
Statistical Mechanics Fermions and Bosons

The state of a many-particle system is uniquely specified by the occupancy of single-
particle states (free particles are the canonical example but the considerations below
work extremely well in many systems with suitable renormalization of the parameters-
consider 3He homework problem), the set |{nα}〉 where α denotes the quantum num-

bers of a single-particles state such as ~k and m the z-component of the spin and nα
the number of particles in the state. The reason this is possible is, of course, that the
particles are indistinguishable and the interchange of particles does not yield a new
state. One can define the number operator n̂α = a†α aα where the creation and anni-
hilation operators obey commutation or ant-commutation relations. The total number
of particles and the total energy of the state are given by

N =
∑
α

nα and E =
∑
α

nα εα . (1.1)

For fermions nα = 0, 1 while for bosons nα = 0, 1, · · · · · · j, · · · .

Z =
∑
N

eNβµ
∑

∑
α nα=N

e−β
∑
α εα nα =

∑
{nα}

e−β
∑
α (εα−µ)nα . (1.2)

In the last equality we just have an unrestricted sum over nα; summing with the
restriction that the sum is N and then allowing N to vary over all possible values is
the same as performing an unconstrained sum over all nα. Note that you have one sum
for each α and therefore we have

Z =
∏
α

∑
nα

e−β (εα−µ)nα . (1.3)

The sum for each α can be done easily and we have for fermions∑
nα=0,1

e−β (εα−µ)nα = 1 + eβ(µ− εα). (1.4)

For bosons we have
∞∑

nα=0

eβ (µ− εα )nα =
1

1 − eβ(µ− εα)
. (1.5)

Thus we obtain
ZF =

∏
α

(
1 + eβ(µ− εα)

)
. (1.6)

ZB =
∏
α

1

1 − eβ(µ− εα)
. (1.7)

This leads to
pV = kBT logZ = ±

∑
α

log
(
1 ± eβ(µ−εα)

)
. (1.8)
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In the preceding the upper sign is for fermions and the lower for bosons. Expressing
both results compactly is done in most graduate textbooks.

We can write logZ as a sum convert it to an integral and analyze the behavior
of thermodynamic functions. The mathematics is non-trivial and we have to develop
intuition for the two cases.

The mean occupancy of a given state α can be written down easily by noting that
the probability to have nα particles in that state is proportional to eβ(µ−εα)nα .

〈nα〉F =
0 + 1 e−β(εα−µ)

1 + e−β(εα−µ)
=

1

eβ(εα−µ) − 1
(1.9)

Invent notation: x = e−β(εα−µ). For fermions the mean number is 0+1x
1+x

= 1
x−1+1

.

For bosons

〈nα〉B =
x+ 2x2 + 3x3 + · · ·

1 + x+ x3 + · · ·
= x

∂

∂x
log(1 + x+ x2 + · · · ) =

x

1− x
(1.10)

This leads to

〈nα〉B =
1

eβ(εα−µ) − 1
. (1.11)

Thus we obtain
1

eβ(εα−µ) ± 1
.

Thee result for the occupancy is one of the keys to understanding quantum ideal
gases.

Clearly for bosons we must have εα > µ. How is the chemical potential
determined? Experiments are done with a given number of particles or density. So
we fix the mean density and determine the corresponding chemical potential. If the
mean number N is known then we have

N =
∑
α

1

eβ(εα−µ) ± 1
. (1.12)

This is an implicit relation, one of the reasons the mathematics is messy. µ is deter-
mined as a function of T , N/V and of course, the single particle energy spectrum.

Given ε = ~2k2
2m

we change variables from g V

∫
d3k

(2π)3
to an integral over ε. This

is a very important idea. We define for the (energy) density of states, the number of
states in the interval ε and ε + dε denoted by D(ε) and defined by picking out of all
the possible k states those that have the required energy

D(ε) = g V

∫
d3k

(2π)3
δ(ε − ε(~k)) . (1.13)
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In condensed matter physics ε(~k) can be very complicated, even known only numeri-

cally. We will deal with very simple dispersion relations, non-relativistic ε(~k) = ~2k2
2m

,

relativistic ε(~k) =
√
~2k2 + m2 and the massless case ε(~k) = ~kc. The first case,

easy to do because of isotropy, yields

g V
1

2π2

k2

| dε
dk
|

∣∣∣∣∣
k=
√
2mε/~

=
gV

4π2

(
2m

~2

)3/2

ε1/2 . (1.14)

We will write the various equation in terms of the density of states. You should be
very clear about the logic behind the first two equations below and be able to do it.

