Physics 1200 Mechanics, Kinematics, Fluids, Waves

Lecturer: Tom Humanic

Contact info:

Office: Physics Research Building, Rm. 2144

Email: humanic.1@osu.edu

Phone: 614 247 8950

Office hour:

Monday 10:00 am

My lecture slides may be found on my website at http://www.asc.ohio-state.edu/humanic.1/

You can also get to this link via Carmen

Course Overview

Kinematics -- velocity and acceleration, free-falling bodies, projectile motion....(football trajectories)

Dynamics -- Newton's laws of motion -- forces (gravitational, friction, tension.....), motion of objects due to forces.....(motion of planets around the Sun)

Work and energy -- potential and kinetic energy, conservation of energy, power...(skiing down a curvy slope)

Impulse and momentum -- conservation of momentum, collisions, center-of-mass of an object...(colliding billiard balls)

Rotational kinematics and dynamics -- angular velocity and acceleration, torque, angular momentum...(spinning wheels)

Course Overview -- continued

Fluids – density, pressure; Pascal's, Archimedes' and Bernoulli's Principles.....(airplane wing design)

Waves – simple harmonic motion, resonance, refraction, diffraction, interference, sound waves, Doppler Effect..... (organ pipe design)

Chapter 1

Measurement, units, ...

Measurement and units

Physics experiments involve the measurement of a variety of quantities.

These measurements should be accurate and reproducible.

The first step in ensuring accuracy and reproducibility is defining the units in which the measurements are made.

Units

SI units

(international system of units)

meter (m): unit of length

kilogram (kg): unit of mass

second (s): unit of time

Also SI units:

```
ampere (A) -- electric current, kelvin (K) -- temperature mole (mol) -- # atoms/kg, candela (cd) -- luminous intensity
```

Units

Table 1.1 Units of Measurement

	System		
	SI	CGS	BE
Length	Meter (m)	Centimeter (cm)	Foot (ft)
Mass	Kilogram (kg)	Gram (g)	Slug (sl)
Time	Second (s)	Second (s)	Second (s)

Units

The units for length, mass, and time (as well as a few others), are regarded as base units.

These units are used in combination to define additional units for other important physical quantities such as force and energy → derived units

THE CONVERSION OF UNITS

$$1 \text{ ft} = 0.3048 \text{ m}$$

$$1 \text{ mi} = 1.609 \text{ km}$$

$$1 hp = 746 W$$

1 liter =
$$10^{-3}$$
 m³

Example: The World's Highest Waterfall

The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of 979.0 m. Express this drop in feet.

Since 3.281 feet = 1 meter, it follows that

(3.281 feet)/(1 meter) = 1

Length =
$$(979.0 \text{ meters}) \left(\frac{3.281 \text{ feet}}{1 \text{ meter}} \right) = 3212 \text{ feet}$$

Table 1.2 Standard Prefixes Used to Denote Multiples of Ten

Prefix	Symbol	Factora
tera	T	10^{12}
giga ^b	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}

Reasoning Strategy: Converting Between Units

- 1. In all calculations, write down the units explicitly.
- 2. Treat all units as algebraic quantities. When identical units are divided, they are eliminated algebraically.
- 3. Use the conversion factors located on the page facing the inside cover. Be guided by the fact that multiplying or dividing an equation by a factor of 1 does not alter the equation.

Example: Interstate Speed Limit

Express the speed limit of 65 miles/hour in terms of meters/second.

Use 5280 feet = 1 mile and 3600 seconds = 1 hour and 3.281 feet = 1 meter.

Speed =
$$\left(65 \frac{\text{miles}}{\text{hour}}\right) \left(1\right) \left(1\right) = \left(65 \frac{\text{miles}}{\text{hour}}\right) \left(\frac{5280 \text{ feet}}{\text{mile}}\right) \left(\frac{1 \text{ hour}}{3600 \text{ s}}\right) = 95 \frac{\text{feet}}{\text{second}}$$

Speed =
$$\left(95 \frac{\text{feet}}{\text{second}}\right) \left(1\right) = \left(95 \frac{\text{feet}}{\text{second}}\right) \left(\frac{1 \text{ meter}}{3.281 \text{ feet}}\right) = 29 \frac{\text{meters}}{\text{second}}$$

DIMENSIONAL ANALYSIS

Is the following equation dimensionally correct? (e.g. where x = position in m, v = speed in m/s, and t = time in s)

Is the following equation dimensionally correct?

Scalars and Vectors

A *scalar* quantity is one that can be described by a single number:

temperature, speed, mass

A *vector* quantity deals inherently with both magnitude and direction:

velocity, force, displacement

Scalars and Vectors

Arrows are used to represent vectors. The direction of the arrow gives the direction of the vector.

By convention, the length of a vector arrow is proportional to the magnitude of the vector.

Chapter 2

Kinematics in One Dimension

Kinematics deals with the concepts that are needed to describe motion.

Dynamics deals with the effect that forces have on motion.

