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SUMMARY

Holm’s method and Hochberg’s method for multiple testing can be viewed as

step-down and step-up versions of the Bonferroni test. We show that both are

special cases of partition testing. The difference is that, while Holm’s method

tests each partition hypothesis using the largest order statistic, setting a critical

value based on the Bonferroni inequality, Hochberg’s method tests each partition

hypothesis using all the order statistics, setting a series of critical values based on

Simes’ inequality. Geometrically, Hochberg’s step-up method ‘cuts corners’ off
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the acceptance regions of Holm’s step-down method by making assumption on

the joint distribution of the test statistics. As can be expected, partition testing

making use of the joint distribution of the test statistics is more powerful than

partition testing using probabilistic inequalities. Thus, if the joint distribution

of the test statistics is available, through modelling for example, we recommend

partition step-down testing, setting exact critical values based on the joint dis-

tribution.

Some key words : Hochberg’s method; Holm’s method; Multiple testing; Parti-

tion testing; Step-down test; Step-up test.

1. INTRODUCTION

Holm’s (1979) step-down method and Hochberg’s (1988) step-up method for

multiple testing were both developed to control the Familywise Error Rate. Con-

trol of this is required in clinical trials where control of the False Discovery Rate

is inappropriate. We will discuss the problem with controlling the False Discovery

Rate in §7.

Whereas Holm’s method is thought of as a step-down version of the Bonferroni

test, and Hochberg’s method is thought of as a step-up version of the Bonferroni

test, we show in §3 and §4 that both are short cuts of what is now called partition

testing, as developed by Stefansson et al. (1988), Hayter & Hsu (1994), and

Finner & Strassburger (2002). Here short-cutting means skipping some of the

tests.

After illustrating geometrically that Hochberg’s step-up method ‘cuts corners’

off the acceptance regions of Holm’s step-down method by making some assump-

tion on the joint distribution of the test statistics, §5 shows even more powerful
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tests can be achieved by partition testing that computes exact critical values

from the joint distributions of the test statistics, if such joint distributions are

available, as is often the case when the data are modelled.

2. DESCRIPTION OF THE METHODS

Consider testing the family of hypotheses H0i, i = 1, . . . , k.

Let pi, i = 1, . . . , k, denote the sample p-values of tests for H0i, i = 1, . . . , k,

computed without multiplicity adjustment. Let [1], . . . , [k] denote the random

indices such that

p[1] ≤ · · · ≤ p[k].

That is, [i] is the anti-rank of pi among p1, . . . , pk.

Holm’s step-down method proceeds as follows.

Step 1. If p[1] < α/k, reject H0[1] and go to Step 2; otherwise stop.

Step 2. If p[2] < α/(k − 1), reject H0[2] and go to Step 3; otherwise stop.

· · ·
Step k. If p[k] < α, reject H0[k] and stop.

Hochberg’s step-up method proceeds as follows.

Step 1. If p[k] < α, reject H0[i], i = 1, . . . , k, and stop; otherwise go to Step 2.

Step 2. If p[k−1] < α/2, reject H0[i], i = 1, . . . , k − 1, and stop; otherwise go

to Step 3.

· · ·
Step k. If p[1] < α/k, reject H0[i], i = 1, and stop.

Both control the Familywise Error Rate at level α in the sense that if ΘI =

3



{θ :
⋂

i∈I H0i is true} then

sup
θ∈ΘI

Pθ{Reject at least one H0i, i ∈ I} ≤ α, for all possible I.

Holm’s method is based on the Bonferroni inequality and is valid regardless of

the joint distribution of the test statistics.

Hochberg’s method is more powerful than Holm’s method, but the test statistics

need to be independent or have a distribution with multivariate total positivity

of order two or a scale mixture thereof for its validity (Sarkar, 1998).

3. PARTITION TESTING AND HOLM’S METHOD

Partition testing (Stefansson et al., 1988; Finner & Strassburger, 2002) is a

general principle for multiple testing. To illustrate this principle, consider testing

H0i : θi ≤ 0, i = 1, . . . , k. (1)

For testing (1), partition testing proceeds as follows.

Step P1. For each I ⊆ {1, . . . , k}, I 6= ∅, form H∗
0I : θi ≤ 0 for all i ∈ I and

θj > 0 for j /∈ I. There are 2k parameter subspaces and 2k − 1 hypotheses to be

tested.

Step P2. Test each H∗
0I at level α.

