

Stationary phase in yeast

Paul K Herman

Eukaryotic cell proliferation is controlled by specific growth factors and the availability of essential nutrients. If either of these signals is lacking, cells may enter into a specialized nondividing resting state, known as stationary phase or G_0 . The entry into such resting states is typically accompanied by a dramatic decrease in the overall growth rate and an increased resistance to a variety of environmental stresses. Since most cells spend most of their life in these quiescent states, it is important that we develop a full understanding of the biology of the stationary phase/ G_0 cell. This knowledge would provide important insights into the control of two of the most fundamental aspects of eukaryotic cell biology: cell proliferation and long-term cell survival. This review will discuss some recent advances in our understanding of the stationary phase of growth in the budding yeast, *Saccharomyces cerevisiae*.

Addresses

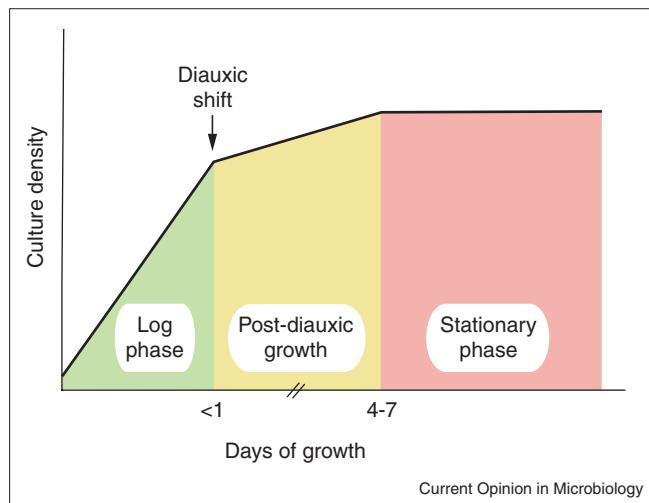
Department of Molecular Genetics, The Ohio State University, 484 West Twelfth Avenue, Room 984, Columbus, Ohio 43210, USA; e-mail: herman.81@osu.edu

Current Opinion in Microbiology 2002, 5:602–607

1369-5274/02/\$ – see front matter
© 2002 Elsevier Science Ltd. All rights reserved.

DOI 10.1016/S1369-5274(02)00377-6

Abbreviations


CTD carboxy-terminal domain
PKA cAMP-dependent protein kinase

Introduction

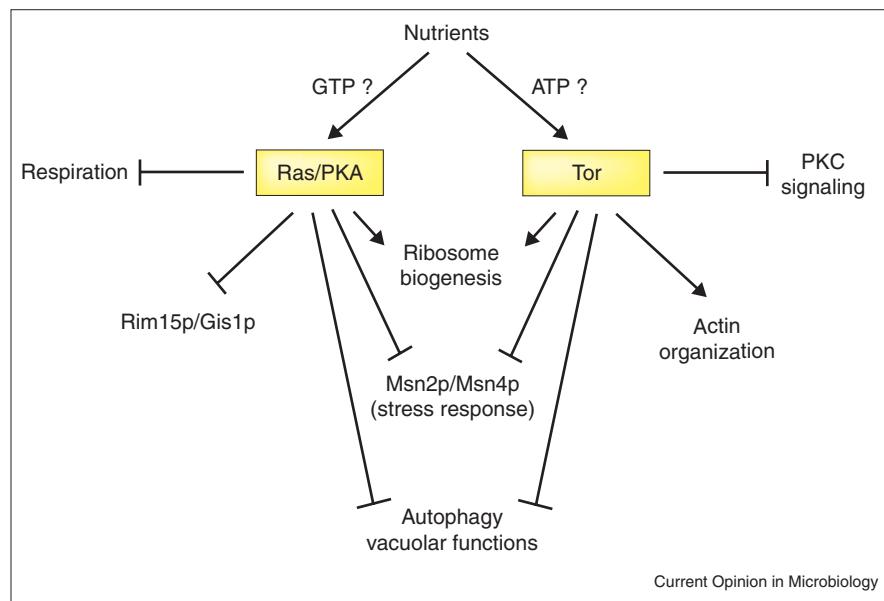
When starved of an essential nutrient, cells of *Saccharomyces cerevisiae* cease mitotic division and arrest within the G_1 phase of the mitotic cell cycle. The arrested cells subsequently acquire a variety of characteristics that collectively define the stationary phase of growth [1,2]. These changes include a dramatic reduction in the overall rate of growth, an accumulation of the storage carbohydrate, glycogen, an increased resistance to a variety of environmental stresses, including heat shock, a thickening of the cell wall, and an increased ability to survive extended periods of starvation. A similar set of changes occurs when cells are starved of either a nitrogen, phosphate or carbon source [1,3]. However, it is not yet clear if the final resting state is identical in each of these instances. In particular, it has been suggested that a true stationary phase might only be reached following carbon-source deprivation [2,4] (Figure 1). In any case, the above differences between G_1 and stationary phase suggest that this resting state might be a distinct, out-of-cycle phase of growth.

