
Wiener-Khinchin theorem

Consider a random process x(t) ( a random variable that evolves in time) with

the autocorrelation function

C(τ) = 〈x(t)x(t+ τ) 〉 . (1)

x is typically thought of as voltage and the terminology stems from this identification

but in general it can be any random variable of interest. The brackets denote av-

eraging over an ensemble of realizations of the random variable, e.g., many different

traces of the voltage as a function of time. We assume that the process is (weakly)

stationary, i.e, the mean value 〈x(t)〉 is independent of time and the correlation func-

tion only depends on the difference of the time arguments and is independent of t in

the equation above. From a practical point of view this is assumed to hold in steady

state if the dynamics underlying the process is time translationally invariant. We will

assume that the Fourier transform of C(τ) defined by Ĉ(ω) =

∫ ∞
−∞

dτ e−iωτ C(τ)

exists.

Define the truncated Fourier transform of a realization of the random process x(t)

over an interval [−T/2, T/2] by

x̂T (ω) ≡
∫ T/2

−T/2
dt x(t) e−iωt (2)

Since x(t) is a random variable so is x̂T (ω). We define the truncated spectral power

density, ST (ω) by

ST (ω) ≡ 1

T

〈
| x̂T (ω) |2

〉
. (3)

The spectral power density of the random process, x(t) is defined by

S(ω) = lim
T→∞

ST (ω) = lim
T→∞

1

T

〈
| x̂T (ω) |2

〉
. (4)

The Wiener-Khinchin theorem states (a) that the limit in Equation(4) exists

and (b) the sectral power density is the Fourier transform of the autocorrelation
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function1, S(ω) =

∫ ∞
−∞

dτ C(τ) e−iωτ .

Proof : Consider〈
| x̂T (ω) |2

〉
=

∫ T/2

−T/2
ds

∫ T/2

−T/2
dt 〈x(s)x(t) 〉 e−iω(s−t) (5)

=

∫ T/2

−T/2
ds

∫ T/2

−T/2
dtC(s− t) e−iω(s−t) . (6)

Since the integrand depends only on the variable s− t one can do one of the standard

manipulations in multivariable calculus that occurs often. Please show that for any

integrable function g∫ T/2

−T/2
ds

∫ T/2

−T/2
dt g(s− t) =

∫ T

−T
dτ g(τ) (T − |τ | ) , (7)

where we have defined τ ≡ s− t.

Thus we obtain (identifying g(τ) = e−iωτ C(τ))〈
| x̂T (ω) |2

〉
=

∫ T

−T
dτ e−iωτ C(τ) (T − |τ | ) . (8)

At this point one can be an optimistic physicist, divide by T and let T → ∞ and

obtain the required result.

For a stationary process C(τ) is an even function and we have S(ω) = 2

∫ ∞
0

dτ C(τ) cos(ωτ) .

Note that some books and papers have a factor of 4 instead of 2. This is simply

because the power spectral density for positive frequencies only, i.e., S>(ω) = 2S(ω)

so that the total power remains the same.
∫∞
0

dω
2π
S>(ω) =

∫∞
−∞

dω
2π
S(ω).

Exercise: What is the significance of the autocorrelation function in quantum

mechanics if we define it as the overlap of the wave function at times t = 0 and

t = τ , C(τ) ≡ 〈ψ(0)|ψ(τ)〉 ?

1This is an important result that you should remember.

2



Another useful representation of a random voltage function: Consider a random

voltage signal V (t) in a time interval (0, T ]. This is a continuous function and we

assume that the Fourier series exits and for simplicity was assume that the (time)-

average value of V (t) vanishes.

V (t) =
∞∑
n=1

[ an cos(ωnt) + bn sin(ωnt) ] (9)

where ωn =
2π n

T
. Note that the n = 0 term has been set to zero. We consider

{an} and {bn} to be independent random variables. The coefficients vary from one

voltage record to another providing an ensemble of measurements. The instantaneous

power dissipated through a unit resistor is V 2(t) and the time average (denoted by

angular brackets) power dissipated in each Fourier component is

〈Pn〉 =
1

2
(a2n + b2n) (10)

for each record. We now perform an ensemble average denoted by · using

an = bn = 0 ; am bn = 0 ; 〈aman〉 = 〈bm bn〉 = σ2
n δnm . (11)

Therefore, Pn = σ2
n . We also have 〈P 〉 =

∑
n

〈Pn〉 =
∞∑
n=1

σ2
n . The random

average is sufficient to make the cross terms vanish and we obtain the result without

time averaging.

Consider the autocorrelation function C(τ) = 〈V (t)V (t+ τ) 〉 .

