## Syntactically Trained Word Vectors

...and why you should use them!

Evan Jaffe The Ohio State University

Midwest Speech and Language Days, Indiana University May 13-14, 2016

# Problem

Word2Vec Word-window Context [Mikolov et al., 2013]
 Word2VecF Syntactic Dependency Context [Levy and Goldberg, 2014]
 Retrofit Semantic Ontology Context (Wordnet, FrameNet, PPDB, etc.)[Faruqui et al., 2015]

Word2Vec popular and cheap method, but not always the best choice Some work showing adding task-specific information improves task performance

Can good annotation contribute to big data?

- At least for syntactic tasks, yes...
- ...but choice of syntactic context matters!
- What kind of syntactic context is best? I.e., what is the right level of representation/abstraction?

Word embeddings + NLP tasks + you!

#### Proposal

1. Train different sets of word embeddings on various types of syntactic (and non-syntactic) contexts

| baseline word-window context               |
|--------------------------------------------|
| baseline syntactic context                 |
| abstracts from some dependency             |
| framework-specific decisions               |
| like Word2Vec with sentence-length window, |
| constrained to only sample words connected |
| with dependency relation                   |
|                                            |

 Evaluate on prepositional phrase attachment task [Belinkov et al., 2014], changing only pre-trained input vectors When trained on comparable data and evaluated on a downstream syntactic task,

- Labeled directed word embeddings are NOT significantly different from Word2Vec embeddings
- Unlabeled directed word embeddings ARE significantly better than Word2Vec embeddings

Syntactic dependency contexts are useful for training word embeddings IF you choose the right dependency contexts.

# Approach

### **Dependency Context Training Types**



| Dependency Training type | Target Word | Context         |
|--------------------------|-------------|-----------------|
| Labeled directed         | scientist   | discovers+nsubj |
|                          | discovers   | scientist-nsubj |
| Unlabeled directed       | scientist   | discovers+      |
|                          | discovers   | scientist-      |
| Unlabeled undirected     | scientist   | discovers       |
|                          | discovers   | scientist       |

Baseline syntactic context. Similar to [Levy and Goldberg, 2014] contexts.



| Target Word | Context         |
|-------------|-----------------|
| scientist   | discovers+nsubj |
| discovers   | scientist-nsubj |

Retain governor-dependent information, but remove arc label. Abstracts away from dependency framework-specific labels.



Australian scientist discovers star

| Target Word | Context    |
|-------------|------------|
| scientist   | discovers+ |
| discovers   | scientist- |

Somewhat similar to Word2Vec with sentence-length window, except constrains to word-pairs connected by syntactic dependency.

| Target Word | Context   |
|-------------|-----------|
| scientist   | discovers |
| discovers   | scientist |

### **Higher Order Preposition Arcs**

- Follows increasingly standard practice of generating arc between head and object of prepositional phrase, connecting contentful words.
- Stanford Dependencies (collapsed), Universal Dependencies, Goldberg and Levy



becomes:



$$\arg\max_{v_w,v_c} \left( \sum_{(w,c)\in D} \log \sigma(v_c \cdot v_w) + \sum_{(w,c)\in D'} \log \sigma(-v_c \cdot v_w) \right)$$

[Levy and Goldberg, 2014] Same as Mikolov et al., Skip-gram with negative sampling

### Word Vector Training Data

English Wikipedia (1.6 billion tokens), parsed with version of [Goldberg and Nivre, 2012], outputting CoNLL-formatted parse with labels from [McDonald et al., 2013]

Approximately 80 million sentences.

Raw counts for most common arc types:

| Label type | Count       |
|------------|-------------|
| adpmod     | 186,757,807 |
| adpobj     | 183,346,238 |
| р          | 183,099,676 |
| det        | 152,170,759 |
| compmod    | 141,968,939 |
| nsubj      | 106,977,803 |
| amod       | 90,965,244  |
| ROOT       | 80,122,518  |

# **Evaluation**

Given a prepositional phrase and a list of candidate attachment sites, choose the correct attachment. [Belinkov et al., 2014]



**Figure 1:** Example prepositional phrase attachment decision for two similar sentences. Note that the first sentence attaches the prepositional phrase to the noun *spaghetti* and the second attaches it to the verb *ate*.

- Prepositional phrases with gold attachments from Penn Treebank
- Belinkov et al: PTB 2-21 Training, 23 Test
- This work: 10-fold cross validation gives about 30,000 items

Neural network learner that composes and scores word vectors for candidate head, preposition and prepositional object words.

