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Foreword

This handbook will treat the topics of multiple comparisons, simultaneous
and selective inference from a variety of different perspectives. The handbook
will be useful for (i) researchers, (ii) students / lecturers, (iii) practitioners.
The need for such a systematic treatment of the field originates from the
relevance of multiple comparisons in many applications (medicine, industry,
economics), and from the diversity of approaches and developments, which
shall be described here in a coherent manner.
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Preface

This handbook has three parts. The first part deals with general methodology,
the second part with applications in medicine, and the third part with further
topics.
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Subgroup analysis occurs in diverse areas such as personalized medicine and
web analytics. This chapter describes them in the setting of a Randomized
Controlled Trials (RCTs) for personalized/precision medicine development.
To personalize medicine is to compare efficacy of treatment versus control in
subgroups and their mixtures. There are natural relationships among efficacy
in subgroups and their mixtures. This chapter provides a guide to subgroup
analysis that respects such logical relationships.

For binary and time-to-event outcomes, there has been an oversight in the
analyses of efficacy stratified on a biomarker, in the sense that they do not
reflect logical relationships among efficacy in a mixture with efficacy in the
subgroups. Cause of the illogical analyses are (a) use of efficacy measures such
as Odds Ratio and Hazard Ratio which are not collapsible and therefore not
logic-respecting, and (b) incorrect mixing of efficacy measure such as Rela-
tive Response (RR) even when they are logic-respecting. We will explain RR
and Ratio of Median (RoM) survival times are logic-respecting (which implies
they are collapsible) in Randomized Controlled Trials (RCTs). We will fur-
ther explain that, for binary and time-to-event outcomes, mixing efficacy in
subgroups by prevalence will lead to illogical results in general, that efficacy
should be mixed by the prognostic effect instead. Finally, we show that the
path to achieve confident logical inference on efficacy in subgroups and their
mixtures is (1) Choose a logic-respecting efficacy measure, (2) Model the data
and adjust for imbalance using the Least Squares means technique, (3) Apply
the Subgroup Mixable Estimation principle to infer on efficacy in subgroups
and their mixtures.

1.1 Targeted Therapy and Personalized/Precision Medicine

Targeted therapies, which as Woodcock (2015) states are sometimes called
“personalized medicine” or “precision medicine”, target specific pathways.

For example, pembrolizumab (Keytruda R©) and nivolumab (Opdivo R©) are
medicines that target PD-1, the so-called Programmed cell Death protein 1
on immune T cells. By blocking PD-1, these targeted therapies boost the
immune response against cancer cells, which can shrink some tumors or slow
their growth.

In personalized/precision medicine, we are concerned with finding whether
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there are subgroups of an overall patient population that exhibit a differen-
tial response to treatment. Any subgroup with a significantly better response
to treatment could be identified for tailoring with appropriate labeling lan-
guage and reimbursement considerations in the market. Conversely, subgroups
with a worse response to treatment could be appropriately contraindicated in
labeling.

Subgroups can be defined by biomarkers or by other characteristics such
as countries or regions. In the former case, decision-making involves assessing
efficacy in the subgroups and their mixtures. In the latter case, typical practice
is to adjust for baseline differences in the subgroups in assessing a presumed
common efficacy across the subgroups.1 This chapter focuses on the former
situation.

Targeted therapies make use of blood chemistry tests, genotyping, imaging,
immunohistochemistry (IHC), or other technology to measure each subject’s
biomarker value or values. These biomarker values can then be used to deter-
mine who are more likely to benefit from a treatment.

We will focus on the situation where there is a “treatment” and a “control”,
abbreviated as Rx and C respectively. Our subgroup analysis discussion will
be mainly in the setting of a Randomized Controlled Trial (RCT).

1.2 Respecting logical relationships between subgroups
and their mixtures

In any study, it is important to have confidence that it is the new treatment
that causes patients to have better outcome.

A randomized controlled trial (or randomized control trial; RCT) is a sci-
entific study where subjects are randomly allocated to one or other of the
different treatments under study. It is assumed that there is no differential
propensity in treatment assignment. Random assignment of subjects to treat-
ments then reduces imbalance of subject characteristics across treatments if
the sample size is large (i.e., prevalence of each subgroup is about the same
under Rx and undedr C), reducing the likelihood of spurious causality.

Let µRx(x) and µC(x) denote the true effect of Rx and C at each biomarker
value x. Let p(x) be the density of patient biomarker values in the population
which, in our RCT setting, is the same for Rx and C. Suppose a biomarker
cut-point value c divides the entire population into two subgroups, the marker-
negative g− = {x < c} subgroup, and the marker-positive g+ = {x ≥ c}
subgroup.

Denote the true (unknown) efficacy in g−, g+, and all-comers {g−, g+} by

1In the analysis, there is no interaction term between region and treatment, but there is
interaction term between biomarker and treatment.
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ηg− , ηg+ , η{g−,g+} respectively. Since all-comers is a mixture of g+ and g−, it is
desirable for efficacy measures to meet the criterion that efficacy for all-comers
lies between the efficacies of the complementary subgroups:

Definition: An efficacy measure is logic-respecting if η{g−,g+} ∈ [ηg− , ηg+ ]
(1.1)

1.2.1 Three causes for efficacy assessment to be illogical

Efficacy measures and their properties (such as being collapsible and logic-
respecting) are defined at the population level (i.e., in the parameter space,
with infinite sample size).

In the literature, an efficacy measure is said to be collapsible if g− and g+

patients deriving the same efficacy (= 3 say) implies all-comers {g−, g+} derive
the same efficacy (= 3) as well2. So logic-respecting implies collapsibility.

Non-collapsibility is taken to be an indication of non-causality. Rubin
(1978) showed that conducting a study as a RCT is sufficient to avoid non-
causality (when the sample size is large). His proof of strong ignorability ap-
plies if efficacy is measured as a difference of means, but not necessarily if
efficacy is measured as a ratio (as it implicitly assumes efficacy in the sub-
groups determine efficacy in the overall population).

Estimated efficacy in finite samples may exhibit illogic behavior due to

1. Using a not logic-respecting efficacy measure (including assuming
efficacy in a mixture can be determined by efficacy in the subgroups)

2. Not adjusting for imbalance in the data (over reliance on efficacy
measure being logic-respecting)

3. Over-extension of Least Squares means (LSmeans) for continuous
outcome to binary and time-to-event outcomes in computer pack-
ages (even when efficacy measure is logic-respecting)

This chapter will show how each pitfall can be avoided.
Specifically, we will explain why difference of means, Relative Response

(RR), and Ratio of Median (RoM) survival times are logic-respecting. We
provide a (balanced data infinite sample size) example that proves Odds Ratio
is not collapsible (and therefore not logic-respecting). A counter-example in
the literature will be cited that proves Hazard Ratio is not collapsible.

We will also demonstrate by examples the danger of not adjusting for
imbalance in the data, even if efficacy measure is logic-respecting.

Surprisingly, currently computer packages give misleading subgroup anal-
ysis results even when the efficacy measure is logic-respecting and the data is
perfectly balanced. Ironically, current computer package implementations can
mask the fact that efficacy measures such as Hazard Ratio are not collapsible.

2Definition of collapsibility in the literature is not unique. The definition here in terms
of combining subgroups is sometimes called strict collapsibility.
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It is possible to give non-misleading subgroup analysis results. In this chap-
ter, we will explain how the new Subgroup Mixable Estimation (SME) prin-
ciple, working in concert with the LSmeans technique, confidently produces
logical inference on subgroups and their mixtures.

1.3 Prognostic and Predictive biomarkers

For a therapy to target a subgroup, it is important to have confidence that
patients with the targeting biomarker value indeed benefit more, that is, the
biomarker is not merely prognostic but predictive, in the following sense.
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(a) Biomarker is predictive:
Rx (dashed), C (solid)
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(b) Biomarker is prognostic only:
Rx (dashed), C (solid)

FIGURE 1.1: Predictive marker (left panel) vs. non-predictive marker (right
panel)

The Merriam-Webster dictionary definition of “prognosic” is “something
that foretells”. We say a biomarker is treatment-effect prognostic if its value
has some ability to foretell the outcome for a patient given that treatment.
A biomarker is thus not treatment-effect prognostic if its value has no such
ability, that is, patients form a single population under that treatment.

There are other definitions of a prognostic biomarker. For example, BEST
(2016) defines a prognostic biomarker as one which predicts increased likeli-
hood of an event without an intervention. Those biomarkers can be called
disease-progression prognostic biomarkers.

For brevity, in the RCT setting of this chapter, a prognostic biomarker
refers to a treatment-effect prognostic mbioarker. Our definition of a “prognos-
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tic” biomarker is teatment arm specific, to distinguish between the situation
where the marker is not prognostic in one arm but is prognostic in the other
(as in Figure 1.1a), and the situation where the marker is equally prognostic
in both arms (as in Figure 1.1b).