For compactness write D(ε) = DV
√
ε where D ≡ g

4π2

(
2m

~2

)3/2

.

N =

∫
dεD(ε) fF (ε) = V D

∫ ∞
0

dε ε1/2
1

eβ(ε−µ) + 1
. (1.15)

U =

∫
dεD(ε) fF (ε) ε = V D

∫ ∞
0

dε ε3/2
1

eβ(ε−µ) + 1
. (1.16)

we have

p V = kBT V D

∫ ∞
0

dε ε1/2 log
(
1 + e−β(ε−µ)

)
. (1.17)

Writing ε1/2 = 2
3
d
dε
ε3/2 and integrating by parts we have

−ΩG = p V =
2

3
V D

∫ ∞
0

dε ε3/2
1

eβ(ε−µ) + 1
=

2

3
U . (1.18)

Zero temperature results

Consider fermions (think electrons) with the non-relativistic dispersion in three
dimensions. At zero temperature the system is in its ground state, the lowest energy
state. What is the ground state? This many-body state is obtained by filling the levels
corresponding to the lowest energies (or |~k| ) successively until we have the number of
electrons N that we have specified.

The highest occupied k value is denoted by kF the Fermi wave vector and is deter-
mined by counting the number of electrons. This is the highest occupied state and the
energy to add or remove an electron is the corresponding energy, the Fermi energy εF .
Clearly, εF is the zero-temperature chemical potential. We have

2×
4π
3
k3F

(2π)3
=

N

V
⇒ kF = (3π2 n)1/3 . (1.19)
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We can define the Fermi velocity and the Fermi momentum. The total number of single
particle states with energy less than or equal to ε is clearly given by

N(ε) =
V

3π2

(
2mε

~2

)3/2

(1.20)

Make sure you can justify this. The density of states can be obtained using D(ε) = dN
dε

.
Again can you justiy this result? A very useful result can be obtained from the above
relationship writing

3

2
log ε = logN(ε) ⇒ D(ε) =

3

2

N(ε)

ε
(1.21)

Set ε = εF in the above relation. Since N(εF ) is the total number of electrons the den-
sity of states (per unit volume) at the Fermi surface is 3/2 times the the total number
of electrons divided by the Fermi energy. This is just dimensional analysis and allows
one to find an approximate number quickly.

Expressing the density of states per unit volume we have

D =

(
2m

~2

)3/2
1

2π2

√
ε = 6.812× 1021

√
ε(in eV )

eV

cm3
. (1.22)

Cu has a Fermi energy of 7 eV , n = 8.45 × 1022 /cm3, vF = 1.57 × 108 cm/sand a
Fermi temperature of 81000K.
Note that room temperature is much smaller than TF and a low-temperature approxi-
mation is valid.

Estimate the heat capacity: The key idea is that only electrons in a narrow energy
range of kBT around the Fermi energy participate in the thermodynamics. Justify this
with a qualitative argument.

So one uses the result from the classical ideal gas and replace N by Neff the
effective number of electrons that participate in the thermodynamics. A crude estimate
is D(εF )× kBT teh number of states per unit energy interval times the width. Should
it be twice kBT? Well, they are not all occupied! So

U ≈ D(εF ) kBT
3

2
kBT ⇒ CV ∼ 3D(εF ) k2BT (1.23)

The exact calculation yields π2

3
D(εF ) k2BT . Pretty close, since π2/3 = 3.29.

Na has a spherical Fermi surface Cs differs by about 10% and even bivalent Be and
Mg have almost spherical Fermi surfaces but they extend beyond the first Brillouin
zone.
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One can write the density of states at the Fermi surface as

D(εF ) =
3

2
N

2m

~2
(3π2n)2/3 (1.24)

i.e., is proportional to the mass. It is conventional to write

γexp
γfree

=
m∗

m
(1.25)

For Copper the ratio is around 1.5and for Calcium 0.8 while some materials have much
large effective masses of several hundreds. These are called heavy fermions. Mass
renormalization is an important concept.

