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Abstract

In order to correctly simulate photodynamics, it is required to use first-principle

methods since multiple electronic states have to be considered at the same time. As

such, instead of computationally inexpensive classical molecular dynamics simula-

tions, usually expensive ab initio molecular dynamics (AIMD) simulations become

the only choice. For an excited-state AIMD simulation with the system including

more than twenty heavy atoms, the only affordable quantum chemical method that

is able to generate reasonable results may be the linear-response time-dependent den-

sity functional theory (LR-TDDFT). Other methods are either computationally too

expensive (e.g. multireference methods) or unable to correctly describe the potential

surfaces for both ground and excited electronic states (e.g. configuration interaction

singles). However, conventional LR-TDDFT is not capable of describing the correct

topology of conical intersections, where nonadiabatic transitions between electronic

states take place. The simplest remedy is to use the “spin-flip” (SF) generalization

of TDDFT, originally developed to investigate diradicals with strong static correla-

tion in their ground states. This method treats the ground and excited states on

an equal footing which thereby guarantees the correct topology at conical intersec-

tions. Recent computational studies have shown good performance of SF-TDDFT

in describing electronic excitation energies, conical intersections, and excited-state
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reaction pathways. It may also be attractive to directly simulate photochemical or

photophysical events through nonadiabatic AIMD simulations. Usually, these sim-

ulations require the calculation of nonadiabatic derivative couplings (NDCs), which

are available only for a few electronic structure theory methods. Here, we present

the formal derivations and implementations of the NDCs for both LR-TDDFT and

SF-TDDFT. We also applied SF-TDDFT to study the ultrafast nonradiative decay

of uracil solvated in aqueous solution, and proposed the deactivation mechanism to

explain the experimentally observed different excited-state lifetimes of gas-phase and

solvated uracil. Finally, the spin-adapted version of SF-TDDFT has been developed,

which cures the spin contamination problem of the conventional SF-TDDFT. Prelimi-

nary calculations show that this new method is potentially promising for nonadiabatic

AIMD simulations.
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CHAPTER 1

Introduction

In this chapter, we introduce the Born-Oppenheimer adiabatic approximation and its

breakdown at conical intersections. We also discuss the benefit of applying spin-flip

time-dependent density functional theory (SF-TDDFT) to photodynamics, which is

the main topic of the following chapters.

1.1 The Born-Oppenheimer Adiabatic Approximation

The most common procedure for solving a quantum chemical problem is usually

solving the molecular non-relativistic Schrödinger equation in its time-independent

form:

ĤΨ(r,R) = EΨ(r,R), (1.1)

where r and R denote the coordinates of the electrons and the nuclei, respectively,

and Ĥ, Ψ and E are the Hamiltonian, wavefunction and total energy of the system,

respectively. Specifically, the Hamiltonian consists of an electronic part and a nuclear

part,

Ĥ = Ĥe + T̂n (1.2)
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with

Ĥe = −
∑

i

1

2
∇̂

2
i −

∑

i,A

ZA

riA
+

1

2

∑

i,j

1

rij
+

1

2

∑

A,B

ZAZB

RAB

, (1.3)

and

T̂n = − 1

2M
∇̂

2
R
. (1.4)

The above two equations are expressed in atomic units, and riA = |ri −RA| denotes

the distance between an electron i and a nucleus A. Similar definitions hold for rij

and RAB. ZA represents the charge of a nucleus A, and M is an averaged nuclear

mass, which depends on the coordinate system chosen.

Suppose we are able to obtain the eigenfunctions of the electronic Hamiltonian

Ĥe at a fixed molecular configuration R,

ĤeΦi(r,R) = Vi(R)Φi(r,R). (1.5)

The set of electronic eigenfunctions {Φi(r,R)} form a complete basis in the electronic

space at every value ofR. Thus, we can expand the total wavefunction Ψ in this basis:

Ψ(r,R) =
∑

i

Φi(r,R)χi(R). (1.6)

Inserting Eq. (1.6) into Eq. (1.1), multiplying from the left by Φj(r,R) and integrating

over the electronic coordinates lead to

[T̂n + Vj(R)]χj(R)−
∑

i

Λjiχi(R) = Eχj(R), (1.7)

where Λji describes the couplings between electronic and nuclear motion,

Λji =
1

2M
(2dji · ∇̂R +Gji). (1.8)
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In Eq. (1.8), we define the nonadiabatic derivative couplings

dji(R) = 〈Φj(r,R)|∇̂RΦi(r,R)〉r, (1.9)

and the nonadiabatic scalar couplings

Gji(R) = 〈Φj(r,R)|∇̂2
R
Φi(r,R)〉r. (1.10)

Now, the nuclear equation of motion in Eq. (1.7) can be rewritten in a matrix

form,

(Tn +V −Λ)χ = Eχ, (1.11)

where Tn is the nuclear kinetic energy operator (Eq. (1.4)) multiplied by a unit

matrix, V is a diagonal matrix with diagonal elements that are the electronic energies

in Eq. (1.5), the coupling matrixΛ has elements defined in Eq. (1.8), and χ is a column

vector defined as χ ≡ [χ1 χ2 ... χn]
T with n denoting the number of electronic states.

It is possible to further simplify Eq. (1.11) to the following appealing form,

[
− 1

2M
(∇
˜
+ d

˜
)2 +V − E

]
χ = 0, (1.12)

where ∇
˜

is the nuclear gradient operator ∇̂R multiplied by a unit matrix, and d
˜
is

the derivative coupling matrix with its element defined in Eq. (2.1). Both ∇
˜

and d
˜

are vector matrices. To derive Eq. (1.12), we have applied a useful relation that

G = (∇
˜
· d
˜
) + d

˜
· d
˜
. (1.13)

Eq. (1.12) demonstrates that the coupled motion of the electrons and nuclei can be

viewed as the nuclear motion in an electronic matrix potential V, however, with a
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dressed kinetic energy − 1
2M

(∇
˜

+ d
˜
)2, which is different from the kinetic energy for

bare nuclei [Eq. (1.4)].

If the couplings between the electronic and nuclear degrees of freedom can be

completely ignored, d
˜
vanishes, and Eq. (1.12) reduces to

[
− 1

2M
∇
˜

2 +V − E
]
χ = 0. (1.14)

Eq. (1.14) is the so-called Born-Oppenheimer adiabatic approximation or briefly adia-

batic approximation. Note its difference from the Born-Oppenheimer approximation,

which only ignores the off-diagonal elements of Λ.5 The adiabatic approximation im-

plies that the nuclei move on a single target electronic potential surface and that the

total energy of the system is simply the sum of the nuclear kinetic energy and the

the potential energy of the target electronic state [i.e., Vi(R) in Eq. (1.5)].

1.2 Breakdown of the Adiabatic Approximation

In this section, we discuss the situations in which the adiabatic approximation breaks

down. Obviously, from Eq. (1.12), we know that the adiabatic approximation be-

comes questionable when the magnitude of the derivative couplings is significant. By

operating ∇̂R on both sides of Eq. (1.5) and multiplying Φj from the left, we are able

to express the derivative couplings in their Hellmann-Feynman form,

dji =
〈Φj(r,R)|(∇̂RĤe)|Φi(r,R)〉r

Vi(R)− Vj(R)
. (1.15)

From Eq. (1.15), we see that the derivative coupling becomes substantial when the

energy gap between the two electronic states gets small. In the extreme case where
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the two states are degenerate, the derivative coupling diverges and the adiabatic

approximation becomes meaningless.

1.3 Conical intersections

In the region where derivative couplings are sizable, e.g., in the vicinity of state

crossings, the electronic and nuclear motions are greatly coupled. And the picture that

nuclei move on a single potential energy surface is no longer valid. Instead, multiple

electronic states may contribute to the total wavefunction of the system [Eq. (1.6)]. In

a semi-classical description, the nuclear wavepacket has certain probability to “hop”

between different electronic states.6 The hopping probability is usually proportional

to the magnitude of the derivative couplings.7 In short, nuclear motion can induce

electronic transitions near state crossings. These transitions do not emit photons,

and are commonly called nonadiabatic transitions.

Nonadiabatic events are the major studies in theoretical photochemistry, for ex-

ample, internal conversion and intersystem crossing. However, in most cases it’s not

possible to directly solve the quantum nuclear equation of motion shown in Eq. (1.12),

because of the high computational cost. The more feasible way to simulate the nu-

clear motion is usually the (semi-classical) nonadibatic ab initio molecular dynamics

(NAIMD) mentioned above.6 In addition, it can be instructive to locate the electronic

state crossings, since these are the points where nonadiabatic transitions take place,

and the quality of the potential surfaces in the vicinity of these crossings also deter-

mines the performance of NAIMD simulations. In the following, we briefly introduce
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the topography of a specific kind of state crossings, the conical intersection.

If we expand the electronic wavefunctions in a basis set {φ(r,R)}

Φi(r,R) =
∑

a

cia(R)φa(r,R), (1.16)

Eq. (1.5) can be cast into a matrix form,

Hel(R)ci(R) = Vi(R)ci(R), (1.17)

where Hel(R) is the electronic Hamiltonian represented in the basis {φ(r,R)} with

its matrix elements shown below,

Hel
ab(R) = 〈φa(r,R)|Ĥe|φb(r,R)〉r (1.18)

Suppose that M states cross with each other at the nuclear configuration RX. It is

then possible to construct a new basis from a geometric-independent transformation of

{φ(r,R)}. The firstM components of this basis, denoted asQ space, can be expressed

as ci(RX)
Tφ(r,R) with i = 1, 2, ..., M , which are the solutions of Eq. (1.17) at

RX. The remaining N −M basis functions, denoted as P space, are chosen to be

orthogonal to the firstM basis functions, and are denoted as Cj(RX)
Tφ(r,R), which

are generally not the solutions of Eq. (1.17). The electronic Hamiltonian in the new

basis can be represented as
(

HQQ HQP

HPQ HPP

)
, (1.19)

where

HQQ
ij = ci(RX)

THel(R)cj(RX), (1.20)

(HPQ
ai )T = HQP

ia = ci(RX)
THel(R)Ca(RX), (1.21)
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and

HPP
ab = Ca(RX)

THel(R)Cb(RX). (1.22)

At RX, H
QQ becomes diagonal with all M diagonal elements equal to the degenerate

state energy, and HPQ and HQP vanish.

If there is another crossing point RY = RX + δR that is close to RX, the Hamil-

tonian in the Q space HQQ at RY may be written at first order as8

HQQ
ii (RY) = Vi(RX) + gi(RX) · δR, (1.23)

HQQ
ij (RY) = hij(RX) · δR, (1.24)

where

gi(RX) = ci(RX)
T∂H

el(RX)

∂R
ci(RX) (1.25)

=
∂Vi(RX)

∂R
,

and

hij(RX) = ci(RX)
T∂H

el(RX)

∂R
cj(RX). (1.26)

Since the contributions from the P space alter the energy through second order,8

the degeneracy at RY is preserved through first order if the following conditions are

satisfied. The first M − 1 conditions come from the diagonal elements [Eq. (1.23)],

gij(RX) · δR =
[
gi(RX)− gj(RX)

]
· δR = 0, 1 6 i < j 6M, (1.27)

and the secondM(M−1)/2 conditions come from the off-diagonal elements [Eq. (1.24)],

hij(RX) · δR = 0, 1 6 i < j 6M. (1.28)
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Eqs. (3.31) and (3.28) indicate that the degeneracy of M–state crossings will be

lifted, at first order of displacement δR, in (M + 2)(M − 1)/2 directions. For the

most common two-state crossings, the two directions (g12 and h12) that lift the en-

ergy degeneracy form the so-called g–h plane, and the potential surfaces of the two

intersecting states have the shape of double cones at the crossing point, provided that

g12 and h12 do not vanish identically. This kind of crossings are commonly called the

conical intersections.

1.4 Spin-Flip Time-Dependent Density Functional Theory

In conventional linear-response time-dependent density functional theory (LR-TDDFT),

the non-hermitian eigenvalue equation9

(
A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
(1.29)

is solved for the excitation energies, ω. Here,

Aia,jb = (ǫa − ǫi) δijδab + 〈ib|aj〉 − CHF〈ib|ja〉〈ib|fxc|aj〉, (1.30)

and

Bia,jb = 〈ij|ab〉 − CHF〈ij|ba〉+ 〈ij|fxc|ab〉 . (1.31)

The labels i, j, . . . and a, b, . . . represent occupied and virtual spin orbitals, respec-

tively, and CHF is the fraction of Hartree-Fock exchange included in the hybrid

exchange-correlation functional.

Most photochemical or photophysical events involve the photo-excitation near

Franck-Condon region and the relaxation back to ground state through conical in-

tersections. As such, it’s important that the electronic structure method is capable
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of correctly describing the potential surfaces in the vicinity of conical intersections

between the ground and excited states. LR-TDDFT is a computationally efficient

method and it also provides good excitation energies for most chemical systems.

However, it fails to predict the correct topography of the potential surfaces at the

conical intersections between the reference state (which is usually the ground state)

and the excited states.10 This is due to the fact that the reference state is treated

by density functional theory (DFT), thus the electronic correlations contained in the

reference state and the excited states are unbalanced. Moreover, near state crossings

between a DFT state and a LR-TDDFT state, the singlet instability problem of DFT

may take place, which leads to imaginary excitation energies when solving Eq. (1.29).

The simplest extension of LR-TDDFT that corrects these problems is spin-flip

(SF) TDDFT.11,12 In SF-TDDFT, the reference DFT state has spin eigenvalue one

unit higher than that of the target states. For example, if the target states are singlet

states, then the reference DFT state is chosen as a high-spin triplet state and the

target states are generated by single α → β excitations. As a result, all the target

states (including the ground state) are treated on the same footing, and the conical

intersections amongst them can be correctly described. The details will be presented

in the following chapters.

The formulation of SF-TDDFT largely resembles that of LR-TDDFT. The only

difference comes from the α → β excitations, which require the orbitals i, j, ..., in

Eqs. (1.30) and (1.31) to be α spin orbitals and the orbitals a, b, ..., to be β spin
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orbitals. As such, Eqs. (1.30) and (1.31) reduce to

Aia,jb = (ǫa − ǫi) δijδab − CHF〈ib|ja〉 (1.32)

and

Bia,jb = 0 . (1.33)

This is the so-called collinear formulation of SF-TDDFT.11 There is another form

of SF-TDDFT called non-collinear SF-TDDFT, which can be derived from the two-

component LR-TDDFT.12 However, we will mainly focus on the collinear version in

the following chapters.
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CHAPTER 2

Analytic Derivative Couplings of LR-TDDFT:

Quadratic Response Theory versus

Pseudo-Wavefunction Approach

In this chapter, we introduce the formal derivation for the analytic derivative cou-

pling of LR-TDDFT through quadratic response theory. We also compare it with the

pseudo-wavefunction approach, in which the components that cause divergent prob-

lem are neglected. Finally, the current formulation is also valid for SF-TDDFT, and

the details are presented in Chapter 3.

2.1 Introduction

The Born-Oppenheimer approximation breaks down when the energy gap between

electronic states becomes small, where the electronic and nuclear degrees of freedom

are coupled together and nuclear motions can induce electronic transitions. Nonadia-

batic dynamics methods can be applied to go beyond the Born-Oppenheimer approx-

imation and describe these non-radiative transitions.6 The first-order nonadiabatic

coupling matrix elements (derivative couplings) play a key role in these methods,

since the transition probability between two electronic states is determined from the
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derivative couplings. The derivative couplings are also important for methods to lo-

cate minimum-energy crossing points along conical seams,13,14 which are useful to

investigate photochemical processes in cases where ab initio nonadiabatic dynamics

simulations are not affordable.

Analytic formulations of the derivative couplings can be obtained straightfor-

wardly for wavefunction-based methods via direct differentiation of the electronic

wavefunctions with respect to the nuclear coordinates. Examples include derivative

couplings for multireference configuration interaction15–18 (MRCI) and equation-of-

motion coupled-cluster19,20 theory. However, these are computationally expensive

methods that can only be applied to small molecular systems. Recently, analytic

derivative couplings have also been implemented for the configuration-interaction sin-

gles (CIS) method,14,21 which is computationally inexpensive, but fails to provide even

a qualitatively-correct description in many cases, owing to lack of dynamical corre-

lation. Time-dependent density functional theory (TDDFT) is another inexpensive

ab initio method for excited states, which often provides reasonable excited-state

properties at a cost comparable to CIS.

The development of analytic derivative couplings for TDDFT is therefore impor-

tant insofar as nonadiabatic ab initio molecular dynamics methods based on TDDFT

may be efficient and accurate enough for large molecules. The most popular imple-

mentation of TDDFT is the version based on linear response (LR) of the electron den-

sity or density matrix for the noninteracting Kohn-Sham (KS) reference system.9,22

As such, the electronic wavefunction is not defined in LR-TDDFT, which prevents the
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use of direct differentiation of the wavefunction to calculate the derivative couplings.

Development of the formalism for TDDFT derivative couplings has been quite

active recently.14,23–29 Among these developments, only Send and Furche24 and Li

and Liu26 achieved consistent formulations of TDDFT derivative couplings by using

response theory exclusively. Their formulations capture all of the “Pulay terms”

arising from atom-centered basis functions. Send and Furche24 have implemented

their formalism to obtain the TDDFT derivative couplings between the ground and

excited electronic states, but the TDDFT derivative couplings between two excited

states have only been derived conceptually,26 with no published numerical examples

so far based on response theory. It is well known that TDDFT fails to provide the

correct dimensionality of the branching space for conical intersections that involve

the reference state (which is usually the ground state),10 which is caused by the

imbalanced treatment of ground- versus excited-state electron correlation. No such

topological issue exists for conical intersections between excited states.10 As such,

there is merit in implementing formally-exact analytic derivative couplings between

TDDFT excited states that are derived solely from quadratic response theory.

In this work, we implement the derivative couplings between TDDFT excited

states based on quadratic response theory. Numerical examples will compare these

couplings to those derived based on a pseudo-wavefunction approach28,29 (PWA),

in which one treats the KS determinant as a wave function and computes analytic

derivative couplings by direct differentiation.14,28,29 Finally, we show that for spin-flip

TDDFT,11 the PWA formalism for the derivative couplings is formally equivalent to
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quadratic response theory, which validates our recent implementation of the spin-flip

TDDFT derivative couplings.14

2.2 Theory

The following notation is used throughout this work. Occupied and virtual KS orbitals

are labeled φi, φj, φk, φl, . . . and φa, φb, φc, φd, . . ., respectively, whereas φp, φq, φr, φs, . . .

index arbitrary (occupied or virtual) KS orbitals. Greek letters µ, ν, λ, σ, . . . index

atomic orbitals. All two-electron integrals will be written in physicists’ notation.

2.2.1 Analytic derivative couplings between TDDFT excited

states

In this section, we present a compact derivation of the analytic formulation of deriva-

tive couplings between two TDDFT excited states, based on the density matrix re-

sponse theory. Similar derivations have been given previously by Send and Furche24

and by Li and Liu.26

Quadratic response functions for exact states

The derivative coupling between two exact electronically-excited states |I〉 and |J〉 is

dIJ = 〈I|∇̂R|J〉 =
〈I|∇̂RĤ|J〉
EJ − EI

, (2.1)

where R represents the nuclear coordinates, and |I〉 and |J〉 are the orthonormal

eigenfunctions of the electronic Hamiltonian, Ĥ, with eigenvalues EI and EJ .

For any time-independent operator Â, the transition properties 〈I|Â|J〉 can be

extracted from the residues of the quadratic response functions of Â.26,30 The response
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functions of Â are those characterizing the time evolution of the average values

A(t) = 〈0(t)|Â|0(t)〉 , (2.2)

where |0(t)〉 is the time-dependent electronic ground state when a general time-

dependent fieldW (t) is applied to the electronic system. The interaction between the

field and the electronic system can be resolved into Fourier components V ω according

to30

V (t) =

∫ +∞

−∞

V ωe−iωt dω (2.3)

and the quadratic response functions of Â at frequencies ωα and ωβ are then30

〈〈A;V ωα , V ωβ〉〉

= P̂(α, β)
∑

I,J

[〈
0
∣∣Â
∣∣I
〉〈
I
∣∣(V ωα − 〈0|V ωα |0〉

)∣∣J
〉〈
J
∣∣V ωβ

∣∣0
〉

(ωα + ωβ − ωI)(ωβ − ωJ)

+
〈0|V ωβ |J〉

〈
J
∣∣(V ωα − 〈0|V ωα |0〉

)∣∣I
〉〈
I
∣∣Â
∣∣0
〉

(ωα + ωβ + ωI)(ωβ + ωJ)

−
〈
0
∣∣V ωα

∣∣I
〉〈
I
∣∣(Â− 〈0|Â|0〉

)∣∣J
〉
〈J |V ωβ |0〉

(ωα + ωI)(ωβ − ωJ)

]
. (2.4)

In this equation, |0〉 is the static electronic ground state, without the perturbation

from the external field W (t); V ωα and V ωβ are the Fourier transform of V (t) in

Eq. (2.3) at frequencies ωα and ωβ, respectively; P̂(α, β) is the permutation operator

that generates all the permutations of α and β; and ωI and ωJ are the excitation

energies for the excited states |I〉 and |J〉.

For I 6= J , the quantity 〈I|Â|J〉 can be obtained from the residue of the quadratic

response function:

〈I|Â|J〉 =
− lim

ωα→−ωI

(ωα + ωI) lim
ωβ→ωJ

(ωβ − ωJ)〈〈A;V ωα , V ωβ〉〉

〈0|V −ωI |I〉〈J |V ωJ |0〉 . (2.5)
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If we choose Â = ∇̂R as the nuclear derivative operator, then the derivative coupling

dIJ in Eq. (2.1) can be calculated using Eq. (2.5).

Quadratic response functions in TDKS systems

In order to calculate the derivative coupling dIJ between TDDFT excited states, we

need to derive the quadratic response functions of ∇̂R for time-dependent Kohn-Sham

(TDKS) systems, whereas Eq. (2.4) gives the response function for exact states. In

the TDKS system, the time-dependent ground state is approximated as a single deter-

minant Φ(t) that provides the correct electron density at time t, and the expectation

value of ∇̂R can be expressed as

DKS
R
(t) ≡ 〈Φ(t)|∇̂R|Φ(t)〉 =

∑

i

〈ψi(t)|∇̂R|ψi(t)〉, (2.6)

where the |ψi(t)〉 are the occupied TDKS orbitals.

Given the perturbation from the external scalar potentials

V (t) = λαV
(α)e−iωαt + λβV

(β)e−iωβt, (2.7)

the TDKS orbitals may be expanded up to the second order in λ:24

|ψi(t)〉 = e−iǫit
(
|φi〉+ λα|ψ(α)

i (t)〉+ λβ|ψ(β)
i (t)〉+ λαλβ|ψ(αβ)

i (t)〉
)
, (2.8)

where the |φi〉 are the static KS orbitals, with orbital energies ǫi in the absence of the

perturbation. Hereafter, we will set λα = λβ = 1 for simplicity.

The orbital |ψ(α)
i (t)〉 in Eq. (2.8) may be expanded in the basis of virtual static

KS orbitals |φa〉,24

|ψ(α)
i (t)〉 =

∑

a

(
X

(α)
ai e

iωαt + Y
(α)
ai e−iωαt

)
|φa〉, (2.9)
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where X(α) and Y(α) are the virtual-occupied (VO) and occupied-virtual (OV) blocks

of the linear density matrix response. These response functions satisfy the TDKS

linear response equations,22

(Λ− ωα∆)
∣∣X(α),Y(α)

〉
= −

∣∣P(α),Q(α)
〉
. (2.10)

Here,

Λ =

(
A B

B A

)
(2.11)

is the orbital Hessian, whose matrix elements are

Aai,bj = (ǫa − ǫi) δijδab + 〈φaφj|φiφb〉

− CHF〈φaφj|φbφi〉+ 〈φaφj|fxc|φiφb〉
(2.12)

and

Bai,bj = 〈φaφb|φiφj〉 − CHF〈φaφb|φjφi〉+ 〈φaφb|fxc|φiφj〉 (2.13)

for a hybrid functional within the adiabatic approximation.31 In Eqs. (4.2) and (4.3),

CHF is the fraction of the Hartree-Fock (HF) exchange, and fxc is the exchange-

correlation functional kernel. The matrix ∆ in Eq. (2.10) is defined as

∆ =

(
1 0

0 −1

)
, (2.14)

and |P(α),Q(α)〉 represents the perturbation potential whose matrix elements are

P
(α)
ai = 〈φa|V ωα |φi〉 (2.15)

Q
(α)
ai = 〈φi|V ωα |φa〉 . (2.16)
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Similarly, the quantity |ψ(αβ)
i (t)〉 in Eq. (2.8) may be expanded as

|ψ(αβ)
i (t)〉 =

∑

a

(
X

(αβ)
ai ei(ωα+ωβ)t + Y

(αβ)
ai e−i(ωα+ωβ)t

)
|φa〉

−
∑

aj

(
X

(α)
ai Y

(β)
aj e

i(ωα+ωβ)t + Y
(α)
ai X

(β)
aj e

−i(ωα+ωβ)t
)
|φj〉 ,

(2.17)

where X(αβ) and Y(αβ) satisfy the TDKS quadratic response equations:22

(
Λ− (ωα + ωβ

)
∆)
∣∣X(αβ),Y(αβ)

〉
= −

∣∣R(αβ),S(αβ)
〉
. (2.18)

More details about Eq. (2.18) are presented in the Appendix.