Step P3. For each i, infer that θi > 0 if and only if all H∗
0I with i ∈ I are

rejected, because H0i is the union of H∗
0I with i ∈ I.

Since the null hypotheses H∗
0I ’s are disjoint, at most one H∗

0I can be true. There-

fore, there is no need for multiplicity adjustment among the H∗
0I ’s for partition

testing controls the Familywise Error Rate strongly.

Take k = 3 for example. Step P1 partitions the parameter space Θ = {θ1, θ2, θ3}
into eight disjoint subspaces:

4



Θ1 = {θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0}
Θ2 = {θ1 ≤ 0 and θ2 ≤ 0 and θ3 > 0}
Θ3 = {θ1 ≤ 0 and θ2 > 0 and θ3 ≤ 0}

· · ·
Θ7 = {θ1 > 0 and θ2 > 0 and θ3 ≤ 0}
Θ8 = {θ1 > 0 and θ2 > 0 and θ3 > 0}

Step P2 tests each of

H∗
0{123} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0

H∗
0{12} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 > 0

H∗
0{13} : θ1 ≤ 0 and θ2 > 0 and θ3 ≤ 0

· · ·
H∗

0{2} : θ1 > 0 and θ2 ≤ 0 and θ3 > 0

H∗
0{3} : θ1 > 0 and θ2 > 0 and θ3 ≤ 0

at level α.

Step P3 infers that θi > 0 if and only if all H∗
0I involving θi ≤ 0 are rejected.

For simplicity, partition testing typically tests the following less restrictive hy-

potheses:

H0{123} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0

H0{12} : θ1 ≤ 0 and θ2 ≤ 0

H0{13} : θ1 ≤ 0 and θ3 ≤ 0

· · ·
H0{2} : θ2 ≤ 0

H0{3} : θ3 ≤ 0.

This still guarantees strong control of Familywise Error Rate because a level α

test for H0I is also a level α test for H∗
0I .
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Level α tests for H∗
0I are not unique. We now present conditions for these

tests that are sufficient for a short cut to be feasible to the partition testing. For

comparability with how Holm’s and Hochberg’s methods are usually presented,

we present the conditions in terms of the p-values pi, i = 1, . . . , k, each of which

is computed based on the marginal distribution of the ith test statistic. Suppose

the tests are chosen so that the following conditions hold.

Condition 1. The p-values pi, i = 1, . . . , k, remain the same for all H∗
0I .

Condition 2. The test for H∗
0I has the form of rejecting H∗

0I if mini∈Ipi < d|I|.

Condition 3. The critical values are such that d1 ≥ · · · ≥ dk.

Condition 1 ensures that the p-values pi, i = 1, . . . , k, are not recomputed

as I changes. An example of the p-values being recomputed and thus violating

Condition 1 is when scaling of the test statistics, by mean squared error for

example, is done based on data for treatments with indices in I only.

Let piI , i ∈ I ⊆ {1, 2, . . . , k}, be the subset of the p-values with indices in I.

Let [1]I , . . . , [|I|]I , where |I| is the number of elements in I, denote the random

indices such that

p[1]I ≤ · · · ≤ p[|I|I ]. (2)

With k = 3 for example, we are supposing partition testing has the form

Reject H∗
0{123} if p[1]{1,2,3} < d3

Reject H∗
0{12} if p[1]{1,2} < d2

Reject H∗
0{13} if p[1]{1,3} < d2

· · ·
Reject H∗

0{2} if p[1]{2} < d1

Reject H∗
0{3} if p[1]{3} < d1.
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Then short-cutting partition testing is possible because if p[1]I < d|I| then

p[1]J < d|J | for all J 3 [|1|I ], |J | ≤ |I|.
For example, if p[1] > dk, then H0{1,...,k} cannot be rejected so no individual H0i

will be rejected. One should thus accept H∗
0[1] and stop.

If the smallest p-value p[1] is smaller than the smallest critical value dk, then

every H∗
0J , J 3 [1], will be rejected and thus H0[1] can be rejected.

We therefore move on to compare the second-smallest p-value p[2] with the

second-smallest critical value dk−1. If p[2] < dk−1, then all H∗
0J , J 3 [2], will be

rejected since p[1]J ≤ p[2], J 3 [2], so H0[2] can be rejected, and so on.

The short cut is thus in the form of a step-down test, as follows.

Step 1. If p[1] < dk, reject H0[1] and go to Step 2; otherwise stop.

