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Abstract

We explore how learning to play strategically in one game promotes strategic play in related games.
Experiment 1 involves a simple linear transformation in payoffs between games (with presentation format
changed as well).  There is considerable but incomplete transfer as the growth in the learning process
stalls.  Experiment 2 changes responders� payoffs from supporting a pooling equilibrium to supporting a
separating equilibrium.  More strategic play is observed following the change than for inexperienced
subjects in control sessions, contrary to the prediction of a fictitious play model.  We present evidence
that experience generates increased numbers of sophisticated players who anticipate responders� behavior
following the change in payoffs, resulting in positive transfer. 
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1See Fudenberg and Levine (1998) for a summary of the theory literature on learning.  Experimental papers on
learning include Camerer and Ho, 1999; Crawford, 1991; Binmore, Gale, and Samuelson, 1995; Brandts and Holt,
1993; Boylan and El-Gamal, 1993; Cheung and Friedman, 1997; Cooper, Garvin, and Kagel, 1997a,b; Cooper and
Kagel, 2003; Cooper and Stockman, 2002; Erev and Roth, 1998; Feltovich, 2000; Mookherjee and Sopher, 1997;
Roth and Erev, 1995; Roth, Erev, Slonim, and Berman, 2000.

2Previous work on this topic by economists and cognitive psychologists is summarized in Section I of this paper.
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Over the past decade, experimenters have shown that models of learning, in which players have

bounded rationality and only gradually learn how to best respond in a game, often capture important

features in experimental data that standard equilibrium approaches based on full rationality of players

miss.  Realizing that learning is a critical element of behavior in games, both theorists and experimenters

have produced a rich literature exploring a wide variety of issues about learning and other adaptive

processes.1   One learning issue that has been largely unexplored is the ability of subjects to transfer what

they have learned between related games.2  Virtually all papers on learning, both theoretical and

experimental, employ an environment in which learning takes place within an essentially stationary

environment. Yet, even the most casual reflection indicates that many, if not most, real world settings

involve a changing environment, so that the ability to take what has been learned in one game and apply it

in another, related game is an integral part of learning.

 The goal of the present research is to extend the study of learning to encompass transfer of

learning between games. Beyond studying whether subjects can transfer what they have learned in one

game to a related game, we also explore the mechanism(s) underlying how such transfer takes place. Our

work therefore is not only designed to shed light on specific issues of transfer for the games studied, but

to illuminate more general issues of how subjects learn across games.

We study these issues in the context of Milgrom and Roberts� (1982) entry limit pricing game

which provides a rich environment in which to study learning between games.  We report results from

two  experiments.  

Experiment 1 establishes a baseline on subjects� ability to transfer learning between related

games by examining what should be an almost trivial transfer from one game to the other: Payoffs in one



Page 2

game are a linear transformation of payoffs in the other game, with payoffs flipped around the horizontal

and vertical axes of the payoff table as well. From a game theoretic point of view the two games are

identical, so that if subjects fail to exhibit substantial transfer when crossed-over between these two

games, there is little hope for transfer between less closely related games.  From a behavioral point of

view the games are very similar as well, since strategic play in both involves separating by high quality

types (limit pricing by low cost monopolists).  We find substantial but incomplete transfer in the cross-

over treatment, as the change in games effectively stalls the growth in the learning process, compared to

the control group, for a number of plays of the game.  The net result is that strategic play in the cross-over

treatment far exceeds that of inexperienced subjects, but remains behind that of the control group through

the end of the experimental session.  This result both demonstrates that it is possible for subjects to

transfer the ability to play strategically between closely related games and illustrates the difficulty of the

task.

Experiment 2 examines a substantially more challenging test of learning transfer between games. 

In the initial game, receivers� (entrants�) payoffs support a pure strategy pooling equilibrium to which

inexperienced subjects� play reliably converges.  In this equilibrium low quality types (high cost

monopolists) act strategically, imitating the high quality types (low cost monopolists).  Receivers� payoffs

are then changed to eliminate the pooling equilibrium, leaving only pure strategy separating equilibria. 

