# Beyond the Standard Model

# Searches for New Physics at the B-Factories









## Experimental Landscape (ca 2006)



## Search for Lepton Flavor Violation in $\tau$ Decays

- Lepton flavor is conserved in the Standard Model
  - not protected by an underlying conserved current symmetry
  - Neutrino Masses



Many SM extensions include LF violation

| Model                                | $\tau \rightarrow \ell \gamma$ | Reference                                      |
|--------------------------------------|--------------------------------|------------------------------------------------|
| SM + lepton mixing                   | 10 <sup>-40</sup>              | hep-ph/9810484                                 |
| SM + rh heavy Majorana neutrino      | <10 <sup>-9</sup>              | PRD66(2002)034008                              |
| mSUGRA + seesaw                      | <10 <sup>-7</sup>              | hep-ph/0206110, hep-ph/9911459                 |
| SUSY SU(5)                           | <10 <sup>-4</sup>              | hep-ph/0303071                                 |
| SUSY SO(10) + seesaw                 | <10 <sup>-5</sup>              | hep-ph/0209303, hep-ph/0304190, hep-ph/0405017 |
| SUSY anomalous U(1)                  | <10 <sup>-7</sup>              | hep-ph/0308093                                 |
| neutral SUSY Higgs                   | <10 <sup>-10</sup>             | hep-ph/0304081)                                |
| MSSM+nonuniversal soft SUSY breaking | <10 <sup>-10</sup>             | hep-ph/0305290                                 |
| Non universal $Z'$ (technicolor)     | <10 <sup>-9</sup>              | PLB547(2002)252                                |
| extra dimensions                     | <10 <sup>-11</sup>             | hep-ph/0210021                                 |

 Observation of LF violation would be a clear signature for new physics



### Limits on New Physics – An Example



## Search for New Physics in the Charm Sector

• D<sup>o</sup> Mixing

Flavor eigenstates are not mass eigenstates  $|D_{1,2}^0\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle$  with  $M_{1,2}$  and  $\Gamma_{1,2}$ 

$$x\equiv rac{\Delta m}{\Gamma},\;y\equiv rac{\Delta \Gamma}{2\Gamma}$$
mixing rate:  $R_M=rac{x^2+y^2}{2}$ 

- D<sup>0</sup> Mixing is small in the SM box diagram: x,y, < few x 10<sup>-5</sup> long distance: x ~ 10<sup>-3</sup>, y ~ 10<sup>-2</sup>
- Strong phase in hadronic decays  $x' = x \cos \delta + y \sin \delta$  $y' = y \cos \delta - x \sin \delta$
- Proper Time Fit

WS signal:  $\left| \frac{R_D}{R_D} + \sqrt{R_D} y' t + \frac{x'^2 + y'^2}{4} t^2 \right| e^{-t}$ 





K. Honscheid, Ohio State University, Aspen 2006

К. НС

## Rare Charm Decays and CP Violation

| Experiment | Decay mode                                 | A <sub>CP</sub> (%)   | Notes                                                                               |  |
|------------|--------------------------------------------|-----------------------|-------------------------------------------------------------------------------------|--|
| BaBar      | $D^+ \rightarrow K^- K^+ \pi^+$            | 1.4±1.0 ±0.8          |                                                                                     |  |
| BaBar      | $D^+ \rightarrow \phi^+ \pi^+$             | 0.2±1.5±0.6           | Res. Substr.                                                                        |  |
| BaBar      | $D^+ \to \mathrm{K}^{*0} \mathrm{K}^+$     | 0.9±1.7±0.7           | Of<br>D <sup>+</sup> $\rightarrow$ K <sup>-</sup> K <sup>+</sup> $\pi$ <sup>+</sup> |  |
| CLEO II.V  | $D^0 \rightarrow \pi^+ \pi^- \pi^0$        | 1 ±8                  | Dalitz plot analysis                                                                |  |
| CDF        | $D^0 \rightarrow K^+ K^-$                  | $2.0 \pm 1.2 \pm 0.6$ | Direct CPV                                                                          |  |
| CDF        | $D^0 \rightarrow \pi^+ \pi^-$              | $1.0 \pm 1.3 \pm 0.6$ | Direct CPV                                                                          |  |
| FOCUS      | $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$      | 1.0 ±5.7±3.7          | T violation<br>through triple<br>product                                            |  |
| FOCUS      | $D^+ \rightarrow K^{o}K^{+}\pi^{+}\pi^{-}$ | 2.3 ±6.2±2.2          |                                                                                     |  |
| FOCUS      | $D_S \rightarrow K^o K^+ \pi^+$            | -3.6 ±6.7±2.3         | correlations                                                                        |  |
|            |                                            |                       | from S. Stone                                                                       |  |

