

The Two Asymmetric Energy B Factories

Experimental Landscape (early 2007)

CP Violation in the Standard Model

To incorporate CP violation

g ≠ g*

(coupling has to be complex)

K. Honscheid, Ohio State University, C2CR 2007

Mixing Induced CP violation

Golden mode $B^0 \rightarrow J/\psi K_s$: CP eigenstate, high rate, theoretically clean

Extracting β from sin2 β has ambiguities; removed by J/ ψ K*, D*D*K_S and D $\pi^0/\eta/\eta'/\omega$ analyses

Let's try this for the next angle: α

• Access to α from the interference of a $b \rightarrow u$ decay (γ) with $B^0 B^0$ mixing (β)

How to estimate $|\alpha - \alpha_{eff}|$: Isospin analysis

Use SU(2) to relate decay rates of different *hh* final states ($h \in {\pi,\rho}$)

Need to measure several related B.F.s

Measuring α in $B \rightarrow \pi\pi$

hep-ex/0607106

hep-ex/0608035

•B $\rightarrow \rho^0 \rho^0$ is small \rightarrow better constraint on $\Delta \alpha$

 B^{\pm} → DK: no time dependence; extract γ from rates and CP asymmetries but b → u amplitude is small (for example r_B (DK⁻) = 0.16 ± 0.05 ± 0.01 ± 0.05 Belle)

New Targets

-0.2

α

0 -0.4

Effects of TeV new physics \rightarrow deviations from SM

0.4

0.2

ß

Ohio State I

0.6

0.8

LFV and new source of CPV

0

Hidden flavor symmetry and its breaking

The next few years (2007 – 2010)

- Belle and BaBar
 - 1 ab⁻¹ (2006)
 - 2 ab⁻¹ (2008)

- Tevatron
 - 2 fb⁻¹ (2006)
 - 8 fb⁻¹ (2009)

• LHCb is nearing completion

LHCb Prospects (Some of the things they can do)

• B_s Mixing phase (ϕ_s) using $B_s \rightarrow J/\psi \phi$

• Signal yield: 130k events per L=2fb⁻¹ with a B/S \approx 0.1, Sensitivity $\phi_s \sim 0.021$

Sensitive probe of New Physics effects in the B_s mixing

 $-0 \varphi_{s} = \varphi_{s}(SM) + \varphi_{s}(NP)$ with $\varphi_{s}(SM) = -2\lambda^{2}\eta \approx -0.037 \pm 0.002$

V. Vagnoni CKM2006

Sensitivity to γ

- Standard methods
- Golden Mode B_s →D_sK
- Sensitivity ~ 4.2° with 2 fb⁻¹

K. Honscheid, Ohio State University, C2CR 2007

From B-Factories to LHCb – without new physics

 $L = 8 \times 10^{35} / \text{cm}^2 / \text{sec}$

KEK

Frascati

Summary

CKM Model is now a tested theory
Great success for theorist
Great success for experimentalist
Great success for the Standard Model

 $\beta = (21.2 \pm 1.0)^{\circ}$ $\gamma = (62^{+38}._{24})^{\circ}$

Search for Deviations from SM and New Physics

Near Term Future Looks Promising

- B Factories only half way done.
- D Tevatron will triple data samp
- LHC(b) turn on
- Long Term Prospects
 - LHC(b) upgrades
 - Super B Factories (KEK, INFN)