Although stationary phase is a critical aspect of yeast cell biology, research in this area has lagged far behind that on the mitotic cell cycle. There have been few systematic genetic studies of stationary phase and we still do not have

Figure 1

Current Opinion in Microbiology

Growth phases exhibited by *S. cerevisiae* cultures grown on glucose-based media. The best characterized growth arrest in *S. cerevisiae* is that which occurs following growth on glucose-containing media. During the initial logarithmic phase of growth, this budding yeast grows by fermentation of the available glucose. When glucose becomes limiting, the cells transiently arrest growth and switch to a respiratory mode of energy production. This period of transition is known as the 'diauxic shift'. During the subsequent post-diauxic growth period, the cells grow rather slowly and utilize the ethanol that was produced during the previous period of fermentation. When this ethanol is finally exhausted, the cells enter into the true stationary phase, the growth period when the cell number is no longer increasing. In traditional rich media, such as yeast extract/peptone/dextrose (YEPD), cells may not reach the stationary phase until seven or more days of growth. This is an important observation, as many studies of 'stationary phase' are in fact performed with cultures that are in the post-diauxic phase of growth and caution should be applied to the interpretations of any such experiments. The final characteristics of stationary phase cells are likely to be the result of changes occurring in both the post-diauxic and stationary phases of growth.


many useful molecular markers for this growth phase. As a result, some of the most basic questions regarding this resting state remain unanswered. This review will examine some of the reasons for this rather 'stationary' pace of progress and will suggest experiments aimed at stimulating new interest in this research area. In particular, the potential utility of genomic strategies for stationary phase research will be discussed.

Signaling pathways regulating stationary phase biology

The entry into stationary phase is regulated by the Ras and Tor signal transduction pathways, both of which are critical modulators of cell growth [5,6*]. The *S. cerevisiae* Ras proteins, Ras1p and Ras2p, are small GTP-binding proteins that activate the cAMP-dependent protein kinase PKA [5]. The Tor proteins, Tor1p and Tor2p, are themselves

Figure 2

Targets of the Ras/PKA and Tor signaling pathways in *S. cerevisiae*. Some of the targets of these two signaling pathways are shown. For a more complete list of potential targets, the reader is directed to recent reviews of these signaling pathways [6•,8,53]. Recent work indicates that the Ras/PKA pathway might be regulated by cytoplasmic GTP levels and that the mammalian Tor proteins might act as ATP sensors [54–56].

Current Opinion in Microbiology

serine/threonine-specific protein kinases [6•,7]. Both of these signaling pathways positively regulate a variety of processes, such as protein translation, that are essential for cell growth, while at the same time inhibit other activities that are refractory to growth and proliferation [6•,7,8] (Figure 2). This latter category includes processes involved in protein degradation and organellar turnover (e.g. autophagy) and in the response to cellular stresses. Together, these data suggest that the Ras and Tor pathways are central components of a growth checkpoint mechanism in *S. cerevisiae* [6]. This checkpoint would serve to ensure that the balance between synthetic and degradative processes is properly coordinated with the available nutrient supply. Several recently identified targets of the Ras and Tor pathways that may be important for stationary phase biology are discussed below.