- Compose word vectors to generate phrasal embedding.
- Score phrasal embedding.
- Choose head by taking argmax of scored candidate phrasal embeddings.

#### Belinkov et al. System

Learn  $\theta$  :

- composition matrix  $\mathbf{W} \in \mathbb{R}^{n \times 2n}$
- weight vector  $\mathbf{w} \in \mathbb{R}^n$
- bias term  $\mathbf{b} \in \mathbb{R}^n$

Choose  $\hat{h} \in H$  for sentence x, preposition z, model parameters  $\theta$ :

$$\hat{h} = \underset{h \in H}{\operatorname{argmax}} \operatorname{score}(x, z, h; \theta)$$
 (1)

Scoring function is the dot product of the weight vector  $\mathbf{w}$  and the phrasal embedding for a given head:

$$\hat{h} = \underset{h \in H}{\operatorname{argmax}} \mathbf{p}_h \cdot \mathbf{w}$$
(2)

To generate a phrasal embedding from any two vectors:

$$\mathbf{p} = \tanh(\mathbf{W}[\mathbf{u}; \mathbf{v}] + \mathbf{b}) \tag{3}$$

## Results

| Model |                      | Accuracy | P-value |
|-------|----------------------|----------|---------|
| UD    | Unlabeled directed   | .8535    |         |
| LD    | Labeled directed     | .8448    |         |
| W2V   | Word2Vec             | .8434    | 0.26    |
| UU    | Unlabeled undirected | .8362    |         |

McNemar's Chi-Square Test. With Bonferroni comparison for multiple comparisons, significance threshold is p<0.002. Word2Vec default negative sampling rate used for all models.

| Model |                      | Accuracy | P-value |
|-------|----------------------|----------|---------|
| UD    | Unlabeled directed   | .8535    |         |
| LD    | Labeled directed     | .8448    |         |
| W2V   | Word2Vec             | .8434    | 2.2e-16 |
| UU    | Unlabeled undirected | .8362    |         |

McNemar's Chi-Square Test. With Bonferroni comparison for multiple comparisons, significance threshold is p<0.002. Word2Vec default negative sampling rate used for all models.

| Model |                      | Accuracy | P-value |
|-------|----------------------|----------|---------|
| UD    | Unlabeled directed   | .8535    |         |
| LD    | Labeled directed     | .8448    |         |
| W2V   | Word2Vec             | .8434    |         |
| UU    | Unlabeled undirected | .8362    | 4.9e-09 |

McNemar's Chi-Square Test. With Bonferroni comparison for multiple comparisons, significance threshold is p<0.002. Word2Vec default negative sampling rate used for all models.

# Conclusion

- Baseline syntactic dependency contexts (labeled arc tuples) not better than W2V, even for a syntactic task!
- Unlabeled dependency contexts do improve this syntactic task performance.
- Consider using unlabeled dependencies when training word embeddings for a syntactic task.

Thanks to: William Schuler, Mike White, Micha Elsner, Marie-Catherine de Marneffe, Lifeng Jin

This work was supported by NSF Grant: DGE-1343012.

**Questions?** 

| Model |                      | Accuracy | / by negative sampling rate |
|-------|----------------------|----------|-----------------------------|
|       |                      | 5        | 15                          |
| HO    | Higher Order PP      | .8552    | .8535                       |
| UD    | Unlabeled directed   | .8535    | .8496                       |
| LD    | Labeled directed     | .8448    | .8464                       |
| W2V   | Word2Vec             | .8434    | .8453                       |
| UU    | Unlabeled undirected | .8362    | .8412                       |

#### References I

Belinkov, Y., Lei, T., Barzilay, R., and Globerson, A. (2014). Exploring compositional architectures and word vector representations for prepositional phrase attachment. Transactions of the Association for Computational Linguistics,

2:561 - 572.



Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015).

Retrofitting word vectors to semantic lexicons.

In Proceedings of NAACL.

Goldberg, Y. and Nivre, J. (2012).

A dynamic oracle for arc-eager dependency parsing.

In Proceedings of COLING.

#### References II

Levy, O. and Goldberg, Y. (2014).

Dependency-based word embeddings.

In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: Short Papers, pages 302-308.

McDonald, R. T., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev, K., Hall, K. B., Petrov, S., Zhang, H.,

Täckström, O., et al. (2013).

Universal dependency annotation for multilingual parsing. In ACL (2), pages 92–97. Citeseer.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781:1–12.