Exercise: use the expansion in terms of a Fourier series to establish the Wiener-

Khinchin theorem.
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Brownian motion

One has an individual diffusing particle constantly subjected to random collisions

with the molecules of a fluid in equilibrium at a temperature T describing an erratic

trajectory in space as a function of time. In 1905 the annus mirabilis in physics

history Einstein explained it and derived the Einstein relation. Probably this paper

has had a wider ranging impact from engineers to biologists and the generalizations

in finance although Louis Bachelier in his thesis with Poincaré used such an equation.

The key is the connection to thermodynamics and the fluctuation-dissipation theorem.

von Nägeli’s argument against the molecular origin: If a molecule of mass m with

speed v collides with a particle of mass M the typical momentum transfer is deter-

mined by M ∆V ∼ mv . Since |v| is determined by the equipartition theorem he

found ∆V ∼ O (10−6cm/s) for a particle of mass M ∼ 10−15 kg. These changes in

velocity are too small to be observed experimentally. Therefore, he concluded that

Brownian motion did not arise from molecular collisions. The key is that when N

molecule strike a article at random the change in velocity can be of order
√
N and

this yields a much larger factor. This is the essence of the random walk argument for

how the sum of random variables behave.

Write a phenomenological equation of motion of a massive particle

M
dv

dt
= F (t) (12)

where F (t) is a random, fluctuating force due to the molecular collisions. It has a

mean that can be written in the form −γM v; this is the viscous drag force derived

by George Gabriel Stokes for a spherical particle of radius R to be 6π η Rv. We

have γ =
6πη R

M
. So we write F (t) as its average value −γM v and a fluctuating

component M η(t) to obtain the Langevin equation

v̇ + γ v = η(t) . (13)

Useful definition: If an additional deterministic force F0 is applied, then in the
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steady state (the derivative vanishes) then the average velocity given by F0

Mγ
≡ µF0

where µ is defined to be the mobility. Thus we identify in this case µ = 1
Mγ

. Mobility

is an important concept for charge carriers and electrical transport.

One can derive the Stokes-Einstein result, a fluctuation-dissipation theorem by

taking averages and using the elementary identities

x ẋ =
1

2

d

dt
x2 and

d2

dt2
x2 = 2 ẋ2 + 2x ẍ . (14)

Multiplying by the Langevin equation by x(t) we obtain

x(t) ẍ = −γ x ẋ + x(t) η(t) . (15)

and using the results above we have

1

2

d2

dt2
x2 − ẋ2 = −γ

2

d

dt
x2 + x(t) η(t) . (16)

Take averages, use 〈x(t) η(t)〉 = 0 (somewhat tricky choice) and the equipartition

theorem. Defining d〈x2〉
dt
≡ α we have the differential equation

α̇ + γ α =
2kBT

M
. (17)

In the steady-state (at large times) we obtain

〈x2〉 =
2kBT

Mγ
t (18)

allowing us to identify the diffusion constant2 D =
kBT

Mγ
=

kBT

6πηR
. The Einstein

relation ca be written as D = µ kBT .Note that we have used µ =
1

Mγ
. The ac-

curacy of this has been confirmed to better than 1/2% in A. Westgren, Z. Physik.

Chem. 92, 750 (1918).

2Recall that 〈x2 〉 = 2D t in one dimension.
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The random noise is assumed to be zero-mean, Gaussian, white noise for simplicity.

What does this mean?3 Zero mean implies 〈η(t)〉 = 0 , clearly. We then specify its

autocorrelation function of the noise

〈η(t) η(t′) 〉 = C1 δ(t− t′) (19)

where C1 is a constant.

Exercise: What are the units/dimensions of η and C1?

The noise is said to be delta-correlated. We will see later that C1 =
2γkBT

M
. In

actuality the noise is exponentially correlated with a very short time scale (molecular

time scale and we are interested in the behavior of micron-sized particles) and we

approximate it by a delta function for mathematical ease. Given the autocorrela-

tion function we know that its Fourier transform yields the power spectral density

- Wiener-Khinchin! Clearly, this is a constant, independent of frequency and hence

is considered white. If the noise is not delta-correlated the noise is said to be col-

ored. It is Gaussian because we say that the higher order moments are determined

by the second-order moment; the first two moments determine all the moments. For

example,

〈η1 η2 η3 η4〉 = 〈η1η2〉 〈η3η4〉 + other permutations . (20)

It is straightforward to see that the solution to the Langevin equation is given by

v(t) = v(0) e−γt +

∫ t

0

ds e−γ(t−s) η(s) . (21)

Exercise: Verify that this is a solution.

So if we compute the correlations we find (neglecting the initial conditions) we

find for τ > 0

〈 v(t) v(t+ τ) 〉 =→ C1

2γ
e−γτ . (22)

Exercise: Homework problem asks you to show this.

3This is a stochastic ODE in the sense that one of the terms is stochastic and the solution is a

random variable. The rigorous definition is the subject of the field of stochastic calculus.
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For completeness we can compute

〈x2(t)〉 =
2kBT

M

γ t − (1 − e−γt)

γ2
. (23)

We also observe that ∫ ∞
0

dτ 〈 v(0) v(τ) 〉 =
kBT

γM
= D . (24)

Thus the diffusion constant has been written as the integral of the velocity-velocity

correlation function! This is an extremely important theoretical result.