The TDKS density operator can be calculated from the TDKS orbitals as

γ̂(t) =
∑

i

|ψi(t)〉〈ψi(t)| . (2.19)

Using Eqs. (2.8), (2.9) and (2.17), it is easy to calculate the linear and the quadratic

response functions of the density operator. The linear response can be obtained by

collecting the terms which are multiplied by eiωαt,

γ̂(α) =
∑

ai

(
X

(α)
ai |φa〉〈φi|+ Y

(α)
ai |φi〉〈φa|

)
. (2.20)

Likewise, collecting the terms that are multiplied by ei(ωα+ωβ)t gives us the quadratic

response function,

γ̂(αβ) =
∑

ai

(
X

(αβ)
ai |φa〉〈φi|+ Y

(αβ)
ai |φi〉〈φa|

)

−
∑

ija

(
X

(α)
ai Y

(β)
aj +X

(β)
ai Y

(α)
aj

)
|φj〉〈φi|

+
∑

abi

(
X

(α)
ai Y

(β)
bi +X

(β)
ai Y

(α)
bi

)
|φa〉〈φb| .

(2.21)
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Equations (2.20) and (2.21) have the correct idempotent forms of the linear and the

quadratic response functions of the density operator,22 which validates the expansions

in Eqs. (2.8), (2.9) and (2.17).

The quantity DKS
R
(t) in Eq. (2.6) can now be calculated by direct differentiation,

using the formulas presented in Eqs. (2.8), (2.9) and (2.17). In order to get the

quadratic response function of DKS
R
(t), we collect all the terms multiplied by ei(ωα+ωβ)t

as before, which gives us

D
(αβ),KS
R

=
∑

ai

(
X

(αβ)
ai − Y

(αβ)
ai

)
〈φi|∇̂R|φa〉

−
∑

ija

(
X

(α)
ai Y

(β)
aj +X

(β)
ai Y

(α)
aj

)
〈φi|∇̂R|φj〉

+
∑

abi

(
X

(α)
bi Y

(β)
ai +X

(β)
bi Y

(α)
ai

)
〈φa|∇̂R|φb〉

−
∑

ai

(
X

(α)
ai ∇̂RY

(β)
ai + Y

(β)
ai ∇̂RX

(α)
ai

)

+
∑

ai

(
Y

(α)
ai ∇̂RX

(β)
ai + Y

(β)
ai ∇̂RX

(α)
ai

)
. (2.22)

Derivative couplings between TDDFT excited states

Having derived the quadratic response function of DKS
R
(t), we just need to extract

the derivative couplings from the residues of D
(αβ),KS
R

in Eq. (2.22) following the same

procedure shown in Eq. (2.5).

It is well known9 that by using Eq. (2.10) and the spectral expansion, the quantity

|X(α),Y(α)〉 can be expressed as

|X(α),Y(α)〉 =
∑

I

( |XI ,YI〉〈XI ,YI |
ωα − ωI

− |YI ,XI〉〈YI ,XI |
ωα + ωI

)
|P(α),Q(α)〉, (2.23)
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where |XI ,YI〉 and |YI ,XI〉 satisfy the following pseudo-eigenvalue equations:

(Λ− ωI∆)|XI ,YI〉 = 0

(Λ+ ωI∆)|YI ,XI〉 = 0 ,
(2.24)

subject to the orthonormality conditions

〈XI ,YI |∆|XJ ,YJ〉 = δIJ

〈YI ,XI |∆|YJ ,XJ〉 = −δIJ .
(2.25)

From Eqs. (2.15), (2.16) and (2.23), the residues of |X(α),Y(α)〉 and |X(β),Y(β)〉 at

frequencies −ωI and ωJ can be written as9,26

lim
ωα→−ωI

(ωα + ωI)|X(α),Y(α)〉

= −|YI ,XI〉〈YI ,XI |P−ωI ,Q−ωI 〉

= −|YI ,XI〉〈0|V −ωI |I〉 (2.26)

and

lim
ωβ→ωJ

(ωβ − ωJ)|X(β),Y(β)〉

= |XJ ,YJ〉〈XJ ,YJ |PωJ ,QωJ 〉

= |XJ ,YJ〉〈J |V ωJ |0〉 . (2.27)

Finally, we can extract the derivative coupling between two TDDFT excited states

from the residues of D
(αβ),KS
R

in Eq. (2.22) by using Eqs. (2.26), (2.27) and |XIJ ,YIJ〉
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as derived in the Appendix. The result is

dKS
IJ =

∑

ai

(
XIJ

ai − Y IJ
ai

)
〈φi|∇̂R|φa〉

−
∑

ija

(
XJ

aiX
I
aj + Y I

aiY
J
aj

)
〈φi|∇̂R|φj〉 (2.28)

+
∑

abi

(
XJ

biX
I
ai + Y I

biY
J
ai

)
〈φa|∇̂R|φb〉

+
∑

ai

lim
ωβ→ωJ

(ωβ − ωJ)(X
I
ai∇̂RX

(β)
ai − Y I

ai∇̂RY
(β)
ai )

〈J |V ωJ |0〉 .

The last term in Eq. (2.28) can be calculated following the procedure given by Li and

Liu;26 details are shown in the Appendix. By substituting Eq. (A.14) into Eq. (2.28),

the final expression for the derivative coupling between two TDDFT excited states

reads

dKS
IJ =

∑

ai

(
XIJ

ai − Y IJ
ai

)
〈φi|∇̂R|φa〉

−
∑

ija

(
XJ

aiX
I
aj + Y I

aiY
J
aj

)
〈φi|∇̂R|φj〉

+
∑

abi

(
XJ

biX
I
ai + Y I

biY
J
ai

)
〈φa|∇̂R|φb〉 (2.29)

+
∑

ijab

[
XI

ai(∇̂RAai,bj)X
J
bj + Y I

ai∇̂RAai,bj)Y
J
bj

+XI
ai(∇̂RBai,bj)Y

J
bj

+ Y I
ai(∇̂RBai,bj)X

J
bj

]
(ωJ − ωI)

−1 .

In Eq. (2.29), the nuclear derivatives of the orbital rotation Hessians ∇̂RA and ∇̂RB

can be obtained from the conventional TDDFT gradient formalism.32 The nuclear

derivatives of the KS orbitals, ∇̂R|φp〉, can be calculated as in previous work.14,21,28

21



2.2.2 Nonadiabatic coupling vectors between TDDFT excited

states

The nonadiabatic coupling vector (NACV) along with the energy difference gradient

vector can be used to determine the branching plane at conical intersections.8 For

states |I〉 and |J〉 that are exact eigenstates of Ĥ, the NACV may be defined as8

hIJ ≡ 〈I|(∇̂RĤ)|J〉 = dIJ(EJ − EI)

=

〈
I

∣∣∣∣∣

(
∇̂R

N∑

i=1

V̂en(i)

)∣∣∣∣∣ J
〉
,

(2.30)

where V̂en(i) is the electron-nucleus Coulomb potential for the ith electron.

Since dKS
IJ in Eq.(2.29) was derived from response theory and is therefore formally

exact, we can simply define the NACV between TDDFT excited states as

hKS
IJ = (ωJ − ωI)d

KS
IJ . (2.31)

In addition, we can also derive hKS
IJ from response theory, where we replace the oper-

ator ∇̂R in Eq. (2.6) by ∇̂RV̂en. Following the same procedure used to derive dKS
IJ ,

we easily obtain

hKS
IJ =

∑

ai

(
XIJ

ai + Y IJ
ai

)
〈φi|(∇̂RV̂en)|φa〉

−
∑

ija

(
XJ

aiX
I
aj + Y I

aiY
J
aj

)
〈φi|(∇̂RV̂en)|φj〉 (2.32)

+
∑

abi

(
XJ

biX
I
ai + Y I

biY
J
ai

)
〈φa|(∇̂RV̂en)|φb〉 .

Equations (2.31) and (2.32) should be equivalent in the limit that exact den-

sity functional and frequency-dependent functional kernel are used. Of course, the

functionals used in practice are approximate, and the frequency-independent adia-

batic approximation31 is almost always invoked. As such, the NACVs obtained from
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Eqs. (2.31) and Eq. (2.32) will generally differ. Note that Eq. (2.32) does not involve

nuclear derivatives of A or B, which is very different from the NACV defined within

the configuration interaction singles (CIS) theory.14

2.2.3 Discussion

Equation (2.29) for the derivative coupling dKS
IJ between two TDDFT excited states

is equivalent to the expression derived by Li and Liu26 [Eq. (125) of Ref. 26]. Those

authors started from the equation-of-motion formalism, and obtained the derivative

couplings for arbitrary excitation subspaces. Here for TDDFT, the excitation sub-

space is limited to single excitations, considering terms up to second-order response.

The first three lines on the right side of Eq. (2.29) are the VO, OV, OO, and

VV blocks of the transition density matrix between two excited states (where O

means “occupied” and V means “virtual”), multiplied by the “half derivative” of the

corresponding KS orbital overlap matrices, 〈φp|∇̂R|φq〉. These terms are similar as

the “configuration state function (CSF) contribution” in the formulation of MRCI

derivative couplings.15–18 The terms involving the nuclear derivatives of the orbital

rotation Hessian in Eq. (2.29) resembles the “CI contribution”, in the language of

MRCI derivative couplings.

In CIS theory, the VO and OV blocks of the transition density matrix between

two CIS states is zero because only single excitations are considered. By directly

following the CIS procedure28,29 to calculate TDDFT derivative couplings (pseudo-

wavefunction approach), the terms including |XIJ ,YIJ〉 are neglected. This affords
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derivative couplings

dPWA
IJ = −

∑

ija

(
XJ

aiX
I
aj + Y I

aiY
J
aj

)
〈φi|∇̂R|φj〉

+
∑

abi

(
XJ

biX
I
ai + Y I

biY
J
ai

)
〈φa|∇̂R|φb〉 (2.33)

+
∑

ijab

[
XI

ai(∇̂RAai,bj)X
J
bj + Y I

ai(∇̂RAai,bj)Y
J
bj

+XI
ai(∇̂RBai,bj)Y

J
bj

+ Y I
ai(∇̂RBai,bj)X

J
bj

]
(ωJ − ωI)

−1 .

Interestingly, for spin-flip TDDFT (SF-TDDFT) with either collinear11 or non-

collinear12 kernels, the right side of Eq. (A.9) vanishes. [For spin-flipping excita-

tions, it is straightforward to show that ∂Fpq/∂Prs = 0 and ∂2Fpq/∂Prs∂Pr′s′ = 0

in Eqs. (A.6) and (A.7).11,12] Thus, the VO and OV blocks of the transition density

matrix between two SF-TDDFT states is zero. In other words, for SF-TDDFT, the

derivative coupling calculated by the PWA14 is exactly the same as the one calculated

by the quadratic response approach (QRA) shown in Eq. (2.29).

The cost of computing dKS
IJ in Eq. (2.29) is greater than the cost of computing

dPWA
IJ , since an additional set of linear equations [namely, Eq. (A.9)] needs to be

solved. The cost of solving Eq. (A.9) is about the same as a single TDDFT excited-

state gradient calculation. As such, it is important to quantify any differences between

dKS
IJ and dPWA

IJ , in order to determine situations in which the PWA is capable of

providing accurate derivative couplings. This is the topic of the next section.
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2.3 Numerical examples

TDDFT derivative couplings dKS
IJ from quadratic response theory [Eq. (2.29)] have

been implemented in a locally-modified version of the Q-Chem program,33 whereas

derivative couplings with the PWA have been implemented previously.14,28,29,34 Here,

we numerically compare the QRA and PWA results in order to determine the impor-

tance of the contribution from the VO and OV blocks of the transition density matrix

between TDDFT excited states.

We will also compare TDDFT derivative couplings to full configuration interaction

(FCI) results, and to CIS results. The effects of the Tamm-Dancoff approximation35

(TDA) on the TDDFT results are also considered. For derivative couplings dKS
IJ , we

take the TDA to mean that the vectors YI , YJ and YIJ in Eqs. (2.29) and (A.9) are

set to zero.

The CASSCF module36,37 of theMolPro program38 was used to perform the FCI

calculations. The derivative couplings between the FCI excited states were calculated

using finite central differences with a step size of 0.01 a.u. All the other calculations

were performed using Q-Chem.33

2.3.1 Difference between dKS

IJ and dPWA

IJ

When the energy gap between states I and J becomes small, the “CI contribution”

[last three lines in Eq. (2.29)] should dominate dKS
IJ , since these terms contain the

inverse energy gap (ωJ − ωI)
−1. As such, we may expect that the difference between

dKS
IJ and dPWA

IJ is small in the curve-crossing regions.
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Figure 2.1: Differences between dKS
IJ and dPWA

IJ at various energy gaps. The derivative
couplings were calculated by TDDFT/TDA at the PBE0/6-31G** level. Full (non-
TDA) TDDFT results are similar and have been omitted. The magnitude difference
is defined in Eq. (2.34) and cos θ in Eq. (2.35). Note that the horizontal scale is
not linear, but rather consists of the 16 different gaps that were computed for the 8
molecules in the test set.
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To examine the energy-gap dependence of dKS
IJ −dPWA

IJ , we calculated these quan-

tities for a test set that consists of formaldehyde, ethene, benzene, adenine, thymine,

uracil, cytosine and azulene. Each molecule was distorted slightly from its global

minimum geometry so that all the molecules have C1 symmetry and we can safely

calculate the derivative couplings between any pairs of excited states with the same

spin multiplicity. The S1/S2 and S1/S3 derivative couplings were calculated for each

molecule, at the PBE0/6-31G** level.39 Results are shown in Fig. 2.1, where we

characterize the difference between dKS
IJ and dPWA

IJ in terms of the difference in their

norms,

Magnitude difference =
||dKS

IJ || − ||dPWA
IJ ||

||dPWA
IJ || × 100% , (2.34)

and also in terms of the angle θ between the two derivative coupling vectors:

cos θ =
dKS
IJ · dPWA

IJ

||dKS
IJ || × ||dPWA

IJ || . (2.35)

From Fig. 2.1 we see that there is almost no difference between dKS
IJ and dPWA

IJ for

systems with energy gaps < 1 eV. Only for larger gaps does the magnitude difference

[Eq. (2.34)] approach 5–12%, and even in these cases the vectors dKS
IJ and dPWA

IJ are

nearly parallel. This suggests that for optimizations of minimum-energy crossing

points along conical seams, where only the direction of the derivative coupling is

important, dPWA
IJ can be safely used with lower computational cost. As such, we

conclude that for molecules with low symmetry, dKS
IJ and dPWA

IJ can usually be used

interchangeably between the states with energy gaps as large as 6 eV. (For highly

symmetric molecules, such as Li2 as considered below, dKS
IJ and dPWA

IJ may exhibit
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larger differences even for small-gap systems, and the choice between the two must

be considered more carefully.)

2.3.2 Geometric phase effect around conical intersections

According to the geometric phase effect, the nuclear wavefunction accumulates an ad-

ditional (geometric) phase as it is transported around a path that encloses a conical

intersection. This compensates for the phase change of the adiabatic electronic wave-

function.8 The accumulated phase φ is related to the derivative couplings according

to

φ ≡
∮

C

dIJ · dR = π , (2.36)

where loop C encloses a conical intersection. (Here, we define φ as the indicated

integral around C. For exact derivative couplings, φ = π,8 though a different value

of the integral might be obtained using approximate derivative couplings.)

It has been shown previously that dPWA
IJ satisfies Eq. (2.36) for both full TDDFT

calculations29 and TDDFT/TDA calculations.28 This is hardly surprising, since the

PWA is by nature a wavefunction-based method. It is not clear whether dKS
IJ derived

from response theory should satisfy Eq. (2.36), although given that the difference

between dKS
IJ and dPWA

IJ is small near crossing points, we might anticipate this rela-

tionship is satisfied for dKS
IJ as well.

In this work, we calculated the geometric phase φ for H2O and for uracil. For H2O,

we computed φ at the B3LYP/6-31G** level40,41 for the S3/S4 conical intersection,

and for uracil we calculated φ at the PBE0/6-31G** level39 for the S1/S2 intersection.

The loop C was chosen as a circle in the branching plane with a radius of 0.001 Å and
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Table 2.1: Line integrals of the TDDFT derivative couplings along closed circular
loops that enclose a conical intersection. These loops are centered either at the
minimum-energy crossing point (Rmex) or at a point displaced 0.1 Å in the gIJ di-
rection. Geometric phases φ are given in units of π, and values in parenthesis are
computed using the Tamm-Dancoff approximation.

Centered at Rmex Displaced in gIJ direction
Molecule φQRA/π φPWA/π φQRA/π φPWA/π
H2O 0.9997 (1.0001) 1.0003 (1.0000) 0.0043 (0.0119) 0.0110 (0.0120)
Uracil 0.9978 (0.9999) 0.9978 (0.9999) 0.0013 (0.0014) 0.0014 (0.0014)

a center near the minimum-energy crossing point, as detailed below. The branching

plane was determined as the span of the vectors gIJ and hIJ , where

gIJ = ∇̂R(ωJ − ωI) (2.37)

is the energy difference gradient vector. The vector hIJ is the NACV, which is

given by hKS
IJ Eq. (2.31) with the quadratic response approach. Within the pseudo-

wavefunction approach,

h
PWA,TDDFT
IJ = dPWA

IJ (ωJ − ωI) , (2.38)

or upon invoking the TDA,

h
PWA,TDA
IJ =

∑

ijab

XI
ai

(
∇̂RAai,bj

)
XJ

bj . (2.39)

Table 2.1 lists the geometric phases computed along two different circular loops,

one that is centered at the minimum-energy crossing point (Rmex) and another whose

center is displaced from Rmex by 0.1 Å along a unit vector in the direction gIJ . For

the loop centered at Rmex, both dKS
IJ and dPWA

IJ afford the correct phase, φ = π. For
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the loop whose center is displaced from Rmex, however, both methods afford a phase

φ ≈ 0, indicating that this displaced loop does not enclose a conical intersection. (This

is expected, since we displaced the center of this path along one of the branching-

plane degrees of freedom.) Overall, the geometric-phase behavior of both dKS
IJ and

dPWA
IJ is correct.

2.3.3 Comparison with FCI derivative couplings

In this section, we have calculated the derivative couplings for H2, He2, Li2 and H3

using FCI, CIS, time-dependent Hartree-Fock (TDHF) theory and TDDFT. Both

the QRA and PWA derivative couplings were tested in the TDHF and the TDDFT

calculations. Similar results were obtained using B3LYP and PBE0, so only the latter

are shown. As the z axis was taken to be the molecular axis, only the z components

of the derivative couplings are non-zero.

H2

Derivative couplings for the 2 1Σ+
g and 3 1Σ+

g states of H2, computed in the aug-cc-

pVDZ basis set, are shown in Figs. 2.2 and 2.3. For bond lengths larger than 2.25 bohr,

both states have strong double excitation character that cannot be captured by CIS,

TDHF or TDDFT, so only our plots terminate at 2.25 bohr.

The CIS and TDHF-PWAmethods are formally similar, in that both are wavefunction-

based approaches that include only Hartree-Fock exchange, with excitation spaces

that are truncated at single excitations. Derivative couplings computed using the

these two methods are similar to one another, and agree quite well with FCI results
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Figure 2.2: (a) Energies of the 2 1Σ+
g and 3 1Σ+

g states of H2 computed at the FCI, CIS,
and TDDFT/TDA levels, using the aug-cc-pVDZ basis set and the PBE0 functional
for TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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Figure 2.3: (a) Energies of the 2 1Σ+
g and 3 1Σ+

g states of H2 computed at the FCI,
TDHF, and TDDFT levels, using the aug-cc-pVDZ basis set and the PBE0 functional
for TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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for bond lengths ranging from 1.0–1.6 a.u. [see Figures 2.2(b) and 2.3(b)]. For larger

bond lengths, however, these methods fail to reproduce the increase in dIJ as a func-

tion of bond length that is observed in the FCI results. This failure can be understood

by examining the potential energy surfaces (PESs) of the 31Σ+
g state, whose curvature

is incorrectly predicted by CIS and TDHF calculations for bond lengths larger than

1.6 a.u. The PBE0-PWA derivative couplings, both with or without the TDA, agree

qualitatively with the CIS and TDHF-PWA results (and are thus incorrect for longer

bond lengths), owing to the similar wavefunction ansatz that is used, and the good

agreement among the PESs calculated by CIS, TDHF and TDDFT

On the other hand, TDHF-QRA and PBE0-QRA derivative couplings are in poor

agreement with FCI results even for shorter bond lengths. A possible explanation

is accumulation of errors when calculating the VO and OV blocks of the transition

density matrix between the two TDDFT excited states. From Eqs. (A.6), (A.7), and

(A.9), we know that |XIJ ,YIJ〉 is based on |XI ,YI〉 and |XJ ,YJ〉. Although TDDFT

may provide good excitation energies, it is possible that the transition properties

|XI ,YI〉 and |XJ ,YJ〉 are less accurate. Large errors might then accumulate in

|XIJ ,YIJ〉, which is obtained by solving a set of linear equations [Eq. (A.9)]. This is

confirmed by comparing the transition density matrices calculated by TDDFT and

FCI.

He2

For He2, we examine derivative couplings between the 3 1Σ+
g and 5 1Σ+

g states, both

of which have strong single-excitation character. The 3 1Σ+
g state is characterized
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by a single excitation from the 1σu molecular orbital (MO) to the 2σu MO, and the

5 1Σ+
g state involves 1σu → 3σu excitation. Potential energy curves and derivative

couplings are plotted in Figs. 2.4 and 2.5.

The CIS and TDHF methods reproduce all the features of the FCI PES, even

though the total energies are a little shifted from the FCI values. This leads to good

agreement among CIS, TDHF-PWA, and FCI derivative couplings. Surprisingly,

the TDHF-QRA derivative couplings exhibit large errors and qualitatively incorrect

behavior at bond lengths shorter than 4.0 bohr, for reasons that are unclear but which

may be another example of the error accumulation about which we have already

speculated.

TDDFT potential curves fail to capture the state crossing between 31Σ+
g and a

higher excited state at bond lengths of 3.5–4.0 bohr, and moreover the double-well

feature of the 51Σ+
g state is also not correctly described in these calculations. Con-

sequently, the TDDFT derivative couplings are qualitatively wrong at bond lengths

larger than 4.0 bohr, although PBE0-PWA results are much better at shorter bond

lengths, which can be understood in terms of its similarity to the wavefunction-based

CIS method.

Finally, we note that the TDDFT and TDDFT/TDA derivative couplings are

almost identical in this system. This is true not only for the pseudo-wavefunction ap-

proach (where the derivative couplings are in reasonable agreement with FCI results)

but also for the quadratic response approach (where they are not).
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Figure 2.4: (a) Energies of the 3 1Σ+
g and 5 1Σ+

g states of He2 computed at the FCI,
CIS, and TDDFT/TDA levels, using the aug-cc-pVDZ basis set and the PBE0 func-
tional for TDDFT. (b) Absolute value of the z-component of the derivative coupling
between these two states, computed using the same methods.
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Figure 2.5: (a) Energies of the 3 1Σ+
g and 5 1Σ+

g states of He2 computed at the FCI,
TDHF, and TDDFT levels, using the aug-cc-pVDZ basis set and the PBE0 functional
for TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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Li2

The 6-31G basis set was used to calculate the derivative couplings between the two

lowest 1Σ+
u states of Li2. These states have single-excitation character, involving

1σg → 1σu and 1σg → 2σu excitation, respectively. The calculated potential curves

and derivative couplings are shown in Figs. 2.6 and 2.7. All methods afford similar

potential curves for both states, and the derivative couplings obtained using the CIS,

TDHF-PWA and PBE0-PWA methods are about the same, but are very different

from the FCI derivative couplings.

In contrast, the TDHF-QRA and PBE0-QRA derivative couplings agree very well

with the FCI results. We compared the |XIJ ,YIJ〉 matrix from the QRA with the VO

and OV blocks of the transition density matrix from FCI, and they are indeed very

similar. This may support the previous discussion that the failures of the QRA for H2

and He2 are caused by the errors accumulated when calculating the transition density

matrices between the TDDFT excited states. Note that the energy gap between the

1!1Σ+
u and 2!1Σ+

u states is less than 3 eV, yet the difference between dKS
IJ and dPWA

IJ is

quite large. This may indicate the importance of the contributions from |XIJ ,YIJ〉

in some molecules with high symmetry.