## Experimental Aside: Single B Meson Beams

Lots of interesting modes include one or more neutrinos.

"Beams" with a single, monochromatic B and without c, QED etc would be very useful for :  $B \rightarrow \tau v$ ,  $B \rightarrow v v$ ,  $B \rightarrow K v v$ ,...

Fully reconstruct one of the Bs and study the remaining of the event → closed kinematics, missing energy reconstruction



## Search for $B \rightarrow \tau v$

SM decay proceeds via W-annihilation diagram

$$\mathcal{B}^{SM}(B^+ \to \tau^+ \nu_{\tau}) = 9.3 \times 10^{-5} \left[ \frac{f_{B^+}}{196 \, MeV} \right]^2 \left[ \frac{|V_{ub}|}{0.00367} \right]^2$$

Sensitive to new physics charged current



hep-ex/0507069

#### Analysis:

- Undetected neutrinos result in large missing energy and few kinematic constraints – high background.
- Reduce the background by reconstructing the second B ("tag B") in the event in the copious decay mode B<sup>-</sup> $\rightarrow$ D<sup>\*0</sup>l<sup>-</sup>v<sub>1</sub>
- Reconstruct  $B^+ \rightarrow \tau^+ \upsilon_{\tau}$  with  $\tau^+ \rightarrow I^+ \nu \nu_{bar}$  or  $\tau^+ \rightarrow h^+ \nu$ , where  $h = \pi$ ,  $\rho$ , or  $a_1$
- Require no additional charged tracks in the event





### Search for $B_s \rightarrow \mu + \mu$ - at the Tevatron hep-ex/0508058

Standard model prediction:  $Br(B_s \rightarrow \mu^+\mu^-) = (3.5 \pm 0.9) \times 10^{-9}$ 















Bounds on new physics from UT fits

CKM Model confirmed by many measurements Now look for New Physics as correction to CKM Model

The fit to the unitarity triangle constraints:

$$C_{B_d}e^{2i\phi_{B_d}} = \frac{A_{\rm SM}e^{2i\beta} + A_{\rm NP}e^{2i(\beta+\phi_{\rm NP})}}{A_{\rm SM}e^{2i\beta}}$$









## The next few years (2006 – 2008)

- Belle and BaBar
  - 1 ab<sup>-1</sup> (2006)
  - 2 ab<sup>-1</sup> (2008)
- Tevatron
  - 2 fb<sup>-1</sup> (2006)
  - 8 fb<sup>-1</sup> (2009)



• LHCb is nearing completion



Super B-Factory Plans at KEK and Frascati Design Luminosity ~ 1 x 10<sup>36</sup>/cm<sup>2</sup>/sec Synergy with ILC Lots of R&D needed



## Have Ideas – Need Statistics

| Mode  | BR <sub>SM</sub>       | Notes on New Physics                                    |
|-------|------------------------|---------------------------------------------------------|
| b→sγ  | ~3 10-4                | BF, A <sub>CP</sub> , and A <sub>FB</sub> important     |
| b→sg  | ~10 <sup>-5</sup> each | BF not critical. Need events to measure S <sub>CP</sub> |
| B→XII | ~10 <sup>-6</sup> each | BF, A <sub>CP</sub> , and A <sub>FB</sub> important     |
| B→Xvv | ~10 <sup>-6</sup> each | Up to 10 <sup>-5</sup> each                             |
| D→XII | ~10 <sup>-6</sup> each | Up to 10 <sup>-5</sup> each                             |
| Β→τν  | ~10-4                  | Experiments close to SM sensitivity                     |
| τ→Ιγ  | ~10 <sup>-40</sup>     | Up to 10 <sup>-8</sup>                                  |
| B→II  | <10-11                 | Up to 10 <sup>-5</sup>                                  |
| D→II  | < 10-9                 | Up to 10 <sup>-6</sup>                                  |
|       |                        |                                                         |

