and exchange-

dispersion terms scale as O(N4) and O(N5), respectively. These are also the least

accurate parts of a SAPT0 or SAPT(KS) calculation so we usually replace them,

either with ab initio dispersion potentials (“+aiD”),1,7,22,23 or with self-consistently-

screened many-body dispersion (MBD).6

2.2.2 Charge Embedding Scheme

Construction of the XPol Fock matrix requires a prescription for how the embedding

charges will be derived from the monomer wave functions, in order to evaluate the

charge derivatives ∂qa/∂Pµν that appear in Eq. (2.2). For this we have used “ChElPG”

charges28 that are fit to reproduced the molecular electrostatic potential, evaluated on

a real-space grid outside of the van der Waals contact region. Although these charges

are physically appealing, numerically stable,29, and afford good accuracy for XSAPT

calculations, the requisite equations for the charge derivatives are complicated,21,29,30

and their implementation is costly.1,29 Evaluation of the ChElPG charge derivatives

quickly becomes the computational bottleneck for XSAPT calculations involving large

monomers.1 Figure 2.1(a) shows timing data for the buckycatcher/fullerene complex

C60@C60H28, demonstrating that fully one-third of the total XSAPT computation

time is spent in evaluating ChElPG charge derivatives.

In view of this, we sought an alternative way to perform the charge embedding and

settled on an approach known as “Charge Model 5” (CM5).31 CM5 atomic charges are

empirically-parameterized modifications of Hirshfeld charges,32 the latter of which are

9



Figure 2.1: Timing data for XSAPT(KS)+aiD/hp-TZVPP calculations on
C60@C60H28 using (a) the original ChElPG implementation of XSAPT (data from
Ref 1); and (b) the new CM5 implementation reported here, parallelized across all
28 cores of a single compute node. The black bar on the left represents the total wall
time, broken down into red, blue, and green components representing the three major
steps in the calculation. Charge derivatives are required in all three steps, and timing
data for these are indicated in purple and summed on the right. The orange bar
represents the Gram-Schmidt orthogonalization part of the pseudocanonicalization
step, where the multithreading has been improved in the present implementation as
compared to the one reported in Ref. 1.
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derived from the molecular density ρ(r) by using the superposition of isolated-atom

densities ρ̃A(r) to define a weight function

WA(r) =
ρ̃A(r)∑
B ρ̃B(r)

(2.5)

that can be used to partition the molecular electron density into atomic contributions.

Hirshfeld atomic charges are sometimes considered to be too small,33 in the sense

that the dipole moment obtained from them is smaller than the true dipole moment

obtained from ρ(r), and the CM5 parameterization corrects for this.

The basic formula for CM5 charges is

qCM5
k = Zk −

∫
Wk(r) ρ(r) dr+ qparam (2.6)

where the empirical correction qparam depends on the Pauling bond order and other

empirical parameters.31 The requisite charge derivatives are simply

∂qCM5
k

∂Pµν

= −

∫
Wk(r) φµ(r) φν(r) dr . (2.7)

Integrals in Eq. (2.7) can be evaluated by quadrature in the same way that the

DFT XC potential is evaluated, but a näıve implementation proves to be costly.

Introducing a molecular quadrature grid consisting of points {ri} and weights {wi},

we have

∂qCM5
k

∂Pµν

= −
∑

i

wi Wk(ri) φµ(ri) φν(ri) . (2.8)

The cost of this implementation scales with the number of atoms (Natoms) and basis

functions (Nbasis) as O(Natoms ×N2
basis ×Nmol-Leb), where Nmol-Leb represents number

of Lebedev grid points that is required for accurate integration of the total molecular
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density. For typical molecular quadrature grids this number ranges from ≈3,800

points per atom (low-quality, SG-1) to 15,000–19,000 points per atom (high quality,

SG-3).34 This formal scaling should be compared to that for the ChElPG charge

derivatives, which is O(Natoms × N2
basis × NESP-grid),

29 where NESP-grid represents the

number of electrostatic potential grid points. Because the ChElPG procedure fits

only to the long-range, slowly-varying parts of the electrostatic potential, and using

an implementation of ChElPG charges based on atom-centered Lebedev grids,29 it is

possible to make NESP-grid ≪ Nmol-Leb. In this case, no actual cost savings is realized

by replacing ChElPG charges with CM5 charges.

That said, the cost to implement Eq. (2.8) can be dramatically reduced by recog-

nizing that WA(r) vanishes far from RA, the position of nucleus A, because the free-

atom density ρ̃A(r) vanishes. As such, the integral required to compute ∂qCM5
k /∂Pµν

can be evaluated accurately and efficiently using just the atom-centered grid for atom

k, not the entire molecular grid. In effect, we restrict the summation in Eq. (2.7)

to just those grid points i ∈ k contained within the atom-centered grid for atom k.

This reduces the cost of the CM5 charge derivatives to O(Natoms×N2
basis×Natom-Leb),

which is the same cost as the XC quadrature step.

2.3 Results

The accuracy of the atomic-grid implementation of Eq. (2.8) has been tested by com-

puting XSAPT interaction energies for the S22 data set.35 The maximum deviation

(with respect to an implementation that uses the full molecular quadrature grid) is
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Table 2.1: Errors in XSAPT interaction energies as compared to benchmark values.
The benchmarks are MP2/cc-pVTZ for the IHB data set and CCSD(T)/CBS for
the rest. SAPT(KS) calculations for S22 and S66 are based LRC-ωPBE/hpTZVPP
calculations for the monomers, whereas for the other two data sets we used ωB97X-V/
def2-TZVPPD.

Data Error (kcal/mol)
Set maximum MUE

CM5 ChElPG CM5 ChElPG
S22 −1.1 −1.2 0.4 0.4
S66 −1.1 −1.1 0.3 0.3
IHB −3.3 −5.3 1.1 1.7
ions −3.8 −15.1 1.4 3.6

0.02 kcal/mol, with no systematic deviation. Figure 2.1(b) shows timings for the new

XSAPT implementation as applied to C60@C60H28. The time required to compute the

charge derivatives has been reduced from 16.7 hours to 2.0 hours, with a secondary

cost reduction coming from better parallelization of the repeated matrix multiplica-

tions required for the pseudocanonicalization step.20 The speedup will be even greater

for larger systems since NESP-grid increases with molecular size but Natom-Leb does not.

The remainder of this work is dedicated to documenting the accuracy of the new

CM5-based implementation of XSAPT. We first consider the standard S2235 and

S6636 data sets consisting of dimers formed from charge-neutral molecules, along with

the ionic hydrogen bonding (IHB) data set from Řezác and Hobza,37 and an ion-pair

data set from Lao and Herbert.7 Error statistics for both CM5- and ChElPG-based

implementations of XSAPT, as compared to the benchmark interaction energies for

each data set, are listed in Table 2.1. Both charge schemes provide comparable results

for S22 and S66 but significant differences are observed for ions. For the IHB data set
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the largest absolute deviation between the CM5- and ChElPG-based XSAPT results

occurs in the case of the imidazolium· · ·methylamine complex. Here, the charge

difference |qN − qC| between the heavy atoms in methylamine is an unrealistically

large 3.8e in the case of ChElPG charges, versus only 0.6e for CM5 charges. For the

ion-pair data set, the largest deviation is found in the complex of Cl− with dimethyl

ethyl amine, where the ChElPG atomic charges result in bond dipoles whose positive

ends point toward the nitrogen atom whereas in the CM5 case they point away. A

frequent criticism of ChElPG charges, at least when it comes to their use in force-field

parameterization, is that the ChElPG procedure may sacrifice chemically-intuitive

atomic partial charges in the interest of better fitting the molecular electrostatic

potential,28 a problem that becomes more severe for large molecules with “buried”

atoms. We have previously considered that this criticism is not be relevant in the

present context, since we have no interest in the atomic partial charges beyond their

ability to reproduce the electrostatic potential, it appears that for monomers with net

charge the CM5 charges produce both more intuitively-reasonable results and smaller

errors in intermolecular interaction energies.

We next examine the performance of CM5-based XSAPT in different basis sets.

Table 2.2 shows mean unsigned errors (MUEs) for several different data sets contain-

ing ionic monomers, from Ref. 4. These include the AHB21 and CHB6 data sets in

which one monomer is an anion or a cation, respectively, and also the IL16 data set

consisting of ion-pairs taken from common ionic liquid constituent molecules. These

systems are rather small, and perhaps for that reason the XSAPT results converge
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Table 2.2: XSAPT error statistics for data sets containing ionic monomers,4 using
two different charge schemes and various basis sets.

Basis Set
MUE (kcal/mol)

AHB21 CHB6 IL16 overall
CM5 ChElPG CM5 ChElPG CM5 ChElPG CM5 ChElPG

cc-pVDZ 8.3 9.0 2.4 2.7 10.7 11.6 8.7 9.4
jun-cc-pVDZ 1.2 1.3 – – 1.4 2.9 1.3 2.0
aug-cc-pVDZ 0.9 2.9 1.2 0.8 3.0 7.2 1.8 4.3
cc-pVTZ 5.9 6.3 1.4 1.3 7.7 9.9 6.2 7.2
aug-cc-pVTZ 1.2 2.0 0.8 0.7 3.2 10.6 1.9 5.2
def2-TZVPP 3.5 3.0 0.5 0.5 1.3 2.3 2.3 2.4
def2-TZVPPD 1.2 1.1 1.0 1.1 1.9 7.7 1.4 3.6

already in the aug-cc-pVDZ basis set. A more detailed breakdown can be found in

Tables A.5–A.7 of the Supplementary Material, and these data reveal that the dif-

ference between the CM5 and ChElPG charges is marginal for the AHB21 and the

CHB6 data sets but quite pronounced for IL16, where both monomer units are ions.

ChElPG charges have occasionally been used as a metric for intermolecular charge

transfer, e.g., for the ion pairs comprising ionic liquids.38 This seems rather dubious

in view of the problems documented here for charged monomers.

The S30L data set39 consists of 30 large host/guest complexes, including the buck-

ycatcher/C60 complex shown in Fig. 2.1. In Ref. 39, estimated gas-phase interaction

energies for these complexes are estimated starting from experimental solution-phase

binding free energies that are then back-corrected for vibrational entropy changes

upon complexation, and for solvation contributions to the energy of complexation,

resulting in estimated uncertainties of ∼2 kcal/mol in the benchmarks. We have

previously used these complexes to test various versions of XSAPT,1,6 and our older

ChElPG-based implementation affords a MUE of 4.7 kcal/mol for these complexes
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Table 2.3: Interaction Energies for ligand/macromolecule complexes shown in Fig. 2.2.
The QMC result is from Ref. 5 and the counterpoise-corrected B97M-V/def2-
TZVPPD result is from Ref. 6. XSAPT calculations use the partially-augmented
def2-hp-TZVPP basis set defined in Ref. 7, which omits diffuse functions on hydro-
gen atoms.

Method
Eint (kcal/mol)

DNA/ HIV/
ellipticine indinavir

QMC −33.6 —
B97M-V (+counterpoise) −41.3 —
XSAPT+aiD(CM5) −36.7 −106.1
XSAPT+aiD(ChElPG) −35.7 −103.9

that is competitive with the best-avaiable quantum chemistry approaches, at reduced

cost even as compared to supramolecular DFT.6 CM5-based XSAPT, however, af-

fords a slightly lower MUE (4.1 kcal/mol), even while it accelerates the buckycatcher/

C60 calculation by more than a factor of 8.

