

CLEO II (90 – 95), CLEO II.V (95-99) and CLEO III (00-01)

CLEO Data Set

- CESR symmetric e⁺e⁻ storage ring
 - operates on Y(4S)
 - BB produced near threshold
- B decay kinematics
 - Energy difference

 $\mathbf{DE} = \mathbf{E}_{\mathbf{B}} - \mathbf{E}_{\mathbf{beam}}$

Beam-constrained mass

$$M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$$

- Data sets
 - CLEO II, II.V
 - ~ 9.1 fb⁻¹ on Y(4S) => 9.7 x 10⁶ BB Events
 - ~ 4.4 fb⁻¹ off Y(4S)
 - CLEO III
 - ~ 6.9 fb⁻¹ on Y(4S) => 7.4 x 10^6 BB Events
 - ~ 2.3 fb⁻¹ off Y(4S)

Inclusive Radiative Penguin Decays

Ē

- Inclusive B(b->sγ) is sensitive to New Physics beyond the Standard Model
 - Charged Higgs
 - Anomalous WWγ couplings
 - Charginos
- Photon Spectrum (HQET/OPE, V_{cb}, V_{ub})

- Next-to-Leading order calculation
- Improve original CLEO result PRL 74, 2885 (1995)

b -> s γ Decays

- 19.4 x 10⁶ B decays
- Extended signal region $2.0 < E_{\gamma} < 2.7$
 - Includes essentially entire γ spectrum
 - Much less model dependence
- Huge # of γ 's from continuum
 - π^0 , η decay, ISR
 - Reduce using event shape and X_s pseudo-reconstruction
 - Subtract remaining background using off-Y(4S) data
- Combine all information into a single weight between 0.0 (continuum and 1.0 (b-> sγ)

b -> sy Decays (CLNS 01/1751, subm. to PRL)

Search for B-> K^(*) I⁺I⁻ Decays

Motivation

- Sensitive to New Physics
 - Different Wilson coefficients (C₇, C₉, C₁₀)
 - Reduce C₇ dependence (γ_{virtual} pole) by requiring m_{II}>0.5 GeV in B->K*l+l⁻ analysis

Analysis

- Tight e, μ identification
- BG from semileptonic B decay
 - Require small missing energy
- ψ veto
- Fisher Discriminant to suppress continuum BG
- Count events in M_{bc} - ΔE signal box

Search for B-> K^(*) I⁺I⁻ Decays

Results (90% C.L.)

- $B(B \rightarrow K|^{+}|^{-}) < 1.5 \times 10^{-6}$
- $B(B \rightarrow K^* I^+ I^-)_{mII>0.5} < 3.3 \times 10^{-6}$
- Weighted average (65% B→K, 35% B→K*)

 $B(B \rightarrow K(*)|+|-) < 1.7 \times 10^{-6}$

- Consistent with SM but only slightly above prediction
- hep-ex/0106060 (subm. To PRL)

Rare B Decay

- Tree decays $b \rightarrow u vs. b \rightarrow c$ suppressed by $|V_{ub}|^2 / |V_{cb}|^2 \sim 0.01$
- Additional $|V_{us}|^2/|V_{ud}|^2 \sim 0.04$ for K⁻
- Expect tree dominantly $b \rightarrow u \bar{u} d$.
 - Decays b→s,d GIM-suppressed
- Loop diagram \propto (m_t/m_W)².
- $|V_{td}|^2 / |V_{ts}|^2 \sim 0.01$
- Expect penguins dominantly $b \rightarrow u\bar{u}s$.

$B \rightarrow K\pi$ and $B \rightarrow \pi\pi$ from CLEO III

- Preliminary results using 1/2 of the CLEO III data
- RICH provides clean K/π separation at 2.2 GeV
 - K efficiency 85%
 - π fake rate 7%
- Standard CLEO rare B reconstruction technique

Klaus Honscheid, Ohio State University (p11)

$B \to K\pi$ and $B \to \pi\pi$ from CLEO III

CLEO III – 2001 Preliminary

(CLEO 1999 published results)