# **Additional Transparencies**

### Let's rule out at least one NP model

#### Observation of direct CP violation in $B^0 \rightarrow K^+\pi^-$



### Implications of $B_s \rightarrow \mu^+ \mu^- < 1.5 \times 10^{-7}$





Br( $\tau^- \rightarrow e^- K_s$ ) < 5.6 × 10<sup>-8</sup> at 90% C.L. Br( $\tau^- \rightarrow \mu^- K_s$ ) < 4.9 × 10<sup>-8</sup> at 90% C.L.



## First Search for $B^0 \rightarrow \tau^+ \tau^-$

- SM expectation ~ 10<sup>-7</sup> (Compare: 10<sup>-11</sup> for µ<sup>+</sup>µ<sup>-</sup>, 10<sup>-15</sup> for e<sup>+</sup>e<sup>-</sup>)
- Helicity (m<sub>l</sub>/m<sub>B</sub>)<sup>2</sup> and Cabibbo (V<sub>tb</sub>V<sub>td</sub>\*) suppressed
- Very clean theoretically

#### Analysis

- Reconstruct the tag B in decays to D<sup>(\*)</sup> and up to 5 kaons and pions
- Reconstruct the signal decay  $B^0 \rightarrow \tau^+ \tau^-$ , with  $\tau \rightarrow 1$ -prong decays
- Require no additional charged tracks in the event
- Require little remaining energy:  $E_{extra} < 0.11 \text{ GeV}$
- Use correlations between E<sub>extra</sub> and the momenta of the reconstructed τ daughters in a neural net to further reduce the background



hep-ex/0501115

Using  $232 \times 10^6$  Y(4S) $\rightarrow$ BB events we observe 263 ± 19 events with 281 ± 40 expected background.

First limit on this mode

 $B^0 \rightarrow \tau^+ \tau^-$  Results

Br(B<sup>0</sup> $\to \tau^+\tau^-$ ) < 3.2 × 10<sup>-3</sup> at 90% C.L.



hep-ex/0501115

Yields a constraint on leptoquark parameter. For example

RH coupling to 
$$\lambda_R^{33} \lambda_R^{13} < 1.1 \times 10^{-2} \left[ \frac{m_{S_{1/2}}}{100 \text{ GeV}} \right]^2$$
 Leptoquark doublet mass



Constraints on C<sub>i</sub> from B(B $\rightarrow$ X<sub>s</sub>l<sup>+</sup>l<sup>-</sup>)

P.Gambino, U.Haisch and M.Misiak PRL 94 061803 (2005)

- Clean prediction for B( $B \rightarrow XsII$ ) with  $1 < q^2 < 6GeV^2$  is available.
  - Combine Belle and Babar results
  - Sign of C7 flipped case with SM C9 and C10 values is unlikely.

| BF                                     | Belle    | Babar   | WA            | SM                   | $C_7 = -C_7^{SM}$    |
|----------------------------------------|----------|---------|---------------|----------------------|----------------------|
| $q^2 > (2m_{\mu})^2$                   | 4.11±1.1 | 5.6±2.0 | $4.5 \pm 1.0$ | 4.4 <sup>±</sup> 0.7 | 8.8 <sup>±</sup> 0.7 |
| 1 <q<sup>2&lt;6GeV<sup>2</sup></q<sup> | 1.5±0.6  | 1.8±0.9 | 1.60±0.5      | 1.57±0.16            | 3.30±0.25            |