Figure 2.2 shows a pair of model systems representing drug binding to a macro-

molecule, including a DNA/ellipticine intercalation complex9 and a complex of the

antiretroviral indinavir to HIV-2 protease.10 Both the CM5- and ChElPG-based ver-

sions of XSAPT afford interaction energies in reasonable agreement with quantum

Monte Carlo (QMC) calculations (see Table 2.3), and within 1.0 kcal/mol of one an-

other. For the HIV/indinavir complex (323 atoms, or 10,626 basis functions using

aug-cc-pVTZ), no reliable supersystem benchmark is available but the XSAPT results

can serve as a good estimate.
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Figure 2.2: (a) Ellipticine intercalation complex with two base pairs (and backbone)
of DNA (157 atoms), and (a) complex of the protease inhibitor indinavir with a model
of the HIV-2 binding pocket (323 atoms). In both cases the drug molecule is shown in
a ball-and-stick representation while the rest of the system is depicted with a tubular
representation. 17



2.4 Conclusions

In summary, we have developed a CM5 charge-embedding scheme for use with the XS-

APT methodology that improves both the accuracy and (especially) the efficiency of

the method, as compared to our original ChElPG-based implementation. For bench-

mark data sets of non-covalent complexes, interaction energies computed with the

CM5-based XSAPT procedure are consistently a bit more accurate than ChElPG-

based results. For ion pairs, the CM5-based version considerably improves the ac-

curacy, mainly by removing some outliers where the ChElPG embedding charges

adopt counter-intuitive values. This improvement is coupled to a dramatic reduction

in the cost of CM5-based XSAPT, which is 8.4× faster than the ChElPG version

for a C60@C60H28 complex. Note that ChElPG embedding charges are used also in

one formulation of Ewald summation for quantum mechanics/molecular mechanics

(QM/MM) calculations,29,30 with charge derivatives as in Eq. (2.2) that prove to be

a serious bottleneck in calculation the energy gradient, even for relatively small QM

regions.30 Work is underway in our group to implement a CM5-based version of the

QM/MM-Ewald procedure.
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CHAPTER 3

Understanding the many-body expansion for large

systems. Critical role of four-body terms,

counterpoise corrections, and cutoffs

Our previous papers have attempted to shed light on precision and accuracy issues

affecting the many-body expansion (MBE) but which only manifest in larger systems

and have received scant attention in the literature. Many-body counterpoise (CP)

corrections are shown to accelerate convergence of the MBE, which otherwise suffers

from a mismatch between how basis-set superposition error affects subsystem ver-

sus supersystem calculations. In water clusters, four-body terms prove necessary to

achieve accurate results for both total interaction energies and relative isomer ener-

gies, and the sheer number of tetramers makes the use of cutoff schemes absolutely

essential. To predict relative energies of water cluster isomers, two corrections based

on a lower level of theory are introduced: either well-separated sub-clusters can be

computed at a lower level of theory (as the higher-level calculation is subjected to a

smooth, shorter-range cutoff); or else the entire supersystem can be computed at a

low level of theory and combined with the MBE in an ONIOM-type paradigm. The

latter results are found to be very well converged with respect to the appropriate

MBE benchmark, namely, a CP-corrected supersystem calculation at the same level
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of theory. Results using an energy-based cutoff scheme suggest that if reasonable ap-

proximations to the subsystem energies are available (based on classical multipoles,

say), then the number of requisite subsystem calculations can be reduced well below

the number required when using distance-based thresholds. The result is an accurate

four-body method that does not rely on charge embedding, is stable in large, diffuse

basis sets, and shows excellent speedups relative to supersystem calculations.

3.1 Background

Macromolecules, and also nanoscale molecular clusters and assemblies, serve as bridges

between the quantum and classical limits, and thus make interesting targets for quan-

tum chemistry.40–61 In contrast to semi-empirical, QM/MM, or force-field calcula-

tions, full electronic structure calculations on systems of this size usually require

either massively-parallel implementations of the underlying algorithms40 (possibly in

conjunction with linear-scaling versions of those algorithms41–43), or else implementa-

tions using graphical processing units.44 An increasing popular alternative, and one

that is perhaps more easily amenable to large-scale parallelization,45 is to adopt a

fragment-based approach.46–61 Fragment-based methods attempt to bypass the steep

non-linear scaling of traditional quantum chemistry by decomposing a large system

into a (potentially very large number of) small fragments. Insofar as calculations can

be performed independently on subsystems composed of these fragments, the overall

method is trivially parallelizable. Its utility depends upon the ability to reassemble

the subsystem information in a way that affords useful approximations to supersystem
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properties.

At some level, most fragment-based quantum chemistry methods rely on the many-

body expansion (MBE) or generalizations thereof.62 In such approaches the total en-

ergy, or any other property that can be expressed as a derivative of the energy,63

is decomposed into a sum of contributions arising from monomers, dimers, trimers

. . . of fragments. High-order terms in the expansion are neglected in order to obtain

a tractable approximation. Three-body terms sometimes contribute 15–20% of the

total inter-fragment interaction energy,64 and can play a pivotal role in stabilizing,

e.g., α-helix structures in peptides over long distances,60 and are therefore usually

retained. Four-body and higher-order terms are typically neglected, despite having

been shown to be important in predicting relative conformational energies of pro-

teins.53 These terms are also definitely not negligible in water clusters,8,65,66 where

many-body polarization effects are significant.

It has been argued67–69 that embedding the n-body subsystem quantum chem-

istry calculations in an environment of classical point charges, which serve to mimic

the remaining fragments, will accelerate convergence of the MBE by replicating some

portion of the many-body polarization effects that are neglected when higher-order

terms in the MBE are omitted. Our previous work strongly contests this idea, how-

ever,8,66 and suggests that much of the “conventional wisdom” regarding the MBE is

either incorrect or at best does not generalize beyond the rather small systems (say,

N . 10 fragments) that have generally been used to benchmark truncated MBEs.

Notably, small water clusters of this size were used as benchmarks in Refs.67–69, but
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we obtained very different results upon examining water clusters up to N = 55.8,70

At the three-body level, errors in the total interaction energies exceeded 15 kcal/mol

by N = 30, and point-charge embedding did relatively little to reduce these errors,

regardless of the details of how the charges were computed.8,70 Only at the four-body

level were errors reduced as low as a few kcal/mol.8

In general, however, one should not assume that inclusion of higher-order n-body

terms in the MBE will necessarily afford better accuracy. This is perhaps counterin-

tuitive, but the increasingly large number of subsystem calculations (each with error

in the last digits) that are required as n increases engenders loss-of-precision issues

that necessitate use of far tighter convergence thresholds and drop tolerances than

would ordinarily be required in a single electronic structure calculation.8,66 In our ex-

perience, mainly with water clusters, these issues do not manifest in a significant way

until the number of fragments reaches N ≈ 30. Perhaps because supersystem calcu-

lations on large systems are required in order to notice this problem, it has largely

been overlooked in previous work on the MBE. The problem is especially acute when

the software than runs the fragment-based calculation simply reads the output file

of an electronic structure program, where quantities of interest are often truncated

in their precision.66 Especially in the presence of embedding charges, it is crucial to

read binary scratch files or checkpoint files instead, in full machine precision.66 (This

fact has been mentioned in passing elsewhere,71 but without further analysis.)

A related issue is how even to define “error” in the MBE. Our group has long

argued that the appropriate benchmark to assess the accuracy of a truncated n-body
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calculation is comparison to a supersystem calculation carried out at the same level

of theory as that used for the subsystem calculations.8,62,66,70,72,73 An alternative pro-

posal is to compare to the best available benchmarks for a given system,74,75 despite

any disparities between levels of theory and basis sets. In our view, such a comparison

makes the n-body expansion unsystematic and renders it essentially impossible to de-

cipher how much of its success arises from error cancellation as opposed to capturing

the true physics of the interactions.

A potentially more systematic and therefore more easily treatable source of error

cancelation is basis-set superposition error (BSSE), whose effects were never discussed

in the context of the MBE until recently.76,77 BSSE can cause convergence of the MBE

(with respect to n) to become erratic, because it may offset neglected many-body

induction effects.72 To address this problem, our group8,76 and others78,79 have devel-

oped many-body counterpoise (CP) corrections that are designed to approximate the

supersystem Boys-Bernardi CP correction80 (as generalized to an arbitrary number

of monomers81,82), order-by-order in the MBE. It is now clear that BSSE affects the

supersystem calculation in a very different manner than it does the various subsystem

calculations. In hindsight this is unsurprising, insofar as BSSE stems from “borrowing

thy neighbor’s basis functions” and there are simply fewer neighbors in the subsystem

calculations. In the absence of CP corrections, it is therefore unclear whether n-body

results should be compared, order-by-order, with a supersystem calculation. As such

our opinion of what constitutes an appropriate benchmark has evolved over time, and

we now suggest that the most appropriate benchmark is to compare a CP-corrected
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supersystem calculation to a CP-corrected n-body calculation, each at the same level

of theory.

The present work draws on two previous papers in this series that documented

precision problems66 and accuracy problems8 with the MBE. Here, we attempt to

bring this discussion to a close by dealing with both issues. Accuracy is assessed

in terms of CP-corrected calculations and we extend the n-body approximation as

far as required in order to obtain results of acceptable accuracy. Regarding what is

“acceptable”, Ouyang and Bettens79 note that for molecular dynamics applications

at room temperature, each atom has (3/2)kBT ≈ 0.9 kcal/mol of thermal energy,

hence it makes little sense in that context to demand that single-point energies be

orders-of-magnitude more accurate than this value. A “dynamic accuracy” criterion of

0.1×(3/2)kB×(298 K) = 0.09 kcal/mol per fragment was suggested in Ref.79, and we

adopt this as our target accuracy per monomer. This level of accuracy will ultimately

require four-body calculations, for which precision problems manifest for N & 30

unless thresholds are set tight enough to significantly slow down performance.8

To put this in perspective, a complete four-body calculation on the largest sys-

tem considered here, (H2O)37, consists of 74,518 distinct subsystems including 66,045

tetramers. At the ωB97X-V/aTZ level that is used herein to examine relative ener-

gies of cluster isomers, the use of “tight” versus “’loose” thresholds? (as defined in

Ref.8) increases the computation time for each water tetramer (368 basis functions)

by a factor of two when running on a single processor. Precision problems can be

circumvented, and the entire calculation significantly streamlined, by introduction of
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thresholds for neglecting subsystem calculations that are unlikely to contribute sig-

nificantly. This possibility, and the limits of its accuracy, is explored in the current

work.

3.2 Theory and Methods

3.2.1 Many-body expansion

The MBE expresses the total energy for a system of N fragments as

E =
N∑

I=I

EI +
N∑

I=1

∑

J<I

∆EIJ +
N∑

I=1

∑

J<I

∑

K<J

∆EIJK + · · · . (3.1)

The two- and three-body corrections are

∆EIJ = EIJ − EI − EJ (3.2a)

∆EIJK = EIJK −∆EIJ −∆EIK −∆EJK (3.2b)

− EI − EJ − EK .

An n-body approximation, which we will denote as MBE(n), truncates Eq. (3.1) at

terms involving n fragments. If taken literally, however, Eq. (3.1) involves some re-

dundant calculations because, e.g., the monomer energy EI appears in ∆EIJ , ∆EIJK ,

etc. Non-redundant formulas with appropriate combinatorial coefficients, for MBE(n)

with arbitrary n, can be found in Ref.66.

3.2.2 Counterpoise corrections

Define the interaction energy by removing the one-body contribution from the total

energy:

Eint = E −
N∑

I=I

EI . (3.3)
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The usual Boys-Bernardi CP correction for molecular dimers80 resembles the two-

body correction ∆EIJ performed in the dimer basis set. We might indicate this as

∆ECP
IJ = EIJ

IJ − EIJ
I − EIJ

J . (3.4)

Following previous literature,8,76,83 the subscripts denote real monomers (as above)

whereas the superscripts denote where the basis functions are placed. Generalizing

this to N monomers affords a generalization of the Boys-Bernardi idea,81,82 and a

CP-corrected interaction energy

ECP
int = EIJK···N

IJK···N −

N∑

I=1

EIJK···N
I . (3.5)

The quantity defined in this equation has been called the “site–site function coun-

terpoise correction”,81 but we refer to it simply as the Boys-Bernardi CP correction,

since it naturally generalizes the original dimer approach.80

The CP-corrected interaction energy in Eq. (3.5) can alternatively be expressed

as
ECP

int = EIJK···N
IJK···N −

∑

I

EI
I +

∑

I

(
EI

I − EIJK···N
I

)

= Euncorr
int + δECP

(3.6)

where the “uncorrected” interaction energy is

Euncorr
int = EIJK···N

IJK···N −
∑

I

EI
I (3.7)

and the CP correction is

δECP =
∑

I

(
EI

I − EIJK···N
I

)
. (3.8)

Equation (3.8) defines the N -body CP correction,81,82 which has sometimes been

criticized for its failure to account for “basis-set extension” effects,78,83,84 although
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the good agreement between CP calculations and the alternative (and formally more

complete) Valiron-Mayer function counterpoise corrections78,83 suggests that any ne-

glected effects are rather small.8,76 The complete Valiron-Mayer approach also rapidly

becomes intractable beyond just a few monomers. In view of this, we take Eq. (3.8)

to define the counterpoise correction, in the spirit of Boys and Bernardi.81,82 Even

this procedure, however, requires N + 1 calculations in the supersystem basis set,

for a system of N fragments. Even more calculations are required in the case of the

generalized MBE,62 for which CP corrections have also been formulated.8

To circumvent this, and in view of Eq. (3.6), we approximate the CP-corrected to-

tal energy through a standard MBE(n) calculation applied to the supersystem energy

EIJK···N
IJK···N in Eq. (3.7) in conjunction with an n-body approximation to the summand in

Eq. (3.8). We call this a many-body counterpoise (MBCP) correction,72,76 truncated

at order n, or MBCP(n) for short. Formulas for δE
MBCP(n)
I , which is the n-body ap-

proximation to the Ith summand in Eq. (3.8), were derived previously through n = 4

.72,76 The two leading terms are

δE
MBCP(2)
I = (N − 1)EI

I −
N∑

J 6=I

EIJ
I (3.9)

and
δE

MBCP(3)
I = δE

MBCP(2)
I − 1

2
(N − 2)(N − 1)EI

I

+ (N − 2)
N∑

J 6=I

EIJ
I −

N∑

J 6=I

N∑

K>J
K 6=I

EIJK
I .