Ras/PKA pathway targets

Recent studies have identified the Rim15p protein kinase as a PKA substrate required for stationary phase entry [9]. Mutants lacking Rim15p are viable but fail to assume the characteristics of stationary phase upon nutrient deprivation. These effects on stationary phase appear to be mediated, at least in part, by the Gis1p transcription factor [10•]. It is not yet known if Gis1p is a substrate of Rim15p or if the control by this protein kinase is more indirect. Interestingly, *gis1* mutants are only modestly defective for glycogen accumulation and G_1 arrest but exhibit a significant defect in stationary phase viability [10•]. Thus, an analysis of the transcription defects in *gis1* mutants might identify genes important specifically for the long-term survival of stationary phase cultures.

Recent studies have suggested an interesting link between stationary phase entry and the carboxy-terminal domain

(CTD) of Rpb1p, the largest subunit of RNA polymerase II [11•,12]. The Rpb1p CTD is a highly conserved, repetitive structure that is an important site of regulation for multiple steps during the production of a mature mRNA molecule [13,14]. Howard *et al.* [11•] found that truncations of the Rpb1p CTD prevented entry into a normal stationary phase and were lethal in combination with mutations that elevated the levels of Ras/PKA activity. In these studies [11•,12], it was suggested that the Ras/PKA pathway might coordinate gene expression with nutrient availability by regulating the function of proteins associated with the Rpb1p CTD. Unfortunately, the Ras/PKA target responsible for these effects has not yet been identified. One interesting possibility is that Ras activity could be affecting the phosphorylation state of the CTD in specific growth conditions. In this regard, the phosphorylation level at a specific residue in the CTD repeats has been found to increase during the diauxic shift [15]. It will be interesting to test whether this increased phosphorylation is regulated by Ras activity and is important for stationary phase entry.

Tor pathway targets

The protein kinase C homologue Pkc1p is part of a signaling pathway that regulates yeast cell integrity by controlling cell wall biosynthesis and the actin cytoskeleton [16]. Interestingly, this Pkc1p pathway was recently found to be both required for stationary phase survival and inhibited by the activity of the Tor pathway [17,18]. In addition, inactivation of the Tor pathway was shown to result in cell wall alterations that were dependent upon Pkc1p activity [17]. Since the yeast cell wall is known to be significantly remodeled upon stationary phase entry [1,19], it is tempting to speculate that the Pkc1p pathway plays a role in mediating these changes.

Tor activity has also been shown to inhibit autophagy — a membrane trafficking pathway that is induced by starvation and is essential for normal stationary phase survival [20,21]. The autophagy pathway carries bulk protein, organelles and other cytoplasmic components to the vacuole for degradation [22]. In a recent study [23••], the Tor pathway was found to inhibit the activity of Apg1p, a protein kinase essential for the earliest steps of the autophagy process. In particular, Tor activity reduced the affinity of Apg1p for its regulatory subunit, Apg13p, possibly by direct phosphorylation of Apg13p [23••]. Autophagy also appears to be inhibited by the Ras/PKA pathway, but the target of this inhibition is not yet known [20].

Coordinating stationary phase entry

A key question that remains concerns the manner in which the yeast cell coordinates the control by the Ras and Tor signaling pathways. The inactivation of either of these pathways results in a constitutive stationary phase-like arrest [5,6•]. This happens even in rich growth media, where the other pathway might be expected to remain active and to continue signaling for growth. One explanation for these results is that these two pathways might be coordinately controlled in some manner that has not yet been identified. One possibility is that processes essential for cell growth, such as protein translation, might simply require input from both the Ras and Tor pathways. Alternatively, there could be some form of communication or crosstalk between these two signaling pathways. In this way, the inactivation of one pathway could generate a signal that would result in the shutdown of the other. With current technology, it should be possible to discern whether such crosstalk does indeed take place.