2005: Sample used for  $A_{FB}(B \rightarrow K^* II)(q^2)$ 



hep-ex/0503044

#### New Measurement of A<sub>FB</sub>(q<sup>2</sup>) in K\*II Forward-backward asymmetry is induced by interference btw virtual photon and Z<sup>0</sup> contributions. Relative signs and magnitudes of $C_7$ to $C_{10}$ and $C_9$ to $C_{10}$ can be determined from $A_{FB}(B \rightarrow K^*II)!!$ $A_{\mathsf{FB}}(q^2) = \frac{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) - \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}{\Gamma(q^2, \cos\theta_{B\ell^-} > 0) + \Gamma(q^2, \cos\theta_{B\ell^-} < 0)}$ $\frac{d}{d\hat{s}}(\Gamma_F^{K*} - \Gamma_B^{K*}) = -\frac{G_F^2 \alpha^2 m_B^5}{2^8 \pi^5} |V_{ts}^* V_{tb}|^2 \, \hat{s}\hat{u}(\hat{s})^2$ $\times \left[ \mathsf{Re}(C_9^{\mathsf{eff}}) C_{10} V A_1 + \frac{\hat{m}_b}{\hat{c}} C_7^{\mathsf{eff}} C_{10} (V T_2 (1 - \hat{m}_{K^*}) + A_1 T_1 (1 + \hat{m}_{K^*})) \right] \,.$ We do not use $C_i$ but $A_i$ which is leading coefficients. 2.5 2.25 2.25 2 $\triangleleft$ 0.8 = SM (A<sub>7</sub>=-0.330, A<sub>0</sub>=4.069, A<sub>10</sub>=-4.213) $SM(A_7 = -0.330, A_0 = 4.069, A_{10} = -4.213)$ $0.6 \vdash A_7 A_{10}$ sign flipped case $A_{7}A_{10}$ sign flipped case 1.75 0.4 both $A_7A_{10}$ and $A_0A_{10}$ signs flipped case 0.2 1.5 $A_0A_{10}$ sign flipped case 1.25 0 -0.2 1 0.75 -0.4 both $A_7A_{10}$ and $A_0A_{10}$ signs flipped case -0.6 0.5 $A_0A_{10}$ sign flipped case 0.25 -0.8 -1 0 20 18 0 6 8 10 12 14 16 18 0 2 8 10 12 16 20 14 GeV<sup>2</sup>/c<sup>2</sup> GeV<sup>2</sup>/c<sup>2</sup> $a^2$ $q^2$

Fit results for ratios of Wilson coefficients



## **Confidence Level Contours**





### What is the ultimate possible UT precision?

Ligeti:

Theoretical limits (continuum methods)
 Many measurements will not be theory-limited for quite some time

| Measurement (in SM)                                    | Theoretical limit  | Present error     |
|--------------------------------------------------------|--------------------|-------------------|
| $B \to \psi K_S \ (\beta)$                             | $\sim 0.2^{\circ}$ | $1.6^{\circ}$     |
| $B \to \phi K_S, \ \eta^{(\prime)} K_S, \dots (\beta)$ | $\sim 2^{\circ}$   | $\sim 10^{\circ}$ |
| $B  ightarrow \pi\pi, \  ho ho, \  ho\pi$ ( $lpha$ )   | $\sim 1^{\circ}$   | $\sim 15^{\circ}$ |
| $B \to DK (\gamma)$                                    | $\ll 1^{\circ}$    | $\sim 25^{\circ}$ |
| $B_s  ightarrow \psi \phi ~~(eta_s)$                   | $\sim 0.2^{\circ}$ | —                 |
| $B_s \rightarrow D_s K \ (\gamma - 2\beta_s)$          | $\ll 1^{\circ}$    | —                 |
| $ V_{cb} $                                             | $\sim 1\%$         | $\sim 3\%$        |
| $ V_{ub} $                                             | $\sim 5\%$         | $\sim 15\%$       |
| $B \to X \ell^+ \ell^-$                                | $\sim 5\%$         | $\sim 20\%$       |
| $B \to K^{(*)} \nu \bar{\nu}$                          | $\sim 5\%$         | —                 |
| $K^+ \to \pi^+ \nu \bar{\nu}$                          | $\sim 5\%$         | $\sim 70\%$       |
| $K_L \to \pi^0 \nu \bar{\nu}$                          | < 1%               | —                 |