H3

For another high-symmetry example, we calculated the derivative couplings for H3

in D∞h symmetry. For HF and DFT calculations, the ground state in D∞h symme-

try belongs to the 2Σ+
u irreducible representation. We compute derivative couplings

between the 1 2Σ+
g and 2 2Σ+

g states.
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Figure 2.6: (a) Energies of the 1 1Σ+
u and 2 1Σ+

u states of Li2 computed at the FCI,
CIS, and TDDFT/TDA levels, using the 6-31G basis set and the PBE0 functional for
TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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Figure 2.7: (a) Energies of the 1 1Σ+
u and 2 1Σ+

u states of Li2 computed at the FCI,
TDHF, and TDDFT levels, using the 6-31G basis set and the PBE0 functional for
TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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Figure 2.8: (a) Energies of the 1 2Σ+
g and 2 2Σ+

g states of H3 computed at the FCI,
CIS, and TDDFT/TDA levels, using the cc-pVDZ basis set and the PBE0 functional
for TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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Figure 2.9: (a) Energies of the 1 2Σ+
g and 2 2Σ+

g states of H3 computed at the FCI,
TDHF, and TDDFT levels, using the cc-pVDZ basis set and the PBE0 functional for
TDDFT. (b) Absolute value of the z-component of the derivative coupling between
these two states, computed using the same methods.
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In Figs. 2.8 and 2.9, we see that the potential curves obtained from CIS, TDHF,

and TDDFT are very similar to the FCI potential curves, for both states. Further-

more, the derivative couplings calculated from CIS, TDHF, and TDDFT are qual-

itatively correct, and the differences between the QRA and PWA results are quite

small. By observing the transition density matrix between FCI states, we found that

the OO and VV blocks dominate, whereas the VO and OV blocks are negligible. The

same is true for the TDDFT transition density matrix. This explains the similarity

between the QRA and PWA derivative couplings. Note that the current H3 system

has high symmetry and the energy gap between the two chosen states is large. Thus,

in what situations the VO and OV blocks of the transition density matrix between

TDDFT excited states are important is still unclear and needs further study.

Brief summary

By comparing TDDFT derivative couplings computed within the QRA and PWA

formalisms to FCI derivative couplings, we reach the following conclusions.

1. The PWA derivative couplings are usually qualitatively correct so long as the

potential energy surface is qualitatively correct.

2. There exist systems (such as Li2 in the present work) where the contributions

from |XIJ ,YIJ〉 are important. The PWA may not be adequate for these sys-

tems.

3. Failures of the QRA in certain cases may arise due to a poor description of the

transition density matrix between the TDDFT excited states. Careful selection
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of the exchange-correlation functional may alleviate this problem.

2.4 Conclusion

In the present study, we have presented a compact derivation of TDDFT deriva-

tive coupling between excited states that is entirely based on the quadratic response

theory; we call this the quadratic response approach or QRA. Our previous formu-

lation14 of the analytic derivative couplings for spin-flip TDDFT, which was based

on a pseudo-wavefunction approach (PWA), is shown to be rigorously correct, as

there is no distinction between the QRA and the PWA for spin-flip TDDFT. For

spin-conserving TDDFT, there is a distinction, which we have explored numerically

here.

For small-gap systems, we find that the QRA and PWA can usually be used inter-

changeably, thus the PWA may be a better choice considering its lower computational

cost. However, in certain cases (Li2 in the present work), the VO and OV blocks of

the transition density matrix between excited states, which are neglected in the PWA,

become important. In these cases, the QRA significantly improves the accuracy of

the derivative couplings. Finally, the accuracy of the QRA derivative couplings may

be improved if the transition densities calculated in TDDFT are accurate.

Overall, the QRA formalism for TDDFT derivative couplings is a potentially

useful approach to calculating these quantities. However, when only qualitatively-

correct derivative couplings are required, such as in the optimization of minimum-

energy crossing points along conical seams, the PWA will likely be the method of
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choice, owing to its lower computational cost.
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CHAPTER 3

Analytic Derivative Couplings of SF-TDDFT

In this chapter, we discuss the formulation and implementation of analytic SF-

TDDFT derivative couplings. In the last chapter, we have proved that both the

quadratic response theory and the pseudo-wavefunction approach lead to the same

formulation for SF-TDDFT derivative couplings. Thus, we will first present the

derivation of the analytic derivative couplings for spin-flip configuration interaction

singles, and the SF-TDDFT derivative couplings can be obtained as a simple exten-

sion of that.

3.1 Introduction

Most electronic structure methods are based on the Born-Oppenheimer approxima-

tion, in which the motions of electrons and nuclei are separated. The nuclei move

on an adiabatic potential energy surface (PES), obtained by solving the electronic

Schrödinger equation, and the PES is parametrically dependent on the nuclear co-

ordinates. No electronic transitions can be induced by nuclear motion within the

Born-Oppenheimer approximation. Nonadiabatic dynamics methods can be applied

to go beyond the Born-Oppenheimer approximation,6 but in order to compute transi-

tion probabilities between electronic states, most of these methods require first-order
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derivative couplings

dIJ = 〈ΨI |∇̂|ΨJ〉 =
hIJ

EJ − EI

(3.1)

between adiabatic electronic states. The nonadiabatic coupling vector

hIJ = 〈ΨI |(∂Ĥ/∂x)|ΨJ〉 (3.2)

and the difference gradient vector

gIJ = ∇̂
(
EI − EJ

)
(3.3)

together define the branching space around a two-state conical intersection.8

In principle, hIJ could be calculated via finite difference, but in the interest of

efficiency it is desirable to compute it analytically. This facilitates both nonadiabatic

ab initio molecular dynamics simulations42 as well as optimization of minimum-energy

crossing points (MECPs) along conical seams.8 The latter are key features in the study

of nonadiabatic phenomena in cases where dynamics simulations are not affordable.

Analytic formulations of the derivative couplings hIJx , where x represents a nuclear

coordinate, have been developed and implemented only for a few ab initio methods,

primarily multireference configuration interaction (MRCI).15–18 In small molecules,

MRCI has the advantages of a fully-balanced treatment of ground and excited states

as well as including a large fraction of electron correlation, but its computational cost

limits its application to molecules with < 20 atoms. Analytic derivative couplings

for equation-of-motion coupled-cluster (EOM-CC) theory have been introduced more

recently,19,20 but EOM-CC methods are also limited to small molecules.
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As computationally inexpensive alternatives, analytic derivative couplings for

single-reference methods including configuration interaction singles (CIS) and time-

dependent density functional theory (TDDFT) have been developed recently.21,23–25

Unfortunately, these methods suffer from an imbalance in the treatment of ground-

versus excited-state electron correlation, which makes them suitable only for describ-

ing electronic transitions between excited states. This is especially true near the im-

portant “funnel” regions along conical seams.10 For any conical intersection involving

the reference state (which is usually the ground state) in CIS or TDDFT, it is readily

shown that the branching space is one-dimensional rather than two-dimensional.10

The same is true, for the same reason, in the case of EOM-CC methods.43

The simplest extensions of CIS and TDDFT that correct these problems are spin-

flip (SF) methods: SF-CIS44 and SF-TDDFT, the latter in its “collinear” formu-

lation.11 Both of these two methods use a high-spin reference state and compute

excitations that include a SF transition, so that for example a singlet ground state

can be obtained from a self-consistent field (SCF) calculation of an Sz = 1 state.

Recent computational studies have shown good performance of collinear SF-TDDFT

in describing the electronic structure in both Franck-Condon regions and in crossing

seam regions.45–49

In the present work, we show the existing formalism for CIS analytic derivative

couplings21 can be extended to SF-CIS and (collinear) SF-TDDFT. The resulting

equations amount to relatively minor modifications of the CIS or TDDFT analytic
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gradient formalism, hence computer implementation is straightforward, and the ad-

ditional cost is modest. Although the extension from CIS to TDDFT is ad hoc,

numerical examples presented herein demonstrate the accuracy and efficiency of this

approach.

3.2 Theory

The following notation is used throughout this work. Occupied and virtual molecular

spin orbitals are labeled i, j, k, l, . . . and a, b, c, d, . . ., respectively, whereas p, q, r, s, . . .

index arbitrary (occupied or virtual) molecular spin orbitals. Greek letters µ, ν, λ, σ, . . .

index atomic orbitals. The symbol x represents a nuclear coordinate and derivatives

with respect to x will be indicated as, e.g., Ĥ [x] = ∂Ĥ/∂x and |Ψ[x]
I 〉 = |∂ΨI/∂x〉.

(We use “[x]” to indicate the full derivative with respect to coordinate x, which in-

cludes differentiation of the molecular orbitals, rather than a “skeleton derivative”,50

which does not.) Two-electron integrals are written in physicists’ notation.

3.2.1 Analytic derivative couplings for SF-CIS

Formalism

In this section, we revisit the analytic formulation of derivative couplings for CIS21

and extend it to SF-CIS. (A Lagrangian formulation of the CIS derivative couplings

has appeared recently,26 but we follow the direct differentiation approach of Ref. 21.)

The CIS wave function for excited state I is described as a linear combination of
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singly-excited Slater determinants:

|ΨI〉 =
∑

ai

tIai|Φa
i 〉 . (3.4)

For SF-CIS, the Slater determinant |Φa
i 〉 is formed by single α → β SF excitations

from a high-spin Hartree-Fock reference state (e.g. Sz = 1 or Sz = 3/2) to a low spin

target state (e.g. Sz = 0 or Sz = 1/2).44 Since spin-conserving CIS calculations use

an ansatz identical to Eq. (3.4) but with spin-conserving Slater determinants, we will

use the notation |Φa
i 〉 to mean either a spin-conserving or a spin-flipping determinant,

depending on whether we wish to consider CIS or SF-CIS. The formalism derived

below is valid for both.

The Hellmann-Feynman expression for the derivative coupling is

〈
ΨI

∣∣Ψ[x]
J

〉
=

〈ΨI |Ĥ [x]|ΨJ〉
EJ − EI

. (3.5)

However, this equation holds only when |ΨI〉 and |ΨJ〉 are eigenfunctions of Ĥ. As

suggested in Ref. 21, we can use a projection operator

P̂ =
∑

ia

∣∣Φa
i

〉〈
Φa

i

∣∣ (3.6)

to project the electronic Hamiltonian Ĥ onto the single-excitation subspace. Upon

subtracting out the Hartree-Fock reference state energy, E0, the projected Hamilto-

nian is defined as

Ĥ = P̂(Ĥ − E0)P̂ . (3.7)

The CIS wave function in Eq. (3.4) is an eigenfunction of the model Hamiltonian

Ĥ, with an eigenvalue equal to the CIS excitation energy, ωI . Thus the derivative
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coupling between CIS excited states |ΨI〉 and |ΨJ〉 is

〈
ΨI

∣∣Ψ[x]
J

〉
=

〈ΨI |Ĥ[x]|ΨJ〉
ωJ − ωI

. (3.8)

To derive working equations from Eq. (3.8), we need the derivative of Ĥ. Using

the definition of P̂ we obtain

Ĥ[x] =
∑

ijab

[∣∣Φa
i

〉〈
Φa

i

∣∣(Ĥ − E0)
∣∣Φb

j

〉〈
Φb

j

∣∣
][x]

=
∑

ijab

(
Aai,bj

∣∣Φa[x]
i

〉〈
Φb

j

∣∣+A[x]
ai,bj

∣∣Φa
i

〉〈
Φb

j

∣∣+ Aai,bj

∣∣Φa
i

〉〈
Φ

b[x]
j

∣∣
) (3.9)

where

Aai,bj =
〈
Φa

i

∣∣(Ĥ − E0)
∣∣Φb

j

〉
(3.10)

is the matrix element in conventional CIS theory.51 Substituting Eq. (3.9) into Eq. (3.8),

and using Eq. (3.4) along with the orthonormality of Slater determinants, we obtain

(ωJ − ωI)
〈
ΨI

∣∣Ψ[x]
J

〉
=
∑

ijab

〈
ΨI

∣∣Φa[x]
i

〉
Aai,bj

〈
Φb

j

∣∣ΨJ

〉
+
∑

ijab

〈
ΨI

∣∣Φa
i

〉
A

[x]
ai,bj

〈
Φb

j

∣∣ΨJ

〉

+
∑

ijab

〈
ΨI

∣∣Φa
i

〉
Aai,bj

〈
Φ

b[x]
j

∣∣ΨJ

〉

=
∑

ijab

〈
ΨI

∣∣Φa[x]
i

〉
Aai,bjt

J
bj +

∑

ijab

tIaiA
[x]
ai,bjt

J
bj

+
∑

ijab

tIaiAai,bj

〈
Φ

b[x]
j

∣∣ΨJ

〉
.

(3.11)

Using the nuclear derivative of the molecular spin-orbitals’ creation and annihilation

operators,21 we next obtain

〈
ΨI

∣∣Φa[x]
i

〉
=

particles∑

c

tIci
〈
c
∣∣a[x]

〉
+

holes∑

k

tIak
〈
k
∣∣i[x]
〉

(3.12)

and

〈
Φ

b[x]
j

∣∣ΨJ〉 =
particles∑

c

tJcj
〈
c
∣∣b[x]

〉
+

holes∑

k

tJbk
〈
k
∣∣j[x]

〉
. (3.13)
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Next, recall that the CIS equations for states I and J are

∑

ia

tIaiAai,bj = ωIt
I
bj

∑

jb

Aai,bjt
J
bj = ωJt

J
ai .

(3.14)

Combining Eq. (3.14) with the results above, we obtain a general expression for the

derivative coupling that is valid for both spin-conserved and spin-flip CIS:

(ωJ − ωI)
〈
ΨI

∣∣Ψ[x]
J

〉
=
∑

ac

∑

i

(
tIcit

J
aiωJ + tJcit

I
aiωI

)〈
c
∣∣a[x]

〉

+
∑

ik

∑

a

(
tIakt

J
aiωJ + tJakt

I
aiωI

)〈
k
∣∣i[x]
〉

+
∑

ijab

tIaiA
[x]
ai,bjt

J
bj .

(3.15)

Overlap integrals between virtual orbitals and their displaced counterparts are

given by

〈
c
∣∣a[x]

〉
=
∑

µν

Cµc

〈
µ
∣∣ν [x]

〉
Cνa +

∑

µν

Cµc〈µ|ν〉C [x]
νa (3.16)

The derivatives C
[x]
νa of the molecular orbital (MO) coefficients can be expanded in

the unperturbed MO basis,52

C [x]
νa =

all∑

p

CνpU
[x]
pa . (3.17)

The virtual–virtual coefficients U
[x]
ba are redundant, and can be expressed as50

U
[x]
ba = −1

2
S
[x]
ba (3.18)

where

S
[x]
ba =

∑

µν

CµbS
[x]
µνCνa (3.19)
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is a so-called skeleton derivative50 of an MO overlap integral, meaning that it is

evaluated for fixed MO coefficients. In contrast, the quantity S
[x]
µν = ∂〈µ|ν〉/∂x is

simply an overlap derivative in the atomic orbital (AO) basis. Equation (3.19) follows

from the fact that U[x] + (U[x])† = −S.50

Putting all of this together, we have

C [x]
νa =

occ∑

i

CνiU
[x]
ia − 1

2

virt∑

b

CνbS
[x]
ba . (3.20)

However, the term involving U
[x]
ia vanishes when this equation is inserted into Eq. (3.16),

because 〈c|i〉 = 0, and thus 〈c|a[x]〉 can be evaluated without the need to solve coupled-

perturbed equations. Instead, we obtain

〈
c
∣∣a[x]

〉
=
∑

µν

Cµc

〈
µ
∣∣ν [x]

〉
Cνa − 1

2

∑

µν

virt∑

d

Cµc〈µ|ν〉CνdS
[x]
da . (3.21)

A similar expression can be derived for the terms 〈k|i[x]〉 that appear in Eq. (3.15):

〈
k
∣∣i[x]
〉
=
∑

µν

Cµk

〈
µ
∣∣ν [x]

〉
Cνi − 1

2

∑

µν

occ∑

j

Cµk〈µ|ν〉CνjS
[x]
ji . (3.22)

Discussion

Equation (3.15) is a compact expression for the CIS derivative couplings. The non-

Hellman–Feynman (or “response”) terms in this expression are easily evaluated using

Eqs. (3.21) and (3.22), while the Hellman-Feynman term is analogous to the conven-

tional CIS energy gradient expression,53

ω
[x]
I =

∑

ijab

tIaiA
[x]
ai,bjt

I
bj , (3.23)
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but with different excitation eigenvectors on the right and left in Eq. (3.15). As such,

we can calculate CIS analytic derivative couplings using the same algorithm for as for

CIS analytic energy gradients,53,54 and very little extra coding is required. Actually,

our Eq. (3.15) for the derivative couplings is equivalent to Eq. (A23) in Ref. 21,

although our derivation is somewhat more compact. Our algorithm is also analogous

to that used to compute analytic derivative couplings for MRCI wave functions,15–18

where the Hellman-Feynman term is sometimes called the “CI contribution” and the

non-Hellman–Feynman terms are the “configuration state function (CSF) contribu-

tion”.18

The explicit form of A
[x]
ai,bj is derived in the Appendix. Note also that the wave

function ansatz in Eq. (3.4) is invariant to unitary transformations of the occupied

orbitals and, separately, to unitary transformations of the virtual orbitals, hence

Eq. (3.15) for the derivative couplings is also invariant to such transformations.

A long-known problem with derivative couplings, but one that is sometimes over-

looked, is their lack of translational invariance.15,55–58 In a nonadiabatic dynamics

simulation, this allows constant-velocity motion of the entire system to stimulate

transitions between adiabatic electronic states, behavior that is ultimately an artifact

of using real-valued Born-Oppenheimer electronic states for the coupled electron–

nuclear dynamics.21,55 Motivated by earlier literature on atom–atom scattering cal-

culations,55 Fatehi et al.21,58 recently introduced electron translation factors (ETFs)

for analytic derivative couplings computed using atom-centered basis sets. These au-

thors suggest that the magnitude of the ETFs may be significant for high-symmetry
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molecules.58

ETFs are intended to restore translational invariance in the the nonadiabatic

nuclear dynamics. This can be realized by introducing complex phase factors into

the AO basis functions,21 which allow the electrons to propagate alongside the nuclei

and which render the nonadiabatic equations of motion rigorously translationally

invariant. To achieve this, the CIS derivative coupling that appears in the equations

of motion is replaced by an ETF-corrected derivative coupling of the form21

〈
ΨI

∣∣Ψ[x]
J

〉
ETF

=
〈
ΨI |Ψ

[x]
J

〉
+
∑

µν

S̃[x]
µν

(∑

iab

Cνat
I
ait

J
biCµb +

∑

ija

Cνit
I
ait

J
ajCµj

)
(3.24)

where

S̃[x]
µν = 1

2

(〈
µ
∣∣ν [x]

〉
−
〈
ν
∣∣µ[x]〉

)
. (3.25)

What is not mentioned in Ref. 21 is the fact that the first two terms in Eq. (3.15)

can be rewritten as
∑

ac

∑

i

(
tIcit

J
aiωJ + tJcit

I
aiωI

)
〈c|a[x]〉+

∑

ik

∑

a

(
tIakt

J
aiωJ + tJakt

I
aiωI

)
〈k|i[x]〉

= (ωI − ωJ)
∑

µν

S̃[x]
µν

(∑

iab

Cνat
I
ait

J
biCµb +

∑

ija

Cνit
I
ait

J
ajCµj

)
.

(3.26)

Thus, the ETF-corrected derivative coupling in Eq. (3.24) is actually identical to the

final term in Eq. (3.15):

〈
ΨI

∣∣Ψ[x]
J

〉
ETF

=
1

ωJ − ωI

∑

ijab

tIaiA
[x]
ai,bjt

J
bj . (3.27)

In other words, the ETF correction precisely cancels the non-Hellman–Feynman terms

in the expression for the derivative coupling!
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Within CIS theory, the elements hIJx of the nonadiabatic coupling vector [Eq. (3.2)]

are

hIJx =
∑

ijab

tIaiA
[x]
ai,bjt

J
bj = (ωJ − ωI)

〈
ΨI

∣∣Ψ[x]
J

〉
ETF

. (3.28)

Thus, we find that the ETF-corrected derivative couplings in CIS theory may actually

be more useful than the full derivative couplings formulated in Eq. (3.15). This

observation may have implications in the context of derivative couplings for non-

variational, correlated wave function methods such as EOM-CC.20

3.2.2 Analytic derivative couplings for SF-TDDFT

SF-TDDFT (with a collinear spin density) was originally introduced by Shao et al.11

Unlike the conventional linear-response TDDFT, and also unlike SF-TDDFT with a

non-collinear spin density,12 collinear SF-TDDFT resembles a modified SF-CIS ansatz

wherein Kohn-Sham MOs and the Kohn-Sham effective Hamiltonian are used in place

of their Hartree-Fock counterparts. We therefore propose an ad hoc modification to

the CIS formalism, in which matrix elements 〈Φa
i

∣∣Ĥ
∣∣Φb

j〉 are replaced by their TDDFT

counterparts. The latter are given by

〈
Φa

i

∣∣ĤKS

∣∣Φb
j

〉
= EKSδijδab + fabδij − fijδab (3.29)

+ 〈aj|ib〉 − CHF〈aj|bi〉+ 〈aj|ξ̂xc|ib〉 ,

where EKS is the Kohn-Sham SCF energy, f̂ is the Kohn-Sham Fock operator, CHF

is the fraction of Hartree-Fock exchange in the exchange-correlation functional, and

〈
aj
∣∣ξ̂xc
∣∣ib
〉
=

∫
drdr′ φa(r)φi(r)

δ2fxc
δρ(r)δρ(r′)

φb(r
′)φj(r

′) (3.30)
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is a matrix element of the exchange-correlation kernel. Effectively, we are “grafting

on” an exchange-correlation term to SF-CIS, which at some level amounts to taking

seriously the Kohn-Sham determinant as a wave function and will need to be validated

with benchmark studies. Ou et al.28 recently introduced derivative couplings for

spin-conserving TDDFT within the spin-conserving, Tamm-Dancoff approximation

(TDA),35 based on the same ad hoc modification applied to a version of Eq. (3.15).

There is some evidence that the TDA may be better suited for exploration of potential

energy surfaces, as compared to full TDDFT, owing to triplet instabilities in the latter

method.59

From Eq. (3.29), it is clear that Eqs. (3.15), (3.27) and (3.28) are valid for collinear

SF-TDDFT except that the matrix elements A
[x]
ai,bj must be modified according to the

SF-TDDFT analytic energy gradient.11 Details are shown in the Appendix. Notably,

full TDDFT derivative couplings based on quadratic response theory have recently

been derived (though not implemented),26 and this formalism involves an extra term

relative to our Eq. (3.15). The significance of this term remains to be explored.

3.3 Numerical examples

Both Eq. (3.15) for
〈
ΨI

∣∣Ψ[x]
J

〉
, as well as Eq. (3.27) for the ETF-corrected deriva-

tive coupling, have been implemented in a locally modified version of the Q-Chem

program,33 for both spin-conserved CIS, spin-flip CIS, and collinear SF-TDDFT. For

the spin-conserving cases, both spin-restricted and unrestricted reference states have

been implemented, through a restricted open-shell reference is not yet implemented.
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Finite-difference results are in excellent agreement with the analytic implementations

of all three methods (see Appendix B), which is compelling evidence of the validity of

our implementation. In addition, the derivative couplings computed using Eqs. (3.15)

and (3.27) are exactly the same as the corresponding couplings computed using the

formalism introduced in Ref. 21 for spin-conserved CIS, which was implemented in

Q-Chem by the authors of Ref. 21. This agreement is not surprising, since the two

approaches are formally equivalent for spin-conserved CIS, but provides additional

evidence in support of the correctness of our implementation. Illustrative numeri-

cal examples of the new SF-CIS and SF-TDDFT derivative couplings are presented

below.

3.3.1 H3 potential surfaces near a conical intersection

Levine et al.10 have shown that spin-conserved CIS and TDDFT cannot provide

correct topology of the PES in the vicinity of a conical intersection that involves

the reference state (usually the ground state), and numerical examples have been

presented.10,60 This is mainly due to the single-excitation nature of spin-conserved

CIS and TDDFT as well as the unbalanced treatment of ground and excited states.

For CIS calculations, the combination of this imbalance along with Brillouin’s theorem

means that the CIS method fails to provide a correct description of degenerate ground

states.

SF-CIS and SF-TDDFT, on the other hand, can provide correct PESs near conical

intersections, because these methods contain some determinants that look like double

excitations relative to the ground state. Thus, the ground state is treated on a
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more balanced footing with respect to the excited states. In other words, conical

intersections with double-excitation character (e.g. twisted-pyramidalized ethylene45)

can be described by SF-CIS and SF-TDDFT, and there is furthermore no fundamental

problem in describing a degenerate ground state.

Our first test system is H3 in D3h symmetry, which requires the D0 and D1 states

to be degenerate, and we will compare SF-CIS and collinear SF-TDDFT results to re-

stricted open-shell CIS (ROCIS) and spin-conserving TDA-TDDFT. In this particular

case, spin-conserving, unrestricted CIS fails to describe this system due to significant

spin contamination, necessitating the use of a restricted open-shell reference state.