(3.10)

Summing Eqs. (3.9) and/or (3.10) over all monomers I affords the MBCP(n) approx-

imation, for n = 2 or 3.
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Our original idea76 was to combine the MBE(n) approximation for the super-

system energy EIJK···N
IJK···N with the MBCP(n) approximation for the CP corrections

EIJK···N
I , for a consistent order-by-order truncation to the CP-correction interaction

energy. In practice, however, we find that the MBCP(n) corrections are quite small

for n > 2. In the present work, we therefore include only the MBCP(2) correction.

An alternative way to interpret BSSE was introduced by Valiron and Mayer83 and

later adopted by others.77–79 Within this formulation, one writes

ECP
int =

∑

IJ

∆EIJK···N
IJ +

∑

IJK

∆EIJK···N
IJK + · · · (3.11)

and then imagines that the total BSSE arises from two contributions: basis-set im-

balance error (BSIE) and basis-set extension error (BSEE). This terminology, as well

as arguments about whether BSEE is neglected by the Boys-Bernardi CP correction,

have existed for a long time,84 but in our opinion the distinction between the two

effects is ambiguous and ill-defined. A recent attempt to distinguish the two effects,

within the context of the MBE, can be found in Ref.79, where it is stated that BSIE

originates in the unbalanced comparison of n-body results, computed using subsystem

basis sets, to supersystem results computed using the supersystem basis set. BSEE,

according to this analysis, arises because subsystem calculations are stabilized by ba-

sis functions on nearby monomers. The latter “is important as these extension effects

improve the quality of the total energy or binding energy by maximizing the flexibility

of the wave function at the given basis set”.79 However, the quality of the subsystem

calculations also improves if they are performed using the supersystem basis set, so

it seems to us that BSIE and BSEE are inextricably entangled.
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With Eq. (3.11) in mind, however, Ouyang and Bettens79 introduced a CP scheme

that is formally more general than our MBCP(n) approach, and in particular conforms

more closely to the Valiron-Mayer idea.78,83 Nevertheless, our MBCP(n) approach is

recovered as a low-order approximation to their “many-ghost, many-body expansion”,

and it is found that MBCP(2) is sufficient to converge the CP correction,79 as we have

already suggested above. This provides further justification for the approximate CP

correction employed here.

3.2.3 Cost-reduction strategies

Reducing the number of subsystem calculations is crucial for obtaining good efficiency.

One “dirty secret” of fragment-based approaches is that often quite large system sizes

are required before the total computational time (measured in processor-hours) is ac-

tually less than the cost of the supersystem calculation.8,53 This is especially true when

CP corrections are introduced, as these require a very large number of additional cal-

culations.8 It is true that the wall time (or time-to-solution) of the fragment-based

calculation can be dramatically reduced via parallelization, although methods that

rely on self-consistent updating of embedding charges will suffer some reduction in

parallel scalability. Thresholds designed to eliminate unimportant subsystem calcu-

lations a priori not only reduce the cost but by significantly reducing they number

of subsystems they can also reduce finite-precision problems.
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Distance-based thresholds

We examine smooth distance-based cutoffs to discard some of the subsystems, based

on a switching function

f(x) =





1, if x < 0

1− x3(10− 15x+ 6x2), if 0 ≤ x ≤ 1

0, if x > 1

. (3.12)

Let Rmax denote the largest inter-fragment distance within a particular subsystem,

measured in the present work in terms of the fragment centers of mass. (For frag-

ments significantly larger than H2O, inter-fragment atom–atom distances are likely a

better choice for Rmax, but the choice makes little difference here.)

The cutoff procedure is characterized by two parameters: Rcut1, the distance for

the onset of threshold, and w, which indicates the width of the switching region or in

other words how quickly f(x) switches between 0 and 1. Given these two parameters,

we take

x = (Rmax −Rcut1)/w (3.13)

in Eq. (3.12). If Rmax ≥ Rcut1 + w then f(x) = 0 and the subsystem in question is

neglected. (One could imagine adopting some small but non-zero drop tolerance for

f(x), say, on the order of the integral drop tolerance, but we have not done so here

and do not expect that it would make much difference in clusters of this size.) For

subsystems with Rmax < Rcut1 + w, the energy is computed and then scaled by f(x)

for use in the MBE. Each fragment in this work consists of a single H2O molecule

and we will test various combinations of Rcut1 and w. For brevity in the discussion

that follows, we will use the notation (nr, nw) to indicate particular choices of the
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(f) (g) (h) (i)

(a) (b) (d) (e)(c)

Figure 3.1: Pictorial representations of all possible “connectivities” for trimers and
tetramers of fragments (red circles). Solid blue lines indicate inter-fragment distances
less than Rcut2, and the various cases are grouped according to how many of these
there are. Fragments not connected by blue lines are farther apart than Rcut1. Trimers
(a) and (b), and tetramers (d)–(h), are excluded by the Rcut1 threshold [Eqs. (3.12)
and (3.13)], but when we additionally employ the Rcut2 criterion only configurations
in the shaded boxes are excluded.

thresholds, where nr and nw are a pair of integers that specify the values of Rcut1 and

w, respectively, in Ångstroms.

Recent MBE calculations on alanine polypeptides have demonstrated that distance-

based screening alone may artificially exclude certain important subsystems, namely,

those characterized by a cooperative arrangement of dipole moments across length

scales longer than the cutoff distance.60 To account for this, we introduce a second

distance parameter Rcut2 < Rcut1, in the spirit of the connectivity-based analysis in

Ref.60. To understand the role of this second cutoff, consider the “connectivity dia-

grams” of trimers and tetramers that are illustrated in Fig. 3.1. In these diagrams,

we connect with a line any pair of fragments that are separated by a distance less

than Rcut2, whereas we imagine that disconnected fragments are separated by more

than Rcut1 and therefore these configurations are excluded by the Rcut1 cutoff.
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Figures 3.1(a)–(c) exhaust all of the possible topologies for trimers, and Figs. 3.1(d)–

(i) show all possibilities for tetramers. Note that configurations (c) and (i), in which

all inter-fragment distances are less than Rcut2 (and therefore less than Rcut1 as well)

are always included and are shown only for completeness. In each of the remaining

configurations there is at least one inter-fragment distance greater than Rcut1, so each

is excluded by the cutoff procedure of Eqs. (3.12) and (3.13).

Examining the trimer configurations, we wish to exclude configuration (a), which

consists of a dimer of fragments plus a well-separated monomer, while retaining con-

figuration (b), which might exhibit an energetically-important chain-of-dipoles inter-

action but is excluded by the Rcut1 cutoff procedure on the basis of its end-to-end

distance. For the tetrameric cases, the configurations in Figs. 3.1(d) and 3.1(e) con-

sist of strongly-interacting dimers or trimers plus another weakly-interacting dimer or

monomer(s). Since the strongly-interacting dimers and trimers are already included

in the two- and three-body calculations, respectively, we expect configurations (d)

and (e) to make only minor contributions at the four-body level. As such, in these

proof-of-concept calculations we will use the Rcut2 threshold to retain tetramers oth-

erwise excluded by Rcut1 only if they exhibit four or more inter-fragment distances

less than Rcut2. This excludes the cases in Figs. 3.1(d) and 3.1(e), as well as one of

the cases shown in Fig. 3.1(f). The Rcut2 threshold, introduced in Ref.60, has not

yet been implemented in a smooth way, nor will we attempt to do so now. Rather,

we merely present results with Rcut2 in order to compare the accuracy against those

obtained using the smooth Rcut1 threshold alone.
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Energy-based thresholds

For systems where the individual fragments are substantially larger than H2O, the

distance-based thresholding discussed above may become less effective in reducing

the number of subsystem calculations. Ouyang and Bettens60 recently described an

elegant, energy-based thresholding procedure in which classical multipole interactions

are used as a priori estimates of the magnitude of higher-order terms in the MBE.

(The monomer multipoles are available from the one-body calculations.) Trimers with

classical interaction energies smaller than 0.25 kJ/mol, and tetramers with classical

interactions < 0.1 kJ/mol, were excluded from quantum calculations at the MBE(3)

and MBE(4) levels, respectively. This procedure is quite new and has yet to be

implemented in our code, nor has it been implemented anywhere in conjunction with

smoothing functions. Nevertheless, we can estimate its effectiveness after-the-fact by

first computing all subsystem energies at the quantum level then using those results

to discard certain subsystems according to the aforementioned energetic criteria.

Multi-level approaches

As compared to simply dropping well-separated subsystems outright, a more sophis-

ticated approach might treat these small contributions to the MBE at a lower level of

theory. We test two different approaches for doing so, taking the lower-level theory

to be Hartree-Fock (HF) theory in either case. In the first scheme, we smoothly turn

on a HF calculation using the switching function 1 − f(x), as the higher-level DFT

method is turned off using the function f(x) [see Eq. (3.12)]. For any particular
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subsystem, the energy formula that is used is

Esubsys = f(x)EDFT
subsys + [1− f(x)]EHF

subsys . (3.14)

For subsystems that exist in the switching region, meaning that Rcut1 ≤ Rmax ≤

Rcut1 + w, it is necessary to perform both the HF and the DFT calculation.

The second approach is an ONIOM-type formalism,85 inspired by the fragment-

based methods introduced by Raghavachari and co-workers,52,55,56,86,87 who use a su-

persystem calculation performed at an inexpensive level of theory in order to capture

long-range induction effects that would otherwise be omitted in a low-order n-body

calculation. This is an alternative way to account for the cooperative, long-range

arrangements of fragment dipole moments. The subsystem energy formula used in

this case is

Esubsys =
(
EDFT

subsys − EHF
subsys

)
f(x) + EHF

supersys . (3.15)

Considering all subsystems, the terms EDFT
subsysf(x) together constitute an n-body DFT

calculation with smooth cutoffs, and subtracting EHF
subsysf(x) prevents double-counting

of the low-level calculations on the “model system” (to use ONIOM terminology85)

in the presence of a low-level calculation EHF
supersys on the “real system”. Note that

the supersystem term in Eq. (3.15) is the same for each subsystem, so need only be

computed once.
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3.3 Results and Discussion

3.3.1 Computational details

In the first part of this work, we examine how distance-based thresholds affect the ac-

curacy of interaction energies computed for a sequence of water clusters, (H2O)N=6−37.

These structures were originally obtained from Ref.88, where they were put forward

as putative global minima (at each cluster size) on the TIP4P potential surface. They

are used here without further optimization.

For these tests we use the affordable B3LYP/aug-cc-pVDZ (B3LYP/aTZ) level of

theory, with an SCF convergence threshold τSCF = 10−7 a.u. and a drop tolerance

τints = 10−14 a.u. These are “tight” convergence thresholds, as defined in previous

work,8 whereas looser thresholds may lead to precision problems in the MBE.66 Both

thresholds, especially τints, are significantly tighter than the default settings in com-

mon electronic structure programs.

In the second part of this work, we examine relative energies of four different

structural motifs of (H2O)20. These structures have also been considered in previous

work on the MBE,72 and are taken from the extensive basin-hopping Monte Carlo

search in Ref.89. For these calculations we employ a higher-quality level of theory,

namely ωB97X-V90/aug-cc-pVTZ (ωB97X-V/aTZ), with τSCF and τints as above.

The SG-1 quadrature grid91 is used for all calculations, as higher-quality grids

have been examined and found to make little difference in the context of the MBE.66

All calculations were performed using Q-Chem, v. 4.2.92
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3.3.2 Interaction energies

Except where otherwise specified, in what follows we define the error in an n-body

approximation to the interaction energy according to

error = Eint(n-body)− Eint(supersystem) , (3.16)

where one or both energies may be CP corrected, depending on context. For to-

tal interaction energies will report errors in size-intensive, per-monomer units, but

Eq. (3.16) fixes the convention for the sign of the errors. Errors will be compared to the

dynamic accuracy threshold discussed above,79 i.e., 10% of (3/2)kBT per monomer

at T = 298 K, or in other words 0.09 kcal/mol/monomer.

Data comparing the full CP correction at the B3LYP/aug-cc-pVDZ level versus

its MPCP(2) approximation are shown for (H2O)N=6−37 in Table B.1 of the Supple-

mentary Material. Differences between δECP and its MBCP(2) approximation are

smaller than 0.07 kcal/mol/monomer across the whole data set, with an average er-

ror of 0.04 kcal/mol/monomer. This is consistent with other results demonstrating

that the higher-order MBCP(n) corrections are small.79 As such, we will limit the

CP corrections to MBCP(2) in what follows, despite our original intention of using a

consistent MBE(n)+MBCP(n) approximation to ECP
int .

