
Spin-1/2 dynamics

The intrinsic angular momentum of a spin-1/2 particle such as an electron, proton, or neu-
tron assumes values ±h̄/2 along any axis. The spin state of an electron (suppressing the spatial
wave function) can be described by an abstract vector or ket a concrete realization of which is
a two-component column vector.

The intrinsic angular momentum of a particle is a vector operator whose components obey
the standard angular momentum commutation relations. Since a spin-1/2 particle has two
possible results of a measurement they can be described by 2 × 2 matrices. Recall the Paui
representation:

~S =
h̄

2
~σ (1)

where ~σ are the Pauli spin matrices defined by

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

and σz =

(

1 0
0 −1

)

. (2)

The choice makes Sz diagonal. Recall the logic of how these are determined. We can write down
Sz since it is diagonal and the diagonal elements are the eigenvalues. The eigenvectors are given
by

|z+〉 =

(

1
0

)

and |z−〉 =

(

0
1

)

.

We use the definitions of S+ and S−:

S+ |z+〉 = 0 and S+ |z−〉 = |z+〉

S− |z+〉 = |z−〉 and S− |z−〉 = 0

allow us to find that

S+ =

(

0 1
0 0

)

and S− =

(

0 0
1 0

)

.

(Knowing S+ we can find S− since it is the Hermitian conjugate of S+.) Since S± = Sx ± iSy

we can find Sx and Sy.

Some simple properties that you should verify and learn to use:

σ2
x = σ2

y = σ2
z = I .

σxσy = iσz, σyσz = iσx, σzσx = iσy .

So the “standard” basis corresponds to spin up and down along the z-axis. In particular if
the particle is in a state described by the ket

|s〉 = →
(

a
b

)

(3)

then the probability of finding +h̄/2 upon making a measurement of the spin along the z−axis
is simply a∗a = | a |2. Absolutely explicitly this probability is given by the squared absolute
value of the “overlap” matrix element

〈z + |s〉 = (1, 0)

(

a
b

)

= a . (4)
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We study the effect of a magnetic field along the z-axis on a spin oriented along the x-axis
initially. The solution to the more general problem follows the same logic but is algebraically
more tedious. Quantum mechanically we start with the Hamiltonian for a magnetic field along
the z-axis

H = −γB0Sz = −ωLSz = − h̄ωL

2
σz =

(−h̄ωL/2 0
0 h̄ωL/2

)

.

Since we are given that the spin points up along x̂ initially we have

|χ(t = 0)〉 =

(

1√
2
1√
2

)

.

Recall that |χ〉 is the spinor wave function that contains all the information about the system
(or more precisely an ensemble of identically prepared systems). We wish to find the state at
time t given by |χ(t)〉.

Find the eigenvalues and eigenvectors of the Hamiltonian: We know that the eigen-
values of H are ±h̄ωL/2 since it is diagonal. The corresponding eigenvectors are

(

1
0

)

and

(

0
1

)

.

Expand the initial state in terms of the eigenfunctions of H:

We have, by inspection,1

|χ(t− 0)〉 =
1√
2

(

1
0

)

+
1√
2

(

0
1

)

.

Use the prescription for determining the state at time t by appending a factor

of e−iEt/h̄ appropriately:

Therefore, at time t we have

|χ(t)〉 = eiωLt/2
1√
2

(

1
0

)

+ e−iωLt/2
1√
2

(

0
1

)

.

We find

|χ(t)〉 =





eiωLt/2
√
2

e−iωLt/2
√
2



 .

Given |χ(t)〉 we can calculate expectation value of operators and the probability of making a
measurement and finding a specific value. For example, suppose we wish to find the probability
of measuring Sx and finding the value +h̄/2. As always we find the eigenvector corresponding
to the eigenvalue +h̄/2 denoted by |x+〉. Then the probability of measuring +h̄/2 along x at
time t is given by how much the state at that time |χ(t)〉 ”looks like” the eigenvector |x+〉. This
is given by the overlap 〈x+ |χ(t)〉 and the probability by |〈x+ |χ(t)〉|2. We can also determine
expectation values in a straightforward manner as illustrated below.

1Please be clear about what the procedure is when it is not evident from inspection.
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The expectation value of the spin along x given by 〈χ(t)|Sx|χ(t)〉 can be calculated. Note
that if we measure the spin along the x-axis at time t on an ensemble of identically prepared
(at time t = 0) systems that evolve according to the given Hamiltonian the average value of the
measurements is given by the expectation value.
Recall that 〈χ(t)| is obtained by the Hermitian conjugate operation: transpose and complex
conjugate.
Therefore, we have

〈χ(t)|Sx|χ(t)〉 =
h̄

2

(

e−iωLt/2

√
2

,
eiωLt/2

√
2

)

(

0 1
1 0

)





eiωLt/2
√
2

e−iωLt/2
√
2





=
h̄

2

(

−eiωLt/2

√
2

,
eiωLt/2

√
2

)





e−iωLt/2
√
2

eiωLt/2
√
2





=
h̄

2

1

2

(

e−iωLt + eiωLt
)

(5)

=
h̄

2
cos(ωLt) . (6)

Note that 〈Sx〉(t) precesses in the plane perpendicular to the field. This corresponds to the
classical result as we see below. Of course there is no real classical analog of spin-1/2 but we
use the associated magnetic moment to investigate the effect.