Furthermore, spin-conserving TDDFT fails in the presence of the near-degeneracy,

owing to imaginary roots (triplet instabilities) in the orbital Hessian. For this reason,

the spin-conserving TDDFT calculations were performed within the TDA. The latter

calculations employ the B3LYP functional while SF-TDDFT calculations employ the

BH&HLYP functional (50% Hartree-Fock exchange plus 50% Becke exchange61 with

Lee-Yang-Parr correlation41), and we abbreviate this method as SF-BH&HLYP.

We scanned over the bond length of all D3h geometries for H3, using the 6-31G*

basis set for all energy scans, finding minimum-energy conical intersections at R =

1.35 Å (SF-CIS), R = 1.19 Å (SF-BH&HLYP), R = 1.09 Å (ROCIS), and R = 1.09 Å

(TD-B3LYP). In Fig. 3.1, two internal coordinates (one angle and one bond length,

as shown in the figure) are varied to depict the PES in the vicinity of the D3h conical

intersection.
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Figure 3.1: Potential energy surfaces around the conical intersections of D3h H3 calcu-
lated by restricted open-shell CIS, unrestricted TD-B3LYP within the Tamm-Dancoff
approximation, SF-CIS, and SF-BH&HLYP. All calculations employ the 6-31G* basis
set, and energies are shown in atomic units.
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The degeneracy between the D0 and D1 states does not appear for most equi-

lateral triangular geometries in ROCIS calculations because the D0 and D1 states

are calculated within different schemes (i.e. Hartree-Fock SCF versus configuration

interaction). Moreover, the D1 surface shows an unphysical sharp cusp near the in-

tersection. This has been observed spin-conserving TDDFT calculations as well,10

and is confirmed by the TD-B3LYP results in Fig. 3.1, wherein D1 exhibits multiple,

unphysical cusps. SF-CIS and SF-BH&HLYP calculations, on the other hand, clearly

provide the correct double-cone shape, and the surface varies smoothly away from

the intersection.

Although this particular symmetry-required degeneracy between doublet states is

correctly reproduced by SF-CIS and SF-TDDFT, not all possible single and double

excitations are contained in the SF set of excitations, and as such there certainly

exist systems where a degenerate ground state is not correctly reproduced by these

methods. For example, SF-CIS and SF-BH&HLYP fail to produce the symmetry-

required degeneracy in linear H–O–H (D∞h symmetry). Degenerate ground states in

closed-shell systems may generally be a problem for such methods, as significant spin

contamination may lead to a lifting of what should properly be a symmetry-imposed

degeneracy.

3.3.2 Minimum-energy crossing points for ethylene

In contrast to the symmetry-imposed degeneracy in H3, we next consider some acci-

dental degeneracies in ethylene. We have used SF-CIS and SF-TDDFT to locate four

critical points (see Fig. 3.2) on the S0/S1 crossing seam, for which we can compare
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Figure 3.2: Geometries for the MECPs of ethylene: (a) twisted-pyramidalized (PY),
(b) hydrogen-migration (HM), (c) ethylidene (ET) and (d) C3v ethylidene (C3v–

ET).

our results to a previous MRCI study.4 Three of these critical points are MECPs,

whereas structure HM in Fig. 3.2 is actually a saddle point on the crossing seam.4

Critical points were optimized using the projected-gradient algorithm of Bearpark et

al.,13 which involves optimizing along the gradient

g = 2(EJ − EI)x+Pgmean . (3.31)

The quantity

gmean = 1
2
∇̂
(
EI + EJ

)
(3.32)

is the average energy gradient for states I and J ,

x =
∇̂(EJ − EI)∣∣∣∣∇̂(EJ − EI)

∣∣∣∣ (3.33)
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Table 3.1: Geometric parameters for the four ethylene critical points depicted in
Fig. 3.2, optimized by SF-CIS/6-31G(d,p), SF-BH&HLYP/6-31G(d,p) and MR-
CISD/aug′-cc-pTVZ levels. (MRCI values are taken from Ref. 4.)

Parameter PY HM ET C3v–ET

spin-flip
MRCI

spin-flip
MRCI

spin-flip
MRCI

spin-flip
MRCI

CIS BH&HLYP CIS BH&HLYP CIS BH&HLYP CIS BH&HLYP

C1–C2 1.415 1.384 1.399 1.363 1.338 1.360 1.452 1.434 1.448 1.456 1.437 1.452
C2–H5 1.082 1.098 1.096 1.054 1.056 1.063 1.056 1.060 1.068 1.050 1.056 1.064
C2–H6 1.209 1.140 1.163 1.231 1.162 1.180
C1–H3 1.089 1.098 1.098 1.092 1.108 1.105 1.090 1.094 1.096 1.090 1.095 1.097
∠C1C2H5 123.6 113.4 118.6 168.9 162.1 164.1 156.3 157.3 155.1
∠C1C2H6 66.9 89.7 82.8 62.7 75.5 72.8
∠H5C2H6 98.3 92.2 94.4 128.4 122.5 121.9
∠H3C1C2H5 23.1 39.3 35.2 −88.1 −93.7 −76.3
∠H4C1C2H6 108.0 120.0 114.7 −89.7 −85.5 −88.1

is the normalized gradient difference vector, and

P = 1− xx† − yy† (3.34)

projects out the vector x and also the vector

y =
(1− xx†)hIJ

∣∣∣∣(1− xx†)hIJ
∣∣∣∣ (3.35)

from the mean gradient.

Some selected internal coordinates were compared with the MRCI results in Ta-

ble 3.3.2. The SF-BH&HLYP and MRCI geometries are in good agreement, and the

SF-CIS geometries agree qualitatively with the MRCI results, except that for the PY

and HM structures optimized by SF-CIS, the extent of hydrogen migration is slightly

overestimated as compared with the SF-BH&HLYP and MRCI results.

The relative energies of the four critical points are shown in Table 3.2. SF-

BH&HLYP energies agree well with the MRCI results in all four cases. However,
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Table 3.2: Relative energies (in eV) for the four critical points of ethylene that
are depicted in Fig. 3.2, as calculated at the SF-CIS/6-31G(d,p), SF-BH&HLYP/
6-31G(d,p), and MR-CISD/aug′-cc-pVTZ levels. (MRCI values are taken from Ref.
4.)

SF-CIS SF-BH&HLYP MRCI
MECP S0 S1 S0 S1 S0 S1

S0min 0.00 9.07 0.00 8.35 0.00 8.02
PY 5.88 5.88 4.85 4.85 4.83 4.83
HM 6.51 6.51 5.49 5.49 5.38 5.38
ET 4.71 4.71 4.62 4.62 4.49 4.49
C3v–ET 4.86 4.86 4.70 4.70 4.59 4.60

Table 3.3: Efficiencies of two different algorithms for locating ethylene MECPs, at the
SF-BH&HLYP/6-31G** level. The same convergence criteria and starting structures
were used for both algorithms.

MECP
Using g onlya Using g and hb

iterations time/s iterations time/s
PY 49 1126 21 566
ET 20 429 8 201
aBranching-plane updating method of Ref. 62.
bProjected-gradient method of Ref. 13.

SF-CIS energies differ by more than 1 eV (as compared to the MRCI energies) for

S0min, PY and HM. This likely reflects the lack of dynamical correlation in SF-CIS.

Finally, we compare the efficiency of the aforementioned projected-gradient op-

timization algorithm,13 which uses both gIJ and hIJ , to that of a branching-plane

updating algorithm62 that requires only gIJ . (We find the latter algorithm to be

much more efficient as compared to penalty-constrained approaches63 that also do
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not require derivative couplings.) Performance data for ethylene MECPs are shown

in Table 3.3, from which we see that the branching-plane updating algorithm requires

more than twice as many iterations to converge as compared to the projected-gradient

algorithm. Calculation of hIJ adds only a very small cost per iteration, hence the

projected-gradient algorithm based on analytic derivative couplings affords signifi-

cantly faster timings.

3.4 Summary

We have formulated and implemented analytic first derivative couplings for SF-

CIS, which are simple extensions of previous work on derivative couplings for spin-

conserved CIS but have the advantage that the SF methods describe ground and ex-

cited states in a more balanced way. Ad hoc introduction of an exchange-correlation

term in the Hamiltonian then affords derivative couplings for (collinear) SF-TDDFT.

Numerical examples demonstrate that these SF methods provide correct topologies

in the vicinity of conical intersections and reasonable energetics across the PES, as

we saw in a previous study as well.49 As such, these methods seem like good choices

for nonadiabatic ab initio molecular dynamics simulations, especially in the case of

SF-TDDFT, which incorporates dynamical electron correlation. (Static correlation is

handled via the SF formalism.)

Although spin contamination becomes problematic for some systems,49 these SF

methods can in principle be extended to their spin-complete counterparts.3,64,65 The

SF-extended CIS method,64 for example, is the spin-complete version of SF-CIS, and
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analytic derivative couplings can be derived without difficulty using the formalism

described here. Collinear SF-TDDFT can be similarly extended, and a restricted

open-shell formulation is also possible but has not yet been implemented. Finally, it

is straightforward to extend our formalism to evaluate derivative couplings for non-

collinear SF-TDDFT with the TDA,12 as the analytic gradient of this method has

recently been reported.66 Extensions along these lines are currently in progress in

our group, as are comparisons to TDDFT derivative couplings based on quadratic

response theory.26
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CHAPTER 4

Excited-State Deactivation Pathways in Uracil

versus Hydrated Uracil

In this chapter, the application of SF-TDDFT to the study of excited-state uracil

deactivation mechanism is presented. We compare the relaxation process of gas-

phase uracil with that of aqueously solvated uracil. The solvatochromatic shift in the

1nπ∗ state was found to be the key factor that determines the relaxation pathways.

4.1 Introduction

Upon excitation by UV light, DNA may form harmful photoproducts than can cause

lethal carcinogenesis. However, the probability of photodamage is significantly re-

duced because of the self-repairing system in organisms. All five nucleobases, which

are fundamental functioning parts of DNA, can relax back to their respective ground

states within a few picoseconds following photo-excitation,67,68 which may be an im-

portant photoprotection mechanism.

There has been significant effort in the past decade to study the excited-state de-

activation mechanisms of the nucleobases, both experimentally and computationally.

In particular, excited-state lifetimes of the nucleobases in both the gas phase69 and
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in aqueous solution1 are available from time-resolved spectroscopy. Although there

is some disagreement regarding the precise time constants,1,67–71 the existence of fast

and slow decay components in nucleobases is now widely accepted.

Despite the availability of such data, the details of the excited-state dynamics

in assemblies of nucleobases remains to be revealed by theoretical studies. For the

individual nucleobases, vertical and/or adiabatic excitation energies, conical inter-

section structures, and relaxation pathways have been calculated at various levels

of theory,72–75 and some excited-state dynamics simulations have been performed as

well.76–79 Where multireference methods have been employed, computational con-

straints limit the system size to not much more than 15 atoms. Moreover, the use

of small basis sets and insufficiently large active spaces makes the reliability (for

qualitatively different excited states) and accuracy (due to the limited treatment

of dynamical correlation) questionable in some cases. While the importance of dy-

namical correlation beyond the complete active space, self-consistent field (CASSCF)

model was pointed out long ago,80 and has been investigated in detail for uracil,73 it

is difficult to extend such high-level treatments to larger systems.

Time-dependent density functional theory (TDDFT) is an attractive alternative

due to its low computational cost. However, this method cannot correctly describe the

topology of conical intersections involving the reference state,10 at least not within

the ubiquitous adiabatic approximation to the exchange-correlation kernel. Thus,

the description of the potential surface in the important “funnel” region of near-

degeneracy is highly suspicious in conventional TDDFT. A potential remedy is to use
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the “spin-flip” (SF) generalization of TDDFT,11,12,66 originally developed to investi-

gate diradicals with strong static correlation in their ground states. In the present

context, SF-TDDFT based on a high-spin triplet reference state affords a route to

the singlet manifold, in which S0 is treated on an equal footing with the singlet ex-

cited states. As such, conical intersections among singlet states pose no fundamental

problem.10 Good performance of SF-TDDFT for conical intersections in ethylene-like

molecules has recently been reported,45–48 although concerns about the suitability of

choosing the lowest triplet state as the reference have been raised.59

In the present work, we apply SF-TDDFT to study the excited-state deactivation

of uracil in both the gas phase and the aqueous solution. Several decay pathways

have been suggested for photo-excited uracil, namely:

1. direct internal conversion from the lowest 1ππ∗ state to S0;

2. early trapping in a shallow local minimum on the lowest 1ππ∗ state;76,77

3. intersystem crossing from the lowest 1nπ∗ state to the lowest 3ππ∗ state;1 and

finally

4. trapping on the lowest 1nπ∗ state followed by internal conversion to S0.
1

In particular, mechanisms 1, 3, and 4 were proposed in an ultrafast spectroscopic

study of aqueous 1-cyclohexyluracil,1 and the diagram in Fig. 4.1 illustrates the bi-

furcated decay mechanism put forth in that study.

In a previous computational study,74 a conical intersection between the 1nπ∗ state

and S0 has been located but is separated by a barrier of ≈ 1.6 eV from the 1nπ∗
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Figure 4.1: Proposed mechanism for excited-state deactivation of photo-excited 1-
cyclohexyluracil, from the experimental study in Ref. 1. (Reprinted from Ref. 1;
copyright 2006 American Chemical Society.)

state minimum. Meanwhile, a significant discrepancy exists in the experimentally-

reported lifetime for the spectroscopically-dark 1nπ∗ state in the gas phase: several

nanoseconds, according to UV spectroscopy,69,81 but only 2.4 ps according to time-

resolved photoelectron spectroscopy.71 It was later suggested that the 2.4 ps time

component might be due to vibrational cooling of of a hot S0 state populated on an

ultrafast time scale, whereas the lifetime of the 1nπ∗ state might be longer still.1,74

For uracil in aqueous solution, the same lifetime is reported to be ≈ 24 ps.1,82

Various electronic structure methods have been deployed to study the excited-

state deactivation of gas-phase uracil,72,76,77 but only a few TDDFT calculations are

available for solvated uracil.79,83–85 The latter calculations support the role of the

1nπ∗ as a “trap” along the 1ππ∗ → S0 relaxation pathway (see Fig. 4.1),74 but neither

conical intersections nor optimized relaxation pathways have been determined, due

69



to the fundamental limitations of traditional, spin-conserving TDDFT.

The present work aims for a detailed comparison between decay mechanisms for

uracil in the gas phase and in aqueous solution. Due to theoretical limitations, we only

consider singlet states of uracil, but note that intersystem crossing has been shown to

play a minor role in the decay process, as supported by the relatively low quantum

yield of the 3ππ∗ state in solution-phase uracil (< 10% in protic solvents).1,86 The

crossing region between the 1nπ∗ and S0 states is also excluded from the current study,

due to the large barrier along the reaction path that was determined previously.74

Recently, a ring-opening conical intersection between S0 and a σnππ
∗ state, which

may contribute to a new decay channel, was located computationally.77 However, the

overestimated stability of the ring-opening conformation in the CASSCF calculations

of Ref.77, along with the low fraction of the trajectories that proceed via this pathway,

make it questionable whether this is really important. This pathway is not considered

in the present work.

4.2 Methods

Spin-Flip TDDFT

In the present work, we use the “collinear” form of spin-flip TDDFT, first intro-

duced by Shao et al.,11 to determine excited-state relaxation pathways for uracil. (A

“non-collinear” formulation of SF-TDDFT, introduced by Wang and Ziegler,12 will

be tested for some single-point calculations.) In the linear-response (LR) TDDFT ap-

proach, we need to solve the following non-Hermitian equation to get the excitation
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energies, ω:
(

A B

B∗ A∗

)(
X

Y

)
= ω

(
1 0

0 −1

)(
X

Y

)
. (4.1)

Here,

Aia,jb = (ǫa − ǫi) δijδab + 〈ib|aj〉 − CHF〈ib|ja〉

+ 〈ib|fxc|aj〉 (4.2)

and

Bia,jb = 〈ij|ab〉 − CHF〈ij|ba〉+ 〈ij|fxc|ab〉 . (4.3)

The labels i, j, . . . and a, b, . . . represent occupied and virtual spin orbitals, respec-

tively, and CHF is the fraction of Hartree-Fock exchange included in the hybrid

exchange-correlation functional. Within the SF-TDDFT method, the lowest high-

spin (MS = 1) triplet state is chosen as the reference state, and only the α → β spin

excitation blocks in LR-TDDFT are used to obtain MS = 0 for the target state. As a

consequence, Eqs. (4.2) and (4.3) reduce to the following form when using a collinear

exchange-correlation functional kernel:

Aia,jb = (ǫa − ǫi) δijδab − CHF〈ib|ja〉 (4.4)

Bia,jb = 0 . (4.5)

Thus, the collinear SF-TDDFT just looks like LR-TDDFT within the Tamm-Dancoff

approximation, and only the Hermitian eigenvalue equation AX = ωX needs to be

solved.
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Minimum-Energy Crossing Point Optimization

In order to minimize the energy along a conical seam between electronic states I and

J , we need the difference gradient vector (DGV),

gIJ = ∇̂R(EI − EJ) , (4.6)

and the nonadiabatic coupling vector (NACV),

hIJ = 〈ΨI |∇̂R|ΨJ〉 . (4.7)

Together, these two vectors define the two-dimensional branching space for the conical

intersection between states I and J . Since the NACV is not available at present

for the SF-TDDFT method, we adopt the branching-plane updating approach to

numerically approximate the exact branching space.62 In this method, the branching

plane is updated iteratively; the (approximate) branching space at step k is spanned

by the normalized DGV, which we denote as xk, and another unit vector yk that is

orthogonal to xk. The vector yk is defined as the linear combination of xk−1 and

yk−1:

yk = axk−1 + byk−1 , (4.8)

such that a2 + b2 = 1. Since we require that xk · yk = 0, one may solve for yk:

yk =
(yk−1 · xk)xk−1 − (xk−1 · xk)yk−1[
(yk−1 · xk)

2 + (xk−1 · xk)
2
]1/2 . (4.9)

The gradient projection method13,87 is used to optimize the structures of conical

intersections. In the optimizations, the gradient vector employed is

g = 2(EI − EJ)x+Pgmean, (4.10)
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where

P = 1− x⊤x− y⊤y (4.11)

is a projection operator onto the (approximate) seam space and

gmean = 1
2
∇̂R(EI + EJ) . (4.12)

We find this method to be much more effective as compared to the penalty-constrained

minimization of gmean that has been used in some previous studies,10,45,46,63 and which

we had originally implemented. In addition, the plane defined by vectors xk and yk

approaches the exact branching plane very quickly after several iterations when the

optimization reaches the crossing seam between the electronic states I and J .

Computational Details

In the present study, minimum-energy conical intersections and excited state re-

laxation pathways of uracil are calculated using SF-TDDFT in conjunction with

the BH&HLYP hybrid functional (50% Hartree-Fock exchange plus 50% Becke ex-

change61 with Lee-Yang-Parr correlation41). This somewhat unusual functional has

been found to afford good results in several previous SF-TDDFT studies,11,45 although

it has been suggested that the relatively high fraction of Hartree-Fock exchange may

be compensating for the non-collinear spin-flip formalism.59 Therefore as a test, we

optimized six different minimum-energy crossing point (MECP) structures, for which

MR-CIS structures are available in the literature.2 The MR-CIS and SF-BH&HLYP

geometries for these MECPs are superimposed in Fig. 4.2, and are seen to be almost

indistinguishable in most cases.
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Figure 4.2: MECP structures for 9H-adenine, superimposing MR-CIS(6,5)/6-31G*
results (in red, from Ref. 2) with SF-BH&HLYP/6-31G* results (in blue, this work).
The nomenclature for the MECPs is taken from Ref. 2. The 4H3(planar) MECP
is not reported in Ref. 2 but is obtain by relaxing the (non-minimum) 4H3 conical
intersection reported in that work.
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Figure 4.3: Molecular structure and numbering scheme for uracil, along with the
(uracil)(H2O)4 cluster that is used to model aqueous uracil.
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As a model of uracil in aqueous solution, we consider a (uracil)(H2O)4 cluster in

which we add H2O molecules at uracil’s four hydrogen-bonding sites; see Fig. 4.3.

(Such a model has also been used in previous studies of excited states of aqueous

uracil.85) In addition, a smooth version of the conductor-like polarizable continuum

model (C-PCM) is added,88,89 in order to model bulk solvation.

Minimum-energy pathways for gas-phase uracil and hydrated uracil were opti-

mized using the growing-string method90 and the freezing-string method,91 respec-

tively. These methods can provide quite good approximations to exact minimum-

energy pathways calculated using the intrinsic reaction coordinate method, but at

lower computational cost in terms of the number of energy and gradient evaluations

that are required to determine the path.91 Mass-weighted coordinates were computed

by setting the starting point structure of each string as the origin.

SF-BH&HLYP/6-31+G(d,p) was used for all gradient calculations, and energetics

along the relaxation pathways were recalculated using the aug-cc-pVTZ basis set to

confirm the reliability of the small basis set that is used for optimizations. (The differ-

ence in energetics between the two basis sets is less than 0.1 eV along the whole of each

pathway, thus the aug-cc-pVTZ results are omitted here.) In addition, non-collinear

(NC) SF-ωPBEh/6-31+G(d,p) calculations were performed along pathways optimized

as indicated above, using the non-collinear formalism of Wang and Ziegler12,66 in con-

junction with the long-range corrected hybrid PBE functional, LRC-ωPBEh.92 (The

parameters CHF = 0.2 and ω = 0.2 bohr−1 are used in LRC-ωPBEh, as suggested

in Ref. 92) Finally, RI-CC2/aug-cc-pVTZ calculations (approximate coupled-cluster
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theory in a resolution-of-identity implementation) were performed along the relax-

ation pathways obtained using SF-BH&HLYP. In general, good agreement is found

amongst the energetics predicted by all of these methods.

RI-CC2 results were obtained using the Turbomole package93 and all other

calculations were carried out using a development version of Q-Chem.33

4.3 Results and Discussion

In this section, the results of SF-BH&HLYP calculations for photophysics of uracil

are presented. Stationary-point structures and their energetics are discussed first, and

the corresponding Cartesian coordinates can be found in the Supporting Information.

Next, relaxation pathways optimized by string methods are reported. Finally, deac-

tivation mechanisms for photo-excited uracil are proposed based on the relaxation

pathways. Throughout this work, the equilibrium structures of S0 and the lowest

1nπ∗ state are denoted as S0-min and Snπ∗-min , respectively.

4.3.1 Vertical Excitation Energies

Gas Phase Uracil

The S0-min geometry of gas-phase uracil is planar, and the geometric parameters

are presented in Table 4.1 (The labeling of atoms is shown in Fig. 4.3.) The S0-min

optimized by SF-BH&HLYP agrees well with the crystallographic structure,94 with

differences within 0.03 Å for bond lengths and 1.5◦ for bond angles.

Vertical excitation energies for the lowest two singlet states are presented in Ta-

ble 4.2. The S1 state with A′′ symmetry has nπ∗ character (excitation from the nO8
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Table 4.1: Stationary Point Geometries of Gas-Phase Uracil

Parameter S0-min Snπ∗-min ci-nπ ci-nπ-p ci-0π
DFTa Expt.b DFTa CASSCFc DFTa CASSCFc DFTa MRCId DFTa CASSCFc

C2–N3 1.372 1.373 1.388 1.378 1.369 1.371 1.421 1.335 1.372 1.358
C2–N1 1.377 1.379 1.356 1.369 1.399 1.415 1.419 1.410 1.417 1.421
C6–N1 1.367 1.380 1.409 1.405 1.350 1.337 1.313 1.330 1.346 1.325
C5–C6 1.341 1.338 1.365 1.408 1.479 1.500 1.517 1.511 1.432 1.447
C4–N3 1.395 1.383 1.385 1.393 1.420 1.432 1.469 1.462 1.421 1.433
C4–C5 1.456 1.440 1.364 1.364 1.372 1.382 1.390 1.415 1.468 1.487
C4–O8 1.205 1.227 1.385 1.361 1.255 1.252 1.195 1.205 1.199 1.194
C2–O7 1.206 1.218 1.209 1.200 1.205 1.197 1.216 1.216 1.200 1.199
∠N1C2O7 122.6 123.2 124.6 123.3 121.1 120.2 115.4 116 120.3 119.2
∠N3C4O8 120.4 119.9 111.3 113.2 115.9 115.3 116.4 116 119.2 117.7
∠N1C6C5 121.9 122.8 119.2 118.1 113.5 113.4 113.8 114 115.0 118.1
∠C4C5C6 119.6 119.2 117.7 117.8 116.6 114.4 119.5 122 114.3 110.4
∠N1C2N3 113.7 114.8 114.3 114.8 113.6 113.2 114.6 115.0 114.7
∠C2N3C4 127.8 127.0 122.3 122.7 121.2 119.2 119.3 126.1 126.4
∠N3C4C5 113.7 114.7 121.8 121.7 116.1 115.2 121.2 110.4 111.3
∠C4C5C6H5 180.0 180.0 180.0 180.0 −161.1 −139.8 180.0 180 120.8 111.7
∠C6C5C4H6 0.0 0.0 0.0 0.0 −12.3 −12.3 0.0 0 23.4 20.9
∠C4C5C6N1 0.0 0.0 0.0 0.0 −35.2 −41.2 0.0 0 53.3 51.5
∠N1C2N3C4 0.0 0.0 0.0 0.0 −28.6 −36.7 0.0 0 22.3 15.4

aSF-BH&HLYP/6-31+G(d,p) results (this work).
bExperimental values are obtained by averaging over dimensions found in crystal structures.94
cSA-3-CASSCF(10,8)/6-31G* results, from Ref. 77.
dMRCI1/cc-pVDZ results, from Ref. 72.
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Table 4.2: Vertical Excitation Energies (in eV) for the First Two Singlet Excited
States of Gas-Phase Uracil

Method 11A′′ (nπ∗) 11A′ (ππ∗)
SF-BH&HLYP/6-31+G(d,p) 5.60 5.93
SF-BH&HLYP/aug-cc-pVTZ 5.54 5.84
NC-SF-ωPBEh/aug-cc-pVTZ 5.15 5.55
EOM-CCSD/6-311++G(d,p) 5.26 5.75
CR-EOM-CCSD(T)a 5.00 5.25
MS-CASPT2b 5.05 5.78
TD-PBE0c 4.80 5.26
RI-CC2d 4.80 5.35
MRCIσπe 4.80 5.79

aCR-EOM-CCSD(T)/aug-cc-pVTZ, from Ref. 73.
bMS-3-CASPT2/SA-3-CASSCF(10,8)/6-31G*, from Ref. 77.
cTD-PBE0/6-311+G(2d,2p), from Ref. 85.
dRI-CC2/aug-cc-pVQZ, from Ref. 95.
eFrom Ref. 72.

lone pair into a π∗ orbital), and the S2 state with A′ symmetry is a bright ππ∗ state.