Mutants defective for stationary phase survival

A recent study has shown that proteins in the Srb complex of the RNA polymerase II holoenzyme are required for the entry into a normal stationary phase [24••]. Mutations that inactivate this complex disrupt the normal patterns of gene expression that occur upon nutrient deprivation [24••,25]. These observations led to the suggestion that these Srb proteins might be targets of signaling pathways responsible for coordinating yeast cell growth with nutrient availability [24••]. This prediction appears to be correct, as this complex has recently been identified as a direct target of the Ras/PKA signaling pathway (YW Chang and PK Herman, unpublished data).

The rate of protein synthesis drops ~300-fold upon entry into stationary phase [2]; however, a recent study found that this low level of protein synthesis is essential for stationary phase survival [26•]. Surprisingly, the translation initiation factor eIF4E, or the cap-binding protein, does not appear to be required for this essential translation. Instead, the authors suggest that the survival of stationary phase cells might be dependent upon a low level of protein translation that can occur in a cap-independent manner, perhaps by initiation at internal ribosome entry sites [26•,27].

The *TRX1* and *TRX2* genes encode cytoplasmic thioredoxins that are important for the response to oxidative stress [28,29]. Mutants lacking both Trx1p and Trx2p are more sensitive to oxidative stress during stationary phase and exhibit a dramatic decrease in stationary phase viability [29]. These observations are consistent with previous reports indicating that oxidative damage contributes to the cell death that occurs in stationary phase cultures [30]. Finally, stationary phase survival defects have also been observed in mutants defective for inorganic polyphosphate metabolism, the Rpi1p transcriptional regulator and the regulation of the G_α protein, Gpa2p [31–33].

Stationary phase as a model for the study of aging?

S. cerevisiae cells can undergo two different types of aging. The first is 'replicative aging', and is measured by the finite number of divisions that a particular cell has undergone [34,35]. The second, 'chronological aging', refers to the total lifespan of a given cell and is the sum of the replicative lifespan and the time spent in a quiescent state [36]. Recent studies have shown that stationary phase figures prominently in both of these aging processes [36,37••,38,39]. In particular, since stationary phase can be much longer than the total replicative lifespan, several studies have simply used stationary phase survival as a measure of the chronological aging in yeast cultures [36,37••,38]. Interestingly, this work has suggested that proteins important for the regulation of longevity in metazoans also play a critical role in determining the chronological lifespan of yeast [30,37••]. Therefore, the study of yeast stationary phase could provide important insights into the mechanisms underlying aging in other organisms, including humans [36,38].

Stationary phase residence was also found to influence the replicative lifespan of yeast cells [39]. Cells that had been passaged through stationary phase were found to exhibit a significantly shorter replicative lifespan than those cells that had never been starved. The authors suggested that this stationary phase incubation contributed to the accumulation of an 'aging factor' that subsequently led to a reduction in the normal number of divisions these cells could carry out [39]. Once the identity of this factor is known, it will be interesting to see if it is also an important determinant of the chronological lifespan.

Is stationary phase a distinct, out-of-cycle growth phase?

A central question that remains unresolved concerns the very nature of the *S. cerevisiae* stationary phase. Is this resting state truly an unique phase of growth, distinct from all major phases of the mitotic cycle? An alternative hypothesis is that stationary phase represents an extended G₁ phase, where the cells are exhibiting an especially slow rate of growth. This alternative was raised in response to observations indicating that several stationary phase characteristics were also exhibited by slow-growing, but mitotically active,

yeast cultures [40]. The authors of this study suggested that the degree of stress resistance might be inversely related to growth rate and that stationary phase might represent the furthest point on this continuum. It is important to stress that this is not simply an issue of semantics, as the existence of a unique resting state would provide the cell with a separate point at which to control cell proliferation [41].

