
Hyperfine structure

Summary:

(0) The 1s state of the hydrogen atom is four-fold degenerate corresponding to the

spin states of the proton and the electron. This degeneracy is partially lifted by the

hyperfine interaction.

(1) The interaction Hamiltonian between the electron and proton magnetic moment

is given by

Hhf =
µ0gpgee

2

16πmemp

[
3(~sp · r̂)(~s · r̂)

r3
− ~sp · ~s

r3
+

8π

3
δ(~r)~sp · ~s

]
. (1)

The delta function term requires care.

(2) We need to evaluate 〈n = 1, ` = 0,m` = 0,ms,Ms|Hhf |n = 1, ` = 0,m` =

0,ms,Ms〉 where ms is the z-component of the electron spin and Ms that of the proton.

It is conventional to evaluate the average over the spatial degrees of freedom (integrate

over d3r) and write the Hamiltonian as an operator in spin space

Hhf =
λhf

h̄2 ~sp · ~se .

In any spherically symmetric state the angular average over the first two terms in

Equation (1) vanishes and only the delta function term contributes. We obtain

λhf ≈ 2π

3
gpge

q2

mempc2
|ψ(0)|2

and ψ(0) is the value of the electronic wave function at the nucleus.

(3) The eigenvalues of Hhf are trivially calculated using ~j = ~sp + ~s. The singlet

has an energy −3λhf/4 and the triplet an energy of λhf/4 and the separation is λhf

is given by 5.86× 10−6 eV . The energy difference between these states corresponds to

the famous 21 cm line (1420 Mc) useful in astrophysical applications.

This is one of the most precisely measured frequencies and is

1420, 405, 751. 766 7 ± 0.0009 Hz .
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Gory details

We derive the interaction between the magnetic moment of the proton and the

electron in hydrogen. We restrict our attention to ` = 0 states.

The classical vector potential due to ~µ is given by (See Griffiths or Jackson)

~A =
µ0

4π

~µ× ~r

r3
.

This can be written as
~A = −µ0

4π
~µ× ~∇

(
1

r

)

and the magnetic field due to this vector potential is

~B = ~∇× ~A .

We use

~∇× (~C × ~D) = ( ~D · ~∇)~C − (~C · ~∇) ~D + ~C(~∇ · ~D) − ~D(~∇ · ~C)

and let ~C = ~µ and ~D = ~∇(1/r) to obtain

~B = −µ0

4π

[
(~µ · ~∇)~∇

(
1

r

)
+ ~µ∇2

(
1

r

)]
.

We write this as

Bi = −µ0

4π

[
−µj

∂

∂xj

∂

∂xi

(
1

r

)
− 4π µi δ(~r)

]
.

We now note the identity

∂

∂xj

∂

∂xi

(
1

r

)
=

3xixj − r2δij

r5
− 4π

3
δij δ(~r) .

Where did the last term come from? When we set i = j and sum over i we obtain

∇2(1/r) which must equal −4πδ(~r). Thus we obtain

~B = −µ0

4π

[
~µ

r3
− 3~µ · r̂ r̂

r3
− 8π

3
µδ3(~r)

]
.
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Now we set ~µ = ~µN the nuclear magnetic moment and the energy is given by

−µe · ~B. This yields

µ0

4π

[
~µN · ~µe

r3
− 3~µN · ~r ~µe · ~r

r5

]
− 2

3
µ0~µe · ~µNδ3(~r) .

Consider ~sp and ~s where ~sp is the spin operator of the proton and ~s that of the

electron. The proton has a magnetic moment given by ~µp = gp [e/(2mp)]~sp where

gp ≈ 2×2.79 which reflects the constituent quark structure of the proton. The electron

magnetic moment is given as usual by −ge [e/(2me)]~s. The first-order correction is

given by the expectation value of the Hamiltonian which is given by (obtained by

substituting the expressions for the moments in terms of the spin operators)

Hhf =
µ0gpgee

2

16πmemp

[
3(~sp · ~r)(~s · ~r)

r5
− ~sp · ~s

r3
+

8π

3
δ(~r)~sp · ~s

]
. (2)

The effective hyperfine Hamiltonian can be obtained by taking the expectation

value of this in the ground state, partially, i.e., with respect to the coordinate space

wave function only and leave the rest as an operator in spin space. So we need to

evaluate ∫
d3r ψ10(~r) Hhf ψ10(~r) .

As shown in class the terms which do not involve the delta-function vanish. The

key result is ∫
dΩ (~a · r̂) (~b · r̂) =

4π

3
~a ·~b .

This is easily verified by noting the integral is a scalar that is linear in ~a and ~b and is

therefore, proportional to ~a·~b. The constant of proportionality is evaluated by choosing

~a = ~b = ẑ. So if one performs the angular integral first we have
∫

dΩ 3(~sp · r̂) (~s · r̂) = 4π ~sp · ~s =
∫

dΩ~sp · ~s.

The delta function term yields (8π/3) |ψ10(0)|2 apart from the constants outside the

square bracket in Equation (2) and the operator part ~sp ·~s. Note that ψ(0) is the value

of the electronic wave function at the nucleus.This leads to the Hamiltonian after some

rearrangements

Hhf =
λhf

h̄2 ~sp · ~s (3)

where

λhf ≈ 2π

3
gpge

q2h̄2

mempc2
|ψ(0)|2 .
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We have used µ0ε0 = 1/c2 and write q2 = e2/(4πε0). It is easy to write this using ψ(0)

for the 1s state as λfs = 4
3
gegp

me

mp
α2 q2

2a0
. Why is this form instructive?

This expression yields 1420MHz for the frequency split as is easily verified.

This is one of the most precisely measured frequencies as specified earlier. To ob-

tain agreement with this kind of accuracy one must include very accurate values for

the proton magnetic moment, QED corrections to the electron g factor and also the

magnetic and charge form factors of the proton, the so-called Zemach corrections. Cur-

rently attempts are underway to measure this in an anti-hydrogen atom to test various

fundamental issues such as CPT violation.

The hyperfine splitting has been measured in many alkalis carefully.

Comments about the delta function term

It is worth recalling the result (you should actually derive this result!) that if one

has a uniformly magnetized sphere then the field ~B outside is that of a dipole of moment

~µ = 4πa3

3
~M where ~M is the magnetization defined to be the magnetic moment per

unit volume. Inside the sphere the field ~B is a constant given by

~B =
µ0

2π

~µ

a3
.

Therefore, if one takes the ideal dipole limit of a → 0 with a fixed magnetic dipole

moment this contribution diverges. However, when integrated over the volume of the

sphere it yields a constant contribution independent of a:

µ0

2π

~µ

a3

4πa3

3
=

2µ0

3
~µ

and this contribution is captured by the δ-function term given earlier:

2µ0

3
~µ δ(~r) .
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