An exhaustive theoretical study of these vertical excitation energies was reported

in Ref. 73, and the best theoretical estimate from that study is probably the CR-

EOM-CCSD(T)/aug-cc-pVTZ result, at 5.00 eV for the S1 state and 5.25 eV for the

S2 state. Our SF-BH&HLYP excitation energies are ≈ 0.6 eV higher, although the

energy gap between S1 and S2 (≈ 0.3 eV) is in good agreement with the CR-EOM-

CCSD(T) result. This lends some credence to the excited-state relaxation pathways

described in the next section. We also note that the non-collinear formalism12,66 for

SF-TDDFT improves the vertical excitation energies by about 0.4 eV, relative to the

CR-EOM-CCSD(T) benchmark. It may be interesting to examine the behavior of

non-collinear SF-TDDFT when used to scan potential energy surfaces, but at present
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Table 4.3: Relative Energies (in eV) at Stationary Points of Gas-Phase Uracil

S0-min Snπ∗-min ci-nπ ci-nπ-p ci-0π
spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b

S0 0.00 (0.00) 0.00 1.29 (1.03) 0.82 1.83 (1.66) 1.59 1.29 (1.15) 1.10 4.24 (4.05) 3.97
1nπ∗ 5.60 (5.23) 4.96 4.16 (4.29) 3.85 5.17 (4.90) 4.73 5.84 (5.52) 5.38 7.14 (6.76) 6.48
1ππ∗ 5.93 (5.64) 5.44 5.90 (5.42) 5.25 5.17 (4.82) 4.87 5.84 (5.48) 5.38 4.24 (4.01) 3.88

aRelative energies computed at the SF-BH&HLYP/6-31+G(d,p) level and, in parentheses, at the
NC-SF-ωPBEh/6-31+G(d,p) level. Geometries are computed at the SF-BH&HLYP/6-31+G(d,p)
level.
bRelative energies at the RI-CC2/aug-cc-pVTZ//SF-BH&HLYP/6-31+G(d,p) level.

numerically-stable analytic gradients are not available for non-LDA functionals,66 so

optimizing pathways is expensive and problematic.

SF-BH&HLYP optimization affords a planar minimum-energy geometry for the

S1 state, which agrees with the CASSCF result77 (see Table 4.1). A previous MRCI

study, however, found a slightly puckered equilibrium geometry for S1.
72 As far as

we know, the potential energy surface near Snπ∗-min is quite flat, so the results may

be very sensitive to small changes in the level of electronic structure theory that is

used. Compared with the ground-state minimum, the C4–O8 and C5–C6 bonds at

Snπ∗-min geometry are elongated by 0.18 Å and 0.03 Å, respectively, while the C4–C5

bond is shortened by 0.09 Å due to excitation from the nO8 non-bonding orbital to

an antibonding π∗ orbital. The adiabatic excitation energy is 4.2 eV according to

SF-BH&HLYP (see Table 4.3), in agreement with previous CASPT2 and MR-CISD

results.77 Unconstrained geometry optimization of the S2 state by SF-BH&HLYP

leads directly to the crossing region between the S1 and S2 states, a point to which

we shall return later.
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Hydrated Uracil

Solvatochromatic shifts in uracil have been studied previously at many different levels

of theory.73,85,96–99 Most studies show that the order of the lowest 1ππ∗ and 1nπ∗ states

is reversed in aqueous solution, relative to that in the gas phase, with solvatochromatic

shifts ranging from −0.1 to −0.3 eV for the 1ππ∗ state and from +0.4–0.5 eV for the

1nπ∗ state, depending on the level of theory. Our SF-BH&HLYP/C-PCM results for

the microhydrated (uracil)(H2O)4 system agree well with the previous studies: the

energy shifts are −0.13 eV for the 1ππ∗ state and 0.50 eV for the 1nπ∗ state (see

Table 4.4).

The equilibrium geometry of the ground state is planar and similar to the gas-

phase geometry. The major difference is that the two C–O bonds are ≈ 0.02 Å longer

for hydrated uracil, which is caused by the hydrogen bonding interaction with the

nearby water molecules, and this phenomenon manifests in the other stationary-point

structures as well. We also optimized the equilibrium structure of the 1nπ∗ state and

found that it deviates slightly from the planar geometry, via ring puckering. The

adiabatic excitation energy is reported in Table 4.4 as 4.6 eV, which is 0.4 eV higher

than that for gas-phase uracil, but this solvatochromatic shift does affect the deacti-

vation mechanisms that are discussed below. Unconstrained geometry optimization

of the 1ππ∗ state directly leads to the crossing region between the 1ππ∗ and the S0

states, indicating little if any barrier between the S1 minimum and the S1/S0 conical

intersection of hydrated uracil, at the SF-BH&HLYP level of theory.
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Table 4.4: Relative Energies (in eV) at Stationary Points of Hydrated Uracil

S0-min Snπ∗-min ci-nπ ci-nπ-p ci-0π
spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b spin-flipa RI-CC2b

S0 0.00 (0.00) 0.00 1.63 (1.22) 1.00 1.04 (0.92) 0.84 1.03 (0.87) 0.74 4.38 (4.18) 3.81
1ππ∗ 5.80 (5.49) 5.29 6.12 (5.69) 5.37 5.38 (5.03) 4.84 5.73 (5.34) 5.06 4.38 (4.14) 4.58
1nπ∗ 6.10 (5.68) 5.46 4.58 (4.72) 4.65 5.38 (5.07) 5.07 5.73 (5.40) 5.32 7.52 (7.16) 7.42

aRelative energies computed at the SF-BH&HLYP/6-31+G(d,p) level and, in parentheses, at the
NC-SF-ωPBEh/6-31+G(d,p) level. Geometries are computed at the SF-BH&HLYP/6-31+G(d,p)
level.
bRelative energies at the RI-CC2/aug-cc-pVTZ//SF-BH&HLYP/6-31+G(d,p) level.

ci-0πci-nπSnπ*-minS0-min

Figure 4.4: Structures optimized at the SF-BH&HLYP/6-31+G(d,p) level for gas-
phase uracil. Similar critical points are obtained for hydrated uracil.

4.3.2 Conical Intersections

In the present study, we consider only the two most important MECPs that determine

the main deactivation channels of uracil. The conical intersection between the 1ππ∗

and 1nπ∗ states is denoted ci-nπ and the one between the 1ππ∗ and S0 states is

denoted ci-0π. Relative energies at these geometries are listed in Tables 4.3 and

4.4. Optimized structures in the gas phase are depicted in Fig. 4.4, and the ones for

hydrated uracil are quite similar.
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ci-nπ

The ci-nπ intersection has a boat conformation with the two oxygen atoms pointing

away from the ring in the same direction. For gas-phase uracil, the energy of the

1ππ∗ state is 0.76 eV lower at ci-nπ than the energy at the S0 geometry, according

to the SF-BH&HLYP/6-31+G(d,p) method; this energy difference is 0.78 eV for NC-

SF-ωPBEh/6-31+G(d,p) and 0.64 for RI-CC2/aug-cc-pVTZ calculations. For the

hydrated uracil case, the energy lowering is 0.42 eV, 0.44 eV, and 0.34 eV, respectively,

for these three methods (see Tables 4.3 and 4.4). Thus, the system always goes

downhill to reach ci-nπ from the Franck-Condon (FC) region, for both gas-phase and

hydrated uracil. Although the NC version of SF-TDDFT systematically moves the

excitation energies closer to RI-CC2 results (see Tables 4.3 and 4.4), most of the

discrepancy between excitation energies computed with all three methods reflects the

energy difference relative to the ground state. Later, when we discuss the details of

the relaxation process, we will see that all three methods afford similar energetics

across the relaxation pathway.

Finally, we also optimized the structure of the planar conical intersections (labeled

as ci-nπ-p) between the 1ππ∗ and the 1nπ∗ states, for both gas-phase and hydrated

uracil. The geometry of this symmetry-constrained MECP in the gas phase agrees

with the one obtained at the MRCI level in Ref. 72; see Table 4.1. The change in

energy in moving from the FC region of the 1ππ∗ state to ci-nπ-p is −0.09 eV in

the gas phase [SF-BH&HLYP/6-31+G(d,p) level], as compared to −0.14 eV [NC-SF-

ωPBEh/6-31+G(d,p)] and −0.06 eV (RI-CC2/aug-cc-pVTZ). For hydrated uracil,

82



the same energy changes are −0.07 eV, −0.12 eV and −0.10 eV, respectively. Thus,

the 1ππ∗ state energy at the ci-nπ-p geometry is slightly lower in energy (≈ 0.1 eV), or

perhaps comparable to, the energy of the 1ππ∗ state in the FC region. The potential

importance of this conical intersection is discussed in the next section.

ci-0π

The ci-0π intersection has an ethylenic structure with pyramidalization at the C5 atom

and out-of-plane distortion at H5 (see Fig. 4.4). The energies of ci-0π are 4.24 and

4.38 eV higher than the S0-min energies for gas-phase uracil and hydrated uracil,

respectively [SF-BH&HLYP/6-31+G(d,p) level], due to significant distortion away

from a planar geometry. In the NC-SF-ωPBEh calculations, these energy differences

are reduced to 4.03 eV (gas phase) and 4.16 eV (hydrated), and the RI-CC2 results

are 3.92 eV (gas phase) and 4.20 eV (hydrated). We note that the energy gap between

the S0 state and the 1ππ∗ state at ci-0π geometry for hydrated uracil is quite large

in the RI-CC2 calculation (0.77 eV). This means that the crossing point between

these two states in the RI-CC2 calculation is a little different from ci-0π optimized

by SF-BH&HLYP. However, the relaxation pathways calculated by the two methods

agree well with each other, as demonstrated in the next section.

4.3.3 Relaxation Pathways

In this section, we present optimized minimum-energy relaxation pathways connecting

the critical points reported in the last section, with the aim of unraveling the excited-

state deactivation mechanism(s).
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Ultrafast Internal Conversion between the 1ππ∗ and S0 States

Immediately after photo-excitation to the first 1ππ∗ state at the Franck-Condon ge-

ometry, the system can evolve on that excited state energy surface. Figure 4.5 shows

the minimum-energy pathway connecting the S0-min and ci-0π geometries, for both

gas-phase and hydrated uracil. No barriers on the 1ππ∗ state energy surfaces are

found. Although we attempted to optimize the minimum-energy geometry for the

1ππ∗ state, this optimization led directly to the ci-nπ crossing region in gas phase,

and to the ci-0π crossing region for hydrated uracil. (Recall that the ordering of the

1ππ∗ and 1nπ∗ states in the FC region is different in the gas phase than in aqueous so-

lution.) The system must encounter the ci-nπ funnel region in gas phase [Fig. 4.5(a)],

while it can bypass the ci-nπ funnel region when evolving on the 1ππ∗ state in aqueous

solution [Fig. 4.5(b)]. This is further discussed below.

The question of whether the 1ππ∗ state exhibits a local minimum remains a topic

of debate, and the answer changes depending on the electronic structure method

that is used. A shallow minimum on the 1ππ∗ state, which would trap the uracil

molecule on that state, is predicted in Refs. 76 and77, and in those studies the slower

decay component (several picoseconds) that is observed experimentally was ascribed

to such trapping. The minimum-energy pathways computed here, however—along

with results from attempted geometry optimizations—support the hypothesis that

there does not exist any significant barrier that might trap uracil on the 1ππ∗ state.

This conclusion is reached also in several other theoretical studies.72,74,100 Moreover,

fluorescence up-conversion experiments suggest a sub-picosecond lifetime for the 1ππ∗
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Figure 4.5: Relaxation pathways from S0-min to ci-0π for (a) gas-phase uracil and (b)
hydrated uracil, following the gradient of the 1ππ∗ state. Solid curves connect points
along the pathway that have been optimized at the SF-BH&HLYP/6-31+G(d,p)
level. Energetics along that same pathway have also been computed at the NC-
SF-ωPBEh/6-31+G(d,p) level (dotted curves) and the RI-CC2/aug-cc-pVTZ level
(dashed curves).
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state,85 in conflict with the suggestion that trapping occurs on that state. Thus,

we assign the fastest sub-picosecond decay component (called τ1 in Ref. 1) of the

optically-populated 1ππ∗ state to direct internal conversion with the ground state.

The Role of the Long-Lived 1nπ∗ Dark State

As discussed in the previous section, the energy of the 1ππ∗ state of uracil at the ci-nπ

geometry is smaller than that at the Franck-Condon geometry, for both gas-phase and

hydrated uracil. The crossing region near ci-nπ is the starting point where the 1nπ∗

state begins to contribute to the deactivation process. Figure 4.6 depicts minimum-

energy pathways of the 1ππ∗ state connecting S0-min and ci-nπ configurations. The

reaction pathway is barrierless for gas-phase uracil [Fig. 4.6(a)], while a small barrier

of < 0.1 eV is found for hydrated uracil [Fig. 4.6(b)]. Although we attempted to find

a local minimum on the latter pathway, geometry optimizations invariably led to the

crossing region between the S0 and 1ππ∗ states. Meanwhile, due to the large excess

energy gained by the system after photo-excitation, the small barrier predicted in the

hydrated case should be easily overcome. For these reasons, we conclude that aqueous

uracil excited to the 1ππ∗ state will evolve directly to ci-0π or to ci-nπ without any

trapping on the 1ππ∗ state.

In the previous section, we mentioned the existence of a planar conical intersection

(ci-nπ-p), for both gas-phase and hydrated uracil. The mass-weighted distances be-

tween S0-min and ci-nπ-p structures are 1.00 amu1/2 Å (gas phase) and 1.07 amu1/2 Å

(hydrated), which should be compared with the lengths of the pathways connecting

S0-min and ci-nπ in Fig. 4.6, which are larger than 2 amu1/2 Å. This indicates that
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Figure 4.6: Relaxation pathways from S0-min to ci-nπ for (a) gas-phase uracil and (b)
hydrated uracil, following the gradient of the 1ππ∗ state. Solid curves connect points
along the pathway that have been optimized at the SF-BH&HLYP/6-31+G(d,p)
level. Energetics along that same pathway have also been computed at the NC-
SF-ωPBEh/6-31+G(d,p) level (dotted curves) and the RI-CC2/aug-cc-pVTZ level
(dashed curves).
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Figure 4.7: Optimized x and y vectors (black line segments) at the ci-nπ conformation
of gas-phase uracil.

the crossing regions between the 1ππ∗ state and the 1nπ∗ state are geometrically close

to the FC region in both the gas phase and in solution. Keeping in mind the excess

vibrational energy after photo-excitation and the fact that the 1ππ∗ state in both the

gas-phase and hydrated case is similar between S0-min and ci-nπ-p, we propose that

the system can reach the crossing seam between the 1ππ∗ state and the 1nπ∗ state

very early after photo-excitation, which is associated with the sub-picosecond decay

component, τ1.

After the system encounters the intersection seam between the 1ππ∗ and 1nπ∗

states, the wave function is a mixture of ππ∗ and nπ∗ character. The reaction pathway

may bifurcate in two directions, depending on which character the wave function takes

after the system leaves the crossing region, as already shown in previous studies.72,77

Examining the branching-space vectors x and y at the ci-nπ geometry, which are

shown in Fig. 4.7. We see that x is mainly the C4–O8 bond stretch, which leads to

Snπ∗-min, while y is the C4–C5 stretch combined with ring puckering, which leads to

ci-0π.
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Figure 4.8: The relaxation pathways from ci-nπ to ci-0π for (a) gas-phase uracil
and (b) hydrated uracil, following the gradient of the 1ππ∗ state. Solid curves con-
nect points along the pathway that have been optimized at the SF-BH&HLYP/6-
31+G(d,p) level. Energetics along that same pathway have also been computed at
the NC-SF-ωPBEh/6-31+G(d,p) level (dotted curves) and the RI-CC2/aug-cc-pVTZ
level (dashed curves).
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If the diabatic ππ∗ character is maintained during the decay process, then the

system will evolve directly toward ci-0π (see Fig. 4.8). For the situation in the gas

phase, this decay component is just a part of the direct ultrafast internal conversion

between the 1ππ∗ and S0 states. Because the state ordering of 1ππ∗ and 1nπ∗ changes

along the decay pathway [Fig. 4.5(a)], the system has to cross the intersection seam

between these two states. The situation for hydrated uracil is slightly different. In

the Franck-Condon region, the S1 state has ππ
∗ character while the S2 state has nπ

∗

character. From Fig. 4.5(b), we note that the system need not encounter the crossing

seam between the 1ππ∗ and 1nπ∗ states in order to decay toward ci-0π. Thus, the

decay channel FC → ci-nπ → ci-0π is distinct from the one in Fig. 4.5(b), namely

FC → ci-0π, in the case of hydrated uracil. We next explain this conclusion.

In Fig. 4.9, we report the minimum-energy pathways connecting S0-min, ci-nπ

and ci-0π, projected onto a two-dimensional reaction coordinate plane. Here, the

horizontal axis represents the geometry change between S0-min and ci-0π, which is

defined as the direction of the vector

a = Rci-0π −RS0-min (4.13)

The vertical axis represents the geometry change between S0-min and ci-nπ, but with

the direction of the horizontal axis projected out. This corresponds to the direction

of the vector

b = (1− â⊤â)(Rci-nπ −RS0-min) (4.14)

where â = a/||a||. In the gas phase, we see from Fig. 4.9(a) that the paths FC →

ci-nπ and ci-nπ → ci-0π are quite close to the path FC → ci-0π, so there is essentially
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Figure 4.9: Projected relaxation pathways S0-min → ci-0π (black curve), S0-min
→ ci-nπ (red curve), and ci-nπ → ci-0π (blue curve), for (a) gas-phase uracil and
(b) hydrated uracil. The directions of the horizontal and vertical axes are defined in
Eqs. (4.13) and (4.14), respectively.
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only one decay channel from the Franck-Condon geometry to ci-0π, going through

the 1ππ∗/1nπ∗ intersection seam. For hydrated uracil [Fig. 4.9(b)], the paths FC →

ci-nπ and ci-nπ → ci-0π are far away from the path FC → ci-0π, and combined with

the pathway shown in Fig. 4.5(b), we conclude that the intersection seam between

the 1ππ∗ and 1nπ∗ states does not lie in the same region of the potential surface as

the decay channel FC → ci-0π.

In order to further explain the above conclusion, we did an extensive potential

energy surface (PES) scan at the level of SF-BH&HLYP/6-31+G(d,p) near the three

relaxation pathways shown in Fig. 4.9. The surfaces thus obtained are shown in

Fig. 4.10. Note that the ci-nπ point shown in Fig. 4.10(b) is not the real MECP

on the 1ππ∗/1nπ∗ crossing seam that is depicted in Fig. 4.4, because we did not

perform geometry relaxations for the PES, but the energy increase is only 0.17 eV.

Consequently, the position of the 1ππ∗/1nπ∗ crossing seam in Fig. 4.10(b) represents

the position of the seam through which the system can cross near the ci-nπ MECP.

Comparing the PES of gas-phase uracil to that of its hydrated analogue, it is clear

that the 1ππ∗/1nπ∗ crossing seam moves far away from the FC region for hydrated

uracil, as a direct result of the solvatochromatic shifts for the 1ππ∗ and 1nπ∗ states.

In Fig. 4.10, the red curves on the 1ππ∗ state are the minimum relaxation pathways

connecting the critical points. For gas-phase uracil, only one decay channel is found,

namely, FC → 1ππ∗/1nπ∗ seam → ci-0π. For hydrated uracil, however, we observe

a broad, nearly barrierless region enclosed by the three relaxation pathways on the

1ππ∗ state. Thus, the system is free to either evolve to the 1ππ∗/1nπ∗ crossing seam
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Figure 4.10: Potential energy surfaces for the lowest three singlet states for (a) gas-
phase uracil and (b) hydrated uracil. The a and b axes are defined in Eqs. (4.13) and
(4.14).
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then return back to the 1ππ∗/S0 seam, or directly travel toward the 1ππ∗/S0 seam

without reaching the 1ππ∗/1nπ∗ crossing region.

As such, there are two decay channels from the FC geometry to ci-0π for uracil in

aqueous solution, namely, FC → ci-0π and FC → 1ππ∗/1nπ∗ seam → ci-0π. However,

since both of these two channels are downhill on the 1ππ∗ surface, we do not expect

significantly different time constants in time-resolved experiments; both channels cor-

respond to the fastest decay component (τ1).

The wave function can also take nπ∗ character after the system encounters the

1ππ∗/1nπ∗ crossing seam. In Fig. 4.11, we see that the system can travel on the 1nπ∗

surface barrierlessly toward Snπ∗-min. In the solution phase, this process is associated

with the vibrational cooling of the 1nπ∗ state. Because of the existence of this stable

equilibrium structure (Snπ∗-min), the system can be trapped on the 1nπ∗ state for a

relatively longer time (τ4 in Ref. 1), from tens of picoseconds to several nanoseconds,

depending on whether the solvent is protic or aprotic.

Figure 4.12 shows the relaxation pathways connecting Snπ∗-min and ci-0π. In

order to go back to the crossing region between the 1ππ∗ and S0 states, the system

has to overcome a relatively large energy barrier (≈ 1.0 eV in gas phase and ≈ 0.7 eV

for hydrated uracil at the SF-BH&HLYP level), and this is the reason for the long

lifetime of the dark singlet state that is observed in time-resolved experiments. (At the

. NC-SF-ωPBEh level, the barrier drops from 0.61 eV for gas-phase uracil to 0.39 eV

for hydrated uracil, while RI-CC2 results are 1.1 eV for gas-phase uracil and 0.4 eV

for hydrated uracil.) This lowering of the barrier upon hydration may be the reason
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Figure 4.11: The relaxation pathways from Snπ∗-min to ci-nπ for (a) gas-phase uracil
and (b) hydrated uracil, following the gradient of the nπ∗ state. Solid curves con-
nect points along the pathway that have been optimized at the SF-BH&HLYP/6-
31+G(d,p) level. Energetics along that same pathway have also been computed at
the NC-SF-ωPBEh/6-31+G(d,p) level (dotted curves) and the RI-CC2/aug-cc-pVTZ
level (dashed curves).
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Figure 4.12: The relaxation pathways from Snπ∗-min to ci-0π for (a) gas-phase uracil
and (b) hydrated uracil, following the gradient of the S1 state. The wave function
changes character from nπ∗ to ππ∗ at the maximum energy point on the S1 pathway,
so the reaction pathways come across the 1ππ∗/1nπ∗ crossing regions and lead the
system back to the 1ππ∗ surface. [Solid curves represent the pathway optimized at
the SF-BH&HLYP/6-31+G(d,p) level, whereas energetics along that same pathway
are also computed at the NC-SF-ωPBEh/6-31+G(d,p) level (dotted curves) and the
RI-CC2/aug-cc-pVTZ level (dashed curves).]
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for the shorter lifetime (τ4) of the singlet dark state in protic solvents as compared to

aprotic solvents.1 A similar conclusion was reached in a previous TDDFT study.74

The Quantum Yield of the 1nπ∗ State

Transient absorption spectroscopy indicates that the quantum yield of the ultrafast

internal conversion through ci-0π is ∼60% (for all solvents examined experimentally),

and the remaining 40% of the quantum yield was ascribed to some combination of

deactivation to the singlet 1nπ∗ dark state and to the triplet 3ππ∗ dark state.1 If we

assume that the 3ππ∗ state is obtained by intersystem crossing from the 1nπ∗ state,

as proposed in Ref. 1, then the quantum yield of the 1nπ∗ state can be taken as ∼40%

after decay through the 1ππ∗/1nπ∗ crossing region, in all solvents.