Role of CP correction

In Figs. 3.2 and 3.3 we examine size-dependent errors in MBE(3) and MBE(4) re-

sults and their MBCP(2)-corrected counterparts, in two different ways. In Fig. 3.2,
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Figure 3.2: Signed errors per monomer in three- and four-body total interaction
energies for clusters (H2O)6−37, at the B3LYP/aDZ level of theory. The n-body
calculations labeled “no CP” are computed without MBCP corrections and com-
pared to uncorrected supersystem energies, whereas those labeled “with CP” include
MBCP(2) corrections and are compared to supersystem energies that include the full
Boys-Bernardi CP correction.
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Figure 3.3: Signed errors per monomer in three- and four-body total interaction
energies for clusters (H2O)6−37, at the B3LYP/aDZ level of theory. All of the n-body
calculations, whether CP-corrected or not, are compared to supersystem calculations
that include the full Boys-Bernardi CP correction.
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the uncorrected MBE(n) results are compared to uncorrected supersystem interac-

tion energies (i.e., none of the calculations includes any CP correction) whereas the

MBCP(2)+MBE(n) results are compared to supersystem interaction energies that

include the full Boys-Bernardi CP correction, i.e., δECP in Eq. (3.8). Figure 3.3 com-

pares both MBE(n) and MBCP(2)+MBE(n) results to supersystem energies that

include δECP.

At the three-body level, errors are somewhat smaller when we ignore the issue

of BSSE altogether, but grow larger when we attempt to account for it, whereas

the opposite is true at the four-body level. These observations make sense in light

of two facts: first, BSSE is always overstabilizing; and second, for water clusters

the non-pairwise terms often constitute stabilizing many-body induction effects. As

such, the uncorrected MBE(3) results benefit from some error cancellation wherein

stabilizing four-body terms are partially offset by BSSE, as observed in our previous

work exploring extrapolations to the basis-set limit.72 Note that the error in the

CP-corrected interaction energy is

error(CP) = ECP
int −

(
EIJK···N

IJK···N −
∑

I

EIJK···N
I

)
(3.17)

whereas the error in the uncorrected case is

error(uncorr) = Euncorr
int −

(
EIJK···N

IJK···N −
∑

I

EI
I

)
. (3.18)

Adding δECP as defined in Eq. (3.8) to Eq. (3.17) results in precisely the right side

of Eq. (3.18), which shows that the two definitions of error in Eqs. (3.17) and (3.18)

are simply offset by the magnitude of the CP correction.
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Examining Fig. 3.3, where all of the supersystem calculations include the full

Boys-Bernardi correction and should therefore represent our best (or at least, most

complete) benchmarks, we see that only the MBCP(2)-corrected n-body results are

acceptable, and lie essentially within our target accuracy of 0.09 kcal/mol/monomer

for both n = 3 and n = 4. Uncorrected MBE(3) results do not, and give rise to an

error of ≈ −0.6 kcal/mol/monomer that is roughly constant as a function of cluster

size. Errors in uncorrected MBE(4) results actually become larger as cluster size

increases.

Effects of cutoffs

To obtain a decent guess as to what might constitute a reasonable distance cutoff

Rcut1, we examine the convergence of the total interaction energies at the MBE(4)

level for (H2O)6−37, in Fig. 3.4. These particular data do not apply any smoothing

function but instead use a sharp drop criterion as a function of distance. A 6 Å

cutoff recovers 97% of the total interaction energies, so in the interest of erring on

the conservative side, we take this as our minimum value of Rcut1, and also examine

Rcut1 = 7 and 8 Å along with w = 1, 2, and 3 Å. [In the (nr, nw) notation introduced

above, this means nr = 6, 7, or 8 and nw = 1, 2, or 3.] Errors as a function of cluster

size are plotted in Fig. 3.5, for both three- and four-body expansions. All calculations

are CP-corrected.

It is obvious that neither MBE(3) nor MBE(4) has converged to the target ac-

curacy until the cutoffs are pushed to (nr, nw) = (8, 1), although (7, 2) comes close.

Note that it is not easy to draw a direct connection between the choice of (nr, nw) and
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Figure 3.4: Fraction of the cumulative interaction energy for water clusters (B3LYP/
aDZ level) that is recovered by a four-body approximation, as a function of a sharp
distance cutoff for the subsystem calculations. Interaction energies are not CP cor-
rected, and the data point at each distance represents an average over cluster sizes
from N = 6–37.

the number of subsystems that will be included in the calculation. For instance, in

the present examples the (6, 3), (7, 2), and (8, 1) combinations involve the same sub-

systems but different values of f(x), so the accuracy of each scheme is a bit different.

Nevertheless, there is a clear trend in Fig. 3.5 that errors are reduced as we progress

from (6,3) → (7,2) → (8,1) thresholding, leading us to conclude that subsystems with

inter-fragment distances in the range of 6–9 Å are important in providing long-range

stabilization.

Notice from Fig. 3.5 that errors are larger for the cluster sizes N = 31, 32, and 34–

37, anomalies that may result from a qualitative structural transition that occurs be-

tween N = 30 and 31, where the structures transition to large cages with cubic struc-

tures rather than pentaprismic structures.93 (Recall that our cluster structures are

putative global minima at each value of N .88) In view of recent work by Ouyang and
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Figure 3.5: Signed errors per monomer in CP-corrected (a) three-body and (b) four-
body approximations to the total interaction energy for a sequence of water clusters,
employing different values for the switching function parameters (nr, nw). Subsystem
calculations include the MBCP(2) counterpoise correction [Eq. (3.9)] but are com-
pared to supersystem results including the full counterpoise correction [Eq. (3.5)].
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Table 3.1: Error statistics (maximum error and mean unsigned errors) for CP-
corrected MBE(4) approximations to ECP

int , using various thresholds (nr, nw), in con-
junction with the Rcut2 threshold, Rcut2 < Rcut1. Statistics include all (H2O)N clus-
ters, N = 6–37.

Rcut2 error (kcal/mol/monomer)
(Å) (6,1) (7,1) (8,1)

max MUE max MUE max MUE
4 0.64 0.17 0.31 0.08 0.16 0.06
5 0.54 0.12 0.30 0.09 0.16 0.06
6 0.40 0.10 0.24 0.08 0.17 0.06
7 — — 0.17 0.07 0.15 0.06
8 — — — — 0.14 0.06

Bettens aimed at identifying important many-body interactions in polypeptides,60 it

may be the case that the sort of cooperative, chain-like interactions amongst fragment

dipole moments that were identified in Ref.60 are more important for the qualitatively-

different structures atN > 30 than they are for the slightly smallerN ≤ 30 structures.

To investigate this possibility, we introduce the second threshold parameter Rcut2, as

discussed in Section 3.2.3. Error statistics employing both Rcut1 and Rcut2 are sum-

marized in Table 3.1. For the (nr, nw) = (7, 1) and (8, 1) schemes, errors converge by

Rcut2 = 7 Å, and they converge to values not worse than what we encountered prior

to introducing Rcut2 (see Table 3.1).

Figure 3.6 plots the signed errors for three- and four-body approximations using

the (nr, nw) = (6, 1), (7,1), and (8,1) schemes but this time with Rcut2 = 7 Å. At

the three-body level, the errors are reduced for the (6,1) and (7,1) schemes as com-

pared to results where the Rcut2 threshold is absent. At the four-body level, (7,1)
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Figure 3.6: Signed errors per monomer for three- and four-body approximations to
the total interaction energies, in conjunction with MBCP(2) counterpoise corrections,
for (H2O)N clusters. Various (nr, nw) combinations are used, with Rcut2 = 7 Å in each
case.

–0.4

–0.3

–0.2

–0.1

 0

 0.1

 0.2

 5  10  15  20  25  30  35  40

number of monomers

3B, dist. cutoff

4B, dist. cutoff

3B, energy cutoff

4B, energy cutoff

3B, no cutoff

4B, no cutoffs
ig

n
e
d
 e

rr
o
r 

p
e
r 

m
o
n
o
m

e
r 

  
  

  
  

  
  

(k
c
a
l/
m

o
l)

Figure 3.7: Signed errors per monomer in three- and four-body approximations to
the total interaction for (H2O)6−37, including MBCP(2) corrections. The “distance
cutoff” results use the thresholds (nr, nw) = (7, 1) along with Rcut2 = 7 Å. The
“energy cutoff” results do not employ any distance-based thresholding, but discard
all trimers whose interaction energies are < 0.25 kJ/mol and all tetramers whose
interaction energies are < 0.10 kJ/mol.
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results with Rcut2 = 7 Å are close to the target accuracy of 0.09 kcal/mol/monomer.

Therefore, in Fig. 3.7 we examine (7,1) results with Rcut2 = 7 Å more closely, plot-

ting them alongside results obtained with no cutoffs whatsoever, as a reference, and

also results in which energy rather than distance cutoffs are employed. Following

the recommendation in Ref.60, for the energy-based scheme we discard all trimers

whose interaction energies are < 0.25 kJ/mol and all tetramers whose interaction en-

ergies are < 0.10 kJ/mol. (The energy-based scheme retains all dimers, whereas the

distance-based scheme discards sufficiently distant dimers.) Results demonstrate that

both cutoff strategies faithfully track the reference calculations, at both the three-

and four-body levels. Absolute errors, with respect to a counterpoise-corrected su-

persystem calculation, are not much larger than 0.2 kcal/mol/monomer for any of

the clusters examined here.

Energy cutoffs

Previous results of energy cutoffs is reverse-engineered meaning that we’ve already

calculated all possible interactions. Realistically, we need a model to predict the sig-

nificant interactions. Therefore, we adopt effect fragment potential94 (EFP) which

is a computationally inexpensive of modeling interaction energies in non-bonded sys-

tems. To understand why the energy thresholding works, we examine four different

clusters in Figure 3.8. They share the same trend that when we gradually discard

non-additive interactions with small contributions, further stabilization in interaction

energies is observed and the dynamical accuracy can be obtained except hydrofluoric

acid clusters where higher order interactions play an important role in stabilization.
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Figure 3.8: Errors in interaction energies with respect to supersystem benchmark at
the level of MP2/aug-cc-pVDZ for selected noncovalent clusters.

The investigation of the correlation plots for the EFP and QM calculations in Fig-

ure 3.9 shows that the EFP is a good model to predict interaction energies. Further

analysis of sum of three-body interactions, Figure 3.10, indicates that further stabi-

lization occurs when small contributions are neglected.
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Figure 3.9: Correlation plots of three body interactions calculated by MP2 and the
EFP.
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Figure 3.10: Sum of three body interactions using different cutoffs for selected water
clusters. The second y-axis represent the number of fragment required after screening.
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Figure 3.11: Examples of the four families of (H2O)20 isomers.

3.3.3 Relative energies

We next examine three- and four-body expansions as applied to predicting relative

energies of (H2O)20 isomers. Cluster geometries, consisting of twenty low-energy

isomers each from the four families of isomers on the (H2O)20 potential surface, were

taken from Ref.89 without further optimization. These structures have been used by

us in previous work,8,72 and examples of the four classes of isomers are depicted in

Fig. 3.11. Benchmark energies were computed at the CP-corrected ωB97X-V/aTZ

level, and error with respect to these benchmarks is defined as

error = En-body
rel − Esupersys

rel . (3.19)
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Figure 3.12: Signed errors for relative energies of (H2O)20 cluster isomers, employ-
ing MBE(4)+MBCP(2) and various (nr, nw) thresholds. Energies were computed at
ωB97X-V/aTZ level. Each panel presents data for a different family of isomers (see
Fig. 3.11), but all 80 isomers are plotted on a common energy scale even thought the
vertical axes differ between panels.

Both energies in Eq. (3.19) are CP-corrected, using MBCP(2) in the n-body case

and a full Boys-Bernardi correction in the supersystem case. Our target accuracy for

these calculations is “chemical accuracy” of 1 kcal/mol with respect to a supersystem

calculation performed using the same density functional and basis set.

Errors in the relative isomer energies are plotted in Fig. 3.12, using (nr, nw) cutoffs

but not the Rcut2 threshold, as the latter only becomes important in larger clusters.

To achieve the target accuracy of 1 kcal/mol requires the use of our most conservative

thresholding strategy, (nr, nw) = (8, 1), in which case there are only three isomers out
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of 80 where the error exceeds 1 kcal/mol. A detailed examination (see Table B.2 in

the Supplementary Material) reveals that, within the isomers belonging to a given

family, these three outliers exhibit the largest stabilization energies arising from sub-

clusters separated by 8–9 Å. The contrast is especially apparent for isomers 10 and 18

of the edge-sharing pentagonal prisms motif, where the 8–9 Å sub-clusters contribute

−4.42 and −4.11 kcal/mol, respectively, to the total interaction energy, whereas this

value does not exceed −0.45 kcal/mol for any other isomer in this family, and in a

few cases it is actually repulsive. (The difference lies primarily in the arrangement of

monomer dipole moments, which in the case of isomers 10 and 18 makes all of the

two-body interactions attractive, whereas for other isomers about half of the two-

body interactions in the 8–9 Å range are repulsive.) The contrast is not quite as

stark in the case of fused-cube isomer 14, although the 8–9 Å interactions are still

≈ 1 kcal/mol more stabilizing than for any of the other fused-cube isomers. For the

other two families of isomers there are no such outliers, and as such the results with

(8,1) thresholds are more consistent in these cases.