Step 2. If p[2] < dk−1, reject H0[2] and go to Step 3; otherwise stop.

· · ·
Step k. If p[k] < d1, reject H0[k] and stop.

If one uses the Bonferroni test to test each H∗
0I , rejecting H∗

0I if mini∈Ipi < α/|I|,
then Conditions 1 − 3 are satisfied and the resulting step-down test is exactly

Holm’s method.

4. HOCHBERG’S METHOD AS A PARTITIONING TEST

Suppose the tests for H∗
0I are chosen so that Conditions 1′ − 3′ hold.

Condition 1′. The p-values pi, i = 1, . . . , k, remain the same for all H∗
0I .

Condition 2′. The test for H∗
0I has the form of rejecting H∗

0I if p[i]I < ci+(k−|I|)

for some i, i = 1, . . . , |I|.
Condition 3′. The critical values are such that c1 ≤ · · · ≤ ck.

In other words, unlike the minimum p-value test in the previous section, we
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now consider tests based on all ordered p-values, using a common set of critical

values. With k = 3, for example, we are supposing that the partition test has

the following form

Reject H∗
0{123} if p[1]{1,2,3} < c1 or p[2]{1,2,3} < c2 or p[3]{1,2,3} < c3

Reject H∗
0{12} if p[1]{1,2} < c2 or p[2]{1,2} < c3

Reject H∗
0{13} if p[1]{1,3} < c2 or p[2]{1,3} < c3

· · ·
Reject H∗

0{2} if p[1]{2} < c3

Reject H∗
0{3} if p[1]{3} < c3

Then short-cutting partition testing is possible because if p[i]I < ci+(k−|I|) then

not only is H∗
0I rejected but every H∗

0J with J 3 [i]I , |J | < |I|, J not contain-

ing at least one of [i + 1]I , . . . , [|I|]I is rejected as well because p[i]I is one of

p[i+1]J , . . . , p[|J |]J and ci+(k−|I|) ≤ ci+(k−|J |).

For example, if the largest p-value p[k] is smaller than the largest critical value

ck, every H∗
0I will be rejected since all p[|I|I ] ≤ p[k] and thus all H0i will be rejected.

If p[k] > ck, then H∗
0[k] will be accepted and thus the corresponding H0[k] cannot

be rejected. We therefore move on to compare the second-largest p-value p[k−1]

with the second-largest critical value ck−1. If p[k−1] < ck−1, then all H∗
0J , for

J containing any of [1], . . . , [k − 1], will be rejected since for such J p[|J |−1]J ≤
p[k−1] < ck−1. Thus, all H0i except H0[k] can be rejected.

If p[k] > ck and p[k−1] > ck−1, then H∗
0{[k−1],[k]} will be accepted and thus neither

H0[k] nor H0[k−1] can be rejected. We therefore move on to compare the third-

largest p-value p[k−2] with the third-largest critical value ck−2. If p[k−2] < ck−2,

then all H∗
0J , for J containing any of [1], . . . , [k−2], will be rejected since for such
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J p[|J |−2]J ≤ p[k−2] < ck−2. Thus all H0i except H0[k] and H0[k−1] can be rejected.

And so on. The short cut is in the form of a step-up test, as follows.

Step 1. If p[k] < ck, reject all H0[i] and stop; otherwise go to Step 2.

Step 2. If p[k−1] < ck−1, reject H0[1], . . . , H0[k−1] and stop; otherwise go to Step

3.

· · ·
Step k. If p[1] < c1, reject H0[1] and stop.

Consider testing each partition hypothesis H∗
0I using Simes’ (1986) test:

reject H∗
0I if p[i]I < iα/|I| for some i. (3)

Simes’ test is a level α test for H0I and therefore for H∗
0I as well when the

test statistics are independent (Simes, 1986) or, more generally, when the test

statistics have a distribution with the multivariate total positivity of order two

property or a scale mixture thereof (Sarkar, 1998). Therefore, partition testing

using Simes’ test controls the Familywise Error Rate strongly at α. However,

partition testing using Simes’ test, which is in essence Hommel’s (1988) test, is

not in the form of Conditions 1′ − 3′, and does not allow a step-up short cut.