While conceptually similar, strategic behavior following this second game requires substantially different

actions than in the first game, as it is now the high quality types who must act strategically, distinguishing

themselves from low quality types.  A fictitious play learning model that has worked well in tracking play

from previous signaling games (Cooper et al, 1997b) predicts that strategic play by high quality types

immediately following the change in responders� payoffs will be less than in inexperienced control

sessions (negative transfer), and will remain less than the controls until behavior converges to the

equilibrium outcome.  Contrary to these predictions, high quality types show significantly more strategic

play immediately following the change in responders� payoffs than in inexperienced control sessions

(positive transfer).  In fact, the play of subjects following the crossover is statistically indistinguishable



3For examples of this sort of model, see Milgrom and Roberts, 1991; Selten, 1991; Stahl, 1996, 2000; Camerer, Ho,
and Chong, 2002. 
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from experienced subjects in the control sessions, suggesting experience with the pooling equilibrium

serves as an almost perfect substitute for experience in a game where the only pure strategy sequential

equilibria are separating. 

Fictitious play�s failure to predict the positive transfer observed in Experiment 2 derives from the

unsophisticated learning process it incorporates.  A fictitious play learner treats his opponents like a fixed

statistical distribution rather than forming a model of how his opponents make decisions.  Because of this,

a fictitious play learner does not anticipate any change in his opponents� play when their payoffs are

altered.  To capture the rapid jump to strategic play by high quality types observed in the data, we modify

the basic model of fictitious play to include sophisticated learners who model how their opponents make

decisions, and thereby anticipate the change in responders behavior following the change in their payoffs. 

Fitting this model to the data, we find a statistically significant fraction of sophisticated learners in the

population, and that the fraction of sophisticated learners increases over time.  With the addition of a

growing number of sophisticated learners over time the model tracks the jump in strategic play by high

quality types in Experiment 2 after the change in responders� payoffs. 

Our experimental results suggest some general conclusions. First, given the results of Experiment

1 there is unlikely to be complete transfer even between closely related games.  This suggests the need for

learning models that account for the disruptions in learning caused by changing environments.  Second,

given the results of Experiment 2, it is clear that many subjects are not the simple-minded automata

envisioned by most standard learning models.  This is good news for game theory, a central idea of which

is that agents will try to anticipate the actions of others and respond accordingly.  These results also

suggest that good models of learning should allow for the development of substantial sophistication on the

part of subjects over time.3  A third, closely related point is that if the mechanism underlying much of the

positive transfer we observe is sophisticated learning, as the data suggests, substantial transfer can still

take place even if related games don�t require subjects to behave in exactly the same manner. 
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Sophisticated learning successfully tracks our data because it allows for subjects who anticipate the

behavior of their opponents.  To the extent that such strategic anticipation underlies much of game theory,

learning to behave in a sophisticated manner should be applicable in many environments beyond the

signaling games studied here.

The organization of this paper is as follows: Section I summarizes the previous literature in

economics and psychology on learning transfer.  Section II describes the limit pricing game and section

III describes the experimental procedures.  Section IV and V present the results for Experiments 1 and 2

respectively. A model of sophisticated learning is fit to data from Experiment 2 in Section VI. Section

VIII summarizes the paper and discusses directions for future research.

I.  Previous Work on Transfer

The Psychology Literature: There is a large psychology ( and educational psychology) literature dealing

with issues of transfer of learning from one situation to another. This literature suggests little reason to

predict high levels of positive transfer.  In these experiments positive transfer usually only occurs

between settings that are perceived as being quite similar.  The nature of transfer is often quite narrow,

with subjects failing to recognize underlying concepts that allow them to generalize between settings

(Gick and Holyoak, 1980; Perkins and Solomon, 1988; Solomon and Perkins, 1989).  Further, for transfer

to take place subjects must usually either be encouraged to look for similarities between the two situations

or be trained in a way that stresses the generality of the concepts being taught (for example, Klahr and

Carver, 1988). 