To establish that stationary phase is indeed a distinct phase of growth, it will be necessary to satisfy one of the two following conditions. The first would be to identify genes that are specifically required for the transitions between stationary phase and the cell cycle. Ideally, these genes would be dispensable for mitotic cell division. The second condition would involve the identification of a biochemical activity that is specific to the stationary phase of growth. To date, there has been some progress made towards satisfying the first requirement with studies of the *GCS1* gene. Cells containing mutations in *GCS1* were conditionally defective for the exit from stationary phase but exhibited no significant defect in mitotic growth [42]. Although the *ges1* mutation has been used extensively to characterize the genetic requirements for stationary phase exit [1,43], subsequent work has indicated that the protein Gcs1p has a mitotic function, and thus the search for a specific function in the $G_1 \rightarrow$ stationary phase transition continues [44,45].

Less progress has been made with the second condition, and there are presently no specific molecular markers for the stationary phase of growth. Several early reports had indicated that the *SNZ* gene family might be expressed specifically in stationary phase cultures [46,47]. However, subsequent analyses of *SNZ* orthologues in other fungi have indicated that this gene-family is involved in the biosynthesis of pyridine, otherwise known as vitamin B6 [48,49]. Thus, the stationary phase induction of these genes might simply be due to the fact that pyridine becomes limiting at this time. Although this story is not yet complete, it does serve as a cautionary tale for these types of expression studies. The identification of any stationary phase-specific expression pattern should be corroborated with other functional information, such as the demonstration of the necessity of this gene for stationary phase survival. Recent success with such an analysis is discussed below. Finally, it should be noted that a stationary phase marker need not involve new gene expression and could instead be a re-localization of a protein or a new post-translational modification [50,51].

Genomic approaches to the study of stationary phase

The recent advent of functional genomics has provided tools that should facilitate future research on stationary phase biology. For example, two recent studies have used these technologies to directly examine the possibility that stationary phase is a distinct phase of growth. In the first study, a whole-genome expression analysis with microarrays identified 45 genes with a stationary phase-specific expression

pattern (M Werner-Washburne, personal communication). Importantly, 14 of these genes have also been shown to be essential for stationary phase viability. The second study aimed to identify genes important for stationary phase survival (SC Howard and PK Herman, unpublished data). The study makes use of a deletion strain set that contains ~4700 yeast mutants, each deleted for a particular nonessential gene [52]. This collection should be very useful for stationary phase research, because it has been effectively pre-screened for mutants that do not have a significant effect on mitotic growth. Further characterization of the genes identified in these studies should shed important insights on the regulation of stationary phase biology and provide us with useful markers for the stationary phase of growth. The availability of more facile markers will hopefully encourage other researchers to begin to examine additional aspects of this quiescent state.

Conclusions

Although I have focused on the budding yeast *S. cerevisiae* in this review, the issues discussed are relevant to resting states in many, if not all, organisms. In most cases, it is still not clear whether a given resting state is a distinct phase of growth, and on the whole we do not have many useful markers for a quiescent state. However, this situation is likely to change significantly in the near future. The development of new technologies has poised the field for rapid progress in addressing some of the outstanding questions concerning growth control. For example, the experiments described above should identify both genes that are required for stationary phase survival and those expressed specifically in resting cells. The subsequent characterization of these genes should provide us with important insights into not just stationary phase, but also into a variety of biological processes. These are likely to include insights into both the expected, such as general growth control, and the unexpected, such as human aging. The key point is that there is a wealth of biology awaiting discovery in the nondividing cell and that we need to start focusing our scientific resources on these resting states.

Acknowledgements

I thank Margaret Werner-Washburne and Gerald Johnston for sharing their thoughts on stationary phase, Margaret Werner-Washburne for sharing data before its publication, and Jeffrey Stack and the members of the Herman laboratory for their comments on the manuscript. Research in my laboratory is supported by grants from the National Institutes of Health and the National Science Foundation.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Werner-Washburne M, Braun E, Johnston GC, Singer RA: **Stationary phase in the yeast *Saccharomyces cerevisiae*.** *Microbiol Rev* 1993, **57**:383-401.
2. Werner-Washburne M, Braun EL, Crawford ME, Peck VM: **Stationary phase in *Saccharomyces cerevisiae*.** *Mol Microbiol* 1996, **19**:1159-1166.