Instead of Simes’ test, therefore, consider testing each H∗
0I using what we call

the Simes-Hochberg test:

reject H∗
0I if p[i]I <

α

|I| − i + 1
for some i. (4)

The Simes-Hochberg test (4) is more conservative than Simes’ test (3) because

α

|I| − i + 1
≤ iα

|I| , i = 1, . . . , |I|. (5)

Therefore partition testing using the Simes-Hochberg test also controls the Fam-

ilywise Error Rate strongly at α. This partition test is in the form of Conditions
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1′ − 3′ and thus allows a step-up short cut, which is exactly Hochberg’s step-up

method.

5. GEOMETRY OF HOCHBERG’S STEP-UP METHOD

Using k = 2 as an example, we will show geometrically Hochberg’s step-up

method ‘cuts corner’ off Holm’s step-down method.

Fig. 1 (c) and (d) show the common rejection regions of partition testing for

H∗
0{1} and H∗

0{2}, based on the Bonferroni test and the Simes-Hochberg test. Fig. 1

(a) shows the rejection regions of partition testing H∗
0{12} based on the Bonferroni

test, while Fig. 1 (b) shows the rejection regions of partition testing H∗
0{12} based

on the Simes-Hochberg test.

To see how a short cut is feasible for partition testing based on the Bonferroni

test, take p1 < p2 for example; that is, look at the rejection regions above the

45-degree line in Fig. 1 (a), (c) and (d). If the sample p-values fall inside the

rejection region in Fig. 1 (a), then we know for certain that they will fall inside

the rejection region in Fig. 1 (c) because the rejection region for H∗
0{1} contains

those for H∗
0{12}. The test for H∗

0{1} can therefore be skipped if H∗
0{12} is rejected,

and only H∗
0{2} needs to be tested next. Therefore, the number of tests reduces

from 2k − 1 = 3 to k = 2. The resulted stepwise short cut is Holm’s step-down

method, with rejection regions shown in Fig. 2 (a).

Similarly, to see how a short cut is feasible for partition testing based on the

Simes-Hochberg test, suppose p1 < p2 and look at Fig. 1 (b), (c) and (d). Not

only is the rejection region in Fig. 1 (b) contained by that in Fig. 1 (c) but also

part of it, the triangle defined by (0, 0), (0, α) and (α, α), is the intersection of

the rejection regions in Fig. 1 (c) and (d). This is because the Simes-Hochberg
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tests in partition testing satisfy the Conditions 1′ − 3′ in which a common set

of the critical values are used. Consequently, the rejection region in Fig. 1 (b)

can be partitioned into two parts, the triangle defined by (0, 0), (0, α) and (α, α)

and the rectangle defined by (0, α), (0, 1), (α/2, 1) and (α/2, α). If the sample

p-values fall inside the triangle, then we know for certain that they will fall inside

the rejection regions in both Fig. 1 (c) and (d). The tests for both H∗
0{1} and

H∗
0{2} can therefore be skipped, and both H01 and H02 can be rejected. If the

sample p-values fall inside the rectangle, then we know for certain that they will

fall inside the rejection regions in Fig. 1 (c) but outside the rejection region in

Fig. 1 (d), so the tests for both H∗
0{1} and H∗

0{2} can be skipped, and only H01

can be rejected. Therefore, the number of tests reduces from 2k−1 = 3 to k = 2.

The resulting stepwise short cut is Hochberg’s step-up method, with rejection

regions shown in Fig. 2 (b).

Comparing Fig. 2 (a) and (b), we see that the difference between Holm’s and

Hochberg’s methods lies in the corner of the square defined by (0, 0), (0, α),

(α, 0) and (α, α). That is, Hochberg’s step-up method ‘cuts a corner’ off Holm’s

step-down method.

6. COMPARING STEP-UP TESTS WITH STEP-DOWN TESTS

Since the Simes-Hochberg test cuts corners off the acceptance region of the Bon-

ferroni test, Hochberg’s step-up method is uniformly more powerful than Holm’s

step-down method. This phenomenon seems to have given rise to a misconception

that step-up methods are more powerful than step-down methods. We will show,

instead, that it is easy to construct a step-down method which is not dominated

by Hochberg’s step-up method, and which can also be easily shown to be con-
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servative for a wider class of test statistics distributions than Hochberg’s step-up

method.

Consider partition testing rejecting H∗
0I when p[1]I < 1− (1−α)

1
|I| . In essence,

this is a minimum p-value, or maximum statistic, test which computes its critical

values assuming the test statistics are independent. These tests satisfy Conditions

1− 3, so a step-down short cut, which we call the independence step-down test,

proceeds as follows.

Step 1. If p[1] < 1− (1− α)
1
k , reject H0[1] and go to Step 2; otherwise stop.