Although the psychology literature is not very encouraging, its direct relevance for economic

games is questionable.  Most psychological studies of learning transfer tend to be one shot in nature, both

in terms of what was initially learned, and in terms of the new learning environment. In contrast cross

game learning issues in economics are largely concerned with whether or not the factors that promote

adjustment over time to equilibrium in one game will speed up the adjustment over time to a new

equilibrium in the same game or in related games. In this framework the fact that games involve strategic

interactions may help facilitate transfer, as in adjusting to equilibrium in one game agents are likely to



4We are ignoring incentive issues here (economists typically use them, psychologists do not).  Incentives generally
reduce the variance in outcomes around the mean (see Smith and Walker, 1993, for a review of this literature) and
sometimes (but far from always) produce outcomes closer to equilibrium predictions.  Our own suspicion is that
incentives can induce heightened levels of deductive reasoning in games, which can serve as a partial substitute for
experience in games which exhibit systematic adjustment patterns as agents increase their understanding of the
problem at hand (Cooper et al., 1999).
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become sensitized to the strategic behavior of their opponents.  This in turn may cultivate either deeper

understanding of the underlying strategic contingencies involved in the game and/or sensitize agents to be

responsive to the impact of changes in economic contingencies on their rivals� actions.  The latter is

consistent with the growth in the number of sophisticated learners identified in experiment 2.4 

The Economics Literature: There have been only limited studies of transfer between games in economic

experiments. Kagel and Levin (1986) show that subjects who have learned to avoid the winner's curse in

auctions with small numbers of bidders (3 or 4) succumb to the winner's curse when playing with larger

numbers of bidders (6 or 7), suggesting that learning is situation specific and does not involve theory

absorption.  However, they do not employ control groups to determine if prior experience reduced (or

perhaps exaggerated) the severity of the winner's curse in auctions with larger numbers of bidders.  Kagel

(1995) shows that prior experience with first-price sealed-bid common-value auctions reduces the severity

of the winner's curse compared to inexperienced bidders in an ascending-price common-value auction.

But there is no benefit to prior experience with an ascending-price auction when bidding in a first-price

sealed-bid auction.  He attributes this difference to the fact that lessons learned in the sealed-bid auctions

(bid somewhat conservatively relative to own signal value) are of value for ascending-price auctions, but

lessons learned in ascending-price auctions (pay attention to other bidders� drop-out prices) are of no

value in sealed-bid auctions. 

Ho, Camerer, and Weigelt (1998) study cross-game learning in p-beauty contest games.  Subjects

are crossed between finite-threshold games (p > 1) in which equilibrium can be reached in a finite number

of steps of iterated dominance and infinite-threshold games (p < 1) in which equilibrium cannot quite be

reached in finitely many iterations of dominance.  Experienced subjects first round choices are no

different than inexperienced subjects.  But choices in subsequent rounds converge faster to equilibrium



5Also see Larrick, Morgan and Nisbett (1990) who study the transfer effects from teaching normative rules of
economic behavior (e.g., ignoring sunk costs).
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than inexperienced subjects, thereby showing some evidence of positive learning transfer.5

II) The Limit Pricing Game:  The games employed here are based on Milgrom and Roberts' (1982)

model of limit entry pricing. This game provides a rich environment for studying transfer.  Like most

signaling games, it features multiple (sequential) equilibria including pure strategy pooling equilibria and

(possibly) pure strategy separating equilibria.  This multiplicity allows us to confront subjects with related

games that require quite different strategic actions.  Further, strategic play is clearly identifiable in the

limit pricing game, making is easy to measure the extent to which there is, or is not, cross-game learning. 

We begin by laying out a basic version of the game in which players are choosing over quantities. 