A biomarker is predictive if its value has some ability to differentiate
between the effect of Rx from the effect of C (i.e., it has some ability to foretell
the efficacy of Rx vs. C). We might say the biomarker is purely predictive in
the case of Figure 1.1a, while we say the biomarker is purely prognostic in the
case of Figure 1.1b.

Overlooked in the literature is that, even in a RCT, efficacy in {g−, g+}
involves the prognostic effect if efficacy is measured as a ratio, be it Odds
Ratio, Relative Response, Hazard Ratio, or Ratio of Medians. This oversight
plays a role in incorrect subgroup analyses in current computer packages.

1.4 Logic-respecting efficacy measures

Denote by µRxg+ , µRxg− , µCg+ , µCg− the true expected outcomes in the g+ and

g− subgroups for each treatment arm, and denote by µRx and µC the true
expected outcome over the entire patient population if the entire population
had received Rx or C, respectively.

1.4.1 Difference of Means is Logic-respecting

In therapeutic areas such as Type 2 diabetes and Alzheimer’s Disease with
continuous outcome measures, traditionally efficacy of Rx vs. C is measured
by the difference of mean treatment and control effects, so

ηg+ = µRxg+ − µ
C
g+ and ηg− = µRxg− − µ

C
g−

represent efficacy of Rx vs. C in the g+ and g− subgroups. In our RCT setting,
with population prevalence of the g+ subgroup being γ+,

µRx = γ+ × µRxg+ + (1− γ+)× µRxg− , (1.2)

µC = γ+ × µCg+ + (1− γ+)× µCg− . (1.3)

Therefore, in the case of efficacy being a difference of means, efficacy in the
combined population is

η{g−,g+} = µRx − µC = γ+ × ηg+ + (1− γ+)× ηg− , (1.4)

and is therefore logic-respecting.
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1.4.2 Relative Response is Logic-respecting in a Logistic
model

A fundamental truth is that, in general, efficacy in all-comers {g−, g+} cannot
be determined merely by Rx versus C efficacies in g− and g+ (the two vertical
down arrows in Figure 1.2), because it depends on efficacy of Rx in g− versus
C in g+ and efficacy of Rx in g+ versus C in g− (the two diagonal arrows in
the left panel of Figure 1.2). Knowing the prognostic effect of Rx in g+ vs. C
in g− (represented by the bottom horizontal arrow) allows us to deduce the
two missing efficacies from efficacies in g− and g+ , as illustrated in part by
the right panel of Figure 1.2.

It so happens that, if efficacy is measured as a difference of means, then
knowledge of the prognostic effect is not needed (i.e., one does not need to
go through the bottom solid arrow), because addition and subtraction can be
done in any order. Adding the top row and subtracting the left column let
us in effect account for the solid diagonal arrow. However, ratio efficacies are
affected by the prognostic effect (bottom solid arrow) because addition and
division have to be done in the proper sequence.

Law of nature dictates how response probabilities mix. If, under Rx, the
response probability in g− is 25% and the response probability in g+ is 75%,
and the entire population consists of a 50/50 mix of g− and g+, then natu-
rally the response probability under Rx in {g−, g+} is 50%. That is, response
probabilities naturally mix within each arm, weighted by prevalence of the g−

and g+ patients.3

So if we operate in the proper sequence, adding response probabilities
within each treatment arm first, dividing the combined response probabilities
second, then no knowledge of the prognostic effect is need to obtain the correct
Relative Response (RR) in {g−, g+}. This is the natural path taken by the
Subgroup Mixable Estimation (SME) principle, to be described in 1.6.

On the other hand, if we divide response probabilities within the g− and
g+ subgroups first, then in order to combine them we need to know whether
each column’s RR is a ratio of two big numbers or two small numbers relative
to the other column’s RR (information contained in the two diagonal arrows),
and that information can be deduced from the prognostic effect (bottom solid
arrow). The prognostic factor is the proper coefficient for mixing RR, not the
prevalence, as we will demonstrate explicitly.

Let RRg+ , RRg− and RR denote the relative response for the g+, g−

subpopulations and the mixture {g+, g−} all-comers population respectively.
Interestingly, RR is not a mixture of RRg+ and RRg− weighted by Prevalence,

the population proportion of the subgroups. Rather, RR is a mixture of RRg+
and RRg− weighted by the population proportion of responders under C who
are g+ and g− respectively, weights which Lin et al. (2019) call the prognostic
factor.

3Mixing logarithms of probabilities by prevalence and then exponentiating results in
0.4330127 which is incorrect, because it violates law of nature.
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Rx Rx

C C
Relative Response 3/2

Prognostic effect

𝑔ି 𝑔ା

Prognostic effect

Re
la

tiv
e 

Re
sp

on
se

 3
/2

𝑔ି 𝑔ା

FIGURE 1.2: In general, Rx versus C efficacy in {g−, g+} depends not only
on efficacy in g− and g+ (the two vertical down arrows), but also on efficacy
of Rx in g+ versus C in g− and Rx in g− versus C in g+ (the two diagonal
arrows in the left panel). In the case of Relative Response, population efficacy
depends on the prognostic effect (horizontal left arrow in the right panel) in
addition to efficacy within g− and g+.

Denote by RRg+ , RRg− and RR the relative response for the g+, g− sub-
populations and for the mixture {g+, g−} all-comers population respectively
so, in terms of the marginal responder probabilities in Table 1.1,

RRg+ =
pRxg+

pCg+
, RRg− =

pRxg−

pCg−
, RR =

pRx

pC
. (1.5)

Note intuitively and crucially that natural mixing is in terms of responder
probabilities within each arm. With population prevalence of the g+ sub-
group being γ+, the responder rates in the mixture {g+, g−} population are

pRx = γ+ × pRxg+ + (1− γ+)× (pRxg− ) (1.6)

pC = γ+ × pCg+ + (1− γ+)× (pCg−) (1.7)
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TABLE 1.1: Conditional response probability given treatment Rx or C for
patients in the g+ and g− biomarker subgroups and marginal probability in
the all-comers population.

g+ subpopulation g− subpopulation population

R NR R NR R NR

Rx pRx
g+

1 − pRx
g+

1 pRx
g−

1 − pRx
g−

1 pRx 1 − pRx 1

C pC
g+

1 − pC
g+

1 pC
g−

1 − pC
g−

1 pC 1 − pC 1

pg+ 1 − pg+ 1 pg− 1 − pg− 1 p 1 − p 1

But (1.5), (1.6) and (1.7) from the marginal probabilities in Table 1.1 are
insufficient to reveal the relationships among RRg+ , RRg− and RR. For that,
one needs Table 1.2, which gives in the total population the logical relationship
between responder probabilities in the g+ and g− subpopulations under Rx
and C and their combined probabilities in the mixture {g+, g−} population.
In terms of Table 1.2,

RRg+ =
pRxg+ (R)/(γ+τRx)

pCg+(R)/(γ+τCg+)
, RRg− =

pRxg− (R)/(γ−τRxg− )

pCg−(R)/(γ−τCg−)
, RR =

pRx(R)/τRx

pC(R)/τC
.

(1.8)
Since

pCg+(R)

pCg+(R) + pCg−(R)

pRxg+ (R)/τRx

pCg+(R)/τC
+

pCg−(R)

pCg+(R) + pCg−(R)

pRxg− (R)/τRx

pCg−(R)/τC
=
pRx(R)

pC(R)

τC

τRx
,

(1.9)
the true mixture relative response RR can be represented as

RR =
pCg+(R)

pC(R)
×RRg+ +

pCg−(R)

pC(R)
×RRg− . (1.10)

So RR is in fact a mixture of RRg+ and RRg− weighted by
pC
g+

(R)

pC(R)
and

pC
g− (R)

pC(R)
,

the population proportion of responders under C who are g+ and g− respec-
tively. Therefore, note importantly, the efficacy measure relative response RR
is logic-respecting.

If the biomarker is not prognostic, then the (joint) responder rates under
C and in g+ or g− (i.e., pCg+(R) and pCg−(R)) would be proportional to the

overall responder rate under C, therefore pCg+(R) = γ+×pC(R) and pCg−(R) =

(1− γ+)× pC(R), in which case

RR = γ+ ×RRg+ + (1− γ+)×RRg− . (1.11)

This illustrates, in general, linearly mixing logarithms of efficacies (that hap-
pen to be coefficients in models linearized for computational purpose) and
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then exponentiating violates law of nature. This is one of the oversights in
current computer packages that will be demonstrated in Sections 1.5.4 and
1.5.5.

Further, if the biomarker has a prognostic effect, then (1.11) would not
equal (1.10), and RR in the all-comers population cannot be determined by
RR in the g+ and g− subpopulations and the prevalence γ+. Another oversight
in current computer packages is to assume in general efficacy in the all-comers
population can be determined by efficacies in the g+ and g− subpopulations
and the prevalence γ+, an oversight that will be demonstrated in Sections
1.5.4 and 1.5.5 as well.