More useful results. We have

U

V
=

1

π2

∫ kF

0

dk k2
~2k2

2m
=

1

π2

~2k5F
10m

(1.26)

and using k3F = 3π2N/V we obtain
U

N
=

3

5
εF .

The pressure can be obtained from p = 2
3
U
V

and we have

B ≡ 1

K
= − 1

V

∂P

∂V
=

5

3
p . (1.27)

Please do this using the fact that kF ∝ V −1/3 and therefore, U/V is proportional to
V −5/3.

For Copper the contribution of the bulk modulus 63.8× 1010 dynes/cm2 while the
actual value is 134.3. More than half the resistance to compression comes from the
degeneracy pressure.

It is wildly optimistic to apply free electron theory to a metal with Coulomb inter-
actions but amazingly it work well in many cases. Discuss reasons in class qualitatively.

Extra Comments We have used the so-called independent electron approximation
one neglects the Coulomb repulsion between electrons. Clearly from elementary quan-
tum mechanics such an interaction will lead to decay of single-particle states; they are
no longer stationary states (eigenstates of the Hamiltonian). Next quarter we may
discuss why this is not fatal !

Free electron approximation: We have also neglected the periodic potential of the
ions that are located at the sites of the crystalline lattice. If the electrons obey a sin-
gle particle Schrödinger equation in the periodic potential of the ions they are called
Bloch electrons. Note that our framework in terms of single-particle states continues
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to be useful when we include electron- ion interaction. (The density of states will be
drastically altered.)

Felix Bloch: “By straight Fourier analysis I found to my delight that the wave dif-
fered from a plane wave of free electron only by a periodic modulation. ””

Pauli susceptibility
Recall the derivation of the susceptibility of a single spin with moment µB in a field H
that can assume an up and a down value. We have

Z = eβµBH + e−βµBH (1.28)

and the magnetization per spin is

M = p+(µB) + p−(−µB) = µB tanh(βµBH) ≈ µ2
BH

kBT
(1.29)

and therefore the susceptibility of N independent spins is given by χC =
Nµ2

B

kBT
. The

inverse temperature behavior of the susceptibility is known as the Curie Law. Usually
kBTχ is plotted from experimental data. Using our usual arguments about the effective

number of free electrons D0(εF ) ×kBT we obtain the Pauli result χpauli ≈ µ2
B D0(εF ) .

Argue that this contribution is much smaller.

For Lithium the measured result is 2.09/0.81 and can be attributed to interaction
effects. This was measured by Slichter and Schumacher.

A more complete derivation is given below:

The up spins have a lower energy and the down spins a higher energy. The density
of states becomes

D±(ε) =
1

2
D0(ε ∓ µBH) . (1.30)

Draw a figure.
The number of electrons per unit volume is given by

n± =

∫
dεD±(ε) f(ε) (1.31)

where f is the Fermi function:

f(ε) =
1

eβ(ε−µ) + 1
. (1.32)
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The chemical potential is determined and eliminated by fixing the number density of
electrons as usual. We can write

D ± (ε) =
1

2
(D0(ε) ± (µBH)D′(ε)) . (1.33)

Using

n = n+ + n− =

∫
dεD0(ε) f(ε) (1.34)

we see that to this order the chemical potential is unaltered. The magnetization (per
unit volume) is give by

M = µB (n+ − n−) = µ2
BH

∫
dεD′0(ε) f(ε) (1.35)

At zero temperature we know that

D′0(ε) = −δ′(ε− εF ) (1.36)

and thus integrating by parts we obtain

M = µ2
B D0(εF )H (1.37)

and the Pauli susceptibility is µ2
B D0(εF ) .
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