BTeV Physics Reach

LHC 2003 Symposium K. Honscheid Ohio State University

B Physics Today

CKM Picture okay

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

CP Violation observed
 sin(2β) = 0.734 +/- 0.054
 No conflict with SM

Surprising B Physics

Year	Item	Theory Prediction	~Value	# B′s
1983	τ _b	Too small to be observed ~ < 0.1ps	1 ps	2x10 ⁴
1987	Bº-Bº mixing	Too small to see (~ < 1%) as m_{top} is believed to be ~30 GeV	20%	2x10 ⁵
2001	sin(2β)	No direct prediction, but consistent with other measurements	3/4	107
	α,β,γ	$1 \stackrel{\uparrow}{\longrightarrow} \eta \qquad $	>10 ¹¹ b h (including	adrons B _s)

B Physics at Hadron Colliders

The Tevatron as b (and c) source

b cross section ~100 μb, c cross section ~1000 μb

2x10-3

 2×10^{32}

- b fraction
- Inst. Luminosity
- Bunch spacing 132 ns (396 ns)
- Int./crossing <2> (<6>)
- Solution Luminous region $\sigma_z = 30$ cm
- Forward Geometry

2x10¹¹ b pairs/year

The BTeV Detector

Pixel Detector

RICH Detector

PbWO₄ EM Calorimeter

10500 crystals 220 mm long, 28x28 mm²

 $\sigma(\eta -> \gamma \gamma) \sim 5 \text{ MeV}$

 $\sigma(\pi \rightarrow \gamma \gamma) \sim 3 \text{ MeV}$

60 pixel planes
inside magnet
σ = 5-10 μm

Muon

Chamber

CLEO/BaBar/BELLE-like performance in a hadron Collider environment!

Electromagnetic Calorimeter

Efficiencies and Tagging

For a requirement of at least 2 tracks detached by more than 6σ, we trigger on only 1% of the beam crossings and achieve the following trigger efficiencies for these states (<2> int. per crossing):

Decay	efficiency(%)	Decay efficiency(9	%)
$B \rightarrow \pi^+\pi^-$	63	$B^{o} \rightarrow K^{+}\pi^{-}$ 63	
$B_s \rightarrow D_s K$	74	$B^{o} \rightarrow J/\psi K_{s}$ 50	
$B^- \rightarrow D^{\circ}K^-$	70	$B_s \rightarrow J/\psi K^*$ 68	
$B^- \rightarrow K_s \pi^-$	27	$B^{o} \rightarrow K^{*} \gamma$ 40	

- $\epsilon = \text{efficiency; } D = \text{Dilution or } (N_{\text{right}} N_{\text{wrong}})/(N_{\text{right}} + N_{\text{wrong}})$
- Effective tagging efficiency $\equiv \varepsilon D^2$
- Extensive study for BTeV uses
 - Opposite sign K*
 - Jet Charge
 - Same side π[±] (for B^o) or K[±] for (B_s)
 - Leptons

Ohio State

• Conclusion: $\varepsilon D^2 (B^\circ) = 0.10$, $\varepsilon D^2 (B_s) = 0.13$, difference due to same side tagging

The Physics Goals

There is New Physics out there:

- Baryon Asymmetry of Universe & by Dark Matter
- Hierarchy problem
- Plethora of fundamental parameters
- 🧶 ...

BTeV is in a unique position to:

- Perform precision measurements of CKM Elements with small model dependence.
- Search for New Physics via CR phases
- Search for New Physics via Rare Decays
- Help interpret new results found elsewhere (LHC, neutrinos)
- Complete a broad program in heavy flavor physics
 - Weak decay processes, B's, polarization, Dalitz plots, QCD...
 - Semileptonic decays including Λ_b
 - b & c quark Production
 - Structure: B baryon states
 - B_c decays

Part 1: Is the CKM Picture correct?