In the present study, if we assume the deactivation mechanism of uracil in the

gas phase is similar to that in aprotic solvents, where no hydrogen bonds are formed

between uracil and the solvent molecules, then it is possible to study the quantum

yield of the 1nπ∗ state for uracil in different solvents. In the previous discussion,

we saw that the major difference of the decay channels for gas-phase uracil and

hydrated uracil is that the direct deactivation from the 1ππ∗ state to the ground

state through the ci-0π conical intersection for hydrated uracil can bypass the 1ππ∗/

1nπ∗ crossing region. Thus, the probability for the system to reach the ci-nπ crossing

seam may be smaller for hydrated uracil. In other words, the quantum yield of the

dark 1nπ∗ state may be lower for uracil in protic solvents. However, this effect may

be minor due to the excess energy at photo-excitation which may lead the system

to the energetically unfavored but geometrically closer ci-nπ crossing seam (see the
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discussion above regarding the ci-nπ-p conical intersection). In any case, the quantum

yield of the singlet dark state of uracil in protic solvents appears to be governed by the

competition between the FC → ci-0π and the FC → ci-nπ decay channels. Careful

dynamics calculations are required in order to understand the details.

4.4 Conclusions

Spin-flip TDDFT is capable of correctly describing the topology of a conical inter-

section,10 without increasing the computational cost relative to standard TDDFT,

and affords minimum-energy crossing point geometries along conical seams that are

in good agreement with benchmark results from multireference wave function meth-

ods. In the present study, we have applied SF-TDDFT to examine the excited-state

deactivation mechanisms of both gas-phase and hydrated uracil, by first locating

the two most important MECPs, then optimizing reaction pathways connecting var-

ious stationary points with the MECPs, and finally confirming the energetics using

coupled-cluster calculations. Based on the pathways thus obtained, we have assigned

the time constants measured in time-resolved experiments.

Our calculations support the deactivation mechanism proposed by Hare et al.1 and

later suggested also by Mercier et al.74 based on TDDFT calculations, and the present

work provides additional evidence in the form of optimized MECP structures. The

ultrafast decay component τ1 = 120 fs that is measured experimentally1 is assigned

to direct relaxation from the first 1ππ∗ state to the ground state state via conical

intersection ci-0π, whereas the slow component1 (τ4 = 26 ps) is assigned to indirect
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relaxation, via the pathway 1ππ∗ → 1nπ∗ → S0. The lifetime of the dark 1nπ∗ state is

observed to increase from tens of picoseconds in protic solvents to several nanoseconds

in aprotic solvents,1 and this behavior is ascribed to solvatochromatic shifts that serve

to decrease a key activation barrier on the 1nπ∗ state. Finally, we find no evidence

that trapping should occur on the 1ππ∗ state, either in the gas phase or in aqueous

solution.

More generally, our results for both uracil and adenine suggest that SF-TDDFT

can describe the excited state properties of nucleobases qualitatively correctly and

at relatively low cost. If we limit the discussion to relative energies of singlet ex-

cited states, then SF-TDDFT results agree very well with the CC2 results, although

excitation energies with respect to S0 are overestimated with respect to experiment

and CC2 results. This overestimation is largely corrected by SF-TDDFT calculations

within the non-collinear formalism, at least for uracil. This shift relative to S0 may

be due to the relatively large fraction of Hartree-Fock exchange (50%) that is found

to yield best results for collinear SF-TDDFT,11,45 which may be an an artifact of

the collinear formalism.59 Non-collinear exchange-correlation kernels may therefore

be better choices for future work, although gradients are not yet available. In any

case, the low cost of SF-TDDFT makes it use promising for application to larger

nucleic acid assemblies.

One final cautionary note, which is especially relevant in the context of ab initio

molecular dynamics, is that to use SF-TDDFT one must identify and eliminate the

MS = 0 component of the triplet from the singlet excitation manifold. In our hands,
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this is sometimes quite difficult away from the Franck-Condon region, owing to signif-

icant spin contamination. Recently, Li et al.101 introduced a spin-adapted formalism

for the open-shell random phase approximation, using the tensor equation of motion

formalism.102 This approach offers a potential solution to the spin contamination is-

sue. Meanwhile, calculation of analytic first-order nonadiabatic coupling vectors for

TDDFT is available at the linear response level,23,24 and the extension to SF-TDDFT

is straightforward. This would obviate the need for the gradient projection algorithm

used here, as MECP optimization could proceed directly along the vectors g and h.

Efforts to improve SF-TDDFT along these lines are underway in our group.
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CHAPTER 5

Spin-flip, Tensor Equation-of-Motion

Configuration Interaction with a

Density-Functional Correction

In this chapter, we introduce the spin-adapted version of SF-TDDFT that cures

the spin contamination problem of conventional SF-TDDFT. Preliminary numerical

results show that this new method is potentially a much more attractive approach to

excited-state ab initio MD simulations, as compared to SF-TDDFT.

5.1 Introduction

Spin-flip time dependent density functional theory11,12 (SF-TDDFT) is a qualitatively

correct and very efficient electronic structure method for describing electronic exci-

tation energies,11,12,66,103–106 conical intersections,14,107 excited-state reaction path-

ways,14,45–49,59,108–111 and excited-state non-adiabatic ab initio molecular dynamics

(MD) simulations.112,113 Spin-flipping excitations enable SF-TDDFT to treat ground-

and excited-state electron correlation on the same footing, while also incorporating

some doubly-excited determinants that are important for biradicals.11,44 The dynam-

ical correlation that is included in SF-TDDFT makes this model more accurate than

its wavefunction analogue, spin-flip configuration-interaction singles (SF-CIS).44
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Despite these favorable features, SF-TDDFT has one notorious drawback in the

form of serious spin contamination. This can easily be understood using an example

in which a high-spin triplet reference state is used in order to target singlet states

obtained from a single α → β spin-flip excitation. Figure 5.1 depicts all possible

electron configurations obtained in such a scenario, using a model consisting of four

electrons in four orbitals. Only those excitations within the open-shell space are able

to generate spin-pure solutions, whereas all other configurations are missing their

“spin complements”, leading to spin-contaminated solutions. In this example, at

most three singlet states and one triplet state may exhibit proper spin symmetry,

whereas all other solutions will be significantly spin-contaminated. This is a serious

drawback in SF-TDDFT, especially for ab initio MD or excited-state optimizations,

where states may cross as the molecular geometry is changed and some form of state-

tracking is required. Since the number of spin-pure states is limited, only a few low-

lying states can be studied in SF-TDDFT simulations,112,113 and various techniques

are required in order to follow the state having the desired spin symmetry.112

Several approaches have been proposed to generate spin eigenstates for open-

shell TDDFT. Vahtras and Rinkevicius114 introduced general excitation operators

that can be used to generate excited states having well-defined spin multiplicities,

whereas Li and Liu65,101,115 extended the tensor equation-of-motion (TEOM) for-

malism, originally developed by Rowe and co-workers in nuclear physics,102 to the

case of molecular systems. At the SF-CIS level, Sherrill and co-workers3 presented a
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Figure 5.1: Example of spin-flip from a high-spin triplet reference state, for a model
system consisting of four electrons in four orbitals. Configuration (a) is the reference
state. Configurations in (b) are obtained by a single flip-down excitation within
the open-shell orbitals; only these configurations are able to form spin eigenstates.
Configurations in (c)–(e) are obtained by closed- to open-shell excitations, open-shell
to virtual excitations, and closed-shell to virtual excitations, respectively, each with a
α → β spin-flip excitation. These configurations are missing their complementary spin
configurations and lead to spin-contaminated solutions in conventional SF-TDDFT.
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spin-complete implementation within a restricted active space formalism, and Tsuchi-

mochi et al.116,117 reported a spin-projected formulation of SF-CIS in which spin-

adapted solutions are also obtained. None of these approaches, however, has been

applied to SF-TDDFT,which is the topic of the present work. We will derive a spin-

adapted, spin-flip CIS method (SA-SF-CIS) based on one of three formally equivalent

TEOMs.102 To incorporate dynamical electron correlation, we will then go on to in-

clude a DFT correction, following along the lines that Grimme et al.118,119 used to

merge DFT with multireference configuration interaction (MRCI) in the DFT/MRCI

method. The performance of this new method is then analyzed through some example

calculations.

5.2 Theory

We briefly review the TEOM formalism introduced by Rowe et al.,102 then derive the

working equations for SA-SF-CIS based on this formalism.

5.2.1 Notation

The following notation is used throughout this work. Doubly- and singly-occupied

molecular orbitals are labeled as φi, φj, φk, φl, . . . and φt, φu, φv, φw, . . ., respectively,

while virtual molecular orbitals are labeled as φa, φb, φc, φd, . . .. We label arbitrary

(occupied or virtual) molecular orbitals as φp, φq, φr, φs, . . .. All two-electron integrals

will be written in physicists’ notation. Furthermore, we will use C, O and V to denote

closed, open, and virtual spaces, respectively, consistent with Fig. 5.1. A tensor

operator having rank Γ is denoted as Ô†(Γ) and its µth component is Ô†(Γ, µ).

104



5.2.2 Tensor equations of motion

The traditional scalar equations of motion120 can be generalized to tensor equations

of motion in a straightforward way using tensor basis functions insdead of scalar basis

functions.102 One seeks the tensor operators Ô†
xλ with rank λ that relate the excited

tensor state |xSf〉〉 to some reference tensor state |S0〉〉 in the following way,

{
Ô†

xλ × |S0〉〉
}Sf = |xSf〉〉 (5.1)

Ôxλ|S0〉〉 = 0 . (5.2)

We use curly brackets to represent the coupled products between two tensors, and the

superscript above the bracket is the rank of the product tensor. The labels S0 and

Sf indicate the spin symmetries of the initial (reference) state and the final (target)

state, respectively. (Note that S0 as used in Section 5.2 does not mean “singlet ground

state”, S0. The latter notation is used in the numerical calculations in Section 5.3.)

In Eq. (5.2), all possible coupled products should vanish. The tensor operator Ô†
xλ

can be expanded by a series of tensor operators with different ranks,

Ô†
xλ =

∑

i

Ô†
xλi

, (5.3)

and the ranks λi must satisfy the triangle relations required by Eq. (5.1), namely

|S0 − Sf | ≤ λi ≤ |S0 + Sf | . (5.4)

As shown by Rowe et al.,102 three formally equivalent TEOMs can be derived from
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Eqs. (5.1) and (5.2). The first of these is

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{Ôyλi
× [Ĥ, Ô†

xλj
]
}Γ∣∣∣∣S0

〉

= ωxSf

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{Ôyλi
× Ô†

xλj

}Γ∣∣∣∣S0

〉
. (5.5)

The second version is

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{[Ôyλi
, [Ĥ, Ô†

xλj
]]
}Γ∣∣∣∣S0

〉

= ωxSf

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{[Ôyλi
, Ô†

xλj
]
}Γ∣∣∣∣S0

〉
. (5.6)

Finally, the third TEOM is

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{[Ôyλi
, Ĥ, Ô†

xλj
]
}Γ∣∣∣∣S0

〉

= ωxSf

∑

ijΓ

(−1)S0−Sf−Γ−λi(2Γ + 1)1/2W (λiλjS0S0; ΓSf )

×
〈
S0

∣∣∣∣{[Ôyλi
, Ô†

xλj
]
}Γ∣∣∣∣S0

〉
. (5.7)

The quantity W in these equations is a Racah coefficient, Ôyλi
is the tensor operator

corresponding to the Hermitian adjoint of Ô†
yλi

,102 ωxSf
is the excitation energy from

|S0〉〉 to |xSf〉〉, and the sums over i and j are sums over all tensor operators with
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different ranks λi and λj, as in Eq. (5.3)]. The only difference amongst the three

TEOMs in Eqs. (5.5)–(5.7) comes in the reduced matrix elements, 〈S0||{· · · }Γ||S0〉.

In order to derive Eq. (5.6) from Eq. (5.5), the so-called “killer condition” [Eq. (5.2)]

must be satisfied. Equation (5.7) is equivalent to Eq. (5.6) only if |S0〉〉 is an eigenfunc-

tion of the Hamiltonian Ĥ. Amongst these three TEOMs, Eq. (5.7) has the favorable

features that the double commutator in the reduced matrix elements has lower rank

as compared to the first formulation in Eq. (5.5), and furthermore that both sides of

the Eq. (5.7) are Hermitian.102 If the killer condition is not satisfied, however, then

use of either Eq. (5.6) or Eq. (5.7) may be problematic, as discussed below.

5.2.3 Spin-adapted, spin-flip CIS

In this work, the excitation operators involved in the TEOMs are truncated at the

single excitation level. In other words, we only focus on removing the spin contami-

nation in traditional (spin-incomplete) spin-flip CIS and its time-dependent Hartree-

Fock (TD-HF) extension. Higher-order excitation operators could in principle be

included to introduce additional electron correlation.

Single excitation operators can be grouped into two kinds of tensors, one hav-

ing rank zero (singlet coupling) and the other having rank one (triplet coupling).121
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Meanwhile, Eqs. (5.5)–(5.7) require the following triangle relations to be fulfilled:

|S0 − Sf | ≤ λi ≤ |S0 + Sf | (5.8a)

|S0 − Sf | ≤ λj ≤ |S0 + Sf | (5.8b)

|λi − λj| ≤ Γ ≤ |λi + λj| (5.8c)

|S0 − S0| ≤ Γ ≤ |S0 + S0| . (5.8d)

In spin-flip methods, we usually look for the excited states whose total spin angular

momentum is one unit smaller than that of the reference state, Sf = S0−1. Thus, only

triplet-coupled single excitation operators (i.e., λi = λj = 1) satisfy the above triangle

relations. These tensor operators have the following components when represented in

the molecular orbital (MO) basis:

Ô†
pq(1, 1) = −â†p âq̄, (5.9a)

Ô†
pq(1, 0) =

1√
2
(â†p âq − â†p̄ âq̄), (5.9b)

Ô†
pq(1,−1) = â†p̄ âq, (5.9c)

where â†p creates an α-spin electron in orbital φp and âq̄ annihilates a β-spin electron

in orbital φq.

Previous work by Li and Liu uses Eq. (5.7) as the working equation.65,101,115 How-

ever, in the SF-CIS case, the killer condition in Eq. (5.2) is not satisfied for excitations

within the open-shell space, and as a result both Eq. (5.6) and Eq. (5.7) will gener-

ate spurious solutions. The reason is that the excitation space is overcomplete, but

Eqs. (5.6) and (5.7) are not capable of removing this overcompleteness. Consequently,
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we choose Eq. (5.5) as our working equation, and we will show that this equation au-

tomatically removes the overcompleteness of the excitation space, by symmetry.

An alternative way to solve this problem is to introduce an operator that projects

out the reference state, so that the killer condition is fulfilled by construction. This

procedure has been shown to be successful in scalar equation-of-motion calcula-

tions.122 We can also extend this approach to TEOMs, simply by writing the tensor

operators in Eqs. (5.1) and (5.2) with the following general forms:

Ô†
xλ =

∑

i

(−1)Sf−λi

(
2Sf + 1

2λi + 1

)1/2{
{O†

xλi
|S0〉〉}Sf 〈〈S0|

}λi

(5.10a)

Ôxλ =
∑

i

(−1)Sf−λi

(
2Sf + 1

2λi + 1

)1/2{
|S0〉〉{〈〈S0|Oxλi

}Sf

}λi

. (5.10b)

Given these two tensor operators, the killer condition [Eq. (5.2)] is always satisfied,

and the three TEOMs in Eqs. (5.5)–(5.7) become formally equivalent if |S0〉〉 is an

eigenfunction of the Hamiltonian. This is not, however, the approach that is pursued

here.

Now we can express the TEOM in Eq. (5.5) using the spin-tensor basis shown in

Eq. (5.9). This results in the following matrix representation of the TEOM,

MZ(x) = ωxNZ(x) , (5.11)
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where the matrix elements of M and N are

Mpq,rs =
∑

Γ

(−1)S0−Sf−Γ−1(2Γ + 1)1/2W (11S0S0; ΓSf )

×
〈
S0

∣∣∣∣{Ôpq(1)× [Ĥ, Ô†
rs(1)]

}Γ∣∣∣∣S0

〉
(5.12)

Npq,rs =
∑

Γ

(−1)S0−Sf−Γ−1(2Γ + 1)1/2W (11S0S0; ΓSf )

×
〈
S0

∣∣∣∣{Ôpq(1)× Ô†
rs(1)

}Γ∣∣∣∣S0

〉
. (5.13)

The reduced matrix elements in Eqs. (5.12) and (5.13) can be evaluated using the

Wigner-Eckart theorem,

〈
Γ
∣∣∣∣Ô(λ)

∣∣∣∣Γ1

〉
=

√
2Γ + 1

C(Γ1µ1λν; Γµ)

〈
Γµ
∣∣Ô(λ, ν)

∣∣Γ1µ1

〉
, (5.14)

where C is a Clebsch-Gordan coefficient, |Γµ〉 denotes an angular momentum eigen-

state whose total angular momentum is Γ and whose z-component is µ, and 〈Γ||Ô(λ)||Γ1〉

is the reduced matrix element. Using Eq. (5.14), the reduced matrix elements in M

can be expressed as

〈
S0

∣∣∣∣{Ôpq(1)× [Ĥ, Ô†
rs(1)]

}Γ∣∣∣∣S0

〉
(5.15)

=
(2Γ + 1)1/2

〈
S0S0

∣∣{Ôpq(1)× [Ĥ, Ô†
rs(1)]

}Γ
0

∣∣S0S0

〉

C(S0S0Γ0;S0S0)
.

In the notation |S0S0〉, the first S0 is the total spin quantum number and the second

S0 represents the quantum number for the z-component of the spin vector, which

makes |S0S0〉 a high-spin state. In Eq. (5.15), we use the normal spin-flip convention

wherein the high-spin open-shell state |S0S0〉 is taken to be the reference state.
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The numerator of the right side of Eq. (5.15), which is a coupled product between

excitation operators, can be derived readily:

〈
S0S0

∣∣{Ôpq(1)× [Ĥ, Ô†
rs(1)]

}Γ
0

∣∣S0S0

〉

=
∑

µ

〈
S0S0

∣∣Ôpq(1,−µ)× [Ĥ, Ô†
rs(1, µ)]

∣∣S0S0

〉
(5.16)

× C(1(−µ)1µ; Γ0) .

The quantity Ôpq(1,−µ) is defined as102

Ôpq(1,−µ) = (−1)1−µÔpq(1, µ). (5.17)

Finally, the matrix elements of M can be evaluated. The results are very similar

to those derived by Li and Liu,101 based on the TEOM in Eq. (5.7), and the details are

relegated to an Appendix. The matrix elements of N can be derived in the same way,

nevertheless it is worth demonstrating the structure ofN, since this is what guarantees

that the overcompleteness of the excitation space is removed automatically. We next

proceed to demonstrate this structure.

For SA-SF-CIS, we choose p and q in Eq. (5.9) to run over all MOs. Namely,

Ô†(1) is expanded in the following way if we neglect the redundant excitations:

Ô†(1) =
∑

ai

Ô†
ai(1)X

CV
ai +

∑

ui

Ô†
ui(1)X

CO
ui

+
∑

au

Ô†
au(1)X

OV
au +

∑

tu

Ô†
tu(1)X

OO
tu (5.18)

+
∑

ia

Ô†
ia(1)Y

VC
ia +

∑

iu

Ô†
iu(1)Y

OC
iu

+
∑

ua

Ô†
ua(1)Y

VO
ua .
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In Eq. (5.18), we use X and Y to represent the excitation and de-excitation parts

of the amplitude, respectively. Superscripts on the quantities Xpq and Yqp indicate

the excitation type, e.g., XCV
ai is the coefficient for excitation of one electron from a

closed-shell, doubly-occupied MO φi and into a virtual MO φa. Using the spin-tensor

basis above, the matrix N can be expressed explicitly as N = NXX ⊕NYY where

NXX =




δijδab 0 0 0

0
(

2S0+1
2S0

)
δijδuv 0 0

0 0
(

2S0+1
2S0

)
δuvδab 0

0 0 0 NOO-OO




, (5.19)

and NYY = 0. The block NOO-OO is the only part of NXX that is not diagonal.

This block is singular, with matrix elements

NOO-OO
tu,vw = −

(
2S0 + 1

2S0(2S0 − 1)

)
δtuδvw +

(
2S0 + 1

2S0 − 1

)
δtvδuw . (5.20)

The rank of NOO-OO is less than its dimension, which removes the overcomplete-

ness of the OO excitation space. For example, if S0 = 1 and Sf = 0 (singlet states

from a high-spin triplet reference), then NOO-OO can be expressed as

NOO-OO

S0=1 =




3
2

0 0 −3
2

0 3 0 0
0 0 3 0

−3
2

0 0 3
2


 (5.21)

which has a rank of 3. It is easy to show that all possible single spin-flipping excita-

tions within the open-shell space from a high-spin triplet reference state will generate

three singlet states and one triplet state. That the matrix in Eq. (5.21) has rank 3

rather than 4 guarantees that the one triplet state is excluded from the solutions.

At this point, we have proved that by using Eq. (5.5) as the working equation for
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SA-SF-CIS, all the solutions will have the correct spin eigenvalue and no spurious

solutions will be generated.

It is also interesting to note that the de-excitation part of the TEOM vanishes,

i.e., NYY = 0. As such, there is no concept of a “Tamm-Dancoff approximation”,35

since Y ≡ 0, and the SA-SF-CIS method derived here reduces to the spin-complete

SF-CIS method introduced of Sherrill and co-workers.3 The benefit of our TEOM-

based derivation is that we don’t have to add more electron configurations into the

CI equations, as was done in Ref. 3. Actually, the matrix dimensions of M and N

in SA-SF-CIS are exactly the same as those in (spin-incomplete) SF-CIS, due to the

spin-tensor basis that is used here. In other words, the spin contamination in SF-

CIS can be removed without additional computational cost by applying the TEOM

approach.

5.2.4 DFT correction

In principle, the current SA-SF-CIS method can be extended to its corresponding

DFT counterpart by introducing a Hamiltonian ĤDFT associated to density functional

theory. This Hamiltonian is required to generate the exact ground-state energy from

the single-determinant reference state, Eexact
0 = 〈S0|ĤDFT|S0〉. Unfortunately, no such

Hamiltonian is known in analytic form. Instead, we propose an empirical correction

to the matrix elements in the SA-SF-CIS working equation to capture dynamical

correlation using a density functional. The motivation behind this ad hoc correction

is similar in spirit to the idea that underlies the DFT/MRCI method.118,119 We will

denote our method as SA-SF-DFT.
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In DFT/MRCI, the major correction from DFT is added to the diagonal matrix

elements of the MRCI Hamiltonian in the following way. Using singly-excited Slater

determinants |Φpq〉 rather than configuration state-functions as the basis, we have

〈Φpq|ĤDFT − EDFT
0 |Φpq〉 = (5.22)

FKS
pp − FKS

qq + 〈pq||qp〉+ pJ〈pq|pq〉 − p(No)〈pq|qp〉 .

Here, |Φpq〉 indicates q → p excitation, EDFT
0 is the ground-state DFT energy, FKS

is the Kohn-Sham Fock matrix, pJ is a fitting parameter, and p(No) is an empirical

function depending on the number of open shells, No. The quantities pJ and p(No)

are optimized for each density functional, and for the BH&HLYP functional,123 good

performance is obtained for pJ = 1−CHF = 0.5. (Re-parameterization is required for

functionals having a substantially different fraction of Hartree-Fock exchange.119)

Since the correction from 〈pq|pq〉 is usually larger than that from 〈pq|qp〉, we will

neglect the final term in Eq. (5.22) in our method. Moreover, we set pJ = 1−CHF, and

apply the correction to all matrix elements including off-diagonal terms, for simplicity.

The matrix elements in SA-SF-DFT therefore have the following form:

〈Φpq|ĤDFT − EDFT
0 |Φrs〉 = δqsF

KS
pr − δprF

KS
qs

+ 〈pq||qp〉+ (1− CHF)〈pq|pq〉. (5.23)

This is precisely the same matrix element as in collinear SF-TDDFT,11 which provides

some justification for the generally good performance of that method. In principle,

we could tune the value of pJ in collinear SF-TDDFT for any density functional, in an

effort to obtain accurate energetics. As such, the requirement of ≈ 50% Hartree-Fock
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exchange for good results in collinear SF-TDDFT, which was discovered empirically

in Ref. 11, may actually depend upon how we “translate” the CI method to TDDFT,

and may have less to do with spin contamination, as was suggested in Ref. 101. Ad-

ditional evidence in support of this argument comes from non-collinear SF-TDDFT,

which usually performs well with less Hartree-Fock exchange,59,66 despite the fact that

it is also spin contaminated. This is mainly because the CI method and TDDFT are

connected in a different way, namely, through non-collinear kernels, and the param-

eterization approach for non-collinear SF-TDDFT is distinct from that for collinear

SF-TDDFT.