In contrast, the Subgroup Mixable Estimation (SME) principle that will
be described in Section 1.6 follows a path that adheres to law of nature so
that these pitfalls do not appear.

1.4.3 Ratio of survival times is Logic-respecting in a Weibull
model

Median survival times are often of interest in oncology trials with time-to-
event outcomes. The ratio of the median survival times between Rx and C
provides direct information on the relative treatment effects. For example, if
the median survival time for patients randomized to Rx is 18 months and
the median survival time for patients randomized to C is 12 months. Then
Rx median survival time is 1.5 times (=18/12) that of C. Following Ding
(2016) et al., we show that, under a Weibull model (a special case of the
Cox Proportional Hazard model), that ratio of median survival times is logic-
respecting (and therefore collapsible). That is, efficacy of the mixture stays
within the interval of the subgroups’ efficacy.

Proposition 1.1 Assume the time-to-event data fit the following Cox Pro-
portional Hazard (PH) model:

h(t|Trt,M) = h0(t) exp{β1Trt+ β2M + β3Trt×M}, (1.12)

where Trt = 0 (C) or Trt = 1 (Rx), M = 0 (g−) or M = 1 (g+), and
h0(t) = h(t|C, g−) is the hazard function for the g− subgroup receiving C.
Further assume that the survival function S0(t) for C, g− is from a Weibull
distribution with scale λ and shape k, i.e.,

S0(t)(= SCg−(t)) = e−(t/λ)
k

, t ≥ 0.

If efficacy is defined as the ratio of median survival times (between Rx and
C), then the efficacy of g−, g+, and their mixture can all be represented by a
function of the five model parameters (λ, k, β1, β2, β3). More importantly, the
efficacy of the mixture is always guaranteed to stay within the interval of the
subgroups’ efficacy.
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Proof Denote by νRx and νC the true median survival times over the
entire patient population (randomized to Rx and C respectively). Denote by
νRxg+ , νRxg− , νCg+ , νCg− the corresponding median survival times in the g+ and g−

subgroups. Denote θ1 = eβ1 , θ2 = eβ2 and θ3 = eβ3 . Note that θ1, θ2, θ3 all
> 0.

By the PH property, the survival function for each of the subgroups has the
following form

SCg−(t) = e−(t/λ)
k

, SRxg− (t) = e−θ1(t/λ)
k

,

SCg+(t) = e−θ2(t/λ)
k

, SRxg+ (t) = e−θ1θ2θ3(t/λ)
k

.

Straightforward calculation gives the median survival time for each subgroup
as follows

νRxg+ = λ(
log 2

θ1θ2θ3
)1/k, νCg+ = λ(

log 2

θ2
)1/k, νRxg− = λ(

log 2

θ1
)1/k, νCg− = λ(log 2)1/k.

(1.13)
Then the ratios of median for g+ and g− are

rg+ = (θ1θ3)−1/k and rg− = θ
−1/k
1 , (1.14)

which are functions of (k, θ1, θ3).
For the mixture of g+ and g−, according to the law of nature, survival

functions mix within each treatment arm, because survival probabilities are
probabilities. Therefore, for the mixture of g+ and g−, the median survival
times for Rx and C are the solutions for the following two equations respec-
tively.

t = νRx : (1− γ+)e−θ1(t/λ)
k

+ γ+e−θ1θ2θ3(t/λ)
k

= 0.5, (1.15)

t = νC : (1− γ+)e−(t/λ)
k

+ γ+e−θ2(t/λ)
k

= 0.5. (1.16)

Then the ratio of median for the mixture group r ≡ νRx/νC is an implicit func-
tion of (λ, k, θ1, θ2, θ3). Notice that θ2, the prognostic effect of the biomarker,
is involved.

Now, we show that r is between rg− and rg+ . Let t = νCrg− = νCθ
−1/k
1

and plug into the left side of equation (1.15), we have

(1− γ+)e−θ1(ν
Cθ

−1/k
1 /λ)k + γ+e−θ1θ2θ3(ν

Cθ
−1/k
1 /λ)k (1.17)

= (1− γ+)e−(ν
C/λ)k + γ+e−θ2θ3(ν

C/λ)k . (1.18)

The first term in equation (1.18) equals the first term on the left side of (1.16)
with νC plugged in. Therefore, whether (1.18) > 0.5 or < 0.5 depends on
whether θ3 < 1 or > 1. Without loss of generosity, assume θ3 > 1. Then
by the property that the all survival functions are non-increasing functions,
comparing (1.15) with (1.17), we have

νRx > νCθ
−1/k
1 = νCrg− .
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Thus, r = νRx/νC < rg− . With a similar argument, we can show that r > rg+
(if θ3 > 1). Hence, we have shown that the ratio of median survival time for
the mixture population is within the interval of the ratios for the subgroups and
each ratio can be represented by a function of (λ, k, θ1, θ2, θ3) either explicitly
or implicitly.

1.5 Adjusting for imbalance in the data even in a RCT

An unstratified RCT just randomly assigns subjects to Rx and C. Randomiza-
tion does not ensure perfect balance. Imbalance in the data on covariates such
as baseline measurements and blocking factors such as region are routinely
adjusted for in stratified analyses using the Least Squares means (LSmeans)
technique, to be described in Section 1.5.2.

Some RCTs are stratified by design, stratified on known or anticipated
predictive factor such as the subject’s biomarker value in the drug’s targeted
pathway. A stratified RCT would randomly assign subjects to Rx and C
within each stratum of the predictive factor. Contrary to the belief by some,
the principle purpose of stratifying the design is not to achieve balance in the
data, because imbalance can be taken care by LSmeans. Rather, a stratified
design may sharpen the Rx vs. C comparison, if patients are relatively ho-
mogeneous within each stratum. Increasingly, stratified designs are used to
ensure adequate sample size of patients in a subgroup of potential interest.
To assess efficacy in the overall population, the analysis of such a study then
readjusts the prevalence of patient subgroups.

It may be impractical to execute a RCT that stratifies on every possible
factor though. An oncology study may stratify on the subjects’ status in the
gene that the therapy targets (e.g. the MET gene), so that MET+ patients
are randomized to Rx and C, and separately MET− patients are randomized
to Rx and C. But it might be impractical to further stratify the study on the
subjects’ status in another potentially predictive gene (e.g., the EGFR gene).
So, with not very large samples, there may be imbalance between Rx and
C in the unstratified factor’s subject status, which can potentially skew the
result. To avoid biased result, it is important that statistical analysis employs
a technique that adjust for imbalance in subjects status across the treatments
for factors that might affect the outcome.

There are (at least) two parallel approaches to adjusting for imbalance in
the data. One is the imputation technique of Little and Rubin (1987). The
other technique, which we describe in some detail in this chapter, is Least
Squares means.
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1.5.1 Analyses stratified on biomarker subgroups should in-
clude a Rx:C × biomarker interaction term

For Alzheimer’s Disease (AD), change in Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) from baseline ADAS-Cog is a com-
mon measure of a treatment’s effect. For Type 2 diabetes (T2DM), change
in hemoglobin A1c from baseline A1c is the usual clinical measure of a treat-
ment’s effect. For schizophrenia, change in Positive and Negative Syndrome
Scale (PANSS) from baseline PANSS is a typical clinical measure of a treat-
ment’s effect.

Randomization does not achieve perfect balance. Having healthier patients
in one treatment arm and sicker patients in the other arm biases the result.
Baseline is often included in the model as a (continuously valued) covariate
to adjust for imbalance in the severity of illness of patients when they are
initially assigned to Rx and C. In AD, T2DM, and schizophrenia studies,
with the assumption that baseline measurement affects Rx and C in the same
way, baseline is included in the model as a main effect, without a baseline and
Rx:C interaction term (i.e., baseline has the same slope under Rx and C).

Clinical trials across multiple regions of the world have become common
practice. Having Region as a blocking factor allows inference on a common
efficacy even if measurements in the European Union are systematically higher
(or lower) than measurements in the U.S., for instance. With the assumption
that the systemic difference affect Rx and C in the same way, Region is often
included in the model as a (categorical) main effect, without a Region and
Rx:C interaction term. The purpose of such modeling is to utilize all the
data to infer on a presumed common Rx vs. C efficacy while adjusting for a
systemic effect.

This notion of a common efficacy is well-defined provided the differential
between Rx and C remains constant across baseline values and/or the block-
ing factor’s levels, at the population level (Hsu 1996, pp. 182-3). As with any
modeling, this no-interaction assumption should be based on domain knowl-
edge, and checked against actual data. When such a model is appropriate,
multiple comparisons as described in Chapter 7 of Hsu (1996) based on Least
Squares means (LSMmeans) are unbiased. See chapter 7 of Hsu (1996) for a
detailed guideline of LSmeans analysis in a model that does not include an
interaction term between Rx:C and covariates and/or the blocking factors.