Mode	Eff (%)	Yield	Signif	B (10 ⁻⁶)	UL (10 ⁻⁶)
$K^+\pi^-$	46	29.2 ^{+7 .1} -6 .4	5.4σ	$18.6 {}^{-4.5}_{-4.1} {}^{-3.0}_{-3.4}$	
	45	80.2 ^{+11 .8} -11 .0	11.7σ	$18.8^{+2.8}_{-2.6} \pm 1.3$	
$K^{\pm}\pi^0$	32	12.9 ^{+6 .5} -5 .5	3.8 σ	13.1 ⁺⁵ .8+2 .8 -4 .9 -2 .9	
	38	44.9 ^{+11 .3} -10 .3	6.1σ	12.1 ⁺³ .0+2.1 -2.8-1.4	
$K^0\pi^{\pm}$	12	14.8 ⁺⁴ .9 -4.1	6.2 σ	35.7 ⁺¹² +5.4 -9.9 -6.2	
	14	25.2 ⁺⁶ .4 -5.6	7.6σ	$18.2^{+4.6}_{-4.0} \pm 1.6$	
$K^0\pi^0$	8.5	3.0 ⁺² .9 -2.5	1 .6 σ	10.4 ⁺¹⁰ +2.9 -8.3 -2.9	72
	11	$15.5^{+5}_{-5}.0^{-9}$	4.7σ	$14.8^{+5}_{-51}^{.9+2}_{-33}^{.4}$	

Heavy Flavor 9

Klaus Honscheid, Ohio State University (p12)

$B \to K\pi$ and $B \to \pi\pi$ from CLEO III

CLEO III – 2001 Preliminary

(CLEO 1999 published results)

Mode	Eff (%)	Yield	Signif	B (10 ⁻⁶)	UL (10 ⁻⁶)
$\pi^0\pi^0$	29	2.7 ^{+2.4} _{-1.6}	2.9 σ		11
	29	6.2 ⁺⁴ . ⁸ -3.7	2.0 σ		5.7
K + K-	36	1.0 ^{+2.4} -1.7	0.6 σ		4.5
	45	$0.0^{+3}_{-0}.0^{+3}_{-0}$	0.0 σ		2
${\rm K}^{\rm 0}$ K $^{\pm}$	12	0.5 ^{+1 .9}	0.8 σ		18
	14	$1.4^{+2.4}_{-1.3}$	1.1 σ		5.1
Κ ^ο Κ [¯] ο	13	0.0 ^{+0.5} -0.5			13
	19	$1.0^{+1.9}_{-1.0}$			6.1

Heavy Flavor 9

Klaus Honscheid, Ohio State University (p13)

$B \rightarrow K\pi$ and $B \rightarrow \pi\pi$ from CLEO III

CLEO III – 2001 Preliminary

(CLEO 1999 published results)

Mode	Eff (%)	Yield	Signif	B (10 ⁻⁶)	UL (10 ⁻⁶)
$\pi^{+}\pi^{-}$	35	3.9 ^{+1.5} -1.2	2.2	3.2 ⁺³ .3+1.0 -2.5-1.0	11
	45	20.0 ⁺⁷ .6 -6.5	4.2	$4.7^{+1.8}_{-1.5} \pm 0.6$	
$\pi^{\pm} \pi^{0}$	29	11.5 ^{+5 .6} -4 .5	3.4	11.7 ⁺⁵ .7+2.2 -4.6 -2.4	25
	41	23.1 ⁺⁹ .1 -8.7	3.2	5.6 ⁺² .6 ⁺¹ .7 -2.3 ⁻¹ .7	12

- Experimental and theoretical justification Infor factorization?
- Are the phenomenological constants a₁, a₂ universal?
- Quite successful in charm decay: destructive interference smaller G_{Hadronic} for D⁺

 $t_{D+} >> t_{D0}$

Mode	$B^{0}(x10^{-3})$	$B^+(x10^{-3})$
Dπ	3.0+/-0.4	5.3+/-0.5
Dρ	7.9+/-1.4	13.4+/1.8
Da ₁	6.0+/-3.3	
Dp'	2.8+/-0.6	4.1+/-0.8
D*π	2.8+/-0.2	4.6+/-0.4
D*p	6.8+/-3.4	15.5+/-3.1
D*a ₁	13+/-2.7	19+/-5
D*p'	2.9+/-0.5	4.1+/-0.8

Klaus Honscheid, Ohio State University (p15)

Factorization

Color transparency

(lots of recent theoretical activity, see afternoon session)

- Semileptonic Decay
- Hadronic + Factorization

$$A = \frac{G_F}{\sqrt{2}} V_{cb} V_{ub}^* < \mathbf{n} | \mathbf{g}_{\mathbf{n}} (1 - \mathbf{g}_{\mathbf{s}}) | l > < D^{*-} | (cb) | B^0 >$$
$$A = \frac{G_F}{\sqrt{2}} V_{cb} V_{ub}^* < \mathbf{p} | (du) | 0 > < D^{*-} | (cb) | B^0 >$$

Factorization Tests

Branching Ratios

$$\frac{\mathbf{G}(B \otimes D^{*+}h^{-})}{\frac{d\mathbf{G}}{dq^{2}}(B \otimes D^{*+}l\mathbf{n})|_{q^{2}=m_{h}^{2}}} = 6\mathbf{p}^{2}c_{1}^{2}f_{h}^{2}|V_{ud}|^{2}$$