3. Lillie SH, Pringle JR: Reserve carbohydrate metabolism in *Saccharomyces cerevisiae*: responses to nutrient limitation. *J Bacteriol* 1980, **143**:1384-1394.
4. Granot D, Snyder M: Glucose induces cAMP-independent growth-related changes in stationary-phase cells of *Saccharomyces cerevisiae*. *Proc Natl Acad Sci USA* 1991, **88**:5724-5728.
5. Broach JR: RAS genes in *Saccharomyces cerevisiae*: signal transduction in search of a pathway. *Trends Genet* 1991, **7**:28-33.
6. Schmelzle T, Hall MN: TOR, a central controller of cell growth. *Cell* 2000, **103**:253-262.
- An excellent review that emphasizes the role played by the Tor proteins in the regulation of eukaryotic cell growth. The short background section discussing the differences between growth and proliferation is especially noteworthy.
7. Raught B, Gingras AC, Sonenberg N: The target of rapamycin (TOR) proteins. *Proc Natl Acad Sci USA* 2001, **98**:7037-7044.
8. Thevelein JM, de Winde JH: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast *Saccharomyces cerevisiae*. *Mol Microbiol* 1999, **33**:904-918.
9. Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C: *Saccharomyces cerevisiae* cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. *Genes Dev* 1998, **12**:2943-2955.
10. Pedruzzi I, Burckert N, Egger P, De Virgilio C: *Saccharomyces cerevisiae* Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. *EMBO J* 2000, **19**:2569-2579.
- This paper identifies the Gis1p transcription factor as an important mediator of stationary phase entry. Gis1p was found to be essential for the transcription of several genes that contain a PDS (post-diauxic shift), element in their promoters.
11. Howard SC, Budovskaya YV, Chang YW, Herman PK: The C terminal domain of the largest subunit of RNA polymerase II is required for stationary phase entry and functionally interacts with the Ras/PKA signaling pathway. *J Biol Chem* 2002, **277**:19488-19497.
- This paper, together with Howard *et al.* (2001) [12], identifies components of the core RNA polymerase II transcription apparatus that are important for stationary phase entry. The authors suggest that this might be evidence of a novel mode of transcriptional control whereby signaling pathways target the general RNA polymerase II transcriptional machinery instead of DNA-bound transactivator proteins.
12. Howard SC, Chang YW, Budovskaya YV, Herman PK: The Ras/PKA signaling pathway of *Saccharomyces cerevisiae* exhibits a functional interaction with the Sin4p complex of the RNA polymerase II holoenzyme. *Genetics* 2001, **159**:77-89.
13. Carlson M: Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. *Annu Rev Cell Dev Biol* 1997, **13**:1-23.
14. Hirose Y, Manley JL: RNA polymerase II and the integration of nuclear events. *Genes Dev* 2000, **14**:1415-1429.
15. Paturajan M, Schulte RJ, Sefton BM, Berezney R, Vincent M, Bensaude O, Warren SL, Corden JL: Growth-related changes in phosphorylation of yeast RNA polymerase II. *J Biol Chem* 1998, **273**:4689-4694.
16. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ: The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in *Saccharomyces cerevisiae*. *Mol Microbiol* 1999, **32**:671-680.
17. Krause SA, Gray JV: The protein kinase C pathway is required for viability in quiescence in *Saccharomyces cerevisiae*. *Curr Biol* 2002, **12**:588-593.
18. Torres J, Di Como CJ, Herrero E, de la Torre-Ruiz MA: Regulation of the cell integrity pathway by rapamycin-sensitive Tor function in budding yeast. *J Biol Chem* 2002, in press. Published online August 8, 10.1074/jbc.M205408200.
19. Smith AE, Zhang Z, Thomas CR, Moxham KE, Middelberg AP: The mechanical properties of *Saccharomyces cerevisiae*. *Proc Natl Acad Sci USA* 2000, **97**:9871-9874.
20. Noda T, Ohsumi Y: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. *J Biol Chem* 1998, **273**:3963-3966.
21. Abeliovich H, Klionsky DJ: Autophagy in yeast: mechanistic insights and physiological function. *Microbiol Mol Biol Rev* 2001, **65**:463-479.