The situation with a biomarker for potential patient targeting is different.
A marker such that Rx vs. C efficacy remains constant across its values,
a purely prognostic marker, is not useful for patient targeting. We are
interested in predictive biomarkers, those that interact with Rx:C. Many
of the targeted therapies for Alzheimer’s Disease that have been tried target
the clearance of beta amyloid in patients, for instance. The ApoE gene is
postulated to be involved in the clearance of beta amyloids. Therefore, it is
reasonable for the analyses of such studies to take into account the patients’
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ApoE status, and the model should include an ApoE×Rx:C interaction term
in addition to an ApoE main effect term.

For analyzing time-to-event data, fitting a Cox PH (proportional hazard)
model to compare Rx vs. C, if one puts in a strata(biomarker) statement
for a categorical biomarker, then HR is assumed to be constant across the
subgroups defined by the biomarker, which would be inappropriate because
for any useful biomarker HR would not be constant. The log-Rank test should
not be used either, stratified or not, because its error rate control is extremely
“weak”. Section 1.7 shows dramatically that Type I error rate control of the
stratified log-Rank test does not control the rate of making incorrect clinical
decisions.

Description of LSmeans below is for LSmeans analysis in a model that
includes an interaction term between Rx:C and g+:g−.

1.5.2 Least Squares Means

For Alzheimer’s Disease (AD), change in Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) from baseline ADAS-Cog is a common
measure of a treatment’s outcome. For Type 2 diabetes (T2DM), change in
hemoglobin A1c from baseline A1c is the usual clinical measure of a treat-
ment’s outcome. These outcomes are continuous in nature, and efficacy is
typically defined as the mean difference between Rx and C.

Consider the data in Table 1.3, where a larger (more positive) outcome is
better.

Subgroup g− g+

Treatment (Rx) observed outcomes 1.96, 2.18 4.86

Control (C) observed outcomes 1.16 4.67, 4.35

TABLE 1.3: Imbalance in data lead to different least squares means and
marginal means

The marginal means estimate of Rx vs. C efficacy in the combined popu-
lation {g−, g+},

θ̂MG
2 =

1.96 + 2.18 + 4.86

3
− 1.16 + 4.67 + 4.35

3
= −0.393 < 0,

suggests that the Rx treatment is harmful. This estimate of broad efficacy has
a negative bias, because the imbalance in Rx vs. C sample sizes between the
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two subgroups is unfavorable to Rx. In other words, imbalance in the data
can cause Simpson’s Paradox phenomenon.

For continuous outcome modeled linearly, computer packages apply the
Gauss-Markov theorem to adjust for imbalance in the data. This implemen-
tation is commonly referred to as least squares means (LSmeans):

Simply put, they are estimates of the class or subclass arithmetic means
that would be expected had equal subclass numbers been obtainable.
(Goodnight and Harvey (1978))

LS-means are predicted population margins - that is, they estimate the
marginal means over a balanced population. (SAS manual)

Data in Table 1.3 in fact indicate treatment (Rx) is better than control
(C) within each subgroup. For a model that includes indicators for Rx/C
and g−/g+ and their interaction, LSmeans for the 2 treatment-by-subgroup
combinations are just the cell means. Assuming prevalence of each subgroup is
50%, the Least Squares means estimate of Rx over C efficacy in the combined
population {g−, g+} is

θ̂LS2 = (0.5×1.96 + 2.18

2
+0.5×4.86)−(0.5×1.16+0.5×4.67 + 4.35

2
) = 0.630 > 0.

Unlike marginal means, the Least Squares means estimate correctly suggests
a beneficial treatment effect.

The Means statement in Proc GLM of SAS compares treatments based on
Marginal means, and therefore should not be used.

1.5.3 LSmeans subgroup analysis in computer packages are
correct for continuous outcomes

Consider a (perfectly) balanced population, with the prevalence of each of the
g1, g2, g3 subgroups being 1

3 , and within each subgroup half of the subjects
are given Rx while the other half given C, as depicted in Table 1.4.
True difference of the Rx and C effects is exactly zero.

Now consider an (artificial) unbalanced data set from this balanced pop-
ulation as depicted in Table 1.5. This imbalance can be from stratifying the
design purposely allocating patients to {g1, g2} and g3) in the 10:4 ratio, with
retrospective genotyping of g1 and g2 turning up an imbalance between them
in the Rx and C arms, or simply because the sample size is small.

LSmeans will unbiasedly estimate Rx versus C efficacy for the balanced
population in Table 1.4. If the intended patient population is not balanced
but with unequal prevalence between the subgroups, then one can use the
ESTIMATE statement in SAS to unbiasedly estimate Rx versus C efficacy
for the intended population by specifying the prevalence as the coefficients.

Our explanation and demonstration of LSmeans should remove the sur-
prising ignorance of the distinct purposes between a stratified design and a
stratified analysis:
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g1 g2 g3 Average effect

n∞ 3× 106 3× 106 3× 106

Rx 5.5 5 5
5.5 + 5 + 5

3
= 5.167

C 3 7.5 5
3 + 7.5 + 5

3
= 5.167

Rx− C 2.5 −2.5 0 0

TABLE 1.4: Each number in the table represents one million copies (n∞ in
the millions), so there are one million copies of 7.5 in g2 given C for example.

g1 g2 g3 Marginal Means LSmeans

nsm 5 5 4

nlg 5× 103 5× 103 4× 103

Rx 5,6 3,5,7 6,4 5+6+3+5+7+6+4
7 = 5.143

5+6
2 + 3+5+7

3 + 6+4
2

3
= 5.167

C 3,3,3 7,8 4,6 3+3+3+7+8+4+6
7 = 4.857

3+3+3
3 + 7+8

2 + 4+6
2

3
= 5.167

Rx− C 2.5 −2.5 0 0.286 0

TABLE 1.5: Least Squares means unbiasedly estimate means for a balanced
population from unbalanced data regardless of whether design of the study
is stratified or not, but Marginal means do not. This statement holds whether
each number in the table represents one number (nsm just a few numbers), so
there is one 7 and one 8 in g2 given C for example, or one thousand copies (nlg
in the thousands), so there are one thousand copies of 7 and one thousand
copies of 8 in g2 given C for example.

• Stratifying a design is primarily to avoid sparsity, and/or for enrichment. If
the subjects are relatively homogeneous within the strata, then there is a
power gain as well.

• A stratified analysis uses LSemeans to adjust for data imbalance (sample
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size and covariate value imbalance, in the specified stratification factors). A
stratified design is not needed for LSmeans to produce unbiased estimates.

You might wonder why, instead of estimating effects in a balanced popula-
tion, LSmeans does not estimate effects weighted by prevalence? (Weighing by
observed marginal prevalence is the OM option in LSmeans in SAS.) However,
when computer first became powerful enough to compute LSmeans, efficacy
in mixture of subgroups was hardly discussed. While it is true that today
targeted therapies are common, we do not know in the future what the most
pressing problem will be. The problem-neutral default of estimating effects
in a balanced population is a safe and sensible choice. One can specify other
mixing coefficients using the ESTIMATE statement in SAS or a vector of
coefficients in R.

Data in Table 1.5 can be analyzed using SAS codes such as

proc glm;

class Group Trt;

/* Incorrect Marginal means model */

model Y= Trt;

lsmeans Trt;

proc glm;

class Group Trt;

/* Correct LSmeans model with both main effects and interaction */

model Y= Trt Group Group*Trt;

lsmeans Trt;

to illustrate how the LSmeans statement in Proc GLM or Proc Mixed in SAS
applies the Gauss-Markov theorem to correctly estimate efficacy in treatments
for continuous outcome modeled linearly with Normally distributed errors.

1.5.4 LSmeans subgroup analysis in computer packages are
misleading for binary outcomes

The Gauss-Markov theorem applies to linear models. So, to avoid imbalance in
the data biasing results, data with binary outcomes are routinely linearized by
fitting a logistic or a log-linear model, with parameters in the model estimated
by LSmeans. However, contrary to the implication in Hothorn et al. (2008),
parameters in such models should not be mixed as if they were in a linear
model for continuous outcomes.