Besides the simple form of Eq. (5.23), there is another advantage to calculating

the matrix elements in this way. The Wigner-Eckart theorem is used in deriving the

TEOMs, and this theorem assumes that the components of a spin tensor are energeti-

cally degenerate because the Hamiltonian of the system is spin-independent. This de-

generacy is satisfied only if we use the same Hamiltonian to calculate the ground-state

energy and the matrix elements in the TEOM. Equation (5.23), based on a restricted

open-shell Hartree-Fock51 (ROHF) reference state, satisfies the spin-degeneracy con-

dition,101 and thus partly removes the ambiguity associated with application of the

Wigner-Eckart theorem. Some ambiguity remains, insofar as the Kohn-Sham Fock

matrix that is used in Eq. (5.23) is calculated from a different Hamiltonian as com-

pared to ĤDFT.

Although in principle it would be possible to use non-collinear exchange-correlation
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(XC) functionals to add a DFT correction to SA-SF-CIS, we will use collinear func-

tionals exclusively. The reason is that the ROHF reference state exactly satisfies

the degeneracy condition amongst the various components of a spin multiplet, and

the form of the collinear matrix elements [Eq. (5.23)] does not alter this fact. For

non-collinear functionals, the form of the K matrices introduced in the Appendix

is altered in a way that may not respect the spin-degeneracy condition.101 (Li and

Liu101 suggest how empirical parameters could be introduced to partially restore this

degeneracy, but we will not attempt this here.)

Note that the use of Eq. (5.23) in conjunction with a spin-complete formalism

does engender some double-counting of electron correlation. The same can be said

of DFT/MRCI, and in that method the off-diagonal matrix elements are modified in

an attempt to counterbalance some of this double-counting.119 Similar modifications

may help the SA-SF-DFT method, but we have not pursued these yet. It should be

noted that collinear SF-TDDFT itself is already subject to some double-counting.

5.3 Numerical examples

The SA-SF-DFT method has been implemented in a locally modified version of the

Q-Chem program,33 and in this section we evaluate its performance. All calculations

were performed using Q-Chem except for some benchmark MRCI calculations, which

were performed using the Orca program.124 The examples that we consider here

involve singlet excitations starting from a high-spin ROHF reference state51 for the

triplet. It should be noted that the formalism is more general than triplet-to-singlet
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spin-flipping transitions, however. The spin states S0 and Sf (Section 5.2) can be any

integer or half-integer values, subject to the constraint that Sf = S0 − 1.

5.3.1 Ethylene torsion

Ethylene torsion is a prototypical example for testing how electronic structure meth-

ods describe biradicals. Collinear SF-TDDFT performs well for this system,11 whereas

most spin-conserving, single-reference methods (e.g., TDDFT or EOM-CCSD) fail to

yield smooth potential curves at the D2d geometry,116 because the ground and excited

states are described in an unbalanced manner.

Here, we study potential energy curves along the double-bond twisting coordinate

of the singlet N, V, and Z states. We compare collinear SF-TDDFT, SA-SF-DFT,

and SA-SF-CIS potential energy curves to those obtained at the MRCI singles and

doubles level. The BH&HLYP functional123 is used for the DFT calculations, and a

CAS(2,2) singlet ground state is used as the reference state for the MRCI calculations.

Potential scans along the torsion coordinate use the cc-pVTZ basis set starting from

the equilibrium geometry optimized at the ωB97X-D/6-31G* level. Potential scans

are plotted in Fig. 5.2.

All four of the aforementioned methods are in good agreement with each other

for the N state, except that the two DFT methods slightly overestimate the barrier

height and SA-SF-CIS slightly underestimates it, as compared to the MRCI result.

For the V and Z states, potential curves computed using the two DFT methods exhibit

quantitative agreement with MRCI results, whereas the excitation energies predicted

by SA-SF-CIS are more than 1 eV too large at the D2d geometry. This is undoubtedly
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Figure 5.2: Potential energy curves along the double-bond torsion coordinate of ethy-
lene, for the singlet states N, V, and Z. The SF-TDDFT results use the collinear
formalism, and note that SA-SF-CIS (without the ad hoc DFT correction) is equiva-
lent to the spin-complete SF-CIS method of Ref. 3. The zero in energy corresponds
to the singlet ground state at its equilibrium geometry.

due in large part to the lack of dynamical correlation in this approach, and the same

effect was seen recently in time-dependent projected Hartree Fock calculations of

twisted ethylene.116 Nevertheless, each of the methods examined here produces a

smooth potential curve and at least quasi-degeneracy between the V and Z states at

the D2d geometry. This is because all three spin-flip approaches (and MRCI as well)

treats the ground and excited states in a balanced manner, and include the most

important double excitations.

Note also that there is essentially no difference between SA-SF-DFT and collinear

SF-TDDFT results for the ethylene torsion problem. This is not surprising given that

the latter approach exhibits nearly zero spin contamination for the electronic states

in question. Recalling that we construct the matrix elements of SA-SF-DFT in the
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Table 5.1: Vertical excitation energies (in eV) for the lowest two singlet excited
states of the five nucleobases. For collinear SF-TDDFT, the value of 〈Ŝ2〉 is given in
parentheses, in units of ~2.

Nucleobase
SA-SF-DFT Collinear SF-TDDFT Benchmark
S1 S2 S1 S2 S1 S2

uracil 5.35 5.56 5.50 (1.09) 5.80 (0.16) 5.00a 5.25a

adenine 5.24 5.28 4.79 (1.09) 5.31 (1.11) 5.13b 5.20b

thymine 5.21 5.66 5.60 (1.08) 5.66 (0.16) 5.14c 5.60c

cytosine 4.74 5.60 5.28 (0.29) 5.45 (1.04) 4.76d 5.24d

guanine 5.02 5.18 4.95 (1.04) 5.02 (1.05) 4.76b 5.09b

MAEe 0.16 0.18 0.40 0.20
aCR-EOM-CCSD(T)/aug-cc-pVTZ results from Ref. 73.
bCAS(10,10)PT2/ANO-double-ζ results from Ref. 125.
cEOM-CCSD/TZVP results from Ref. 126.
dCR-EOM-CCSD(T)/cc-pVDZ results from Ref. 127.
eMean absolute error with respect to the benchmarks.

same way as in collinear SF-TDDFT [Eq. (5.23)], these two methods become identical

in cases where SF-TDDFT exhibits no spin contamination.

5.3.2 Vertical excitation energies of nucleobases

Previous collinear SF-TDDFT studies have shown that this method tends to overes-

timate vertical excitation energies for nucleobases,49 and it is interesting to examine

whether SA-SF-DFT can correct this problem. Equilibrium structures of the nucle-

obases were optimized at the B3LYP/6-311G(2df,2pd) level, and then SA-SF-DFT

and collinear SF-TDDFT excitation energies were computed at the BH&HLYP/aug-

cc-pVTZ level.

Table 5.1 summarizes the vertical excitation energies of the lowest two singlet

excited states for all five nucleobases, along with benchmark results from correlated
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wavefunction calculations. For the collinear SF-TDDFT calculations, values of 〈Ŝ2〉

are listed as well. Since most of the states in the collinear SF-TDDFT calculations

are heavily spin-contaminated, with 〈Ŝ2〉 ≈ 1 (in units of ~2), we assign those states

with 〈Ŝ2〉 < 1.5 to be singlet states.

We observe that SA-SF-DFT affords reasonable excitation energies for the S1

and S2 states of all five nucleobases, with a mean absolute error (MAE) 0.17 eV.

For the S1 state, collinear SF-TDDFT affords a large MAE (0.40 eV), although the

MAE for the S2 state is comparable at 0.20 eV. It is possible that the reasonable

performance of the heavily spin-contaminated SF-TDDFT calculations is accidental,

since averaging over the triplet and singlet states sometimes results in good excitation

energies in unrestricted TDDFT calculations for open-shell systems,115 and many of

the ostensibly singlet excitations computed using SF-TDDFT in Table 5.1 are better

described as roughly equal mixtures of singlet and triplet.

Considering the similarity of the matrix elements in DFT/MRCI [Eq. (5.22)] and

collinear SA-SF-DFT [Eq. (5.23)], one might anticipate comparable performance

given an appropriate reference state. [For example, a high-spin triplet reference

state in SA-SF-DFT corresponds to a CAS(2,2) reference state in MRCI.] On the

other hand, the traditional, collinear SF-TDDFT approach with the same functional

(e.g. BH&HLYP) usually show much worse performance, especially near the Franck-

Condon region. From the examples in Sections 5.3.1 and 5.3.2, we may conclude that

the poor performance of collinear SF-TDDFT is mostly caused by the spin contami-

nation, while an XC functional with ≈ 50% Hartree-Fock exchange should still be a
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reasonable choice for collinear SF-TDDFT.

In a previous study of the nucleobases using range-separated hybrid function-

als with non-empirical tuning, a MAE of 0.19 eV for the S0 → S1 excitations was

reported.128 This further suggests that the performance of SA-SF-DFT is perhaps

about the best that one can expect from contemporary TDDFT. Based on these few,

simple tests, we can say that the correction to excitation energies that is obtained by

removing the spin contamination in collinear SF-TDDFT is sizable, and SA-SF-DFT

seems like a promising method.

5.3.3 State assignment in SF-TDDFT

Although there are a few examples of ab initio MD simulations using SF-TDDFT,46,112,113

and other examples of using SF-TDDFT to locate minimum-energy crossing points

(MECPs) along conical seams,45,47–49,109 the spin contamination problem makes it

challenging to assign the excited states correctly and consistently across the potential

energy surface. Here, we demonstrate this problem with numerical examples.

Nonadiabatic ab initio MD

We carried out a fewest-switches surface hopping simulation7 of uracil, using collinear

SF-TDDFT at the BH&HLYP/6-31G* level. Three successive snapshots along one

trajectory, spanning only 1 fs of simulation time, serve to demonstrate the state

assignment problem; excitation energies and 〈Ŝ2〉 values for these snapshots are given

in Table 5.2. Within the time window presented in the table, the S1 and T1 states

change their order, but this can be difficult to detect in the heavily spin-contaminated
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Table 5.2: Excitation energies for three sequential time steps of a surface-hopping
simulation of gas-phase uracil performed at the BH&HLYP/6-31G* level.

time/fs
SA-SF-DFT/RPA Collinear SF-TDDFT SF-RASCI

state ω/eV state ω/eV 〈Ŝ2〉/~2 state ω/eV
26.6 S1 2.36 S1 2.05 (1.18) S1 2.39

T1 2.19 (1.81)
S2 3.82 S2 3.66 (0.63) S2 3.85

27.1 T1 2.12 (1.52)
S1 2.37 S1 2.20 (1.51) S1 2.44
S2 3.83 S2 3.72 (0.66) S2 3.90

27.6 T1 2.14 (1.91)
S1 2.39 S1 2.24 (1.15) S1 2.47
S2 3.82 S2 3.76 (0.65) S2 3.93

SF-TDDFT calculations. The consequence of an incorrect state assignment in an ab

initio MD simulation (or excited-state geometry optimization, for that matter) might

be energy jumps, propagation on the wrong state, and other nonsense ultimately

leading to incorrect relaxation times and branching ratios, or even convergence failure.

As such, an effective state-tracking algorithm is required whenever SF-TDDFT is used

to move about an excited-state potential energy surface.

A straightforward way to do this, which we have sometimes found to be effective,

is to monitor the change in the excited-state transition density. Within the Tamm-

Dancoff approximation, this quantity is

T (r, r′) =
∑

ai

Xai φi(r)φa(r
′) . (5.24)
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Let us denote the transition density at a subsequent geometry as

T̃ (r, r′) =
∑

bj

X̃bj φ̃j(r) φ̃b(r
′) . (5.25)

We wish to examine the overlap integral
∫
dr dr′ T (r, r′) T̃ (r′, r) =

∑

ijab

XaiX̃bj〈φi|φ̃j〉〈φa|φ̃b〉

= tr(XC†SC̃X̃†C̃†S†C) ,

(5.26)

where Sµν = 〈µ|ν̃〉 is the overlap between the atomic orbitals at the two different

geometries. Based on the overlaps between various transition densities, and the as-

sumption that it is possible to assign spin multiplicities to the SF-TDDFT states

at the Franck-Condon geometry, one may hope to track those multiplicities as the

geometry and excited states evolve in time.

The aforementioned state-tracking procedure was used to assign multiplicities to

the SF-TDDFT calculations reported in Table 5.2. Note that if the assignment were

based solely on the value of 〈Ŝ2〉, e.g., with states having 〈Ŝ2〉 > 1.5 assigned as

triplets, then at t = 27.1 fs we would assign as S1 the state that is actually labeled as

S2 in Table 5.2. This illustrates the extent to which 〈Ŝ2〉 completely fails as a reliable

quantum number in SF-TDDFT, which in our experience is quite common away from

the Franck-Condon region.49

On the other hand, the state-tracking procedure suggested in Eq. (5.26) is not

guaranteed to work, especially in nonadiabatic MD simulations. Each spin-contaminated

state in SF-TDDFT is a mixture of different spin multiplicities, and when the two

states with different multiplicities (singlet and triplet in the present example) become

nearly degenerate, their wavefunctions usually vary smoothly with respect to nuclear
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geometry. This is analogous to an avoided crossing between two strongly coupled

states, and state-tracking algorithms can easily fail to identify a change in the order-

ing of two states with different multiplicities. As such, the most reliable way to solve

the state assignment problem is to use spin-adapted methods.

Table 5.2 also lists SA-SF-DFT excitation energies for uracil along with bench-

marks computed at the level of spin-flip restricted active space configuration inter-

action (SF-RASCI).129 We computed these benchmarks using a large active space

[RAS(2,10)-SF] to ensure accuracy, and we find that they agree very well with SA-

SF-DFT calculations. This demonstrates that the SA-SF-DFT approach not only

cures the state assignment problem, but also improves upon collinear SF-TDDFT

energetics. As such, SA-SF-DFT appears to be a promising method for nonadiabatic

ab initio MD simulations.

Optimization of MECPs

As another example to demonstrate the state assignment problem in SF-TDDFT,

we searched for the MECP along the crossing seam between the S0 and S1 states of

ethylene, using both SF-TDDFT and SA-SF-DFT. The D2d geometry served as the

starting point in both calculations, and for SF-TDDFT, we assign the states using

〈Ŝ2〉 along, with any state having 〈Ŝ2〉 < 1.2 assigned as a singlet. We do not yet have

analytic energy gradients for the SA-SF-DFTmethod, so for this method the gradients

are evaluated by finite difference, and we use a penalty-constrained algorithm63 to

locate the MECP. This algorithm does not require derivative couplings. For the SF-

TDDFT calculations, both analytic gradients and analytic derivative couplings are
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Figure 5.3: Potential energy curves along the S0/S1 MECP optimization trajectory of
ethylene, calculated using collinear SF-TDDFT (BH&HLYP/6-31G* level). Labels
above the curves show at which steps the state assignment problem appears. The
zero of energy is the ground state at the D2d geometry.

available,14 and we can use a MECP optimization algorithm that takes advantage of

both.13

Figure 5.3 plots the energies of the two states involved in the MECP optimiza-

tion, at the SF-TDDFT level. Optimization steps at which the state assignment is

ambiguous are labeled, and in Table 5.3 we provide the 〈Ŝ2〉 values of the lowest

three states at each optimization step. For the first 14 optimization steps, the S0

state and the low-lying triplet state are nearly degenerate and strongly coupled with

each other, which makes state assignments very difficult. For example, whereas in

the second step we can assign state 1 as S0 and state 3 as S1 without ambiguity, the

use of 〈Ŝ2〉 in the third step would assign state 1 as S0 and state 2 as S1, but by

examining the orbitals and CI coefficients we found that state 2 and state 3 are the

true S0 and S1 states, whereas state 1 is a triplet. As a result of this incorrect state
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Table 5.3: Values of 〈Ŝ2〉 (in units of ~2) for the lowest three states of ethylene in the
first 19 optimization steps shown in Fig. 5.3.

step
values of 〈Ŝ2〉

state 1 state 2 state 3
1 0.01 2.01 0.06
2 0.02 2.00 0.05
3 1.14 0.90 0.02
4 1.10 0.95 0.02
5 0.07 1.97 0.03
6 0.90 1.18 0.03
7 0.93 1.15 0.05
8 1.00 1.05 0.06
9 0.75 1.30 0.05
10 1.03 1.06 0.04
11 0.93 1.14 0.06
12 0.99 1.06 0.08
13 1.61 0.43 0.09
14 1.20 0.85 0.09
15 0.29 1.76 0.08
16 0.27 1.81 0.05
17 0.12 2.01 0.02
18 2.00 0.10 0.04
19 2.00 0.03 0.10
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Figure 5.4: Potential energy curves along the S0/S1 MECP optimization trajectory
of ethylene, calculated using SA-SF-DFT (BH&HLYP/6-31G* level). The zero of
energy is the ground state at the D2d geometry.

assignment, the efficiency of MECP optimization is greatly reduced, which can be

inferred from the steep peaks in Fig. 5.3 that occur precisely in regions where the

state assignment is ambiguous. Since the states are assigned incorrectly, the energy

gradients and derivative couplings are calculated for the wrong states, and it takes

18 steps to reach the correct intersection seam.

Although a state-tracking algorithm, such as those discussed above, might improve

the performance of SF-TDDFT for MECP optimization, the SA-SF-DFT method is

a better solution. Energies along the S0/S1 MECP optimization computed using

the latter method are plotted in Fig. 5.4. In this case, the energy variations along

the optimization pathway are much smaller and the optimization reaches the correct

intersection seam within 6 steps, and finally converges to the MECP in fewer steps

than the SF-TDDFT calculation, despite the fact that the latter calculation is able

to exploit analytic derivative couplings. (MECP optimizations using SF-TDDFT
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without analytic derivative couplings require even more steps.14)

5.4 Summary

We have derived and implemented the spin-adapted counterpart of conventional

collinear SF-TDDFT, which we denote as SA-SF-DFT. The underlying SA-SF-CIS

method is equivalent to a previous spin-complete implementation of SF-CIS,3 but is

derived here based on an equation-of-motion formulation in a spin-tensor basis. Our

derivation results in matrices of similar dimension as those in SF-TDDFT, meaning

that the cost of the CI-like part of the SA-SF-CIS calculation is not significantly in-

creased by the extension to spin eigenstates. To this SA-SF-CIS foundation, we then

add an ad hoc density-functional correction in order to incorporate dynamical corre-

lation, and this constitutes what we call the SA-SF-DFT method. Roughly speaking,

SA-SF-DFT is a spin-flip restricted active space CI method with a DFT correction

similar in spirit to that used in DFT/MRCI. Unsurprisingly, this dynamical corre-

lation correction can easily exceed 1 eV for excitation energies, and we find that

the performance of SA-SF-DFT represents a consistent improvement over collinear

SF-TDDFT.

In addition, SA-SF-DFT is a potentially much more attractive approach to excited-

state ab initio MD simulations, as compared to SF-TDDFT. This is because:

• it is free of spin contamination, and thus not subject to the state-assignment

problem that plagues SF-TDDFT;
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• it treats ground and excited states on the same footing and thus affords correct

topology at conical intersections, including those that involve the ground state;

and

• it is just as computationally efficient as SF-TDDFT.

That said, efficient application to ab initio MD will require the development an

implementation of analytic energy gradients for the SA-SF-DFT method. Relative to

the gradients for traditional SF-TDDFT, this is complicated by the additional orbital

subspaces that are necessary for the spin-adapted version (as illustrated in Fig. 5.1),

and thus by additional orbital response terms that will appear in the derivative of

Eq. (5.18). These extra terms should, however, only increase the cost relative to

SF-TDDFT by a prefactor that is independent of system size, and thus will should

not increase the formal computational scaling with system size relative to TDDFT

or SF-TDDFT.
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CHAPTER 6

Conclusion

In this work we have demonstrated that SF-TDDFT is an efficient and qualitatively

correct first-principle method to study nonadiabatic photodynamics. We formulated

the analytic derivative coupling for LR-TDDFT in chapter 2, and further extended it

to the spin-flip version in chapter 3. With these couplings, we are able to carry out

efficient conical intersection optimizations as well as nonadiabatic AIMD simulations.

As an example, we studied the radiationless deactivation of the photo-excited uracil

molecule in both gas phase and aqueous solution, where we located the key conical

intersections along the relaxation pathways and illuminated the deactivation mecha-

nisms. In order to cure the spin contamination problem in conventional SF-TDDFT,

we developed a spin-adapted version of SF-TDDFT based on an tensor equation-of-

motion formalism. Our preliminary calculations show that SA-SF-DFT may be a

potentially much more attractive approach for excited-state AIMD simulations, as

compared to SF-TDDFT. Future studies involve the development of energy gradients

and derivative couplings for SA-SF-DFT.
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APPENDIX A

Supporting information for “Analytic Derivative

Couplings of LR-TDDFT: Quadratic Response

Theory versus Pseudo-Wavefunction Approach”

A.1 VO and OV blocks of the transition density matrix be-

tween TDDFT excited states

In Eq. (2.18), the matrix elements of R(αβ) and S(αβ) are

R
(αβ)
ai = P̂(α, β)

[
∑

bck

(
∂Fab

∂Pck

X
(α)
ck X

(β)
bi +

∂Fab

∂Pkc

Y
(α)
ck X

(β)
bi

)

−
∑

jck

(
X

(β)
aj

∂Fji

∂Pck

X
(α)
ck +X

(β)
aj

∂Fji

∂Pkc

Y
(α)
ck

)
(A.1)

+
1

2

∑

bjb′j′

∂2Fai

∂Pbj∂Pb′j′

(
X

(α)
bj + Y

(α)
bj

)(
X

(β)
b′j′ + Y

(β)
b′j′

)
]

and

S
(αβ)
ai = P̂(α, β)

[
−
∑

jck

(
∂Fij

∂Pck

X
(α)
ck Y

(β)
aj +

∂Fij

∂Pkc

Y
(α)
ck Y

(β)
aj

)

+
∑

bck

(
Y

(β)
bi

∂Fba

∂Pck

X
(α)
ck + Y

(β)
bi

∂Fba

∂Pkc

Y
(α)
ck

)

+
1

2

∑

bjb′j′

∂2Fia

∂Pbj∂Pb′j′

(
X

(α)
bj + Y

(α)
bj

)(
X

(β)
b′j′ + Y

(β)
b′j′

)
]
, (A.2)
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where F is the Fock matrix and P is the ground state density matrix. Derivatives of

F with respect to P have matrix elements

∂Fpq

∂Prs

= 〈φpφs|φqφr〉 − CHF〈φpφs|φrφq〉

+ 〈φpφs|fxc|φqφr〉
(A.3)

and

∂2Fai

∂Pbj∂Pb′j′
=

∫∫∫
dr dr′ dr′′

δ3Exc[ρ]

δρ(r)ρ(r′)ρ(r′′)
(A.4)

× φa(r)φi(r)φb(r
′)φj(r

′)φb′(r
′′)φj′(r

′′) .

From Eqs. (2.18), (2.26), (2.27), (A.1) and (A.2), it is straightforward to obtain

lim
ωα→−ωI

(ωα + ωI) lim
ωβ→ωJ

(ωβ − ωJ)
∣∣X(αβ),Y(αβ)

〉

〈0|V −ωI |I〉〈J |V ωJ |0〉
= [Λ− (ωJ − ωI)∆]−1

∣∣RIJ ,SIJ
〉
, (A.5)

where the matrix elements of RIJ and SIJ are

RIJ
ai =

∑

bck

[
∂Fab

∂Pck

(
Y I
ckX

J
bi +XJ

ckY
I
bi

)

+
∂Fab

∂Pkc

(
XI

ckX
J
bi + Y J

ckY
I
bi

)]

−
∑

jck

[
∂Fji

∂Pck

(
Y I
ckX

J
aj +XJ

ckY
I
aj

)
(A.6)

+
∂Fji

∂Pkc

(
XI

ckX
J
aj + Y J

ckY
I
aj

)]

+
∑

bjb′j′

∂2Fai

∂Pbj∂Pb′j′

(
XI

bj + Y I
bj

)(
XJ

b′j′ + Y J
b′j′

)
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and

SIJ
ai =

∑

bck

[
∂Fba

∂Pkc

(
Y J
ckX

I
bi +XI

ckY
J
bi

)

+
∂Fba

∂Pck

(
XJ

ckX
I
bi + Y I

ckY
J
bi

)]

−
∑

jck

[
∂Fij

∂Pkc

(
Y J
ckX

I
aj +XI

ckY
J
aj

)
(A.7)

+
∂Fij

∂Pck

(
XJ

ckX
I
aj + Y I

ckY
J
aj

)]

+
∑

bjb′j′

∂2Fia

∂Pbj∂Pb′j′

(
XI

bj + Y I
bj

)(
XJ

b′j′ + Y J
b′j′

)
.