22. Klionsky DJ, Ohsumi Y: Vacuolar import of proteins and organelles from the cytoplasm. *Annu Rev Cell Dev Biol* 1999, **15**:1-32.
23. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y: Tor-mediated induction of autophagy via an Apg1 protein kinase complex. *J Cell Biol* 2000, **150**:1507-1513.
- The authors show that Tor pathway activity controls autophagy by regulating the association of the Apg1p protein kinase with its regulatory subunit, Apg13p.
24. Chang YW, Howard SC, Budovskaya YV, Rine J, Herman PK: The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in *Saccharomyces cerevisiae*. *Genetics* 2001, **157**:17-26.
- This paper describes the isolation of the rye mutants, a collection of mutants with specific defects in stationary phase entry. Three of the RYE genes were cloned and found to encode the Srb9-11p proteins of the Srb complex.
25. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. *Cell* 1998, **95**:717-728.
26. Paz I, Choder M: Eukaryotic translation initiation factor 4E • dependent translation is not essential for survival of starved yeast cells. *J Bacteriol* 2001, **183**:4477-4483.
- This paper shows that the low level of protein synthesis that occurs in stationary phase cells is essential for their long-term survival. Interestingly, inactivation of the cap-binding protein eIF4E reduced the residual level of protein synthesis in stationary phase cells another 10- to 20-fold but did not affect stationary phase survival.
27. Paz I, Abramovitz L, Choder M: Starved *Saccharomyces cerevisiae* cells have the capacity to support internal initiation of translation. *J Biol Chem* 1999, **274**:21741-21745.
28. Grant CM: Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. *Mol Microbiol* 2001, **39**:533-541.
29. Garrido EO, Grant CM: Role of thioredoxins in the response of *Saccharomyces cerevisiae* to oxidative stress induced by hydroperoxides. *Mol Microbiol* 2002, **43**:993-1003.
30. Longo VD, Gralla EB, Valentine JS: Superoxide dismutase activity is essential for stationary phase survival in *Saccharomyces cerevisiae*. Mitochondrial production of toxic oxygen species *in vivo*. *J Biol Chem* 1996, **271**:12275-12280.
31. Sethuraman A, Rao NN, Kornberg A: The endopolyphosphatase gene: essential in *Saccharomyces cerevisiae*. *Proc Natl Acad Sci USA* 2001, **98**:8542-8547.
32. Sobering AK, Jung US, Lee KS, Levin DE: Yeast Rpi1 is a putative transcriptional regulator that contributes to preparation for stationary phase. *Euk Cell* 2002, **1**:56-65.
33. Harashima T, Heitman J: The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. *Mol Cell* 2002, **10**:163-173.
34. Tissenbaum HA, Guarente L: Model organisms as a guide to mammalian aging. *Dev Cell* 2002, **2**:9-19.
35. Sinclair D, Mills K, Guarente L: Aging in *Saccharomyces cerevisiae*. *Annu Rev Microbiol* 1998, **52**:533-560.
36. Longo VD: Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. *Neurobiol Agin* 1999, **20**:479-486.
37. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD: Regulation of longevity and stress resistance by Sch9 in yeast. *Science* 2001, **292**:288-290.
- A screen for mutants with an increased chronological lifespan identified the Sch9p protein kinase as an important determinant of this aging process. Sch9p is similar to the Akt/PKB protein kinase implicated in the aging of several metazoans, and the authors suggest that the fundamental mechanisms of aging might be conserved from yeast to humans.
38. MacLean M, Harris N, Piper PW: Chronological lifespan of stationary phase yeast cells: a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. *Yeast* 2001, **18**:499-509.
39. Ashrafi K, Sinclair D, Gordon JI, Guarente L: Passage through stationary phase advances replicative aging in *Saccharomyces cerevisiae*. *Proc Natl Acad Sci USA* 1999, **96**:9100-9105.
40. Elliott B, Futch B: Stress resistance of yeast cells is largely independent of cell cycle phase. *Yeast* 1993, **9**:33-42.