Consider the balanced population in Table 1.6. Suppose efficacy is mea-
sured by Relative Response (RR), the ratio of response probability between
Rx and C. If, under Rx, the response probability in g− is 25% and the response
probability in g+ is 75%, and the entire population consists of a 50/50 mix of
g− and g+, then naturally the response probability under Rx in {g−, g+} is
50%. Table 1.6 is computed using this law of nature.
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Rx (n = 20000) C (n = 20000)

g− (n = 20000) 2500
10000 = 0.25 1000

10000 = 0.10

g+ (n = 20000) 7500
10000 = 0.75 5000

10000 = 0.50

{g−, g+} 10000
20000 = 0.50 6000

20000 = 0.30

RR := True RR in {g−, g+} 0.50
0.30 =

5

3
= 1.6667 = e0.5109

Mixing RR by prevalence 1
2 × 2.5 + 1

2 × 1.5 = 2 6= 5

3

Mixing log(RR) by prevalence 1
2 × log(2.5) + 1

2 × log(1.5) = 0.6609 6= 0.5109

Mixing RR by the prognostic factor
0.10

0.10 + 0.50
× 2.5 +

0.50

0.10 + 0.50
× 1.5 =

5

3

TABLE 1.6: Response rates and Relative Responses in a balanced (n → ∞)
population

Let RRg+ , RRg− and RR denote the relative response for the g+, g− sub-
populations and the mixture {g−, g+} all-comers population respectively. As
explained in Section 1.4.2, RR is not a mixture of RRg+ and RRg− weighted

by Prevalence, the population proportion of the subgroups. Rather, RR is a
mixture of RRg+ and RRg− weighted by the population proportion of respon-
ders under C who are g+ and g− respectively, weights which Lin et al. (2019)
call the prognostic factor.

From Table 1.6, we see that for a balanced population, there are two ways
to arrive at RR, the correct RR for the combined {g−, g+} population. One
way is to mix the response rates within each arm by prevalence first, and then
compute RR for {g−, g+}. This is what Subgroup Mixable Estimation (SME)
to be described in Section 1.6 does. The other way is to compute RRg− and
RRg+ separately for g− and g+ first and then mix them by the prognostic
factor.

SAS codes such as
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proc genmod;

class Trt;

/* model for Marginal means */

model Response/nTotal= Trt / dist=binomial link=log;

LSmeans Trt;

proc genmod;

class Subroup Trt;

/* model for LSmeans means stratified on subgroup */

model Response/nTotal= Subroup Trt Subroup*Trt / dist=binomial link=log;

LSmeans Trt;

produce Marginal means and LSmeans results displayed in Table 1.7 from
computer packages that indicate there are two mistakes in LSmeans estimation
of RR in current packages, even for a balanced population (a balanced data
set with n→∞).

Marginal means LSmeans in computer packages

Rx −0.6931 = log

(
0.25 + 0.75

2

)
−0.8370 =

log(0.25) + log(0.75)

2

C −1.2040 = log

(
0.10 + 0.50

2

)
−1.4979 =

log(0.10) + log(0.50)

2

Rx− C −0.6931− (−1.204) = 0.5109 = log( 5
3 ) −0.8370− (−1.4979) = 0.6609 6= log(5

3 )

TABLE 1.7: Law of nature mixes probabilities (not logarithms) within each
treatment arm, while computer packages currently mix parameters in models
parameterized by human.

The first, easy to spot, issue is LSmeans in current computer packages lin-
early mix whatever parameters are in the model which in the case of a logistic
or log-linear model are on a logarithmic scale rather than the probability scale.
In our example, the stratified LSmeans 0.6609 for log(RR) is strictly larger
than the true log(RR) of 0.5109.

The second, more fundamental, issue is mixture of LSmeans estimates for
subgroups are weighed by prevalences in current computer packages, 1

2 in
the case of Table 1.6, instead of the proper prognostic factor 0.10

0.10+0.50 and
0.50

0.10+0.50 . For our example, had LSmeans mixed RR (not its logarithm) by
prevalence, the result would have been 2 which again is strictly larger than
the true RR of 5

3 .
Mixing response rates within each arm by prevalence first, SME in Lin et

al. (2019) does not have these issues.
Marginal mean happens to correctly estimate RR for a perfectly bal-
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anced data set (perfect balance between Rx and C in sample sizes across
subgroups, and values of additional covariates if they are present), because
ignoring the subgroup label in effect mixes the responders within each arm.
However, Marginal mean incorrectly estimates RR for Rx vs. C in the com-
bined {g−, g+} population if the data is imbalanced, and therefore should not
be used.

1.5.5 LSmeans subgroup analysis in computer packages are
misleading for time-to-event outcomes

Similar to the binary outcome case, one fundamental issue in the over-
extension of LSmeans to time-to-event outcomes is it linearly mixes whatever
parameters are in a model linearized for the purpose of adjusting for imbal-
ance in the data by LSmeans. While these model parameters are equivalent
to the efficacy parameters of interest, the scales on which they are measured
(such as the logarithmic scale) often make them unsuitable for linear mixing.

An even more fundamental issue of the over-extension of LSmeans is it
assumes efficacy in a mixture is a function of efficacies in the subgroups and
the prevalence. This is generally a false assumption for binary and time-to-
event outcomes. While logic-respecting efficacy such as Ratio of Medians are
perfectly well-defined and computable for mixtures, they are functions of effi-
cacies in the subgroups and the prognostic effect, not prevalence.

Time-to-event data are typically fitted to a Cox proportional hazard model
which for LSmeans purpose is parameterized as a log-linear model. A Weibull
model is a special case of this, and Ratio of Medians (RoM) is logic-respecting
in such a model as we showed in Section 1.4.3. On the other hand, Hazard
Ratio (HR) is known to be not collapsible. See Aalen et al. (2015). So, to be
clear, HR should not be used to measure efficacy when there are subgroups,
because it is not logic-respecting, and using it can lead to illogical decision-
making.

Nevertheless, HR currently is still used as an efficacy measure in subgroup
analysis. What we show below is that thinking

1. One can always find some function to represent efficacy in {g+, g−}
as a linear combination of (that function of) efficacies in g+ and g−

2. with the mixing coefficient in this linear combination being the
prevalence

have resulted in current computer packages masking the fact that efficacy
measures such as HR is not collapsible (and thus not logic-respecting).

Consider a trial with time-to-event data (e.g. progression free survival)
from either treatment (Rx) or control (C) arm with 1:1 randomization ratio
and there exists a subgroup effect (g+ or g−) with prevalence 50%. To give
insight into the over-extension, we use the simplest Cox model, one in which
each of the 2 × 2 = 4 combinations of Rx : C and g+ : g− subgroups has an
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Exponential distribution. Suppose within each treatment and subgroup com-
bination, the data follows an exponential distribution with specified medians
and we focus on the efficacy measure hazard ratio (HR), with prognostic ef-
fect defined as the ratio of medians between g+ and g− in the control arm C.
For such a simple model, quantities such RoM in {g+, g−} can be computed
without resorting to simulation.

Table 1.8 gives an example where there is no prognostic effect (i.e. median
for C is the same 10 months for the two subgroups) but differential efficacy
in two subgroups (i.e. HR for g+ = 0.5 and g− = 2).

Table 1.9 gives an example where there is a prognostic effect of 6 in C in
terms of RoM but efficacy for the subgroups are the same (i.e. HR=0.5 for g−

and g+).
When there is a prognostic effect, or when there is differential efficacy

between subgroups, hazard ratio HR between Rx and C for the overall pop-
ulation {g+, g−} is not well defined as it depends on time t (see Figure 1.3).
Nonetheless, computer packages (e.g. Proc PHreg in SAS) will provide “HR”
estimates in these cases upon user demand. Proposition 1.2 below shows the
computed HR estimates an “average” HR in some sense.

Proposition 1.2 In the absence of censoring, the HR estimator from a
marginal Cox model (i.e. with treatment indicator as the only predictor) con-
verges in probability to the “average” HR defined in (1.19)

log(“HR”) = −
∫ ∞
0

log(HR(t))dS(t) (1.19)

where HR(t) is the ratio of hazard functions between Rx and C for the overall
population {g+, g−} and S(t) is the survival function for the overall population
{g+, g−} combining Rx and C arm patients, both of which are functions of
time t.

Proof See Xu and O’Quigley (2000).

Ratio of Median (RoM) is always well-defined. It is logic-respecting, and
RoM in {g−, g+} can be computed according to the Subgroup Mixable Es-
timation (SME) principle using software accompanying Ding et al. However,
suppose one calculates RoM in {g−, g+} by linearly mixing RoM in g− and g+

weighted by prevalence, then probably no one would be surprised that such
mixing does not produce the correct RoM in {g−, g+}, and one might in fact
wonder “What are they thinking?” Yet, mixing HR or logarithms of HR by
prevalence is similar in nature. Indeed, as shown in Table 1.8 and 1.9, mixing
HR or log(HR) by prevalence does not lead to the theoretical “average” HR.