Polarization

$$\mathbf{G}_{L} / \mathbf{G}(B \otimes D^{*+}h^{-}) = \mathbf{G}_{L} / \mathbf{G}(B \otimes D^{*+}ln) |_{q^{2} = m_{h}^{2}}$$

Testing Factorization (Class-1 Decays)

Branching Ratios (CLEO data, fit to dG/dq₂(B®D^(*)In))

	B® D*	BRD	Factorization
B ⁰ ® D ^(*) p ⁺	1.18+/-0.21	0.94+/-0.30	1.22+/-0.15
B ⁰ ® D ^(*) r ⁺	2.92+/-0.70	2.63+/-0.88	3.26+/-0.42
B ⁰ ® D ^(*) a ₁ +	3.8+/-1.0		3.0+/-0.5

Polarization

D*+ +	Γ[/Γ (%)
ρ-	87.8±5.3
ρ'-	63 ± 9
D_{S}^{-}	50.6±13.9±3.6

Sectorization Prediction (1 σ) Region $q^2 = M_{\rho'}^2$ $q^2 = M_{\rho'}^2$ $q^2 = M_{\rho'}^2$ $q^2 = M_{\rho'}^2$ $q^2 = M_{D_s}^2$ $q^2 = M_{D_s}^2$ $q^2 = M_{D_s}^2$ $q^2 = M_{D_s}^2$

Heavy Flavor 9

More factorization tests

- CLEO found (hep-ex/0103021) $B(B^{-} \to D^{*+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}) = (1.72 + /-0.14 + /-0.24)\%$
- Ligeti, Luke, Wise (PL B507 142 2001) compare invariant 4π mass spectrum to τ⁻→ν π⁺π⁻π⁻π⁰ data
- Using factorization they find good agreement up to $m_{4\pi}^2 < 2.9 \text{ GeV}^2$
- Good factorization test if decay is dominated by class-1 B->D* transition

Klaus Honscheid, Ohio State University (p18)

Is the LLW factorization test valid?

 $B(B^{0} \rightarrow D^{*0} \pi^{+} \pi^{-} \pi^{+} \pi^{-}) = (0.30 + /-0.07 + /-0.06)\%$ Large $D^{**+} \rightarrow D^{*0} \pi^{+}$ component

Klaus Honscheid, Ohio State University (p19)

Heavy Flavor 9

More factorization tests

What is known about a_1 and a_2 ?

• Using class-1 decays $\overline{B}^0 \otimes D^{(*)+}X^-$ and a model by Neubert et al we find:

$$|a_1|_{\pi} \approx |a_1|_{\rho} \approx |a_1|_{a1} \approx |a_1|_{Ds} \approx |a_1|_{Ds^*} \approx 1.0 - 1.2$$

• Using class-2 decays $B^{(*)}K^{(*)}$ and a model by Neubert et al we find:

 $|a_2|_{\Psi} \approx 0.2 - 0.3$

- Using class-3 decays B⁻®D^{(*)0}X⁻ and a model by Neubert et al we find: $a_2/a_1 \approx 0.22 + /-0.04 + /-0.06$
- Search for the missing piece:Color-suppressed B®D decays

Color Suppressed B Decays

- Full CLEO II, II.5 data sample
 9.7 x 10⁶ BB Events
- Select high momentum π⁰, D^{(*)0}
 p > 1.8 GeV
- Suppress (jet-like) continuum background
- Unbinned ML fit in 4 variables:
 - Beam constrained mass
 - Engery difference
 - Event shape (Fisher Disc.)
 - Helicity angle of B

Klaus Honscheid, Ohio State University (p22)

Color Suppressed B Decays II

Color Suppressed B Decays III

Color Suppressed B Decays IV

Isospin Amplitudes and Strong Phases

- B **®** $D\pi$ and B **®** $D^*\pi$ isospin multiplets are now complete.
- Determine phase difference between A_{1/2} and A_{3/2} amplitudes (e.g. Rosner hep-ph/9903543)

$$|\mathbf{A}_{3/2}|^2 = \mathbf{G} \left(\mathbf{B}^+ \otimes \overline{\mathbf{D}}^0 \mathbf{p}^+ \right) \quad |\mathbf{A}_{1/2}|^2 = \frac{3}{2} \left[\mathbf{G} \left(\mathbf{B}^0 \otimes \mathbf{D}^- \mathbf{p}^+ \right) + \mathbf{G} \left(\mathbf{B}^0 \otimes \overline{\mathbf{D}}^0 \mathbf{p}^0 \right) \right] - \frac{1}{2} \mathbf{G} \left(\mathbf{B}^+ \otimes \overline{\mathbf{D}}^0 \mathbf{p}^+ \right)$$