These (H2O)20 clusters are too small to benefit from the alternative Rcut2 thresh-

old introduced above, so to improve the results we turn to two other ad hoc strategies

described in Section 3.2.3. The first approach gradually turns on a HF/aTZ calcu-

lation at long range, as the switching function is turning off the DFT calculation;

see Eq. (3.14). Results in Fig. 3.13 using (8,1) thresholds show that the relative en-

ergies are more consistent across isomers than when the long-range interactions are

simply neglected, although for the fused-cube isomers the errors are ≈ 0.5 kcal/mol
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Figure 3.13: Signed errors for relative energies of (H2O)20 cluster isomers, employing
MBE(4)+MBCP(2) and various (nr, nw) thresholding schemes. Energies up to the
Rcut1 cutoff were computed at ωB97X-V/aTZ level and supplemented with HF/aTZ
for the long-range interactions, according to Eq. (3.14). Each panel presents data
for a different family of isomers (see Fig. 3.11), but all 80 isomers are plotted on a
common energy scale even thought the vertical axes differ between panels.
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Figure 3.14: Signed errors for relative energies of (H2O)20 cluster isomers, employing
MBE(4)+MBCP(2) and various (nr, nw) thresholds. Energies up to the Rcut1 cutoff
were computed at ωB97X-V/aTZ level and corrected using a HF/aTZ calculation
for the entire supersystem, using the ONIOM-style correction in Eq. (3.15). Each
panel presents data for a different family of isomers (see Fig. 3.11), but all 80 isomers
are plotted on a common energy scale even thought the vertical axes differ between
panels.

greater, even while the aforementioned outlier is eliminated. Nevertheless, this hybrid

scheme comes close to achieving the desired accuracy of 1 kcal/mol, at least with (8,1)

thresholds For (7,1) thresholds the errors remain fairly consistent across isomers but

are increased to ∼1.5 kcal/mol. Errors for the (6,1) scheme are clearly unacceptable.

As an alternative to low-level calculations of just the long-range subsystems, we

also examine an ONIOM-type approach [Eq. (3.15)] using a DFT-based MBE as

the high-level calculation (ωB97X-V/aTZ) and HF/aTZ as a low-level supersystem
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calculation. Results are shown in Fig. 3.14 and are extremely accurate in comparison

to either of the previous two approaches. (Note the much smaller energy scale in

Fig. 3.14 versus either of Figs. 3.12 or 3.13.) In this case, errors in relative energies

do not exceed 0.5 kcal/mol, even when (6,1) thresholding is employed. This eliminates

a great many subsystems as compared to (8,1) thresholds. For example, at the (6,1)

level we must retain 144, 536, and 1,160 subsystems for n = 2, 3, and 4, respectively,

as compared to 190, 1,140, and 4,845 subsystems when no thresholds are employed.

For the (8,1) scheme, very few subsystems can be neglected in (H2O)20. Granted,

this reduction comes at the expense of introducing a single supersystem calculation

at the HF level, though as the high-level method becomes even more expensive—a

correlated wave function calculation, for example, rather than DFT—the cost of the

low-level supersystem calculation may not be so egregious. As such, this composite

approach may have a useful domain of applicability, even if it becomes intractable as

N → ∞. (We return to this issue, with timings, in Section 3.3.4.)

Finally, we revisit the relative energies of the (H2O)20 isomers examined in Ref.72.

New data at the ωB97X-V/aTZ level are plotted in Fig. 3.15, using an (8,1) cutoff

scheme. Although δECP is around 2.80 kcal/mol for the edge-sharing-pentagonal-

prism, face-sharing-pentagonal-prism, and fused-cube isomers, this sizable correction

is about the same for all isomers and the CP-corrected relative energies for these

three families cannot be distinguished from the uncorrected energies. On the other

hand, δECP ≈ 2.55 kcal/mol for dodecahedral isomers, so this correction matters at

the level of ≈ 0.25 kcal/mol when trying to establish the energies of the dodecahedra
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Figure 3.15: Relative energies of twenty isomers from each of four motifs of (H2O)20,
computed at the ωB97X-V/aTZ level using the (8,1) cutoff scheme. Except for the
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Table 3.2: Number of subsystem required for an MBE(4) calculation on the (H2O)37
cluster considered here, using the (7,1) thresholding scheme for Rcut1 with and without
Rcut2 = 7 Å. The number of subsystems required for energy-based thresholding (Ecut)
is also shown.

subsystem full Rcut1
Rcut1+ Ecut

a

Rcut2

monomers 37 37 37 37
dimers 666 504 504 666
trimers 7,770 3,751 5,141 908
tetramers 66,045 17,856 38,278 999
total 74,518 22,310 43,923 2,573
aThe energy-based scheme does not cull

monomers or dimers

relative to those of the other isomers. We observed the same phenomenon at the MP2

level in previous work,72 that CP correction matters only for predicting the energies

of the dodecahedral isomers relative to those of the other three families. (It is also

true that δECP was a bit larger than 1 kcal/mol in those previous calculations,72

consistent with the observation that BSSE is typically larger in post-Hartree–Fock

calculations as compared to DFT calculations.)

3.3.4 Computational cost

Our analysis suggests that fragments separated by 6–9 Å are indispensable in obtain-

ing accurate total interaction energies. For distance-based thresholding, this places a

fairly strong limit on the number of subsystems that can be discarded while maintain-

ing faithful accuracy with respect to the supersystem calculation. For example, the

number of subsystems that must be retained for (H2O)37, using (7,1) thresholds with
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or without Rcut2 = 7 Å, are listed in Table 3.2. The reduction is quite dramatic when

Rcut2 is not considered, but only moderate when it is. Similar trends are reflected in

Fig. 3.16, which plots the fraction of the subsystems that are retained in the MBE(3)

and MBE(4) approximations using various cutoffs, where the data are averaged over

all water clusters (H2O)6−37. For MBE(4) with (7, 1) thresholds, which was sufficient

to obtain high-accuracy interaction energies for clusters with N ≤ 30, more than 60%

of the subsystems can be discarded, although this fraction drops to about 25% upon

inclusion of the Rcut2 = 7 Å criterion that was necessary in larger clusters. Note that

the fraction of subsystems that can be discarded will increase as system size grows.

The energy-based cutoff scheme is far more successful, essentially by construction,

and eliminates 96.5% of the subsystem calculations as compared to an MBE(4) cal-

culation with no cutoffs whatsoever. As compared to the (7,1) distance-based cutoff

scheme, the energy-based scheme requires only 11.5% as many sub-cluster calcula-

tions. At present, our implementation of this approach is “cheating”, given that we

have computed all of the sub-cluster energies a priori at the QM level and then thrown

out the ones with sufficiently small interaction energies, a posteriori, but this suffices

to demonstrate the promise of the energy-based approach. In Ref.60, the energy-

based scheme was introduced by Ouyang and Bettens based on classical multipole

approximations to the sub-cluster energies, and it remains to implement a proper

energy-based thresholding scheme using smooth cutoffs. Such efforts are underway

in our group.

Actual timing data for a supersystem and various MBE(4) calculations on (H2O)37,
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Table 3.3: Timing data for MBE(4) calculations of (H2O)37 (without CP corrections)
at the B3LYP/aDZ level using the (7,1) thresholding scheme for Rcut1 with and
without Rcut2 = 7 Å. These are the same calculations as used to count the number of
subsystems in Table 3.2. Wall times reflect the cost to run on a single 28-core node,?

so except for the supersystem calculation the wall time should decrease linearly with
the number of nodes.

Method time (hours)
CPU wall

MBE(4), no cutoffs 1,601.7 58.4
MBE(4), Rcut1 496.3 18.1
MBE(4), Rcut1 +Rcut2 951.4 34.6
MBE(4), Ecut 252.1 9.4
supersystem 15.4 0.9

at the B3LYP/aDZ level and without CP corrections, are presented in Table 3.3.

These calculations reflect the subsystem counts that appear in Table 3.2. All cal-

culations were threaded across 28 processors within a single node, and we note that

the ratio of CPU time to wall time is ≈ 27 for each of the MBE(4) calculations,

indicating near-perfect parallel scalability across a single node. (The parallel speedup

is only about 17× for the supersystem calculation.) Note also that the wall times

reported in Table 3.3 for the MBE(4) calculations reflect what would be required if

only a single node were used. As such, the time-to-solution should decrease linearly

as the number of nodes is increased, up to a very large number of nodes given the

very large number of subsystems. At the same time, it is worth mentioning that for

this particular calculation where the supersystem includes 1,517 basis functions, ten

times as many processors are required to make the MBE(4) wall time competitive

with that of the supersystem calculation, even with our most aggressive thresholding
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Figure 3.16: Fraction of subsystem calculations required for various MBE(n) ap-
proximations and thresholding schemes, averaged over (H2O)N=6−37. Note that any
(nr, nw) combination with the same value of nr + nw results in the same subsystems,
so we label the cutoffs in terms of Rcut1 + w.

scheme.

Lastly, one might object to our use of a supersystem HF calculation in the

ONIOM-style procedure as this destroys the linear-scaling nature of the MBE. It

bears note, however, that the prefactor on the O(N) scaling of MBE(n) is extremely

large unless the number of processors available amounts to a significant fraction of

the number of subsystems. Batches of processors numbering in the thousands or tens

of thousands may be unavailable on commodity clusters, and where they are avail-

able at supercomputer centers the queue times may be quite long for such requests.

Furthermore, Raghavachari and co-workers have shown that there is a useful mid-size

regime where a low-level supersystem remains tractable but a high-level calculation

would not be. For systems in this size range, the combination of high-level fragment
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Table 3.4: Timing data (in hours) for (H2O)20, edge-sharing pentagonal prism isomer
10, with all calculations multithreaded across a single 28-core node.? For the short-
range DFT + long-range HF method of Eq. (3.14), the total time is the sum of the
two MBE(4) timings (HF + DFT), whereas the ONIOM-style method in Eq. (3.15)
also includes the supersystem HF time.

Method (6,1) (7,1) no thresholds
CPU wall CPU wall CPU wall

MBE(4), HFa 280.4 12.4 630.7 27.2 738.4 35.4
MBE(4), DFTb 424.6 17.4 970.1 39.0 1291.5 51.5
supersystem, HFa — — — — 39.0 2.0
aHartree-Fock/aTZ
bωB97X-V/aTZ

calculation with a low-level supersystem calculation can afford useful results.52,55,56,87

To put this in perspective, Table 3.4 shows timing data for calculations one one

isomer of (H2O)20 using a variety of thresholds, and also lists the time required for a

HF/aTZ supersystem calculation. As above, all calculations are multithreaded across

all 28 cores of one node.? As in the (H2O)37 example, wall times for the MBE(4) calcu-

lations should decrease linearly with the number of nodes. The supersystem HF/aTZ

calculation takes 2.0 hours on a single node, as compared to 17.4 hours for a MBE(4)

calculation at the ωB97X-V/aTZ level, even with relatively loose (6,1) thresholds,

which afford acceptable accuracy within the ONIOM-style paradigm. Thus, the lower-

level supersystem calculation is cheaper (in terms of wall time) than the higher-level

MBE(4) calculation until the latter is run on 9 nodes, or 252 processors. The latter

is not an outrageous number, but shows that for calculations of this size (1,840 basis

functions), the supersystem calculation need not be an overwhelming bottleneck.
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3.4 Conclusion

We have demonstrated the performance of distance-based, connectivity-based, and

energy-based cutoffs in the context of the many-body expansion, for total interaction

energies of water clusters (H2O)6−37 and for relative energies of many different isomers

of (H2O)20. To achieve an accuracy better than 0.1 kcal/mol/monomer (i.e., 10% of

kBT at T = 300 K) in the total interaction energy, without simply relying on error

cancellation, requires a four-body expansion with counterpoise corrections, although

the latter can be approximated at the two-body level. This alone is a significant

conclusion, given the paucity of fragment-based calculations that include four-body

terms, or the even smaller number that include counterpose corrections. However,

only fairly conservative distance-based thresholds suffice to achieve this level of accu-

racy, resulting in only about a 30% reduction in the number of subsystem calculations

required.

Nevertheless, this work demonstrates that routine four-body calculations are fea-

sible, and also accurate, without resort to charge embedding that both hinders the

parallelism and also complicates the formulation of analytic energy derivatives. We

document significant decreases in both the total CPU time and the time-to-solution

(wall time), relative to supersystem calculations, using as few as 28 processors, with

a method that is essentially perfectly scalable due to the lack of any self-consistent

embedding charges. This approach is stable even in large, augmented basis sets such

as aug-cc-pVTZ, for which some fragment-based methods that employ embedding

can experience problems.95,96 Preliminary results using an energy-based thresholding
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scheme suggest that this approach may achieve a far more dramatic reduction in the

number of calculations, if the subsystem energies can be estimated a priori by means

of classical multipole approximations.60
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CHAPTER 4

Accuracy of finite-difference harmonic frequencies

in density functional theory

In this chapter, we jump few steps ahead to pave the way for the GMBE energy

responses. As analytical gradient is not always available, we test the robustness of

finite-difference approach here. Analytic Hessians are often viewed as essential for the

calculation of accurate harmonic frequencies, but the implementation of analytic sec-

ond derivatives is non-trivial and solution of the requisite coupled-perturbed equations

engenders a sizable memory footprint for large systems, given that these equations

are not required for energy and gradient calculations in density functional theory.