Step 2. If p[2] < 1− (1− α)
1

k−1 , reject H0[2] and go to Step 3; otherwise stop.

· · ·
Step k. If p[k] < α, reject H0[k] and stop.

Since 1− (1−α)
1
|I| > α/|I|, the independence step-down test is more powerful

than Holm’s step-down method. Figure 3 compares the rejection regions of H∗
0{1,2}

for the independence step-down test and Hochberg’s method. The horizontal line

shaded areas are the rejection regions of the independence step-down test, and the

vertical-line shaded areas are the rejection regions of Hochberg’s step-up method.

Clearly, neither dominates the other.

We can compare the strength of condition required for conservatism of the in-

dependence step-down test with that of Hochberg’s step-up test. For brevity, we

indicate this in the setting of one-sided tests with a multivariate normal distribu-

tion. By Slepian’s inequality, see Corollary A.3.1 of Hsu (1996), the independence

step-down test is conservative if the test statistics are nonnegatively correlated.

However, the requirement that their joint distribution has the multivariate to-

tal positivity of order two property is considerably stronger. A necessary and

sufficient condition for multivariate total positivity of order two is that the off-

diagonal elements of the inverse of the variance-covariance matrix all be nonpos-
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itive. Consider the factor decomposition of the variance-covariance matrix Σ as

Ω+λ1λ
′
1 + · · ·+λmλ′m, where Ω is a diagonal matrix and the λi’s are column vec-

tors. It is easy to give examples of Σ with covariances all positive whose inverses

have positive off-diagonal elements, even for m = 2. If, however, m = 1 and all

the elements of λ1 are nonnegative, then the joint distribution of the test statis-

tics indeed has the multivariate total positivity of order two property; see Fact

1.3 of Karlin & Rinott (1981) and Theorem 8.3.3 of Graybill (1983). However, for

such a joint distribution, exact critical values of maximum test statistics for H∗
0I

can be readily computed numerically, resulting in even more powerful step-down

tests.

Suppose that the test statistics are equally correlated and normally distributed

with correlations equal to 0.5 and variances equal to 1. An example of such a

scenario is multiple comparisons with a control in a clinical trial with a balanced

one-way design. Suppose that k = 3 and α = 0.05. The partitioning step-down

test taking the correlations among the test statistics into account is the step-

down version of Dunnett’s method in this case (Hsu, 1996, Ch. 3) and it has

critical values of 2.062, 1.916 and 1.645. In contrast, the critical values are 2.128,

1.960 and 1.645 for Hochberg’s step-up method and Holm’s step-down method.

There are also stepwise methods that use resampling techniques to take the joint

distribution of the test statistics into account; see for example van der Laan et

al. (2004).

7. A REAL DATA EXAMPLE

The following real data example shows that there are situations in which the

partition step-down test rejects while Hochberg’s step-up method does not, and
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vice versa.

In the efficacy trial of beta interferon Betaseron, as a treatment of the relapsing

form of multiple sclerosis, multiple clinical endpoints were under investigation;

see The IFNB Multiple Sclerosis Study Group (1993, 1995), Paty & Li (1993),

and the U.S. Governmental report at http://www.fda.gov/cder/foi/label/2003/

103471s5032lbl.pdf. We use 10% tests to compare high dose, 0.25mg, versus low

dose, 0.05mg, for several endpoints. The endpoints and corresponding p-values

are presented in Table 1.

Suppose we are interested in making simultaneous inferences in the first two

endpoints in Table 1, that is, in the mean changes in edss score and in Scipps

score. The sample p-values are p[1] = 0.051 and p[2] = 0.108.

The critical values of the partition step-down test based on the assumption of

independent endpoints are 1−
√

(1−α) = 1−
√

(1− 0.1) = 0.0513 and α = 0.1.

As discussed in § 6, such a test is conservative, and thus valid, for some cases

other than that of independent endpoints, such as the case of positively correlated

endpoints. In the first step of the partition step-down test, improvement in mean

change in Scripps score can be inferred because p[1] < 0.0513. In the second step,

p[2] > 0.1, so that no improvement in edss score can be inferred. Therefore, the

partition step-down test rejects in one of the endpoints and infers improvement

in Scripps score.

For Hochberg’s step-up method, the critical values are α/2 = 0.05 and α = 0.1.