The Green-Kubo formulae express transport coefficients (for example the the

frequency-dependent conductivity) as integrals of (the Fourier transform, more gen-

erally, of ) the appropriate current-current correlation function.
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H. Nyquist, Phys. Rev. 32, 110 (1928).

J. B. Johnson, Phys. Rev, 32, 97 (1928).

Both Nyquist and Johnson were born in Sweden, emigrated to the United States

and worked at the American Telephone and Telegraph Company, Bell Laboratories.

Johnson measured it experimentally and Nyquist explained it theoretically.

In the original form Nyquist theorem states that the mean squared voltage across a

resistor R in thermal equilibrium at a temperature T is given by V 2 = 4RkBT
∆ω

2π
,

where ∆f is the frequency bandwidth over which the voltage fluctuations are mea-

sured. The power spectral density is 4 kBT . What does this mean? Look at voltage

traces as a function of time; many samples are recorded. At a given time you av-

erage over filtered noise and compute 〈[V 2(t)]filter 〉 and you will find that this is

4 kBT R∆f where ∆f is the filter bandwidth. Explain clearly why any measurement

has a bandwidth. How does one derive it?

Derivation following Nyquist’s engineering derivation: It is actually a one-dimensional

blackbody radiation calculation. Consider a long, lossless, transmission line with a

voltage source V (t) and a characteristic impedance R and terminated at the other end

by a load resistance RL. This ensures no reflection and all the power is transmitted

to the load.4 Note that this means that there is no reflected wave and all the power

that is transmitted down the line is absorbed by the load resistor. That is to say

it acts as a black body absorbing all the radiation (electromagnetic waves) incident

on it. In thermal equilibrium it maintains the same temperature by re-radiating or

dissipating the incident energy. So the two can be equated.

A voltage wave of the form V0 e
ikx− iωt propagates down the line and the condition

that the voltage at x = 0 and x = L are the same yields k = 2π n
L

where n is a

integer. The number of modes We use a detailed balance like argument in the spirit

4The power dissipated in RL is V 2 RL

(R+RL)2 . Note that this is a maximum when R = RL since

taking a derivative with respect to RL yields 1
(R+RL)2 −

2RL

(R+RL)3 = (R + RL) − 2RL = 0.
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of Einstein ad equate the power dissipated per unit frequency by the load equals the

power emitted in the range. The power incident on the load is

ct
L

(
L

2π

dω

ct

)
ε(ω) = kBT ∆f . (25)

where the second factor is the number of modes dk/2π multiplied by the mean energy

in each mode and the first term is the time it takes for the wave to travel the distance

L. The right propagating modes are dissipated in the load and the left propagating

modes in the impedance of the line.

Now that we have the incident power we compute the power dissipated:

The current is V
2R

and the power dissipated in a frequency range ∆f around ω = 2π f

is

R 〈I2(f)〉∆f =
1

4R
〈|V (ω) |2 〉 ∆ω

2π
=

1

4R
S+(ω) ∆f (26)

where S+(f) is the power spectral density. Equating this in frequency range we have

S+ = 4RkBT (27)

and the power dissipated in a frequency rage ∆f is 4RkBT ∆f .

One can do this calculation microscopically as follows. Let there be N electrons in

the resistor of cross-sectional area A and length ` with resistivity ρ = 1
σ
. The voltage

is the current (Area times current density j) divided by the resistance. The current

is the charge times the total velocity, a sum of N random velocities of individual

electrons:

V (t) =
1

R
× A× 1

A`
e

N∑
j=1

uj . (28)

In the presence of the voltage the electrons have an average velocity (this deter-

mines the mean current) and random fluctuations in the direction of the current due

to thermal fluctuations. One can compute the voltage autocorrelation function as-

suming exponentially autocorrelated electron velocities and derive Nyquist’s theorem.
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Note about notation S+(ω): We showed that∫ ∞
−∞

dτ C(τ) e−iωτ = S(ω) . (29)

It is convenient to define the power spectral density for ω ≥ 0 so that S+(ω) ≡ 2S(ω)

for positive ω and 0 for ω < 0. Observe that S(ω) = S(−ω). This is only true

classically and not quantum mechanically. One way to think about this is

C(τ) =

∫ ∞
−∞

dω

2π
S(ω) eiωτ =

∫ ∞
0

dω

2π
2S(ω) cos(ωτ) =

∫ ∞
0

dω

2π
S+(ω) cos(ωτ).

For a resistance of 100 Ω in a bandwidth of 1MHz we have for the root-mean-

square voltage fluctuations at room temperature√
kBT (4R) ∆f = 1.28µV . (30)
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