Classical physics: Consider the dynamical problem of a spin-1/2 particle in a magnetic
field. We will study the simplest case by choosing ẑ along the magnetic field. We study the
problem classically first. In a uniform magnetic field the magnetic moment ~µ experiences a
torque ~µ × ~B. Since the magnetic moment is proportional to the angular momentum we have
~µ = γ ~J . Recall that the rate of change of the angular momentum is the torque:

d ~J

dt
= ~µ× ~B = γ ~J × ~B . (7)

Choosing ~B = B0ẑ and defining ωL = γB0 we can write down the equations for each compo-
nent:

J̇x = ωLJy, J̇y = −ωLJx, and J̇z = 0 .

Clearly Jz the projection along the magnetic field is a constant in time. We solve the other two
equations by a useful trick. Multiplying the equation for Jy by i and adding to the Jx equation
we have

J̇x + iJ̇y = ωL(Jy − iJx) = −iωL (Jx + iJy) .

Recall that ḟ = −iωLf is easily solved as f(t) = f(0) e−iωLt. Check that this obeys the
equation and the initial condition at t = 0. Thus we obtain

Jx(t) + iJy(t) = (Jx(0) + iJy(0)) e
−iωLt .
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Let us choose2 Jy(0) = 0 so that the moment is oriented in the xz-plane initially. We have

Jx(t) + iJy(t) = Jx(0) e
−iωLt ⇒ Jx(t) = Jx(0) cos(ωLt) and Jy(t) = −Jx(0) sin(ωLt).

Thus we have the magnetic moment vector describing a cone with its tip moving in a circle with
frequency ωL. This is referred to as Larmor precession.

Problem: Consider a spin-1/2 particle with spin pointing up along n̂ given by

n̂ = ( sin θ cosφ, sin θ sinφ, cos θ) . (8)

What is the 2-component vector (called a spinor) that corresponds to this state?

It is important to note that we are measuring the spin along n̂ and the operator corresponding
to this observable is ~S · n̂. It is given by

~S · n̂ =
h̄

2
(sin θ cosφσx + sin θ sinφσy + cos θσz) (9)

~S · n̂ =
h̄

2

[(

0 sin θ cosφ
sin θ cosφ 0

)

+

(

0 −i sin θ sinφ
i sin θ sinφ 0

)

+

(

cos θ 0
0 − cos θ

)]

⇒ ~S · n̂ =
h̄

2

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)

. (10)

We need to find the eigenvalues and eigenvectors. Consider the matrix without the factor
of +h̄/2. Note that the trace defined to be the sum of the diagonal matrix elements. The trace
is also the sum of the eigenvalues; denoting them by λ1 and λ2 we have λ1 + λ2 = 0. The
determinant is easily calculated to be −1 and this is the product of the eigenvalues. Thus we
find λ1λ2 = −1. Together we have λ1 = 1 and λ2 = −1. Thus the eigenvalues of ~S · n̂ are ±h̄/2.
This shows the result that the spin measured along any arbitrary axis yields only two possible
values, ±h̄/2. This is an amazing feature of quantum mechanics. Please spend a few minutes
thinking about what happens classically.

Let us denote the eigenvectors by |n̂+〉 and |n̂−〉. We can determine these easily:3

|n̂+〉 =

(

cos θ
2
e−iφ

sin θ
2

)

and |n̂−〉 =

(

sin θ
2
e−iφ

− cos θ
2

)

(11)

2The general case is easily solved by choosing

Jx(0) + iJy(0) = J⊥(0)e
iφ

to find
Jx(t) = J⊥(0) cos(ωLt− φ)) and Jy(t) = −J⊥(0) sin(ωLt− φ).

3We have for example
h̄

2

(

cos θ sin θe−iφ

sin θeiφ − cos θ

) (

a
b

)

=
h̄

2

(

a
b

)

.

Thus we have ( canceling h̄/2)

cos θ a+ sin θe−iφ b = a ⇒
a

b
=

sin θ

1− cos θ
e−iφ =

2 sin(θ/2) cos(θ/2)

2 sin2(θ/2)
e−iφ =

cos(θ/2)

sin(θ/2)
e−iφ

where we have used the half-angle formulae. We have chosen a = cos(θ/2)e−iφ and b = sin(θ/2).
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This is the solution to Problem 4.31 in Griffiths (page 160) except for an overall phase factor
of exp(iφ). Feynman in Vol. III gives a more symmetrical formulae by multiplying by eiφ/2

(Equation 10.30):

|n̂+〉 =

(

cos θ
2
e−iφ/2

sin θ
2
eiφ/2

)

and |n̂−〉 =

(

sin θ
2
e−iφ/2

− cos θ
2
eiφ/2

)

(12)

Problem: Given a spin in the state |z+〉, i.e., pointing up along the z-axis what are the
probabilities of measuring ±h̄/2 along n̂?

The probability of measuring up is given by |〈n̂+ |z+〉|2. This is
∣

∣

∣

∣

(cos(θ/2)eiφ, sin(θ/2)

(

1
0

) ∣

∣

∣

∣

2

= | cos(θ/2)eiφ|2 = cos2(θ/2) .

The probability of measuring −h̄/2 along n̂ given that the spin points up along z is sin2(θ/2).
Please verify this explicitly.

How does one interpret this classically? Classically the angular momentum along n̂ is
(h̄/2) cos θ. We have to compare the classical result with the quantum mechanical expecta-
tion value 〈~S · n̂〉. The expectation value or the mean values is given by the sum of the to
possible values ±h̄/2 multiplied by their corresponding probabilities:

h̄

2
cos2(θ/2) +

(

− h̄

2

)

sin2(θ/2) =
h̄

2
(cos2(θ/2)− sin2(θ/2)) =

h̄

2
cos θ .

This is an example of how expectation values conform to classical expectations in this the most
quantum mechanical of systems.
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