To understand what computer packages currently do, we generate 200,000
patients’ time-to-event data based on the setting in Table 1.8 and 1.9 with
perfectly balanced data and 50% prevalence for subgroup g+. Then for each
setting, we obtain the LSmeans estimate of the HR for Rx vs C from three
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Rx C
Prognostic effect

Rx : C

median median HR, RoM

g− 5 10 C median g+

C median g−
= 1

HR=2, RoM=0.5

g+ 20 10 HR=0.5, RoM=2

{g−, g+} 9.3 10
HR(t) Figure 1.3a

RoM=0.93

“Average” HR in {g−, g+} exp{−
∫∞
0

log(HR(t))dS(t)} = exp(−0.17) = 0.84

Mixing HR by prevalence 1
2 × 2 + 1

2 × 0.5 = 1.25 6= 0.84

Mixing log(HR) by prevalence 1
2 × log(2) + 1

2 × log(0.5) = 0 6= −0.17 = log(0.84)

TABLE 1.8: An example of theoretical Hazard Ratios (HR) and Ratio of
Median (RoM) in g−, g+ and overall {g+, g−} when there is no prognostic
effect.

Cox models: Marginal model (treatment indicator only), model without inter-
action (treatment and subgroup indicators only), and model with interaction
(treatment and subgroup indicators and their interaction) with the following
SAS codes:

/* Fit a marginal model */

proc phreg;

class trt(ref=’0’) / param=glm;

model time*event(0)= trt ;

hazardratio ’H1’ trt / diff=all cl=both;

lsmeans trt;

run;

/* Fit model without interaction term */

proc phreg;

class trt(ref=’0’) subgroup (ref=’0’) / param=glm;

model time*event(0)= trt subgroup;

hazardratio ’H1’ trt / diff=all cl=both;
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Rx C
Prognostic effect

Rx : C Rx : C

median median HR RoM

g− 10 5 C median g+

C median g−
= 6.0

0.5 2

g+ 60 30 0.5 2

{g−, g+} 21.7 10.9
HR(t) 2

Fig. 1.3b

“Average” HR in {g−, g+} exp{−
∫∞
0

log(HR(t))dS(t)} = 0.60 6= 0.5

Mixing HR by prevalence 1
2 × 0.5 + 1

2 × 0.5 = 0.5 6= 0.60

Mixing log(HR) by prevalence 1
2 × log(0.5) + 1

2 × log(0.5) = −0.69 6= −0.51 = log(0.60)

TABLE 1.9: An example of theoretical Hazard Ratios (HR) and Ratio of
Median (RoM) in g−, g+ and overall {g+, g−} when this is a prognostic effect.

lsmeans trt;

run;

/* Fit model with interaction term */

proc phreg;

class trt(ref=’0’) subgroup (ref=’0’) / param=glm;

model time*event(0)= trt subgroup trt*subgroup;

hazardratio ’H1’ trt / diff=all cl=both;

lsmeans trt;

run;

Results from SAS are shown in Table 1.10 and 1.11. They confirmed that
the HR computed by fitting a marginal Cox model (without any biomarker
term in the model) estimates the “average” HR defined in (1.19) (for a bal-
anced data set without censoring with sample size approaching infinity).

The example in Table 1.8 has no prognostic effect but there is differential
efficacy between the subgroups. It is not surprising that the model without
interaction does not give correct estimation of “average” HR since the model
is incorrectly specified. But even when an interaction term is added, LSmeans
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FIGURE 1.3: Hazard Ratio (HR) in the overall population {g−, g+} depends
on time t

in computer packages currently still do not lead to correct estimation of the
logarithm of “average” HR because it is not an average of the logarithms of
the HRs in the subgroups.

For the example in Table 1.9, models with and without interaction estimate
(correctly) log(HR) in the g− and g+ subgroups as log(0.5). The LSmeans
option produces an estimate of log(0.5) for the “average” HR which might
look correct but actually is not. The correct “average” HR is log(0.52) be-
cause of the prognostic effect. Ironically, the seemingly logical results given
by computer packages currently might give the illusion that HR is collapsible
(while in fact HR is not collapsible and not logic-respecting).

1.6 The Subgroup Mixable Estimation Principle

Subgroup Mixable Estimation (SME) in Ding et al. and Lin et al. is a prin-
cipled approach that produces logic-respecting inferences for efficacy in the
mixture by mixing g+ and g− within each arm first, then compare Rx with
C. A 3-step process, SME takes the LSmeans estimates for the (canonical)
parameters in models appropriate for the RCT data (eg., logistic, log-linear,
Weibull) to whatever space appropriate for mixing (e.g., responder probabil-
ity or survival probability) within each arm, and then calculate efficacy in g+,
g−, and {g+, g−}:

1. Fit a model for the clinical outcome, obtain LSmeans estimates
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Marginal model log(“average” HR) for {g−, g+} = −0.16 ≈ log(0.84)

LSmeans without interaction log(HR) for {g−, g+} = 0.01 6= log(0.84)

LSmeans with interaction

log(HR) for g− = 0.702 ≈ log(2)

log(HR) for g+ = −0.705 ≈ log(0.5)

log(HR) for {g−, g+} ≈ log(2)+log(0.5)
2 6= log(0.84)

TABLE 1.10: Computer packages currently combine unequal Hazard Ratios
(HR) in subgroups in a way inconsistent with (1.19) even when there is no
prognostic effect (Table 1.8 example), based on a total of 200,000 patients
with 1:1 randomization ratio and a prevalence of 0.5

for the model parameters and their estimated variance-covariance
matrix.

2. Within each of the Rx and C arms, estimate the effects µRxg+ , µRxg− ,

µCg+ , µCg− in the g+ and g− subgroups as appropriate functions of the

model parameters. Additionally, estimate the effects µRx and µC (be
it response probability or median survival time) in {g+, g−} within
each of the Rx and C arms, mixing in accordance to prevalence
in the intended patient population.4 Obtain estimated variance-
covariance matrices for the estimates of (µRxg+ , µRxg− , µ

Rx) and (µCg+ ,

µCg− , µ
C) by the delta method.

3. Estimate efficacy in g+, g− subgroups and in all-comers {g+, g−} by
comparing Rx with C, deriving the estimated variance-covariance
matrix of these estimates by the delta method.

An app demonstrating SME for analyzing time-to-event data is available
at https://jchsustatsci.shinyapps.io/Ratio of Median survival times.

While SME naturally takes the prognostic effect into account, it will not
magically transform a non-collapsible efficacy measure into a logic-respecting
one. One should start with a logic-respecting efficacy measure and then apply
the SME principle to it.

4Some stratified studies are “enriched”, so that the proportion of g+ patients in the study
is γ+E instead of the prevalence γ+ in the intended patient population. For such studies,
estimation of the effects in Step 2 of SME should be based on γ+ in the intended patient
population, not γ+E .
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Marginal model log(“average” HR) for {g−, g+} = −0.5 ≈ log(0.60)

LSmeans without interaction log(HR) for {g−, g+} = −0.697 ≈ log(0.5) 6= log(0.60)

LSmeans with interaction

log(HR) for g− = −0.694 ≈ log(0.5)

log(HR) for g+ = −0.701 ≈ log(0.5)

log(HR) for {g−, g+} ≈ log(0.5)+log(0.5)
2 6= log(0.60)

TABLE 1.11: Computer packages currently do not combine equal Hazard Ra-
tios (HR) in subgroups sensibly when there is a prognostic effect (Table 1.9
example), based on a total of 200,000 patients with 1:1 randomization ratio
and a prevalence of 0.5

1.6.1 Implication toward Causal Inference

In general Causal Inference terms, an (association) measure is collapsible if
“collapsed” conditional measures equals the marginal measure. (See Greenland
and Robins 2009, for example.)

In the language of Section 1.2.1, an efficacy measure is collapsible if g−

and g+ patients deriving the same efficacy (e.g. RR = 3) implies all-comers
derive the same efficacy as well (RR = 3).5 Clearly, a logic-respecting efficacy
measure is automatically a collapsible efficacy measure, because it pinches the
efficacy in all-comers {g−, g+} between the (potentially different) efficacies in
g− and g+ patients.

Efficacy measures are defined in the population space, not the sample
space. As stated in Section 1.2.1, Rubin (1987) proved that Difference of Means
is collapsible in a RCT, in the population space. What Sections 1.5.2 and 1.5.3
showed is that, provided continuous outcome data from a RCT goes through
LSmeans adjustment by linear modeling, estimating means in a balanced pop-
ulation, efficacy assessment of Difference of Means has no confounding issue
because Difference of Means is logic-respecting.

Similarly, we showed in Section 1.4.2 that, provided binary data from a
RCT first goes through LSmeans adjustment by logistic (or log-linear) mod-
eling, SME efficacy assessment of RR is logic-respecting and not confounded
by the prognostic effect6.

We also showed in Section 1.4.3 that, provided time-to-event data from

5This is termed strict collapsibility in Greenland et al. (1999).
6The term “confounding” is broadly used in causal inference. Our use of the term is

within RCTs, referring to being affected by hidden or “covert” factors such as the prognostic
effect.
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a RCT first goes through LSmeans adjustment by Weibull modeling, SME
efficacy assessment of RoM is logic-respecting and not confounded by the
prognostic effect.