Together, kinematics and dynamics form the branch of physics known as *Mechanics*.

$$\vec{\mathbf{x}}_o$$
 = initial position

$$\vec{x}$$
 = final position

$$\Delta \vec{\mathbf{x}} = \vec{\mathbf{x}} - \vec{\mathbf{x}}_o = \text{displacement}$$

$$\vec{\mathbf{x}}_o = 2.0 \,\mathrm{m}$$

$$\Delta \vec{\mathbf{x}} = 5.0 \,\mathrm{m}$$

$$\vec{\mathbf{x}} = 7.0 \,\mathrm{m}$$

$$\Delta \vec{x} = \vec{x} - \vec{x}_o = 7.0 \text{ m} - 2.0 \text{ m} = 5.0 \text{ m}$$

$$\vec{\mathbf{x}} = 2.0 \,\mathrm{m}$$
 $\Delta \vec{\mathbf{x}} = -5.0 \,\mathrm{m}$ $\vec{\mathbf{x}}_o = 7.0 \,\mathrm{m}$

$$\Delta \vec{x} = \vec{x} - \vec{x}_o = 2.0 \text{ m} - 7.0 \text{ m} = -5.0 \text{ m}$$

$$\Delta \vec{x} = \vec{x} - \vec{x}_o = 5.0 \text{ m} - (-2.0) \text{m} = 7.0 \text{ m}$$

Average speed is the distance traveled divided by the time required to cover the distance.

Average speed =
$$\frac{\text{Distance}}{\text{Elapsed time}}$$

SI units for speed: meters per second (m/s)

Example: Distance Run by a Jogger

How far does a jogger run in 1.5 hours (5400 s) if her average speed is 2.22 m/s?

Average speed =
$$\frac{\text{Distance}}{\text{Elapsed time}}$$

Distance = (Average speed)(Elapsed time)
=
$$(2.22 \text{ m/s})(5400 \text{ s}) = 12000 \text{ m}$$

Average velocity is the displacement divided by the elapsed time.

Average velocity =
$$\frac{\text{Displacement}}{\text{Elapsed time}}$$

$$\frac{\vec{\mathbf{v}}}{\vec{\mathbf{v}}} = \frac{\vec{\mathbf{x}} - \vec{\mathbf{x}}_o}{t - t_o} = \frac{\Delta \vec{\mathbf{x}}}{\Delta t}$$
 So unit: m/s

Example: The World's Fastest Jet-Engine Car

Andy Green in the car *ThrustSSC* set a world record of 341.1 m/s in 1997. To establish such a record, the driver makes two runs through the course, one in each direction, to nullify wind effects. From the data, determine the average velocity for each run.

$$\overline{\dot{\mathbf{v}}} = \frac{\Delta \overline{\dot{\mathbf{x}}}}{\Delta t} = \frac{+1609 \text{ m}}{4.740 \text{ s}} = +339.5 \text{ m/s}$$

$$\overline{\vec{\mathbf{v}}} = \frac{\Delta \vec{\mathbf{x}}}{\Delta t} = \frac{-1609 \text{ m}}{4.695 \text{ s}} = -342.7 \text{ m/s}$$

The *instantaneous velocity* indicates how fast the car moves and the direction of motion at each instant of time.

$$\vec{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{x}}}{\Delta t}$$

The notion of *acceleration* emerges when a change in velocity is combined with the time during which the change occurs.

DEFINITION OF AVERAGE ACCELERATION

$$\overline{\dot{\mathbf{a}}} = \frac{\mathbf{\vec{v}} - \mathbf{\vec{v}}_o}{t - t_o} = \frac{\Delta \mathbf{\vec{v}}}{\Delta t}$$
 SI unit: m/s²

DEFINITION OF INSTANTANEOUS ACCELERATION

$$\vec{\mathbf{a}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{v}}}{\Delta t}$$

Example: Acceleration and Increasing Velocity

Determine the average acceleration of the plane.

$$\vec{v}_o = 0 \text{ km/h}$$
 $\vec{v} = 260 \text{ km/h}$ $t_o = 0 \text{ s}$ $t = 29 \text{ s}$

$$\overline{\mathbf{a}} = \frac{\overline{\mathbf{v}} - \overline{\mathbf{v}}_o}{t - t_o} = \frac{260 \,\text{km/h} - 0 \,\text{km/h}}{29 \,\text{s} - 0 \,\text{s}} = +9.0 \,\frac{\text{km/h}}{\text{s}} = +2.5 \,\text{m/s}^2$$

$$\overline{\vec{a}} = \frac{+9.0 \text{ km/h}}{\text{s}}$$

$$\Delta t = 2.0 \text{ s}$$

$$\vec{\mathbf{v}} = +18 \text{ km/h}$$

Example: Acceleration and Decreasing Velocity

$$\overline{\mathbf{a}} = \frac{\vec{\mathbf{v}} - \vec{\mathbf{v}}_o}{t - t_o} = \frac{13 \,\text{m/s} - 28 \,\text{m/s}}{12 \,\text{s} - 9 \,\text{s}} = -5.0 \,\text{m/s}^2$$

$$\overline{\vec{\mathbf{a}}} = -5.0 \text{ m/s}^2$$

$$\Delta t = 1.0 \text{ s}$$
 $\vec{\mathbf{v}} = +23 \text{ m/s}$

$$\Delta t = 2.0 \text{ s}$$

$$\vec{\mathbf{v}} = +18 \text{ m/s}$$