Here, we benchmark the alternative approach to harmonic frequencies based on finite

differences of analytic first derivatives, a procedure that is amenable to large-scale

parallelization. Not only for absolute frequencies but also for isotopic and conformer-

dependent frequency shifts in flexible molecules, we find that the finite-difference

approach exhibits mean errors < 0.1 cm−1 as compared to results based on an ana-

lytic Hessian. For very small frequencies corresponding to non-bonded vibrations in

non-covalent complexes (for which the harmonic approximation is questionable any-

way), the finite-difference error can be larger, but even in these cases the errors can
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be reduced below 0.1 cm−1 by judicious choice of the displacement step size and a

higher-order finite-difference approach. The surprising accuracy and robustness of

the finite-difference results suggests that availability of the analytic Hessian is not so

important in today’s era of commodity processors that are readily available in large

numbers.

4.1 Introduction

In quantum chemistry, analysis of harmonic vibrational frequencies provides impor-

tant information about the stability of structures located via geometry optimization

and serves as a first point of contact with vibrational spectroscopy. The conventional

wisdom has long held that the “proper” (and most accurate) way to compute har-

monic frequencies is to derive and implement analytic second derivatives of the energy

with respect to displacements of the nuclei, i.e., the analytic Hessian. This exercise

is non-trivial, however, even at the level of density functional theory (DFT), to which

we limit the following discussion. Calculation of the analytic Hessian requires sec-

ond functional derivatives δ2Exc/δρ
2 whereas energy and gradient calculations require

only first derivatives, δExc/δρ. Solution of so-called coupled-perturbed equations is

also required,97 engendering a memory footprint of O(N2
basisNatoms). Although this

footprint can be split into segments across batches of atoms,98 reducing the memory

requirement by a factor ofNatoms/Nsegments, two-electron integrals must be recomputed

for each segment. Derivation and implementation of analytic Hessians for correlated

wave function methods is even more involved.
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The finite-difference (FD) approach, in contrast, is simple and parallelizes triv-

ially, with different displacements performed on different processors and without the

need (at the DFT level) to solve memory-intensive coupled-perturbed equations. This

is potentially important in situations where a large number of processors are available

but come with severe limits on wall time, a configuration that is often encountered at

supercomputer centers. In addition, to the best of our knowledge the analytic Hessian

of the VV10 non-local correlation functional99 has yet to be implemented in any quan-

tum chemistry software, meaning that analytic Hessians are unavailable for several

very promising new functionals such as ωB97X-V,90 B97M-V,100 and ωB97M-V.101

Historically, FD results have been viewed as inferior in quality to analytic Hessian

results, and in some quantum chemistry applications this may indeed be the case. In

this study, we set out to quantify the extent to which the FD approach can be trusted

for harmonic vibrational frequencies computed using DFT. Not only are the absolute

vibrational frequencies of interest, but also isotope- and conformer-dependent fre-

quency shifts, as these are often the relevant observables in experimental vibrational

spectroscopy.

4.2 Computational Details

Calculations were performed using the B3LYP, B3LYP-D3,102 and ωB97X-D func-

tionals,103,104 as indicated below, for which analytic Hessians are available for com-

parison to FD results. The SG-1 quadrature grid91 was used for all calculations.

Geometries were optimized subject to convergence thresholds (in atomic units) of
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1.0× 10−6, 1.2× 10−3, and 3.0× 10−4 on the stepwise energy difference, the stepwise

atomic displacement, and maximum component of the gradient, respectively. FD

calculations were performed using a home-built driver code, Fragme∩t, originally

developed for fragment-based quantum chemistry calculations,8,53,62,66,73 but which

is readily adapted to the present purpose. The Fragme∩t code is currently inter-

faced with several quantum chemistry programs including Q-Chem,92 gamess,105,

Psi4,106 and NWChem;107 Q-Chem is used for all of the electronic structure calcu-

lations presented here.

Unless stated otherwise, the FD calculations presented herein use the traditional

three-point stencil,

f ′′(x0) =
f ′(x0 + h)− f ′(x0 − h)

2h
+O(h2) , (4.1)

with a step size h = 0.001 Å. Here, f ′(x) = ∂E/∂x represents the analytic energy

gradient. For non-bonded modes, we also explore the use of a five-point stencil,

f ′′(x0) =
1

12h

[
−f ′(x0 + 2h) + 8f ′(x0 + h)

− 8f ′(x0 − h) + f ′(x0 − 2h)
]
+O(h4) .

(4.2)

4.3 Numerical Results

Benchmark Data Sets

We first ask the simple question of how well the FD approach reproduces the vibra-

tional frequencies themselves. We examine this question first using the F38 database

of small-molecule vibrational frequencies,108 which was designed to include a broad
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range of vibrational frequencies for small molecules. Individual FD frequencies in Ta-

ble 4.1, computed at two different levels of theory, exhibit excellent agreement with

analytical frequencies, with mean unsigned errors (MUEs) of only 0.01 cm−1 and a

maximum error of 0.03 cm−1. Statistical results shown in Fig. 4.1 demonstrate that

similar accuracy is obtained in various basis sets and at various levels of theory, with

nearly all of the errors being < 0.1 cm−1.

We also examine six of the large non-covalent complexes in the L7 data set,2 whose

structures are shown in Fig. 4.2 and which are bound primarily by dispersion. (Co-

ordinates for the optimized structures are provided in the Supporting Information.)

For such complexes, we expect low-frequency vibrations along intermolecular coordi-

nates, which might be problematic for the FD approach. We compute FD frequencies

using the B3LYP/6-311G** and B3LYP-D3/6-31+G* levels of theory, with overall

error statistics for each complex listed in Table 4.2. Although the MUEs in the FD

frequencies, when averaged over all vibrational modes, are small (1–2 cm−1), such

averaging hides the larger errors in the low-frequency modes. Maximum errors at the

B3LYP-D3/6-31+G* level range up to 32 cm−1 for the C3A and C3GC complexes,

corresponding in both cases to a wobbling mode of circumcoronene whose frequency

is ν = 913 cm−1 (C3A) and ν = 1078 cm−1 (G3GC). The distribution of FD errors

for two of these complexes can be found in the Supporting Information.

The frequencies quoted above are not extremely low, especially for complexes hav-

ing numerous frequencies below 100 cm−1, and indeed we obtained very accurate FD

results for frequencies on the order of ∼1000 cm−1 in the F38 data set. Therefore
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Table 4.1: Analytical frequencies and errors (∆FD) in the FD result, in cm−1, for the
F38 data set.

Molecule
B3LYP/ ωB97X-D
6-311G** aug-cc-pVTZ

analytical ∆FD analytical ∆FD
C2H2 642.81 −0.01 764.12 −0.02

642.81 −0.01 764.12 0.01
773.55 −0.03 855.70 0.02
773.55 −0.01 855.70 0.04

2070.11 0.00 2085.36 0.00
3420.37 −0.01 3421.20 0.02
3523.31 −0.01 3529.42 0.01

CH4 1340.04 0.00 1349.56 −0.01
1341.36 0.00 1376.83 −0.01
1341.85 0.00 1392.07 0.00
1559.63 0.00 1585.72 0.00
1560.26 0.00 1589.53 0.00
3026.91 0.00 3034.65 −0.02
3132.41 −0.01 3150.21 0.02
3132.91 −0.01 3151.16 0.01
3133.00 −0.01 3159.19 0.01

Cl2 501.11 0.00 589.28 −0.01

CO2 666.45 0.00 690.00 −0.01
666.45 −0.01 690.00 0.00

1376.38 0.00 1393.89 0.01
2437.53 0.00 2435.03 0.01

N2 2448.01 −0.01 2494.88 0.01

N2O 607.38 −0.01 634.91 −0.01
607.38 −0.01 634.91 −0.01

1335.97 0.00 1359.73 0.00
2356.09 0.00 2397.62 0.01

OH 3700.02 −0.03 3769.58 0.01

CO 2222.51 0.00 2245.50 0.01

F2 984.85 −0.01 1094.45 0.01

H2CO 1199.21 0.00 1199.61 0.02
1270.24 0.01 1242.44 0.01
1538.71 0.00 1504.97 0.00
1825.92 −0.01 1841.80 0.01
2869.79 0.00 2903.22 −0.02
2919.26 0.00 2968.16 0.00

H2 4418.58 −0.02 4431.91 0.00

H2O 1636.14 0.01 1634.53 −0.01
3814.26 −0.01 3888.69 0.01
3910.36 −0.01 3996.34 0.01

HCN 787.26 0.00 843.42 −0.03
787.26 0.00 843.42 0.00

2201.69 0.01 2228.30 0.00
3454.67 0.01 3455.38 0.02

HF 4125.36 −0.01 4158.40 0.01

NH3 1073.31 0.01 1034.35 0.00
1682.04 0.00 1668.94 −0.01
1682.74 0.00 1688.55 −0.01
3457.65 −0.01 3507.31 0.02
3575.98 −0.01 3632.64 0.02
3576.60 0.00 3634.94 0.01

Average 0.01 0.01
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Table 4.2: Error statistics for finite-difference vibrational frequencies for complexes
in the L7 data set.

Complexa
max. error (cm−1) MUEb (cm−1)

B3LYP/ B3LYP-D3/ B3LYP/ B3LYP-D3/
6-311G* 6-31+G* 6-311G* 6-31+G*

C3A 4.00 32.43 0.59 2.62
C3GC 7.50 32.26 0.74 2.16
GCGC −1.07 −4.52 0.07 1.19
GGG −0.55 4.84 0.03 1.06
CBH −2.60 −23.97 0.39 1.46
PHE −2.40 −6.37 0.23 0.33

Average 0.38 1.47
aSee Fig. 4.2. bAveraged over all vibrational modes.

the large FD errors in these L7 cases must reflect the flatness of the potential energy

surface along the non-bonded vibrational modes, and one can reasonably argue that

it is inappropriate to apply the harmonic approximation to these sorts of vibrations.

This, combined with the accuracy of the FD approach for medium- to high-frequency

modes, and its computational advantages in terms of low memory and ease of paral-

lelization, lead us to conclude that the FD approach can be useful even in non-covalent

complexes such as these.

In view of the larger FD errors for non-bonded modes, however, we have per-

formed a systematic study of the effects of the FD displacement step size, h, in a

more computationally-tractable non-bonded system, namely, the parallel-displaced,

π-stacked isomer of the benzene dimer. In addition, we test both the three-point and

five-point stencil algorithms, Eqs. (4.1) and (4.2). Results are shown in Table 4.3. For
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Table 4.3: Error statistics in finite-difference vibrational frequencies for the parallel-
displaced isomer of (C6H6)2 for various finite-difference schemes.

Step size, max. error (cm−1) MUEa (cm−1)
h (Å) 3-pointb 5-pointc 3-pointb 5-pointc

0.0100 3.30 −0.03 0.23 0.01
0.0050 0.90 −0.04 0.05 0.01
0.0010 −1.04 −1.22 0.13 0.17
0.0005 2.17 2.87 0.19 0.20
0.0001 6.63 6.63 0.59 0.59

aAveraged over all vibrational modes. bEq. (4.1).
cEq. (4.2).

step sizes h ≤ 0.001 Å (i.e., equal to or smaller than our default value), the five-point

algorithm leaves the maximum FD error unchanged or even slightly increased. Due

to the very flat nature of the potential energy surface along the mode in question,

however, larger step sizes can be more successful, especially when used with the five-

point algorithm. For h = 0.01 Å the five-point algorithm reduces the errors to the

level obtained for F38, namely, < 0.1 cm−1. Hence, even given the aforementioned

caveat regarding the appropriateness of the harmonic approximation for non-bonded

modes, it is possible to use the FD approach to reproduce even very small harmonic

frequencies.

Conformation-Dependent Frequency Shifts

An important aspect of making contact between ab initio frequency calculations and

experimental vibrational spectroscopy is the ability to capture the vibrational fre-

quency shifts engendered by conformational changes in a molecule. We examine

these here, for water clusters and for conformational isomers of several hydrocarbons.
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Isomers of a flexible (tryptamine)· · · (H2O) complex are also considered below in the

context of isotopic frequency shifts.

Vibrational frequencies in clusters (H2O)2−6 have been benchmarked in a previous

study using CCSD(T) calculations.109 The red-shifted hydrogen-bonded O–H stretch-

ing vibrations are found to be sensitive to the level of theory, with errors compared to

CCSD(T) results that range from nearly zero to more than 100 cm−1. In the present

work, we wish to establish whether the FD approach can capture differences in the

O–H frequencies for water molecules in different hydrogen-bonding environments.

Average errors in absolute vibrational frequencies for water clusters are provided in

Table 4.4.

