First Results from a Test Bench for Very High Resolution Small Animal PET Using Solid-State Detectors

Klaus Honscheid

for

The CIMA Collaboration

The Ohio State University Columbus, Ohio USA

The University of Michigan Ann Arbor, Michigan USA

> CERN Geneva, Switzerland

Instituto de Física Corpuscular / CSIC Valencia, Spain

> Institut Jozef Stefan Ljubljana, Slovenia

> > Ideas ASA Oslo, Norway

Resolution Limitations for Conventional PET

Inter-Crystal Scattering

Scintillator

- Multiple Interactions
- Energy deposited over a volume
- ~ 1 cm mean path

Depth of Interaction Uncertainty

- Penetration into crystals widens LOR
 - Best Resolution ~ 1-2 mm

Compton PET Concept

Si-Si Uses tw**Sesteisivity**dettectors: ow reso**FUNDM**and3AigM

Low respinction detectors can be conventionality EP-01% small animal PEWEMan-7290 µm

BGO-BGO High resolutionvideteetors stack of **FWHHMD=-\$645**sitime solid-state detectors

* Not including effects of annihilation photon acolinearity and positron range Resolution to challenge positron range

Compton Pet Test Bench

Silicon detector

BGO detector

4.5 cm \times 2.2 cm and 1 mm thick 32×16 (512) pads, 1.4 mm \times 1.4 mm pixel size Energy Resolution 1.39 keV FWHM for Tc 99m

5.3 cm × 5 cm and 3 cm thick 8×4 array, 12.5 mm × 5.25 mm crystal size Energy Resolution 22% FWHM for Na-22

Setup and Alignment

BGO detectors, electronics not shown

Images of Two Point Sources

Compton PET

MicroPET R4

ML-EM Image reconstruction with **Si-Si** coincidence events only

Compton PET: Intrinsic Resolution

Needle 25G (ID = 0.254 mm, OD = 0.5mm, SS_steel wall = 0.127 mm)

Image Resolution = 700 μm FWHM

CIMA Collaboration Klaus Honscheid, Ohio State University

2005 IEEE MIC Conference

Compton PET: Resolution Uniformity

Summary of Current Situation

- Both simulation as well as experimental results confirm Compton (or Silicon) PET concept.
- Testbench resolution 700 µm FWHM better than the resolution we were able to achieve with a commercial mircoPET R4 system using the same test object and even better reconstruction software.
- Uniform resolution over the entire Field of View.

Next Steps: Use the test setup to study some of the limitations of this concept.

Limitation 1: Silicon Detector Time Resolution

FWHM = 78.7 ns (due to Time Walk) Timing window = 200 ns

[see Poster J03-24 for more details]

Measurement of Silicon Detector Time Resolution

Time Walk: LE versus CFD

Limitation 2: Positron Range Distribution

Positron Annihilation Point Distribution

Distribution of Positron Range

[by Levin and Hoffman]

	F-18	C-11	N-13	O-15	
Max energy (MeV)	0.64	0.97	1.19	1.72	
Mean energy (MeV)	0.25	0.39	0.49	0.74	
FWHM (mm)	0.10	0.19	0.28	0.50	
FWTM (mm)	1.03	1.86	2.53	4.14	

Spatial resolution (FWHM [mm])

Event	Geometric		Overall					
	+ Acolinearity	F-18	C-11	N-13	O-15			
Si-Si	0.241	0.393	0.443	0.492	0.553			
Si-BGO	0.816	1.062	1.261	1.419	1.742			
BGO-BG	O 1.458	1.977	2.270	2.490	3.069			

CIMA Collaboration Klaus Honscheid, Ohio State University

2005 IEEE MIC Conference

Revisiting an Old Idea

- Embed PET FOV in strong magnetic field (Raylman, Hammer, etc.)
- Positrons spiral and range is reduced transverse to B-field vector
- Not very effective for F-18 positrons
- Potentially useful for emitters with higher endpoint energies (I-124, Tc-94m, etc.) Increasingly being used in small animal imaging

Simulated Range Reduction for I-124

Effect on Image Quality

Axially constant object transverse to B-field

Experimental Verification

Combine Compton PET with 8 T MRI system at OSU Medical School

Compton PET Summary

- In order to achieve sub-millimeter spatial, a small animal PET based the Compton PET concept was developed.
- Simulation results demonstrated sub-millimeter spatial resolution of the Compton PET (0.4 mm FWHM from Si-Si and 1.0 mm FWHM from Si-BGO).
- Experimental results with a prototype setup using 1.4 mm x 1.4 mm x 1 mm silicon pads verified very high resolution (700 μm FWHM).
- Experimental results demonstrate the Si pad detector time resolution can be better than 10 ns.

and Outlook

- Test setup to operate Compton PET prototype in an 8 T MRI system in preparation.
- Development of a new ASIC with significantly reduced time walk jitter underway.

Acknowledgments

D. Burdette S. S. Huh G. Llosa W. L. Rogers

E. Chesi H. Kagan

M. Mikuz

A. Studen (CIMA Collaboration)

N. H. Clinthorne C. Lacasta S.-J. Park P. Weilhammer

Funded in part by DOE and NIH

Additional Transparencies

Scatters and DOI Uncertainty Problem in a BGO PET

- EGS4 Monte Carlo simulations
- BGO PET (17.6 cm I.D. 16 cm length segmented with 3 mm x 3mm x 20 mm crystals)
- Point sources at 0, 3, 6, 9, 12, 15, and 18 mm from center of FOV
- Filtered back projection reconstruction

True first interaction position

Centroid of scattered E distribution

DOI uncertainty included in *both* images

Energy Resolution of Si Pad Detector

Am-241 (59.5 keV)

FWHM = 1.49 keV (2.5 %)

Si(OH1) + Source(Tc-99m) 2000 1800 1600 1400 1200 FWHM = 1.3864 keV 1000 Counts 800 600 400 200 20 40 60 120 160 180 80 100 140 Energy (keV)

Tc-99m (140.5 keV)

FWHM = 1.39 keV (0.99%) Pb Kα1 = 74.969 keV, Kα2 = 72.804 keV, Kβ1 = 84.936 keV, and Compton edge = 49.8 keV

CIMA Collaboration Klaus Honscheid, Ohio State University

2005 IEEE MIC Conference

Simulated ComptonPet Image

- Combined with Maximum likelihood Expectation Maximization (ML-EM)
- Iteration number = 200

Si-Si (160k) + Si-BGO (1.4M) + BGO-BGO (3.1M)

Coincidence Events

Noise Equivalent Count Rate (NECR)

Compton Kinematics

Improvement of NECR using Compton Kinematics

Si-Si

Si-BGO

BGO-BGO

A = 0.1 mCi, Si = 5 ns FWHM, BGO = 1 e/ns,

E_W = ±50 %, T_W = 7 ns, A_W (Si-Si) = ±5 degree, A_W (Si-BGO) = ±7.5 degree

Improvement: Maximum 86 % for Si-Si and 36 % for Si-BGO at 5 mCi