In the first step of Hochberg’s step-up method, no improvement in either endpoint

can be inferred because p[2] > 0.1. In the second step, no improvement in Scripps

score can be inferred because p[1] > 0.05. Hochberg’s step-up method therefore

fails to infer any improvement.

These results are illustrated by the round dot in Fig. 3, indicating that the
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sample p-values fall inside the rejection regions of the partition step-down test

but outside the rejection regions of Hochberg’s step-up method.

Suppose we are interested in making simultaneous inferences in the last two

endpoints in Table 1, that is, in the median number of months for first on-study

exacerbation and the mean number of moderate/severe exacerbation days per

patient. The sample p-values are p[1] = 0.064 and p[2] = 0.097.

For the partition step-down test, no improvement in either of the endpoints

can be inferred because p[1] > 0.0513, so that the partition step-down test fails

to infer any improvement.

In the first step of Hochberg’s step-up method, improvement in both endpoints

can be inferred because p[2] < 0.1. Hochberg’s step-up method therefore rejects

in both endpoints and infers improvement in both the median number of months

for first on-study exacerbation and the mean number of moderate/severe exacer-

bation days per patient.

The results are illustrated by the the square dot in Fig. 3, indicating that the

sample p-values fall inside the rejection regions of Hochberg’s step-up method

but outside the rejection regions of the partition step-down test. The partition

step-down test therefore rejects neither, while Hochberg’s step-up method rejects

both and infers improvement in both endpoints.

Our example illustrates that, in general, neither step-down nor step-up tests

dominates the other. If both testing procedures are constructed based on mod-

elling to set exact critical values based on the joint distribution, sometimes parti-

tion step-down is more powerful than Dunnett-Tamhane step-up, and vice versa

on other occasions. However, testing procedures constructed without modelling

to exploit the correlation structure are in general inferior in power to their coun-

terparts based on modelling, regardless of the procedure being step-up or step-
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down.

Finally, we discuss why controlling False Discovery Rate is inappropriate in

clinical trials. Suppose there are m + 1 endpoints in a trial and the efficacy

in all of them is required to be demonstrated. If a set of m of the endpoints is

highly efficacious, such as H01, . . . , H0m among {H01,. . . , H0m+1} each having the

probability of rejection close to 1, then H0m+1 can be tested with a Type I error

rate higher than α while False Discovery Rate is still controlled at α. This can be

seen in the parameter configuration {H0m+1 is true; H01, . . . , H0m are false, and

so false that they will almost surely be rejected}. A testing procedure controlling

False Discovery Rate at α has

α = 0 +
1

m + 1
pr{m+1 rejections} ' 1

m + 1
pr{rejecting H0m+1}.

Here H0m+1 is tested at (m + 1)α. Finner & Roters (2001) provides detailed

examples.
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Table 1. Selected results of efficacy trial of Betaseron

Endpoint p-value

Mean change in edss score 0.108

Mean change in Scripps score 0.051

Median number of months for first on-study exacerbation 0.097

Mean number of moderate/severe exacerbation days per patient 0.064

edss, Expanded Disability Status Scale;

Scripps, Scripps Neurologic Rating Score.
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Figure 1: Rejection regions of partition testing with k = 2. (a) Rejection region
of the Bonferroni test for H∗

0{12}. (b) Rejection region of the Simes-Hochberg test

for H∗
0{12}. (c) Rejection region of the Bonferroni test and the Simes-Hochberg

test for H∗
0{1}. (d) Rejection region of the Bonferroni test and the Simes-Hochberg

test for H∗
0{2}.
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Figure 2: Rejection regions of Holm’s and Hochberg’s methods. (a) Rejection
regions of Holm’s step-down method. In region A both H01 and H02 are rejected.
Rectangle B is the region where only H01 is rejected. Rectangle C is the region
where only H02 is rejected. (b) Rejection regions of Hochberg’s step-up method.
Square D is the region where both H01 and H02 are rejected. Rectangle E is the
region where only H01 is rejected. Rectangle F is the region where only H02 is
rejected.
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Figure 3: Comparison of Hochberg’s step-up method and the independence step-
down test. The horizontal lines indicate the rejection regions of the independence
step-down test. The vertical lines indicate the rejection regions of Hochberg’s
step-up method. The round dot represents the sample p-values of (0.108, 0.051).
The square dot represents the sample p-values of (0.097, 0.064). The distance
between α/2 = 0.05 and 1−

√
(1−α) = 0.0513 in this figure has been artificially

expanded in scale for the sake of graphical clarity.
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