At the level of B3LYP/6-311G**, maximum errors for (H2O)2−5 are 0.03, 0.01,

0.04, and 0.05 cm−1 for n = 2, 3, 4, and 5, respectively, and at the ωB97X-D/aug-

cc-pVTZ level these maximum errors are 0.02, 0.03, 0.08, and 0.04 cm−1. We also

examine four different conformers of (H2O)6, for which we find no FD error larger than

1 cm−1, and in that particular case, the outlier corresponds to the lowest vibrational

frequency (ν = 37.71 cm−1) rather than an O–H stretching mode. Average FD errors

(Table 4.4) are 0.02 and 0.01 cm−1 for these water clusters.

Given the results for the small-molecule F38 database, it is safe to assume that

the FD frequencies for a single H2O molecule are quite accurate. As such, the FD

errors in vibrational frequencies can be taken to be equivalent to the errors in the

vibrational red shifts associated with hydrogen bond. These errors, for the O–H

stretching modes, are listed in Table 4.5 and are < 0.1 cm−1 except for one instance
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Table 4.4: Error statistics for finite-difference vibrational frequencies in water clusters.

Cluster
max. error (cm−1) MUEa (cm−1)

B3LYP/ ωB97X-D/ B3LYP/ ωB97X-D/
6-311G** aug-cc-pVTZ 6-311G** aug-cc-pVTZ

(H2O)2 0.03 0.02 0.01 0.01
(H2O)3 0.01 0.03 0.01 0.01
(H2O)4 0.04 0.08 0.01 0.02
(H2O)5 0.04 0.04 0.01 0.01
(H2O)6 (book) −0.98 0.03 0.03 0.01
(H2O)6 (cage) 0.04 0.07 0.01 0.01
(H2O)6 (prism) −0.03 0.03 0.01 0.01
(H2O)6 (ring) 0.24 0.11 0.03 0.02
Average 0.02 0.01
aAveraged over all vibrational modes.

where the FD result deviates by 0.34 cm−1. Errors of such small magnitude imply that

the FD approach is capable of distinguishing subtle frequency shifts due to changes

in the hydrogen-bonding environment of a particular water molecule.

The 1,2-diphenoxyethane (DPOE) molecule, (C6H5)–O(CH2)2O–(C6H5), is a model

of a flexible bi-chromophore whose central aliphatic linkage serves as the repetitive

unit of polyethylene or poly(ethylene oxide) polymers. The symmetries of the two

most abundant conformational isomers of DPOE were previously determined to be

C2 and C2h.
110 Analytic harmonic frequencies for the modes related to the aforemen-

tioned linkage are 1500.09, 1500.38, 1530.97, and 1532.74 cm−1 (C2 symmetry) and

1519.54, 1522.64, 1534.76, and 1535.66 cm−1 (C2h symmetry). The FD procedure re-

produces not only the frequencies but also the frequency shifts quite faithfully, with

errors in the shifts of only ∼0.01 cm−1; see Table 4.6.

The cysteine residue’s side chain is essential for protein structure due to its flexi-

bility and ability to form disulfide bonds with other cysteine residues. The vibrational
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spectroscopy of this molecule has been studied, and it is found that the S–H stretch-

ing frequency is quite sensitive to hydrogen bonding.111 As a model system to study

this effect, we selected conformational isomers of ethanethiol that are classified by the

Cα–Cβ–S–H dihedral angel: two local minima with angles of ∼60◦ (G isomer) and

∼180◦ (T isomer), and structures that represent local maxima along the torsional

potential, with the angles of ∼0◦ (C isomer) and ∼120◦ (S isomer). Analytic frequen-

cies νSH are 2832.26, 2696.91, 2826.27, and 2831.07 cm−1 for isomers G, T, C, and

S, respectively. FD errors are again ≤ 0.01 cm−1 (Table 4.6), much smaller than the

resolution needed to distinguish between these isomers using vibrational spectroscopy.

Isotopic Shifts

Isotopic substitution is an important means of assigning experimental vibrational

spectra. The (tryptamine)· · · (H2O) complex provides an example that has confor-

mational flexibility, with at least two conformers that are spectroscopically accessible

in the gas phase, and isotopic frequency shifts (replacing H2O with D2O) have been

measured.3 The O–H stretching frequencies ν1 and ν2 are listed in Table 4.7, and

shift from 3474.91 and 3491.04 cm−1 to 2553.44 and 2823.69 cm−1 upon deuteration

(B3LYP/6-311G** level). Errors in the FD calculation of the isotopic frequency shift

are a mere 0.01 cm−1 (ν1) and 0.04 cm−1 (ν2), at the level of B3LYP/6-311G**. The

corresponding errors at the ωB97X-D/6-31+G* level are −0.03 and −0.02 cm−1.

In contrast to the rather large frequency shifts upon deuteration, isotopic shifts for

35Cl versus 37Cl in tetrachlorodibenzo-p-dioxins (TCDDs, Fig. 4.4) amount to a mere

1–2 cm−1 in some cases.112 The frequencies themselves, corresponding to stretching
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modes involving Cl, are also much smaller, and shift from 330.14 and 331.63 cm−1

to 322.13 and 323.46 cm−1 in the case of 1,4,6,9-TCDD (B3LYP/6-311G** level).

In 2,3,7,8-TCDD, there is only one mode that is clearly a C–Cl stretch is both iso-

topologues; this mode shifts from 328.36 to 322.76 cm−1 upon isotopic substitution.

Despite these rather small shifts, the FD error in the calculated frequency shift is

≤ 0.01 cm−1 in magnitude for both molecules (see Table 4.7), such that the shift is

clearly resolvable in the FD calculation.

Finally, high-resolution gas-phase spectra of SF6 reveal isotopic shifts in the ν3 and

ν4 fundamentals that range from a few cm−1 up to 17 cm−1.113 Calculated isotopic

shifts agree well: −2.26 and −17.11 cm−1. FD errors (Table 4.7) are ≤ 0.01 cm−1.

Hydrogenase Active Site Model

Hydrogenase enzymes have attracted much attention because they use an H2-based

energy cycle rather than a CO2-based cycle. Recently, a model of 5,10-methenyltetra-

hydromethanopterin hydrogenase (Hmd) has been studied with density functional

theory (see Fig. 4.5),114 with the results suggesting that charge transfer from Fe

3d orbitals into unoccupied orbitals can lead to variations in the observed C≡O

stretching frequencies. The ligand binding process is coupled with protonation of a

thiolate ligand, hence protonated structures were included in our analysis. Harmonic

frequencies are computed at the B3LYP/cc-VTZ level of theory, but with g functions

removed from Fe.

Errors in the two C≡O stretching frequencies are both 0.03 cm−1 for the resting

state (Hmd–H2O), and are 0.05 and 0.04 cm−1 for the protonated state. For Hmd–CO,
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errors in the three C≡O stretching modes are 0.01, 0.02, and 0.00 cm−1, and for the

protonated species (Hmd–CO + H+) they are 0.01, 0.01, and 0.06 cm−1. Although

the C≡O modes are the primary ones of experimental interest, error statistics for all

frequencies of the model system in Fig. 4.5 are listed in Table 4.8. None of the errors

exceed 0.65 cm−1.

4.4 Conclusion

The finite-difference approach to harmonic frequencies was studied at the level of

DFT, in the interest of obtaining a highly-parallelizable, low-memory approach that

does not require derivation and implementation of analytic second derivatives. Per-

haps contrary to established conventional wisdom, we find that finite-difference re-

sults differ from those obtained using an analytic Hessian by < 0.1 cm−1 in most

cases. Even frequencies in the 500–1000 cm−1 range are accurately reproduced, as

are frequency shifts arising either from conformational changes or isotopic substitu-

tion. Vibrational red-shifts in the O–H stretching modes of water clusters, due to

changes in the hydrogen-bonding environment, are also accurately reproduced by the

finite-difference approach. The only significant errors that we find are in low-frequency

non-bonded modes in dispersion-bound complexes, where the potential surface is very

flat. In these cases, our “standard” finite-difference approach, based on displacements

of ±0.001 Å, results in errors as large as 32 cm−1, but can be reduced to < 0.1 cm−1

by appropriate choice of the displacement in conjunction with a five-point stencil that

are requires four energy gradient calculations per degree of freedom.
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In view of their accuracy, easy parallelizability and low memory footprint, we

see no reason not to recommend the finite-difference approach to DFT harmonic

frequency calculations. This should extend harmonic analysis to cases where analytic

Hessian calculations are cumbersome, intractable, or where the Hessian simply has

not been implemented.
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Figure 4.1: (a) MUEs for finite-difference errors for the F38 data set, averaged across
five different theoretical models and all vibrational modes, with all calculations using
the 6-311G** basis set. (b) MUEs for B3LYP finite-difference frequencies for F38
in various basis sets, averaged across all vibrational modes in each molecule. The
6-31+G* and 6-311G** results in (b) are indistinguishable on this scale.
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Figure 4.2: Complexes from the L7 data set of Ref. 2.
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Table 4.5: Finite-difference errors (in cm−1) for vibrational O–H red shifts in water
clusters.

Cluster
B3LYP/ ωB97X-D/
6-311G** aug-cc-pVTZ

(H2O)2 0.01 0.02

(H2O)3 0.00 0.02
0.01 0.01
0.00 0.01

(H2O)4 0.02 0.01
0.01 0.03
0.01 −0.02
0.01 0.00

(H2O)5 0.01 −0.01
0.01 0.01
0.01 0.01
0.01 0.00
0.01 −0.01

(H2O)6 0.01 0.01
(book) 0.00 0.01

0.01 0.02
0.01 0.00
0.01 0.00
0.01 0.01
0.01 0.00

(H2O)6 0.00 0.01
(cage) 0.01 0.00

0.00 −0.01
0.00 −0.01
0.01 −0.01

(H2O)6 0.01 0.00
(prism) 0.01 0.01

0.01 0.00
0.01 0.00
0.00 0.01
0.00 0.01
0.01 0.00
0.00 0.00
0.00 −0.01

(H2O)6 0.01 0.01
(ring) −0.06 0.03

0.05 0.34
0.08 0.01
0.07 0.01

−0.07 0.11
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Table 4.6: Error statistics for finite-difference calculations of structure-dependent
frequency shifts.

Molecule error (cm−1)
max MUEa

DPOE (C2h) 0.04 0.01
DPOE (C2) 0.03 0.01
ethanethiol (C) −0.07 0.01
ethanethiol (G) −0.02 0.01
ethanethiol (S) −0.01 0.01
ethanethiol (T) −0.01 0.01
aAveraged over vibrational modes.

Figure 4.3: The (tryptamine)· · · (H2O) complex of Ref. 3.
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Table 4.7: Errors (in cm−1) in selected isotopic shifts.

System
B3LYP/ ωB97X-D/
6-311G** 6-31+G*

tryptamine + H2O
a

ν1 0.01 −0.03
ν2 0.04 −0.02

1,4,6,9-TCDDb

ν1 −0.01 −0.01
ν2 −0.01 −0.01

2,3,7,8-TCDDb

ν1 0.00 0.01

SF6
c

ν3 0.00 0.00
ν4 0.01 0.00
aH2O to D2O. b 35Cl to 37Cl. c 32S to 34S.

Table 4.8: Error statistics for finite-difference harmonic frequencies in a model of the
Hmd active site.a

System error (cm−1)
max MUEb

Hmd–H2O 0.20 0.05
Hmd–H2O + H+ 0.65 0.06
Hmd–CO 0.40 0.04
Hmd–CO + H+ 0.42 0.05
aB3LYP/cc-pVTZ level, with g

functions removed from Fe. bAveraged
over vibrational modes.
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(a)

(b)

Figure 4.4: (a) 1,4,6,9-TCDD and (b) 2,3,7,8-TCDD.
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Figure 4.5: Model of the Hmd active site in its resting state, Hmd–H2O, from Ref. 114.
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CHAPTER 5

Conclusions and Outlook

In this work we have explored various aspects of the GMBE. The most prominent

results would be the non-embedding method via screening through energy space and

the embedding method in conjunction with the SAPT. With the energy threshold-

ing, we can achieve linear scaling for non-additive three-body interactions and high

accuracy for the total interaction energies. In other words, the cost for the total inter-

action energies would be close to O(N2). The new charge embedding scheme, CM5,

for the embedding method enable the XSAPT methodologies to calculate non-bonded

interactions accurately and efficiently.

Despite the success that the GMBE can apply to larger systems and afford high

accuracy, the GMBE still suffer from O(N2) for the non-embedding method. Instead,

one would apply distance-based thresholding to pairwise interactions combined with

the energy-based threshold on non-additive interactions to reduce cost. Further stud-

ies are required to validate this approach. The potential of the GMBE would extend

to larger systems with the capability of linear scaling.