- Use different sets of measurements to define apex of triangle (adopted from Peskin)
- Also have $\varepsilon_{\rm K}$ (CP in K_L system)

Measuring a Using B^o®rp ® p⁺p⁻p⁰

 A Dalitz Plot analysis gives both sin(2α) and cos(2α) (Snyder & Quinn)

Measured branching ratios are:

- $B(B^- \to \rho^0 \pi^-) = ~10^{-5}$
- Solution B(B° $\to \rho^- \pi^+ + \rho^+ \pi^-) = \sim 3 \times 10^{-5}$
- $B(B^{o} \rightarrow \rho^{o} \pi^{o}) < 0.5 \times 10^{-5}$
- Snyder & Quinn showed that 1000-2000 tagged events are sufficient
- Not easy to measure
 π⁰ reconstruction

Not easy to analyze

9 parameter likelihood fit.

Dalitz Plot for $B^o \rightarrow \rho \pi$

Yields for B^o®rp

Our Estimate of Accuracy on a

• Geant simulation of $B^{\circ} \rightarrow \rho \pi$, (for 1.4x10⁷ s)

B_{s} Mixing (V_{td}/V_{ts})

BTeV reaches sensitivity to x_s of 80 in 3.2 years

Measuring C

In the SM the phases and magnitudes are correlated:

$$\sin \chi = \lambda^2 \frac{\sin\beta \sin\gamma}{\sin(\beta + \gamma)}$$

Silva & Wolfenstein (hep-ph/9610208) Aleksan, Kayser & London

λ = |V_{us}| = 0.2205±0.0018
 χ is the phase of V_{ts} -> B_s Mixing
 Good: B_s->J/ψφ plus non-trivial angular analysis
 Better: B_s -> CP eigenstate such as B_s→J/ψη^('), η→γγ, η'→ργ

Measuring C II

BTeV can reconstruct η and η'

Yield in one year

- $B_s \rightarrow J/\psi \eta$: 2,800 events with S/B = 15
- $B_s \rightarrow J/\psi \eta'$: 9,800 events with S/B = 30
- Error on $sin(2\chi) = 0.024$
- With $\chi \sim 2^{\circ}$ a precision measurement will require a few years.

Physics Reach (CKM) in 10⁷ s

Reaction	<i>B</i> (В) (x10 ⁻⁶)	# of Events	S/B	Parameter	Error or (Value)
$B_s \rightarrow D_s K^-$	300	7500	7	γ - 2χ	8º
$B_s \rightarrow D_s \pi^-$	3000	59,000	3	X _s	(75)
$B^{o} \longrightarrow J/\psi K_{S} J/\psi \rightarrow \ell^{+} \ell^{-}$	445	168,000	10	sin(2β)	0.017
B° \rightarrow J/ ψ K°, K° $\rightarrow \pi \ell \nu$	7	250	2.3	cos(2β)	~0.5
B ⁻ →D ^o (K ⁺ π ⁻) K ⁻	0.17	170	1		
B ⁻ →D ^o (K ⁺ K ⁻) K ⁻	1.1	1,000	>10	γ	13º
$B_s \rightarrow J/\psi \eta$,	330	2,800	15		
$B_s \rightarrow J/ψ$ η'	670	9,800	30	sin(2χ)	0.024
$B^{o} \rightarrow \rho^{+} \pi^{-}$	28	5,400	4.1		
$B^{o} \rightarrow \rho^{o} \pi^{o}$	5	780	0.3	α	~40
Reaction	<i>B</i> (B) (х10 ⁻⁶)	# of Events	S/B	Parameter	Error
$B^- \rightarrow K_S \pi^-$	12.1	4,600	1		<4º +
$B^{o} \rightarrow K^{+} \pi^{-}$	18.8	62,100	20	γ	Theory err.
$B^{o} \rightarrow \pi^{+}\pi^{-}$	4.5	14,600	3	Asymmetry	0.030
$B^{o} \rightarrow K^{+} K^{-}$	17	18,900	6.6	Asymmetry	0.020