On the other hand, an example in Section 1.4.2 showed Odds Ratio is not
collapsible, even in a RCT. And an example in Aalen et al. (2015) and the
example in Table 1.9 in Section 1.5.5 showed Hazard Ratio is not collapsible
(even) under a Weibull model, a special case of the Cox PH model.

Taken together, we see that contrary to what is stated in some literature,
collapsibility is not a model property but an efficacy measure property. We
elaborate in the next section.

1.6.1.1 Collapsibility is not a model property

As seen in Section 1.5.2, RCT data need to go through Least Square means
analysis to avoid Simpson’s Paradox behavior. Least Squares means is a linear
technique, so continuous data go through linear modeling, binary data go
through logistic (or log-linear) modeling, and time-to-event data go through
Cox or Weibull regression modeling.

While the interaction parameters in a linear model is a difference of means,
the interaction parameter in a logistic model is the log of the Odds Ratio, and
the interaction parameter in a Cox model is the log of the Hazard Ratio.

Observing that Odds Ratio and Hazard Ratio are not collapsible, but ratio
of time is under a Weibull model, some literature have phrased collapsibility
as a model property, as in “the logistic model is not collapsible” and “the Cox
model is not collapsible” but “the Weibull model is collapsible” (e.g., in Aalen
et al. 2015).

However, using a linearized model for LSmeans purpose does not obligate
one to measure efficacy using whatever happens to be the interaction param-
eter in that model. For example, one can model binary data using a logistic
model and still assess efficacy by the logic-respecting measure RR. And one
can model time-to-event data using a Weibull model and choose to assess
efficacy by the Hazard Ratio (instead of a ratio of time).

Subgroup Mixable Estimation in Lin et al. (2019) can in fact fit binary data
to either a logistic model or a log-linear model and assesses efficacy using the
logic-respecting measure RR by applying a sequence of delta methods.

On the other hand, if one fits time-to-event data to a Weibull model and
chooses to assess efficacy by the Hazard Ratio (instead of a ratio of time),
then Simpson’s Paradox might result because Hazard Ratio is not collapsible
even under a Weibull model.

So collapsibility is an efficacy measure property, not a model property.
There is no need to discard a tried-and-true model just because the parameter
which corresponds to its interaction term happens to not be collapsible, as one
can likely transform parameters in such a model to another efficacy measure
which is logic-respecting. Choice of efficacy measure should be made medically,
logically, but not for mathematical convenience.
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1.7 Log-Rank test does not control Incorrect Decision
rate

A curious practice in the statistical analysis of survival data from clinical trials
is to report confidence intervals for Hazard Ratio (HR) from the Wald test in a
Cox Proportional Hazard (PH) model, but report p-values from the log-Rank
test.

The null hypothesis being tested by a log-Rank test is the survival functions
under Rx and C are exactly equal at all time points. It can be thought of
as testing infinitely many equality nulls (??) between Rx and C, that the
survival probabilities are exactly equal at all time points or, equivalently, that
the (population) survival times are exactly equal for all quantiles.

We show that Type I error rate control by the log-Rank test testing this
very restrictive null hypothesis offers no protection against the rate of making
incorrect decisions. In contrast, we remind ourselves that, decision-making
based on confidence sets automatically controls the incorrect decision rate.
See Section 5.2 of Lin et al. (2019).

In multiple comparisons, the null hypothesis being tested by a log-Rank
test is called a Complete null, that all the individual null hypotheses are true.

Definition 1.1 The complete null is where all the null hypotheses are true.7

Definition 1.2 Controlling the Type I error rate under the complete null is
termed weak control.

For outcome measures that are not time-to-event, it has long been recog-
nized that weak control of the Type I error rate is inadequate, because it may
not translate into control of any Incorrect Regulatory Decision rate.

For example, in a dose-response study, weak control of the Type I error
rate testing the null hypotheses that the effect at each dose equals the placebo
effect may not control the probability of incorrectly inferring an ineffective
dose as effective. Reason for this inadequacy of weak control is, for methods
that pool information across doses (either in terms of point estimates or the
data itself), the scenario that has the highest probability of incorrect decision
is not when all the doses have no effect (see Hsu and Berger 1999).

As another example, with multiple co-primary endpoints, the scenario that
has the highest probability for the standard pairwise method to incorrectly
infer that there is efficacy in both endpoints is not when there is no efficacy
in either endpoint (see Hsu and Berger 1999).

The inference given by rejection of the complete null hypothesis tested by
a log-Rank test is just

“the survival functions given Rx and C differ at some time point”

7The complete null is also called the global null. See Chapter 1 of this Handbook.
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which many of us think is a given, with no statistical testing required to
established it.8

It is also not an actionable inference. To be useful, the inference needs to
state whether Rx is better or worse than C in some clinical sense, such as
RoM is greater than one or LLP is less than one half.

IMvigor211 was a phase 3 randomised trial comparing the anti-PD-L1 ate-
zolizumab against chemotherapy in patients with metastatic urothelial carci-
noma. For such immunotherapy, a biomarker is PD-L1 expression level, which
is typically measured by immunohistochemistry (IHC). In the case of IMvigor
211, the IHC scores was placed in three categories: IC{0}, IC{1}, and IC{2,3}.
Both the design and the analysis of IMvigor 211 were stratified on IHC scores.

Reporting on the analysis of the primary endpoint which was overall sur-
vival (OS) in IMvigor 211, Powles et al (2018) stated the decision making
process after each step of the pre-determined stepwise testing of efficacy in
the nested IC{2,3}, IC{1,2,3}, and the IC{0,1,2,3}=ITT populations to be

“If the estimate of the HR is < 1 and the two-sided p-value correspond-
ing to the stratified log-rank test is < 0.05, the null hypothesis will be
rejected and it will be concluded that atezolizumab prolongs OS relative
to chemotherapy.”

So indeed they take the implication of a rejection of the log-Rank test not to
be merely “the survival functions given Rx and C differ at some time point”,
but that overall survival time is increased or decreased depending on whether
estimated HR is < 1 or HR is > 1. We will show that Type I error rate control
of the log-Rank test does not control the incorrect decision rate.

HR is not collapsible, as we showed in Section 1.5.5. A presumed common
HR for the IC{1} and IC{2,3} subpopulations is not the HR for the combined
IC{1,2,3} population, even in a balanced (infinite sample size) population with
no censoring, if IHC is prognostic. So it is rather hopeless for the Type I error
rate control of the stratified log-Rank test to control the rate of making an
incorrect clinical decision, be it Rx prolongs OS or otherwise, if decision is
made based on estimated HR.

Instead, since RoM is logic-respecting and therefore collapsible (under a
Weibull model), let us consider making decision by first conducting a level-α
log-Rank test and, upon rejection, declares Rx has longer median survival
time compared to C if the estimated median survival time under Rx is longer
than the estimated median survival time under C. We will consider a situation
where one but not all of the equality nulls of expected survival times are true,
specifically that the median survival times are equal between Rx and C, and
show that Type I error rate control of the stratified log-Rank test fails to
control the rate of incorrectly making this clinical decision.

8The null hypothesis tested by the log-Rank test can be called a Null null hypothesis
(as in Tukey 1953), because it cannot be exactly true. As Tukey (1993) said, “provided
we measure to enough decimal places, no two ‘treatments’ ever have identically the same
long-run value”.
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Suppose the median survival times in the overall population are the same
under Rx and C, and the statistical procedure is, once the statistical test
for equality of survival functions in the overall population rejects, whichever
treatment arm has the longer estimated median survival time, infer that treat-
ment has longer median survival time than the other treatment for the overall
population. Of course, either assertion would constitute a directional error.
Suppose there are subgroups, so that for the g+ subgroup, patients give Rx
do better than those given C, but the reverse is true for the g− patients. We
conducted a simulation study to see what is the probability that the decision-
making process described above would make incorrect directional decision.

For this simulation, we set the median survival time for overall population
to be 8 months under both Rx and C. Data is generated from Weibull dis-
tributions, with shape parameter values of 1.05 and 1.20 for the g− and g+

subgroups respectively. We generate data sets with sample size 1000, equally
randomized to Rx and C, with a prevalence of 50% for each of the g− and g+

subgroups, without censoring. For g+ patients, the median survival times are
12 months and 6 months given Rx and C respectively. Using the fact that,
within each treatment arm and at each time point, the survival probability
in the overall population is a mixture of survival probabilities in the g− and
g+ subgroups, the median survival times in the overall population and in the
g+ subgroup determine the scale parameter values in the g− subgroup in our
simulation. Setting the level of the log-Rank test at 5%, the percent of times
it rejects was 304 times out of the 1000 Weibull data sets simulated.