By comparing to exact response theory,30 one discovers that the right side of Eq. (A.5)

constitutes the VO and OV blocks of the transition density matrix between two

TDDFT excited states |I〉 and |J〉. We can define these blocks of the transition

density matrix as

|XIJ ,YIJ〉 ≡ −[Λ− (ωJ − ωI)∆]−1|RIJ ,SIJ〉 . (A.8)

Then |XIJ ,YIJ〉 is the solution of the following linear equations:

(
Λ− (ωJ − ωI)∆

)
|XIJ ,YIJ〉 = −|RIJ ,SIJ〉 . (A.9)

A.2 The last term in Eq. (2.28)

We can rewrite the last term in Eq. (2.28) as

∑

ai

(
XI

ai∇̂RX
(β)
ai − Y I

ai∇̂RY
(β)
ai

)
=
〈
XI ,YI

∣∣∆
∣∣∇̂RX

(β), ∇̂RY
(β)
〉
. (A.10)
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Taking the nuclear derivative of Eq. (2.10), we obtain

(Λ− ωβ∆)
∣∣∇̂RX

(β), ∇̂RY
(β)
〉

(A.11)

= −
∣∣∇̂RP

(β), ∇̂RQ
(β)
〉
− (∇̂RΛ)

∣∣X(β),Y(β)
〉
.

Taking the inner product with 〈XI ,YI | from the left, then we obtain

〈
XI ,YI

∣∣(Λ− ωβ∆)
∣∣∇̂RX

(β), ∇̂RY
(β)
〉

= (ωI − ωβ)
〈
XI ,YI

∣∣∆
∣∣∇̂RX

(β), ∇̂RY
(β)
〉

= −
〈
XI ,YI

∣∣∇̂RP
(β), ∇̂RQ

(β)
〉

(A.12)

−
〈
XI ,YI

∣∣(∇̂RΛ)
∣∣X(β),Y(β)

〉
.

From this equation, we know that

〈
XI ,YI

∣∣∆
∣∣∇̂RX

(β), ∇̂RY
(β)
〉

= (ωβ − ωI)
−1
[〈
XI ,YI

∣∣∇̂RP
(β), ∇̂RQ

(β)
〉

(A.13)

+
〈
XI ,YI

∣∣(∇̂RΛ)
∣∣X(β),Y(β)

〉]
.

After taking the residue of Eq. (A.13), we obtain the final result:

∑

ai

lim
ωβ→ωJ

(ωβ − ωJ)
(
XI

ai∇̂RX
(β)
ai − Y I

ai∇̂RY
(β)
ai

)

〈J |V ωJ |0〉
= (ωJ − ωI)

−1
〈
XI ,YI

∣∣(∇̂RΛ)
∣∣XJ ,YJ

〉
. (A.14)
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APPENDIX B

Supporting information for “Analytic Derivative

Couplings of SF-TDDFT”

B.1 Derivation of hIJx for SF-CIS

Following the formalism of the CIS analytic energy gradient,53,54 the nonadiabatic

coupling vector hIJx in Eq. (3.28) can be expressed as

hIJx =
∑

ijab

tIaiA
[x]
ai,bjt

J
bj (B.1)

=
∑

ijab

tIai

(
F

[x]
ab δij − F

[x]
ij δab + 〈aj||ib〉[x]

)
tJbj ,

where Fij and Fab are Fock matrix elements. Hereafter, we will use matrix notation

for simplicity.130 Matrix elements of the Fock operator are

Fµν = 〈µ|f̂ |ν〉 (B.2)

and its one-electron part is

Hµν = 〈µ|ĥ|ν〉 , (B.3)

whereas two-electron integrals are denoted

Πµν,λσ = 〈µλ||νσ〉 . (B.4)
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The overlap matrix is

Sµν = 〈µ|ν〉 (B.5)

and

Pµν =
occ∑

k

CµkCνk (B.6)

is the one-electron density matrix. The difference density matrix for the excited state

is

P∆ = 1
2
Cv

(
tItJ† + tJtI†

)
C†

v

− 1
2
Co

(
tI†tJ + tJ†tI

)
C†

o ,
(B.7)

where Co and Cv are rectangular matrices containing the occupied and virtual MO

coefficients, respectively.

Next, define

RI = Cvt
IC†

o (B.8)

for state I, with a similar quantity RJ for state J , and

Pz = CvZC
†
o +CoZ

†C†
v . (B.9)

The quantity Z in Eq. (B.9) represents the solution to the well-known coupled-

perturbed equations,52 which are

C†
vFCvZ− ZC†

oFCo +Cv(Π ·Pz)Co

= −C†
v(Π ·P∆)Co (B.10)

− 1
2
C†

v(Π
′ ·RI†)Cvt

J − 1
2
C†

v(Π
′ ·RJ†)Cvt

I

+ 1
2
tJC†

o(Π
′ ·RI†)Co +

1
2
tIC†

o(Π
′ ·RJ†)Co .
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(The prime in Π′ indicates that the Coulomb contribution to the electron repulsion

integrals vanishes in SF-CIS, due to α → β excitation.)

Equation (B.10) contains transition amplitudes for both electronic states, but for

I = J it is equivalent to the usual coupled-perturbed equations that must be solved

to obtain the relaxed density P∆ + Pz and therefore the excited-state CIS analytic

gradient.53,130 Evaluation of the difference gradient gIJ already requires solution of

Eq. (B.10) for both states (i.e., for two different vectors Z), and evaluation of hIJ

requires solution of this equation for a third Z-vector with I 6= J in Eq. (B.10). How-

ever, all three Z-vectors can be obtained simultaneously in the same set of Davidson

iterations, and in our experience this typically requires only one or two iterations

beyond what is required for a CIS gradient evaluation. Relative to the cost of a

CIS (or TDDFT) gradient evaluation, the additional cost for derivative couplings is

extremely low.

Finally, Eq. (B.1) can be rewritten as

hIJx = P′ ·H[x] + Γ1 ·Π[x] + Γ2 ·Π′[x] +W′ · S[x] (B.11)
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where

P′ = P∆ +Pz (B.12)

Γ1 = P′ ⊗P (B.13)

Γ2 = RI† ⊗RJ (B.14)

W′ = −1
2
Λ′CC† − 1

2
CC†Λ′† (B.15)

Λ′ = P′F+P(Π ·P′)

+ 1
2
RI(Π′ ·RJ†) + 1

2
RJ(Π′ ·RI†) (B.16)

+ 1
2
RI†(Π′ ·RJ) + 1

2
RJ†(Π′ ·RI) .

B.2 Derivation of hIJx for collinear SF-TDDFT

In Ref. 28, the quantity hIJx was derived for spin-conserving TDDFT within the

TDA, based on an ad hoc extension of the CIS formalism. The collinear SF-TDDFT

counterpart of this quantity is even simpler because 〈aj|ξ̂xc|ib〉 vanishes in Eq. (3.29).

Thus, hIJx for SF-TDDFT is very similar to that in SF-CIS, except that Π is now

defined according to

Πµν,λσ = 〈µλ|νσ〉 − CHF〈µλ|σν〉 , (B.17)

and in addition there are some additional terms arising from the orbital response of

the exchange-correlation part of the Kohn-Sham Fock matrix, Fxc.
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The coupled perturbed equations now read

C†
vFCvZ− ZC†

oFCo +Cv(Π ·Pz +Ω ·Pz)Co

= −C†
v(Π ·P∆ +Ω ·P∆)Co (B.18)

− 1
2
C†

v(Π
′ ·RI†)Cvt

J − 1
2
C†

v(Π
′ ·RJ†)Cvt

I

+ 1
2
tJC†

o(Π
′ ·RI†)Co +

1
2
tIC†

o(Π
′ ·RJ†)Co

where

Ωµν,λσ =
∂Fxc,µν

∂Pλσ

. (B.19)

The final expression for hIJx in collinear SF-TDDFT is

hIJx = P′ ·H[x] + Γ1 ·Π[x] + Γ2 ·Π′[x] +W′ · S[x] +P′ · F[x]
xc , (B.20)

where

W′ = −1
2
Λ′CC† − 1

2
CC†Λ′† (B.21)

and

Λ′ = P′F+P(Π ·P′ +Ω ·P′)

+ 1
2
RI(Π′ ·RJ†) + 1

2
RJ(Π′ ·RI†)

+ 1
2
RI†(Π′ ·RJ) + 1

2
RJ†(Π′ ·RI) .

(B.22)

Other matrices have the same definitions as those in SF-CIS, except for F
[x]
xc , which

is defined as

F [x]
xc,µν =

∫ [x] ∂fxc
∂ρ

∂ρ

∂Pµν

dr+

∫
∂fxc
∂ρ

(
∂ρ

∂Pµν

)[x]

dr

+

∫
∂2fxc
∂ρ∂ρ′

∂ρ

∂Pµν

ρ′[x]dr . (B.23)

Note that within this particular SF-TDDFT formalism, third functional derivatives

of fxc are not required in order to compute derivative couplings.
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B.3 Comparison with Finite-Difference Derivative Couplings

Here, we compare our analytic derivative couplings with finite-difference results to

validate the formalism. The finite difference formula for derivative coupling to the

first order is

〈
ΨI

∣∣Ψ[x]
J

〉
=

〈ΨI |ΨJ(x+ δx)〉 − 〈ΨI |ΨJ(x− δx)〉
2δx

(B.24)

Our test system is H2 with a bond length of R = 1.1Å. The cc-pVTZ basis set

was used for all calculations, and CL-SF-TDDFT calculations use the BH&HLYP

functional (50% Hartree-Fock exchange plus 50% Becke exchange61 with Lee-Yang-

Parr correlation41). We denote the latter method as SF-BH&HLYP.

The vertical excitation energies of the lowest six singlet states are shown in Ta-

ble B.1. The S4 state has HOMO → LUMO double excitation character, so it is

missing in the restricted CIS (RCIS) calculation. Derivative couplings between the

states S1 and S3 are listed in Table B.2.

From Table B.2, we can see that the finite difference results agree well with the

analytic results for all of the three methods, which confirms the validity of our for-

malism as shown in Eq. (13). In addition, the derivative couplings calculated by

Eq. (13) and Eq. (22) re exactly the same as the ones calculated using the formalism

introduced in Ref. 21 for spin-conserved CIS, which comes as no surprise since the

two formalisms are intrinsically equivalent for spin-conserved CIS.
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Table B.1: Vertical excitation energies (in eV) for the lowest singlet states of H2 using
RCIS, SF-CIS, and SF-BH&HLYP in the cc-pVTZ basis set.

State RCIS SF-CIS SF-BH&HLYP
S1 10.6756 11.4664 9.7089
S2 16.3160 14.8178 13.8764
S3 20.7863 19.2544 18.4337
S4(σ

0σ∗2) 19.3603 17.7473
S5 23.1458 21.1063 20.3281
S6 23.1458 21.1063 20.3281

Table B.2:
〈
Ψ1

∣∣Ψ[x]
3

〉
derivative couplings (in a−1

0 ) calculated by RCIS, SF-CIS and
SF-BH&HLYP. The H2 molecule is aligned to the z-axis and the derivative couplings
vanish in the x and y directions.

RCIS SFCIS SF-BH&HLYP
Atom Analytic FD ETF Analytic FD ETF Analytic FD ETF
H −0.088057 −0.088057 −0.003857 −0.104717 −0.104718 −0.078036 −0.092725 −0.092725 −0.053895
H 0.088057 0.088057 0.003857 0.104717 0.104718 0.078036 0.092725 0.092725 0.053895
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APPENDIX C

Supporting information for “Excited-State

Deactivation Pathways in Uracil versus Hydrated

Uracil”

C.1 Cartesian Coordinates of Critical structures

Table C.1: Cartesian coordinates of S0-min of gas phase uracil

N -0.778028 -0.148621 0.129781
N 0.622033 1.665951 -0.083327
C -0.675020 1.202913 -0.083920
C 1.707862 0.859092 0.110932
C 1.581752 -0.459935 0.317470
C 0.255764 -1.062285 0.336501
O 0.012482 -2.229698 0.509763
O -1.623675 1.926862 -0.258321
H -1.711500 -0.519662 0.132806
H 0.723676 2.649633 -0.237770
H 2.662127 1.353679 0.086557
H 2.430646 -1.097078 0.469877
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Table C.2: Cartesian coordinates of Snπ∗-min of gas phase uracil

N -1.219504 -0.501062 0.011869
N 0.173607 1.322847 -0.205708
C -1.102600 0.865406 -0.204267
C 1.312707 0.517496 -0.007876
C 1.153748 -0.821958 0.200934
C -0.117471 -1.316286 0.206920
O -0.493954 -2.634516 0.401334
O -2.080102 1.556438 -0.373452
H -2.152422 -0.864130 0.010264
H 0.265407 2.306317 -0.358007
H 2.259383 1.018800 -0.033768
H 1.998152 -1.466823 0.355037

Table C.3: Cartesian coordinates of ci-0π of gas phase uracil

N -0.663423 -0.206624 -0.093886
N 0.718001 1.662145 0.265992
C -0.590246 1.118033 0.254113
C 1.718696 0.879108 -0.178899
C 1.665583 -0.482150 0.264295
C 0.389710 -1.156228 -0.003881
O 0.124395 -2.325474 -0.013794
O -1.541808 1.824395 0.442620
H -1.595816 -0.578340 -0.144376
H 0.723978 2.666342 0.182039
H 2.423647 1.301089 -0.881149
H 1.835402 -0.561446 1.337276
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Table C.4: Cartesian coordinates of ci-nπ of gas phase uracil

N -0.757076 -0.078203 0.456403
N 0.674380 1.605618 -0.235641
C -0.643880 1.144721 -0.148590
C 1.695657 0.954559 0.360117
C 1.567003 -0.518242 0.306608
C 0.296868 -1.028723 0.399242
O -0.052432 -2.232827 0.351122
O -1.566603 1.820020 -0.529023
H -1.687989 -0.454052 0.474317
H 0.749434 2.559250 -0.552504
H 2.575959 1.499951 0.639885
H 2.356798 -1.131222 -0.091585

Table C.5: Cartesian coordinates of ci-nπ-p of gas phase uracil

N -0.001513 0.002892 0.000003
N 2.388296 -0.003709 -0.000001
C 1.196901 0.767216 0.000000
C 2.587089 -1.301969 0.000003
C 1.307594 -2.116947 -0.000001
C 0.080197 -1.464003 -0.000005
O -0.959221 -2.053545 0.000002
O 1.355855 1.972779 0.000001
H -0.892400 0.459804 -0.000001
H 3.231428 0.534090 0.000000
H 3.560114 -1.750986 -0.000001
H 1.318358 -3.190377 0.000001
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Table C.6: Cartesian coordinates of S0-min of (uracil)(H2O)4

C -1.965155 -1.654351 0.153097
N -2.024816 -0.306923 -0.024301
C -0.911647 0.454364 -0.183918
N 0.272533 -0.233329 -0.157802
C 0.419869 -1.593177 0.030398
C -0.812208 -2.326459 0.188154
O -0.960195 1.666486 -0.339978
O 1.539666 -2.094649 0.052241
H -0.774984 -3.388778 0.331557
O -4.673001 0.741489 0.003406
O 4.020599 -0.912400 0.298770
O 2.764685 1.338557 -0.559457
O 1.154548 3.359239 0.608977
H -2.926952 0.164729 -0.032031
H 1.113877 0.318931 -0.310756
H -2.918822 -2.138541 0.266048
H -4.888644 1.340633 0.718151
H -4.974464 1.173866 -0.795641
H 0.363158 2.892524 0.320690
H 1.870944 2.788063 0.313643
H 3.370236 0.645128 -0.245132
H 3.026366 1.546633 -1.455733
H 3.180707 -1.397840 0.273455
H 4.359709 -0.992257 1.189042
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Table C.7: Cartesian coordinates of Snπ∗-min of (uracil)(H2O)4

C -1.983303 -1.757352 0.168810
N -2.017339 -0.352672 0.017502
C -0.943690 0.394980 -0.271847
N 0.256350 -0.276860 -0.361059
C 0.314457 -1.646990 -0.180221
C -0.796739 -2.412757 0.031236
O -0.991565 1.617303 -0.419628
O 1.601914 -2.116916 -0.509139
H -0.732300 -3.482678 0.106425
O -4.707885 0.763292 0.122188
O 4.159626 -0.897277 0.581390
O 2.800116 1.206098 -0.573536
O 1.133967 3.282153 0.427745
H -2.911852 0.120429 0.025883
H 1.109379 0.263940 -0.468267
H -2.911381 -2.216543 0.448844
H -4.907492 1.387824 0.819099
H -5.071022 1.143922 -0.677065
H 0.345645 2.797233 0.154932
H 1.855730 2.693654 0.186195
H 3.407525 0.574270 -0.157841
H 3.133778 1.369517 -1.455128
H 3.474850 -1.559786 0.471339
H 4.381238 -0.894782 1.512138
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Table C.8: Cartesian coordinates of ci-0π of (uracil)(H2O)4

C -1.933538 -1.611650 0.551930
N -2.087411 -0.392464 -0.015264
C -0.930448 0.352742 -0.222334
N 0.265660 -0.267662 0.047198
C 0.446216 -1.658476 0.093650
C -0.828129 -2.364791 0.034438
O -1.001365 1.524115 -0.544329
O 1.567537 -2.122661 0.041349
H -0.979304 -2.649143 -1.006710
O -4.636959 0.880979 0.166739
O 4.073834 -0.919378 0.391007
O 2.755077 1.324120 -0.414810
O 1.019098 3.426868 0.315586
H -2.946732 0.151391 0.081143
H 1.094293 0.307502 -0.086845
H -2.569591 -1.871135 1.384568
H -4.864960 1.543881 0.818348
H -5.036034 1.172509 -0.653005
H 0.265626 2.907104 0.023087
H 1.765588 2.831025 0.191618
H 3.358110 0.641171 -0.074707
H 2.958760 1.418920 -1.344852
H 3.254282 -1.430150 0.334350
H 4.425782 -1.061630 1.268542
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Table C.9: Cartesian coordinates of ci-nπ of (uracil)(H2O)4

C -1.960413 -1.575559 0.534946
N -2.047167 -0.294577 0.083488
C -0.946449 0.485781 -0.169121
N 0.257991 -0.134891 -0.094100
C 0.368568 -1.542043 -0.105439
C -0.732637 -2.280977 0.210036
O -1.062255 1.684808 -0.398950
O 1.510487 -1.996052 -0.491496
H -0.715417 -3.350406 0.108490
O -4.671573 0.844109 0.034411
O 4.015888 -0.977887 0.388605
O 2.792316 1.296351 -0.534394
O 1.123366 3.361789 0.554498
H -2.944415 0.193208 0.092248
H 1.075285 0.407532 -0.351193
H -2.790765 -1.986367 1.074348
H -5.001468 1.434390 0.711595
H -4.990010 1.195924 -0.796848
H 0.322802 2.909247 0.271786
H 1.830892 2.759015 0.304296
H 3.377331 0.603911 -0.185804
H 3.106589 1.505981 -1.413069
H 3.214157 -1.504151 0.289242
H 4.289926 -1.071174 1.300151
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Table C.10: Cartesian coordinates of ci-nπ-p of (uracil)(H2O)4

C -2.107234 -1.573483 0.150471
N -2.006473 -0.256821 -0.031414
C -0.869413 0.505671 -0.192016
N 0.321430 -0.270155 -0.148901
C 0.338820 -1.721038 0.044945
C -0.847932 -2.351763 0.190408
O -0.876295 1.726643 -0.355542
O 1.502830 -2.234742 0.054254
H -0.791305 -3.414103 0.330094
O -4.684494 0.737784 -0.025043
O 4.031428 -0.904305 0.298390
O 2.760351 1.335163 -0.560372
O 1.152696 3.359136 0.608341
H -2.910704 0.193420 -0.045515
H 1.176378 0.269570 -0.265148
H -3.058755 -2.055756 0.263955
H -4.890642 1.342404 0.717358
H -4.976146 1.177163 -0.797159
H 0.362171 2.886950 0.320178
H 1.870396 2.789316 0.314437
H 3.371973 0.649260 -0.245552
H 3.025100 1.546324 -1.455185
H 3.212761 -1.405654 0.282747
H 4.361846 -0.990886 1.191385
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APPENDIX D

Supporting information for “Spin-flip, Tensor

Equation-of-Motion Configuration Interaction with

a Density-Functional Correction”

D.1 Matrix elements in Eq. (5.12)

In this appendix, we briefly summarize the matrix elements of M in Eq. (5.12), which

are derived from Eq. (5.5) with the spin-tensor basis shown in Eq. (5.18). More details

can be found in Ref. 101.

The matrix M is the sum of three matrices,

M = M(0) −M(1) +M(2), (D.1)

where

M(0) = 1
3
(M+ +M0 +M−) (D.2)

M(1) =

(
S0 + 1

2S0

)
(M+ −M−) (D.3)

M(2) =

[
(S0 + 1)(2S0 + 3)

6S0(2S0 − 1)

]
(M+ − 2M0 +M−) . (D.4)

The matrix elements of M+, M0, and M− are grouped into different blocks. Recall

that the blocks associated with de-excitation vanish, which makes the size of M
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about half the size of the orbital rotation Hessian in the conventional time-dependent

Hartree-Fock method. Since M is not Hermitian, we need to calculate a few more

matrix elements as compared to the approach used in Ref. 101. The results are

summarized in Tables D.1 and D.2. In those tables, F is the Fock matrix, and K is

the coupling matrix defined as

Kστ,σ′τ ′

pq,rs = 〈pσsτ ′ ||qτrσ′〉 , (D.5)

where σ, τ , σ′, and τ ′ denote α or β spins. Finally, Kt is defined as

Kt =
1

2
(Kαα,αα +Kββ,ββ −Kαα,ββ −Kββ,αα) . (D.6)
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Table D.1: Matrix elements of M+, M0, and M− not including OO excitations.

Block Matrix element

CV-CV
[M+]ai,bj = δijF

α
ab − δabF

β
ij +Kαβ,αβ

ai,bj

[M0]ai,bj = δij(F
α
ab + F β

ab)/2− δab(F
α
ij + F β

ij)/2 +Kt
ai,bj

[M−]ai,bj = δijF
β
ab − δabF

α
ij +Kβα,βα

ai,bj

CV-CO
[M+]ai,vj = δijF

α
av

[M0]ai,vj = (δijF
α
av + δijF

β
av −Kαα,ββ

ai,vj +Kββ,ββ
ai,vj )/2

[M−]ai,vj = δijF
β
av +Kβα,βα

ai,vj

CO-CV
[M+]ui,bj = 0

[M0]ui,bj = (δijF
β
bu −Kββ,αα

ui,bj +Kββ,ββ
ui,bj )/2

[M−]ui,bj = δijF
β
bu +Kβα,βα

ui,bj

CV-OV
[M+]ai,bv = −δabF β

iv

[M0]ai,bv = (−δabF α
iv − δabF

β
iv +Kαα,αα

ai,bv −Kββ,αα
ai,bv )/2

[M−]ai,bv = −δabF α
iv +Kβα,βα

ai,bv

OV-CV
[M+]au,bj = 0

[M0]au,bj = (−δabF α
ju +Kαα,αα

au,bj −Kαα,ββ
au,bj )/2

[M−]au,bj = −δabF α
ju +Kβα,βα

au,bj

CO-CO
[M+]ui,vj = 0

[M0]ui,vj = (δijF
β
uv − δuvF

β
ij +Kββ,ββ

ui,vj )/2

[M−]ui,vj = δijF
β
uv − δuvF

α
ij +Kβα,βα

ui,vj

CO-OV
[M+]ui,bv = 0

[M0]ui,bv = −Kββ,αα
ui,bv /2

[M−]ui,bv = Kβα,βα
ui,bv

OV-CO
[M+]au,vj = 0

[M0]au,vj = −Kαα,ββ
au,vj /2

[M−]au,vj = Kβα,βα
au,vj

OV-OV
[M+]au,bv = 0
[M0]au,bv = (δuvF

α
ab − δabF

α
uv +Kαα,αα

au,bv )/2

[M−]au,bv = δuvF
β
ab − δabF

α
uv +Kβα,βα

au,bv
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Table D.2: Matrix elements of M+, M0, and M− including OO excitations.

Block Matrix element

CV-OO
[M+]ai,vw = −Kαβ,αβ

ai,vw

[M0]ai,vw = 0

[M−]ai,vw = Kβα,βα
ai,vw

OO-CV
[M+]tu,bj = 0

[M0]tu,bj = δtu(F
α
bj − F β

bj)/2

[M−]tu,bj = Kβα,βα
tu,bj

CO-OO
[M+]ui,vw = 0

[M0]ui,vw = −δuvF β
iw/2

[M−]ui,vw = −δuvF α
iw +Kβα,βα

ui,vw

OO-CO
[M+]tu,vj = 0

[M0]tu,vj = −δtuF β
jv/2

[M−]tu,vj = −δtvF α
ju +Kβα,βα

tu,vj

OV-OO
[M+]au,vw = 0
[M0]au,vw = δuwF

α
av/2

[M−]au,vw = δuwF
β
av +Kβα,βα

au,vw

OO-OV
[M+]tu,bv = 0
[M0]tu,bv = δutF

α
bv/2

[M−]tu,bv = δuvF
β
bt +Kβα,βα

tu,bv

OO-OO
[M+]tu,vw = 0
[M0]tu,vw = 0

[M−]tu,vw = δuwF
β
tv − δtvF

α
uw +Kβα,βα

tu,vw
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