Part II: Search for New Physics

For a nice overview see: S. Stone "BTeV Physics" at http://doe-hep.hep.net/P5StoneMarch2003.pdf

First Example: Supersymmetry

- Supersymmetry: In general 80 constants & 43 phases
 MSSM: 2 phases (Nir, hep-ph/9911321)
- New Physics in B^o mixing: θ_D , B^o decay: θ_A , D^o mixing: $\phi_{K\pi}$

New Physics

Rare b Decays

Search for New Physics in Loop diagrams

- New fermion like objects in addition to t, c or u
- New Gauge-like objects in addition to W, Z or g

Inclusive Rare Decays including

- b→sγ
- $b {\rightarrow} d\gamma$
- $b \rightarrow s\ell^+\ell^-$

Exclusive Rare Decays such as

- $B \rightarrow \rho \gamma, K^* \gamma$
- B→K*ℓ+ℓ-Dalitz plot & polarization

Yield, S/B for Rare b Decays

Reaction	B(10 ⁻⁶)	Signal	S/B	Physics
B°→K*°µ⁺µ⁻	1.5	2530	11	Polarization; Rate
B⁻→K⁻µ⁺µ⁻	0.4	1470	3.2	Rate
b→sµ+µ-	5.7	4140	0.13	Rate; Wilson coefficents

Polarization in B^o®K*^on⁺n⁻

BTeV data compared to Burdman et al calculation

Dilepton invariant mass distributions, forward-backward asymmetry discriminate among the SM and various supersymmetric theories. (Ali, Lunghi, Greub & Hiller, hep-ph/0112300)

• One year for $K^*\ell^+\ell^-$, enough to determine if New Physics is present

Second Example: Extra Dimensions

- Aranda & Lorenzo Diaz-Cruz, "Flavor Symmetries in Extra Dimensions" (hep-ph/0207059) (Buras et al. hep-ph/0212143)
- Extra spatial dimension is compactified at scale 1/R = 250 GeV on up
- No effect on $|V_{ub}/V_{cb}|$, $\Delta M_d/\Delta M_s$, sin(2 β)

Summary

- Heavy quark physics at hadron colliders provides a unique opportunity to
 - measure fundamental parameters of the Standard Model with no or only small model dependence
 - discover new physics in CP violating amplitudes or rare decays.
 - interpret new phenomena found elsewhere (e.g. LHC)

Some scenarios are clear others will be a surprise

- This program requires a general purpose detector like BTeV with
 - an efficient, unbiased trigger and a high performance DAQ
 - a superb charged particle tracking system
 - good particle identification
 - excellent photon detection

Changes wrt Proposal in Event Yields & Sensitivities

We lost one arm, factor = 0.5

- We gained on dileptons
 - From RICH ID

Ohio State

- So in proposal we used only $\mu^+\mu^-$, now we include eter
- factor = 2.4 (or 3.9), depending on whether analysis used single (dilepton) id
- We gained on DAQ bandwidth, factor = 1.15
- Gained on εD^2 for B_s only, factor = 1.3

Mode	Yield	Yield	Yield	Quantity	Quantity
	proposal	factor	one-arm	Err(prop) (εD ²)	Err(1arm) (ϵD^2)
$B^{o} \rightarrow J/\psi K_{s}$	80,500	0.5*3.9*	168,000	sin(2β)	sin(2β)
		1.15=2.24		0.025 (0.10)	0.017 (0.10)
$B_s \rightarrow J/ψη^{(\prime)}$	9,940	0.5*2.4*	12,600	sin(2χ)	$sin(2\chi)$
		1.15=1.38		0.033 (0.10)	0.024 (0.13)
$B_c \rightarrow D_c K^-$	13,100	0.5*1.15	7,500	γ	γ
5 5		=0.58		6 ° (0.10)	<mark>8</mark> ° (0.13)