Interpreting Questions with a Log-Linear Ranking Model in a Virtual Patient Dialogue System

Evan Jaffe1, Michael White1, William Schuler1, Eric Fosler-Lussier2, Alex Rosenfeld, Douglas Danforth3

Introduction
Objective: Train medical students using virtual standardized patients (VSPs)
Current Approach: ChatScript pattern matching engine
Problems: Low accuracy, authoring burden, no confidence measure
Proposed Solution: Log-linear ranking model is data-driven and provides a confidence measure

Background and Related Work
- Paraphrase Identification - Microsoft Research Paraphrase Corpus (Dolan et al., 2004)
- Binary classifier vs. Ranking (Ravichandran et al., 2003)
- Strong Lexical Overlap baseline (Das and Smith, 2009)

Classification
- Maxent multiclass classifier (DeVault et al., 2011)
- Current ChatScript system

Features
- Align - Meteor alignment overall score
- Lexical Overlap
 - 1-gram precision/recall exact/term n-gram matching
 - Binary indicator features for matching or failing to match a given word
- Weighting
 - IDF weighting (canonical plus its variants as a document)
 - Corpus frequency weighting (negative log probability)
- Concept
 - 1-2 gram precision/recall lexical overlap matching that substitutes words or phrases for their matching 'concept' (hand-crafted hypernym)

The Model

\textbf{Eq 1: Probability of a class c given an input sentence} \[P(c|x) = \frac{1}{Z(x)} \sum_{v \in c} \exp \left(\sum_{j} w_j f_j(x, v) \right) \]

\textbf{Eq 3: Test Objective} \[c^* = c(v^*), \text{ where } v^* = \text{argmax}_v \sum_j w_j f_j(x, v) \]

Interpretation Experiment
- 52 dialogues, 918 user turns, mean 29 turns per dialogue
- Asked question, canonical question, current topic and question response are annotated for each turn
- 193 canonical questions
- 787 question variants, mean 4.1 variants per canonical question
- Feature subsets generate a number of models, accuracy shown below

Table 1: Accuracy by model

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Features Included</th>
<th>% Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align</td>
<td>Meteor score feature alone</td>
<td>75.3</td>
</tr>
<tr>
<td>LexOverlap</td>
<td>Das and Smith-style lexical overlap baseline</td>
<td>74.9</td>
</tr>
<tr>
<td>LexOverlap+lex</td>
<td>adds lexical features</td>
<td>74.1</td>
</tr>
<tr>
<td>LexOverlap+align</td>
<td>adds Meteor score feature</td>
<td>75.8</td>
</tr>
<tr>
<td>LexOverlap+weighting</td>
<td>adds weighting features</td>
<td>77.8</td>
</tr>
<tr>
<td>LexOverlap+concept</td>
<td>adds concept features</td>
<td>78.1</td>
</tr>
<tr>
<td>LexOverlap+concept+weighting</td>
<td>adds weighting and concept features</td>
<td>78.5</td>
</tr>
<tr>
<td>Full</td>
<td>all features</td>
<td>77.0</td>
</tr>
<tr>
<td>Full-no-meteor</td>
<td>full minus Align and Meteor features</td>
<td>78.6</td>
</tr>
</tbody>
</table>

Conclusions
- Log-linear ranking model (~78%) outperforms DeVault-style multiclass classifier (~67%)
- Concept features most useful addition
- Confidence measure correlates with accuracy

Further Study
- Collect larger training corpus (100 dialogue set, 5000 user turns in progress)
- Robustness to noisy ASR input
- Vector-space models of word meaning to better identify paraphrases

Acknowledgements
Thanks to Kellen Maicher for creating the virtual environment, Bruce Wilcox for authoring ChatScript, and Laura Zimmerman for managing the laboratory and organizing student involvement.

This project was supported by funding from the Department of Health and Human Services Health Resources and Services Administration (HRSA D56HP020687) and the National Board of Medical Examiners Edward J. Stemmler Education Research Fund (NBME 1112-064).

Contact Information
Evan Jaffe: jaffe.59@osu.edu
Michael White: white.1240@osu.edu