Truth of the Weibull model we generated data from is that median survival
times under Rx and C are the same, so inferring either Rx or C has longer
median survival time is a directional error, an incorrect decision. For a 5%
2-sided test based on an equal-tailed 95% confidence interval, this incorrect
decision rate is no more than 2.5%. On the contrary, for the log-Rank test,
since the sum of the two possible directional error rates is estimated to ex-
ceed 30%, at least one of the two directional error rates exceeds 15%. This
is an illustration that controlling the Type I error rate of testing a Null null
hypothesis may well be a Null control, in terms of controlling any incorrect
decision rate.

The log-Rank test is popular because it is perceived to be more power-
ful than the Wald test. To us, the concept of “power” is inadequate for any
multi-action problem because it includes the probability of rejecting for wrong
reasons. For example, suppose in truth the median survival time under Rx is
higher than the median survival time under C, so that inferring the median
survival time under Rx is lower than the median survival time under C is in
fact worse than making no inference, making this latter inference is typically
counted positively in the calculation of “power”. Thus, for time-to-event out-
comes, we urge a fundamental re-assessment of the concept of (regulatory)
Type I error rate control, vis-à-vis the log-Rank test.
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1.7.1 Permutation testing for predictive effect will pick up
purely prognostic biomarkers

Rank-based methods are perceived as “nonparametric”, based on the notion
that all rankings are equally likely under the Null null of identical distributions
under Rx and C. Similarly, permutation methods are perceived as “nonpara-
metric”, based on the notion that all permutations are equally likely under
some “null”.

If decision-making goes beyond stating the Null null of identical distribu-
tions is false, then permutation-based methods share with the log-Rank test
the issue that weak control of Type I error rate may not control the Incorrect
Decision Rate in the sense of having inflated directional error rate. Under the
same equal median survival times scenario as we had for the log-Rank test
simulation, the percent of times a level-5% permutation version of the Cox
model likelihood ratio test rejects was 431 times out of the 1000 Weibull data
sets simulated, even more than the log-Rank test. So, for the permutation ver-
sion of the Cox model likelihood ratio test, at least one of its two directional
error rates exceeds 21% in our simulation scenario.

There are two further issues with permutation methods that illustrate the
danger of assessing statistical evidence by calculating under a very restricted
null, as follows.

One aspect of subgroup identification is to find predictive biomarkers. Sec-
tions 1.4.2 and 1.4.3 showed that the prognostic effect needs to be carefully
accounted for, to tease out the predictive effect, if the outcome is binary or
time-to-event. Suppose one is interested in testing whether a binary biomarker
is predictive under a logistic mode using a test statistics which is the maximum
likelihood estimate of the interaction term. Values far from zero (where ‘far’ is
defined by a reference distribution for the test statistic when the null hypoth-
esis is true) are strong evidence against the null hypothesis. Kil et al. (2020)
showed that calculating the null distribution by permuting the biomarker la-
bel will cause purely prognostic markers be inadvertently picked up. This is
because permuting the biomarker label makes both the prognostic effect and
the predictive effect null, but one cannot assume the prognostic effect is null.
Calculating the null distribution by permuting the treatment label has a sim-
ilar issue, because such permutation makes both the treatment main effect
and its interaction with the biomarker null.

Another aspect of subgroup identification is to select a cut-point c∗ from
a set of cut-point values ci, i = 1, . . . , k, of a continuously valued biomarker
x and target patients with x > c∗. Subgroup identification methods such as
Jiang et al. (2011) and Liu et al. (2016) test for and compute confidence
intervals for efficacy in the k (nested) subgroups of patients with x > ci, i =
1, . . . , k.

To adjust for multiplicity of the k tests, the Cox modeling likelihood ratio
testing approach of Jiang et al. (2011) use permutation to compute the null
distribution. However, for permutation multiple tests to control the Type I
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Cut-point c1 = 0 c2 = 17 c3 = 53

Partition subgroup 0 ≤ x ≤ 17 17 < x ≤ 53 53 < x ≤ 100

Rx effect 0.2 0.3 0.4

C effect 0.0 0.1 0.2

Efficacy Rx− C 0.2 0.2 0.2

Prevalence 1/3 1/3 1/3

Nested subgroup x > 0 x > 17 x > 53

Efficacy Rx− C 0.2 0.2 0.2

Prevalence 1 2/3 1/3

TABLE 1.12: An example with k = 3 cut-points

error rate even weakly, the subtle MDJ (Marginals-Determine-the-Joint) con-
dition needs to hold, as explained in Xu and Hsu (2007) and Kaizar et al.
(2011). The word “marginal” in MDJ refers to marginal hypotheses. To avoid
confusion with the word marginal referring to collapsing across the strata in
causal inference discussion earlier in this chapter, we change the wording from
marginal to conditional, conditioning (in the distributional sense) on patients
being in a subgroup, and re-word the MDJ condition as the CDJ condition:

Definition 1.3 (CDJ) The Conditionals-Determine-the-Joint (CDJ) condi-
tion is said to hold if the truth of all null hypotheses conditionally within each
subgroup implies the joint distributions of the observations (possibly adjusted
for the nulls) are identical under Rx and C across all the subgroups.

The reason CDJ is necessary for permutation tests to control the Type I
error rate even weakly is, while permuting treatment label generates a null
distribution assuming the joint distributions of the observations across all
the subgroups are identical under Rx and C, the complete null specifies only
some aspect of the distributions under Rx and C are the same within each
subgroup.
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For example, suppose each null hypothesis states the means are the same
under Rx and C within each subgroup. Then any difference in higher moments
in the joint distributions under Rx and C within and across the subgroups,
such as differences in variances or skewness or kurtosis between Rx and C
within subgroups, or difference in covariances among subgroups between Rx
and C, would violate CDJ.

Take the example in Table 1.12 where outcome is binary and efficacy is
a difference of means, the difference in the responder probabilities under Rx
and C. Suppose each null hypothesis is Rx : C efficacy is 0.2. Then subtract-
ing 0.2 from each observations under Rx while leaving observations under
C unchanged would make the mean difference between Rx and C equal to
zero in each of the three subgroups. Suppose the test statistic for each of
the nested subgroups is the estimated mean difference of these ”re-centered”
observations, and the form of the multiple test is a maxT test. The three
test statistics are correlated since observations with x > 17 include observa-
tions with x > 53 ans so forth. So one might be tempted to calculated a null
distribution for the maxT statistic by permuting the Rx and C treatment
label, re-calculating the maxT statistic after each permutation. However, the
result of Huang et al. (2006) shows this permutation test would not control
Type I error rate even weakly, because in this case the variances under Rx
and C within each nested subgroup would differ, and the covariances among
subgroups would differ between Rx and C.

Instead of using permutation to build a null distribution, Liu et al. (2016)
shows with suitable modeling one can theoretically and numerically compute
the joint distribution of pivotal statistics to provide simultaneous confidence
intervals for efficacy in the nested subgroups to facilitate choosing a cut-point.

1.8 Summary and connection

Instead of giving a list of methods for subgroup analysis, we have shown a
systematic to develop confident logical inference on efficacy in subgroups and
their mixtures, via the following path

1. Choose a logic-respecting efficacy measure;

2. Model the data and adjust for imbalance using the Least Squares
means technique;

3. Apply the Subgroup Mixable Estimation principle to infer on effi-
cacy in subgroups and their mixtures.

Methods that result, being confidence interval methods, automatically control
the directional incorrect decision rate. On the other hand, we urge caution
against subgroup analysis methods based on tests of exact equality nulls, as
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we have shown by example that they may not control the directional incorrect
decision rate.

Finally, we briefly indicate how subgroup analyses arise in on-line testing.
In A/B/n web testing, two or more web designs are compared in terms of
Key Performance Indicators (KPIs) which include Click-through rate (CTR),
Average order value (AOV), Customer journey. Having subgroups is referred
to as having segmentation. Customers in different countries may have different
preferences; casual gamers behave differently from addicted gamers.
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1.10 Glossary

Disease-progression prognostic biomarker: A biomarker which predicts
increased likelihood of an event without any treatment.

Treatment-effect prognostic biomarker: A biomarker whose value has
some ability to foretell the outcome for a patient given a particular treat-
ment.





Index

Least Squares means
Least Squares means, 6, 8,

17–21, 32, 38
marginal means, 19, 20

Log-Rank test, 33–35

Permutation methods, 36–38
Personalized/Precision medicine, 6

biomarker, 7, 9, 16, 18, 34, 36
predictive, 9, 10
prognostic, 9, 10, 13, 15

Randomized control trial (RCT), 7

Subgroups, 7
logic-respecting measures, 8

difference of means, 8, 10, 11
ratio of medians, 8, 25–28, 32,

34
relative response, 8, 11, 12,

22, 23
not-logic-respecting measures

hazard ratio, 8, 10, 25, 27–33
odds ratio, 8, 10, 32

Subgroup Mixable Estimation,
9, 11, 15, 23, 24, 26, 29–31

47