Relative phase between isospin amplitudes

$$\cos \mathbf{d}_{1} = \frac{3\mathbf{G}(\mathbf{B}^{0} \otimes \mathbf{D}^{-}\mathbf{p}^{+}) + \mathbf{G}(\mathbf{B}^{+} \otimes \overline{\mathbf{D}}^{0}\mathbf{p}^{+}) - 6\mathbf{G}(\mathbf{B}^{0} \otimes \overline{\mathbf{D}}^{0}\mathbf{p}^{0})}{4|\mathbf{A}_{1/2}\mathbf{A}_{3/2}|}$$

- $\cos \delta_{\rm l}({\rm D}\pi) = 0.90 + -0.09 \quad , \quad \cos \delta_{\rm l}({\rm D}^*\pi) \ 0.91 + -0.08$
- Phases around 25° but still consistent with 0 (c.f ~90° in charm)

Conclusions

Inclusive radiative penguins

- $B(b \rightarrow s\gamma) = (3.21 + / -0.43 + / -0.27 + 0.18 0.10) \times 10^{-4}$
- CP Asymmetry $-0.27 < A_{cp} < 0.10$ (90% CL) [PRL 86 (2001) 5661]
- First CLEO III results, many more to come
- Hadronic B Decays still interesting
 - Extended Factorization tests

• $B(\bar{B}^{0} \rightarrow D^{*0} \pi^{+} \pi^{-} \pi^{+} \pi^{-}) = (0.30 + / -0.07 + / -0.06)\%$

- First observation (with BELLE) of color-suppressed B®D decays
 - $B(\overline{B}^0 \otimes D^0 \mathbf{p}^0) = (2.6 + / -0.3 + / -0.6) \times 10^{-4}$
 - $B(\bar{B}^0 \otimes D^{*0}p^0) = (2.0 + / -0.5 + / -0.7) \times 10^{-4}$
 - |a₂| process dependence begins to show
 - Strong phases (still) consistent with 0

Additional Transparencies

Klaus Honscheid, Ohio State University (p28)

II. Polarization Tests $\Gamma_L / \Gamma(B^\circ > D^* p^+) = 90 + / -7 + / -5\% \Leftrightarrow \Gamma_L / \Gamma(B^\circ - > D^* l^+ v) = 88$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	I. Branching Ratio Tests Input: π decay constant semileptonic decay r $\Gamma(B^0 \rightarrow D^* \cdot \pi^+) = 6 \pi^2 c_1^2 f_{\pi}^2 N$	Semileptonic (e.g. B->D*·I+v) $A = G_F/1.4 V_{cb} < v \gamma_{\mu}(1-\gamma_5 > $ Hadronic (+Factorization) (e.g. B->D*·Š*) $A = G_F/1.4V_{cb} < \pi (du) 0> $	Hadronic Decays and Factorization
) = 88 %	"Theory" 22+/-0.15 26+/-0.42 1.0+/-0.5	t ay rate $1^2 f_{\pi}^{2} V_{ud} ^2$		661

The D*+ $\pi^+\pi^-\pi^-\pi^0$ Final State

- (a) ΔE sidebands |3.0 - 5.0 σ |
- (b) ∆E around 0 ±2.0σ fit with sideband shape fixed & norm allowed to float
- Also signals in $D^{\circ} \rightarrow K^{-}\pi^{+}\pi^{\circ}$ and $D^{\circ} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$ (not shown)
- Fit B yield in bins of M(4π)

Summary & Discussion of Rates

Mode	Br (%)	# of events
$\underline{B}^{\circ} \rightarrow D^{*+} \pi^{\circ} \pi^{+} \pi^{-} \pi^{-}$	$1.72 \pm 0.14 \pm 0.24$	1230 ± 70
$\underline{B}^{\circ} \rightarrow D^{*+} \omega \pi^{-}$	$0.29 \pm 0.03 \pm 0.04$	136±15
$\overline{B}^{\circ} \rightarrow D^{+} \omega \pi^{-}$	$0.28 \pm 0.05 \pm 0.03$	91±18
$B^- \rightarrow D^{*\circ} \pi^{\circ} \pi^{+} \pi^{-} \pi^{-}$	$1.80\pm0.24\pm0.25$	195±26
$B^- \rightarrow D^* \circ \omega \pi^-$	$0.45 \pm 0.10 \pm 0.07$	26± 6
$B^{-} \rightarrow D^{\circ} \omega \pi^{-}$	$0.41 \pm 0.07 \pm 0.04$	88±14