The ultimate goal for many of ab initio methods is characterization and simu-

lations of condensed-phase systems or bio systems. The GMBE provides essential
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elements to reach the goal by reducing the unphysically exponential cost. Along-

side the variational embedding, the XSAPT, as an interpretative method (energy

decomposition anaylysis), more insights can be drawn from large systems.
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Table A.1: Errors in interaction energies for the S22 data set, at the XS-
APT(KS)/hpTZVPP level.

error (kcal/mol)
CM5 ChElPG

1 2-pyridoxine 2-aminopyridine complex 0.22 0.20
2 Adenine thymine complex stack −0.19 −0.19
3 Adenine thymine Watson-Crick complex 0.94 0.92
4 Ammonia dimer 0.15 0.15
5 Benzene - Methane complex 0.08 0.08
6 Benzene ammonia complex −0.11 −0.11
7 Benzene dimer parallel displaced 0.10 0.10
8 Benzene dimer T-shaped 0.02 0.02
9 Benzene HCN complex −0.82 −0.82
10 Benzene water complex −0.31 −0.31
11 Ethene dimer 0.10 0.07
12 Ethene ethyne complex 0.42 0.42
13 Formamide dimer −1.12 −1.15
14 Formic acid dimer −1.11 −1.09
15 Indole benzene complex stack 0.60 0.58
16 Indole benzene T-shape complex −0.19 −0.19
17 Methane dimer 0.14 0.14
18 Phenol dimer 0.36 0.35
19 Pyrazine dimer −0.08 −0.08
20 Uracil dimer h-bonded 0.97 0.97
21 Uracil dimer stack −0.28 −0.29
22 Water dimer −0.01 −0.01
MUE 0.38 0.38
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Table A.2: Errors in interaction energies for the S66 data set, at the XS-
APT(KS)/hpTZVPP level.

error (kcal/mol)
CM5 ChElPG

1 Water ... Water −0.14 −0.18
2 Water ... MeOH −0.10 −0.11
3 Water ... MeNH2 0.13 0.09
4 Water ... Peptide −0.01 −0.02
5 MeOH ... MeOH −0.07 −0.07
6 MeOH ... MeNH2 0.01 0.02
7 MeOH ... Peptide 0.00 0.06
8 MeOH ... Water −0.06 −0.14
9 MeNH2 ... MeOH 0.08 0.08
10 MeNH2 ... MeNH2 −0.04 −0.04
11 MeNH2 ... Peptide −0.03 0.02
12 MeNH2 ... Water −0.03 −0.01
13 Peptide ... MeOH −0.01 0.01
14 Peptide ... MeNH2 −0.09 −0.06
15 Peptide ... Peptide 0.19 0.25
16 Peptide ... Water 0.10 0.07
17 Uracil ... Uracil (BP) 1.04 1.15
18 Water ... Pyridine −0.10 −0.12
19 MeOH ... Pyridine −0.15 −0.08
20 AcOH ... AcOH −0.28 −0.22
21 AcNH2 ... AcNH2 −0.78 −0.63
22 AcOH ... Uracil 0.38 0.39
23 AcNH2 ... Uracil −0.19 −0.19
24 Benzene ... Benzene (pi-pi) −0.07 −0.07
25 Pyridine ... Pyridine (pi-pi) −0.44 −0.43
26 Uracil ... Uracil (pi-pi) −0.46 −0.40
27 Benzene ... Pyridine (pi-pi) −0.20 −0.20
28 Benzene ... Uracil (pi-pi) 0.23 0.21
29 Pyridine ... Uracil (pi-pi) 0.09 0.08
30 Benzene ... Ethene 0.36 0.39
31 Uracil ... Ethene 0.07 0.04
32 Uracil ... Ethyne 0.29 0.23
33 Pyridine ... Ethene 0.23 0.25
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Table A.3: Continued errors in interaction energies for the S66 data set, at the XS-
APT(KS)/hpTZVPP level.

error (kcal/mol)
CM5 ChElPG

34 Pentane ... Pentane 0.81 0.85
35 Neopentane ... Pentane 0.82 0.86
36 Neopentane ... Neopentane 0.79 0.83
37 Cyclopentane ... Neopentane 0.55 0.59
38 Cyclopentane ... Cyclopentane 0.22 0.25
39 Benzene ... Cyclopentane −0.30 −0.28
40 Benzene ... Neopentane 0.09 0.13
41 Uracil ... Pentane −1.03 −0.95
42 Uracil ... Cyclopentane −1.11 −1.07
43 Uracil ... Neopentane −0.54 −0.49
44 Ethene ... Pentane 0.57 0.55
45 Ethyne ... Pentane 0.15 0.14
46 Peptide ... Pentane 0.11 0.16
47 Benzene ... Benzene (TS) 0.06 0.07
48 Pyridine ... Pyridine (TS) −0.44 −0.42
49 Benzene ... Pyridine (TS) −0.10 −0.11
50 Benzene ... Ethyne (CH-pi) −0.23 −0.26
51 Ethyne ... Ethyne (TS) 0.12 0.05
52 Benzene ... AcOH (OH-pi) 0.13 0.15
53 Benzene ... AcNH2 (NH-pi) 0.15 0.22
54 Benzene ... Water (OH-pi) −0.31 −0.30
55 Benzene ... MeOH (OH-pi) −0.16 −0.18
56 Benzene ... MeNH2 (NH-pi) −0.10 −0.11
57 Benzene ... Peptide (NH-pi) −0.31 −0.30
58 Pyridine ... Pyridine (CH-N) 0.26 0.28
59 Ethyne ... Water (CH-O) 0.02 −0.05
60 Ethyne ... AcOH (OH-pi) 0.65 0.64
61 Pentane ... AcOH 0.18 0.23
62 Pentane ... AcNH2 0.00 0.04
63 Benzene ... AcOH −0.02 −0.01
64 Peptide ... Ethene 0.18 0.18
65 Pyridine ... Ethyne −0.04 −0.04
66 MeNH2 ... Pyridine −0.50 −0.47
MUE 0.26 0.27
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Table A.4: Errors in interaction energies for the IHB data set, at the
XSAPT(KS)/def2-TZVPPD level.

error (kcal/mol)
CM5 ChElPG

1 acetate ... methanol 0.82 −1.54
2 acetate ... water 1.52 −3.34
3 acetate ... methylamine 1.24 0.50
4 methylammonium ... formaldehyde −0.95 −1.48
5 methylammonium ... methylamine −3.29 −4.22
6 methylammonium ... methanol −0.90 −1.49
7 methylammonium ... water −0.22 −0.56
8 guanidinium ... formaldehyde 0.72 0.39
9 guanidinium ... methylamine −0.30 −0.31
10 guanidinium ... methanol 1.48 1.29
11 guanidinium ... water 1.20 1.28
12 imidazolium ... formaldehyde −0.45 −1.48
13 imidazolium ... methylamine −2.39 −5.27
14 imidazolium ... methanol −0.61 −1.53
15 imidazolium ... water −0.03 −0.69
MUE 1.08 1.69
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Table A.5: Errors in interaction energies for the AHB21 data set, at the
XSAPT(KS)/def2-TZVPPD level.

error (kcal/mol)
CM5 ChElPG

1 1.87 1.13
2 0.75 0.09
3 −2.41 −2.72
4 0.71 0.55
5 0.24 0.02
6 1.09 −0.25
7 1.71 −0.28
8 −0.50 −3.37
9 2.71 2.46
10 1.33 −1.17
11 0.14 −0.38
12 −0.26 −0.91
13 −0.39 −2.50
14 −1.06 −2.01
15 1.10 0.60
16 0.98 0.08
17 1.28 0.91
18 1.29 0.33
19 1.38 0.47
20 1.53 0.37
21 1.53 −1.85
MUE 1.15 1.07
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Table A.6: Errors in interaction energies for the CHB6 data set, at the
XSAPT(KS)/def2-TZVPPD level.

error (kcal/mol)
CM5 ChElPG

22 0.70 1.91
23 0.89 1.29
24 0.75 0.80
25 −2.93 −1.83
26 −0.27 0.20
27 −0.28 −0.68
MUE 0.97 1.12

Table A.7: Errors in interaction energies for theIL16 data set, at the
XSAPT(KS)/def2-TZVPPD level.

error (kcal/mol)
CM5 ChElPG

008 −0.11 −6.80
144 −1.30 −4.70
147 −1.15 −6.68
148 −3.72 −11.57
150 −0.93 −6.17
152 −0.98 −6.73
187 −2.90 −13.83
202 −3.79 −15.06
212 −3.71 −13.62
213 −1.52 −6.26
214 −1.38 −5.09
227 −2.94 −9.95
228 −0.36 −3.71
229 −0.86 −4.84
230 −2.00 −2.74
231 −2.81 −5.58
MUE 1.90 7.71
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Table A.8: Errors in interaction energies for the S30L data set, at the
XSAPT(KS)/def2-TZVPPD level.

error (kcal/mol)
CM5 ChElPG

1 TCNQ@tweezer −3.47 −3.21
2 DCB@tweezer −1.14 −0.98
3 TCNB@pincer 8.11 8.00
4 NBD@pincer 4.57 4.10
5 TNF@tweezer2 −2.23 −2.23
6 TCNQ@tweezer2 0.76 0.87
7 5CPPA@8CPPA −4.13 −6.55
8 6CPPA@9CPPA −7.96 −9.76
9 C60@catcher −5.69 2.48
10 C70@catcher −4.29 5.23
11 C60@CA10 −3.76 −3.61
12 C70@CA10 −3.44 −1.16
13 morpholine@RA4 3.01 1.03
14 tioxane@RA4 1.44 −1.09
15 TMPDA@XB-donor −2.60 −0.90
16 HHTAP@XB-donor 9.00 7.94
17 BQ@mcycle 0.87 0.84
18 GLH@mcycle 1.65 1.82
19 C5H9OH@β-CD 1.77 2.17
20 C8H15OH@β-CD −0.30 0.22
21 AdOH@CB7 −8.19 −5.70
22 DAAD@ADDA 15.30 15.63
23 AAAA@DDDD+ 6.33 8.26
24 Ad2(NMe3)2@CB7 −6.39 −11.03
25 tetraphene@Ex2Box −6.43 −6.42
26 chrysene@Ex2Box −6.57 −7.75
27 BuNH4+@CB6 1.41 2.42
28 PrNH4+@CB6 2.80 3.66
29 acetate@CP4 1.01 3.21
30 benzoate@CP4 1.76 3.65
MUE 4.21 4.68
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APPENDIX B

Supplementary Material for “Understanding the

many-body expansion for large systems. III.

Critical role of four-body terms, counterpoise

corrections, and cutoffs”
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Table B.1: Comparison of δECP and MBCP(2) for (H2O)N clusters, N = 6–37.

N CP correction (Hartree) difference
δECP MBCP(2) (kcal/mol/monomer)

6 0.005 0.005 0.060
7 0.006 0.006 0.027
8 0.007 0.007 0.024
9 0.008 0.008 0.020
10 0.009 0.009 0.020
11 0.011 0.011 0.041
12 0.012 0.013 0.047
13 0.013 0.014 0.033
14 0.014 0.015 0.041
15 0.016 0.017 0.035
16 0.017 0.019 0.062
17 0.018 0.020 0.044
18 0.019 0.021 0.051
19 0.021 0.022 0.041
20 0.022 0.023 0.048
21 0.024 0.026 0.050
22 0.025 0.026 0.042
23 0.026 0.028 0.053
24 0.027 0.029 0.051
25 0.028 0.029 0.034
26 0.030 0.032 0.042
27 0.032 0.034 0.049
28 0.033 0.036 0.056
29 0.034 0.035 0.041
30 0.037 0.040 0.051
31 0.038 0.041 0.060
32 0.040 0.042 0.050
33 0.042 0.044 0.048
34 0.043 0.046 0.048
35 0.044 0.047 0.046
36 0.046 0.049 0.059
37 0.046 0.049 0.043

104



Table B.2: Interaction energies (in kcal/mol) arising from sub-clusters separated by
8–9Å, for the four structural motifs in (H2O)20 clusters.

Isomer fused dodecahedra face-sharing edge-sharing
cubes pentagonal prisms pentagonal prisms

1 −0.544 0.000 −0.917 −0.455
2 −1.251 0.000 −2.064 −0.455
3 −0.737 0.000 −1.992 −0.454
4 0.521 0.241 −0.963 0.033
5 −0.565 0.000 −1.335 0.513
6 −0.579 0.000 −0.942 −0.455
7 −2.001 0.000 −0.916 −0.454
8 −0.738 0.000 −1.986 −0.028
9 −1.300 0.000 −1.986 −0.454
10 0.024 0.000 −0.917 −4.422
11 −0.615 0.000 −0.917 −0.028
12 −1.813 0.000 −1.064 0.031
13 −1.328 0.000 −1.799 0.032
14 −2.920 0.000 −2.064 −0.248
15 −0.076 0.216 −2.057 −0.029
16 0.508 0.000 −2.063 0.032
17 −0.753 0.000 −0.942 −0.028
18 −2.004 0.000 −2.057 −4.111
19 −0.951 0.000 −1.852 −0.028
20 −0.747 0.000 −1.828 −0.378
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