41. Pardee AB: **G1 events and regulation of cell proliferation.** *Science* 1989, **246**:603-608.
42. Drebot MA, Johnston GC, Singer RA: **A yeast mutant conditionally defective only for reentry into the mitotic cell cycle from stationary phase.** *Proc Natl Acad Sci USA* 1987, **84**:7948-7952.
43. Drebot MA, Barnes CA, Singer RA, Johnston GC: **Genetic assessment of stationary phase for cells of the yeast *Saccharomyces cerevisiae*.** *J Bacteriol* 1990, **172**:3584-3589.
44. Poon PP, Nothwehr SF, Singer RA, Johnston GC: **The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network.** *J Cell Biol* 2001, **155**:1239-1250.
45. Poon PP, Wang X, Rotman M, Huber I, Cukierman E, Cassel D, Singer RA, Johnston GC: ***Saccharomyces cerevisiae* Gcs1 is an ADP-ribosylation factor GTPase-activating protein.** *Proc Natl Acad Sci USA* 1996, **93**:10074-10077.
46. Padilla PA, Fuge EK, Crawford ME, Errett A, Werner-Washburne M: **The highly conserved, coregulated SNO and SNZ gene families in *Saccharomyces cerevisiae* respond to nutrient limitation** [Erratum: *J Bacteriol* 1998, 180:6794]. *J Bacteriol* 1998, **180**:5718-5726.
47. Braun EL, Fuge EK, Padilla PA, Werner-Washburne M: **A stationary-phase gene in *Saccharomyces cerevisiae* is a member of a novel, highly conserved gene family.** *J Bacteriol* 1996, **178**:6865-6872.
48. Bean LE, Dvorachek WH Jr, Braun EL, Errett A, Saenz GS, Giles MD, Werner-Washburne M, Nelson MA, Natvig DO: **Analysis of the pdx-1 (snz-1/sno-1) region of the *Neurospora crassa* genome: correlation of pyridoxine-requiring phenotypes with mutations in two structural genes.** *Genetics* 2001, **157**:1067-1075.
49. Osmani AH, May GS, Osmani SA: **The extremely conserved pyroA gene of *Aspergillus nidulans* is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers.** *J Biol Chem* 1999, **274**:23565-23569.
50. Chughtai ZS, Rassadi R, Matusiewicz N, Stochaj U: **Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells.** *J Biol Chem* 2001, **276**:20261-20266.
51. Werner-Washburne M, Brown D, Braun E: **Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell.** *J Biol Chem* 1991, **266**:19704-19709.
52. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al.: **Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis.** *Science* 1999, **285**:901-906.
53. Gingras AC, Raught B, Sonenberg N: **Regulation of translation initiation by FRAP/mTOR.** *Genes Dev* 2001, **15**:807-826.
54. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G: **Mammalian TOR: a homeostatic ATP sensor.** *Science* 2001, **294**:1102-1105.
55. Haney SA, Broach JR: **Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of *Saccharomyces cerevisiae*, promotes exchange by stabilizing Ras in a nucleotide-free state.** *J Biol Chem* 1994, **269**:16541-16548.
56. Rudoni S, Colombo S, Coccetti P, Martegani E: **Role of guanine nucleotides in the regulation of the Ras/cAMP pathway in *Saccharomyces cerevisiae*.** *Biochim Biophys Acta* 2001, **1538**:181-189.