Equilibrium predictions are derived for the quantity game.  We finish by describing how the quantity

game was transformed into a price game, the basic manipulation underlying Experiment 1.

A. The Quantity Game: Milgrom and Roberts describe a two-stage game with a homogeneous good and a

linear market demand curve.  The game is played between a monopolist (M) and a potential entrant (E). 

There are two possible monopolist types, high and low cost (MH and ML).  Entry is profitable against an

MH but not against an ML. The game begins with M observing its type.  The M's cost level is realized

according to predetermined probabilities that are common knowledge. In the first period of the game, M

chooses a quantity absent any rival producers. E sees this quantity, but not M's type, and either enters or

stays out in the second period.  It is assumed that if entry occurs the two firms behave as Cournot

duopolists in the second period.  If entry does not occur, M produces its profit maximizing, uncontested

monopoly output in the second period.  The asymmetric information, in conjunction with the fact that it is

profitable to enter against MHs, but not against MLs, provides an incentive for strategic play (limit

pricing) in the first period. 

In our experiment we simplify the game even further, collapsing the two-stage game into a single

stage by imposing the second-stage outcomes; the Cournot outcome following entry (IN) or the

uncontested monopoly outcome following not entering (OUT).  Ms are provided with a payoff table



6Payoffs are given in the experimental currency "francs."  Francs were converted to dollars with one franc equal to
$.001.  Headings in Tables 1 and 2 have been changed to match the exposition in the text. 

7All of the equilibria to be described are sequential (Kreps and Wilson, 1982).
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representing their profit for their first period decision added to the present discounted value of their profit

in the second period.  E�s payoff table reflects the second period returns for staying out or entering and

playing a Cournot duopoly game.  These changes allow us to focus on the signaling aspects of the game,

and have the added benefit of speeding up play, allowing for more repetitions in an experimental session.

Ms� payoffs for the quantity game are given in Table 1a.  Ms� choices, 1-7, may be thought of as

output levels, with higher outputs corresponding to lower prices.6  The prior probabilities of the two M

types are 50% throughout and are common knowledge.

[Insert Table 1 here]

Three features of Table 1a capture the main strategic elements confronting Ms.  First, all else

being equal, Ms are better off if Es choose OUT rather than IN.  Second, reflecting their lower marginal

costs, MLs generally prefer higher output than MHs.  This can be seen in Ms� payoffs should they ignore

the effect of their choices on E's behavior -- MLs would choose output 4 as opposed to 2 for MHs.  These

choices will be referred to as the Ms� �myopic� maxima.  Finally, output choices 6 and 7 are dominated

strategies for MHs, but not for MLs.  At these outputs MLs can, in theory, perfectly distinguish

themselves from MHs.

Two different payoff tables, Tables 1b and 1c, were used for Es in the quantity game.  These

represent �high cost� and �low cost� entrants respectively.  Only one of these two tables was in effect at

any given time.  In both tables it always pays to play IN when M is known to be an MH type and to play

OUT against an ML type.  However, given the prior probability of the different M types, the expected

value of OUT is greater than IN in Table 1b (250 vs. 187) and the expected value of IN is greater than

OUT in Table 1c (350 vs. 250).  

B.  Equilibrium Predictions: For Tables 1a and 1b (the quantity game with high cost Es), there exist

multiple pure strategy pooling, as well as separating, equilibria.7  Pure strategy pooling equilibria occur at
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output levels 1-5. For example, consider a pooling equilibrium at output 3. Given the prior probabilities

over M�s type, E�s expected value of OUT is greater than IN so that pooling deters entry.  Beliefs that

support this equilibrium are that any deviation involves an MH type with sufficiently high probability to

induce entry.  Given these beliefs, both MHs and MLs achieve higher profits at output level 3 rather than

deviating to their myopic maxima.  Similar out of equilibrium beliefs support the other pooling equilibria. 

Pooling equilibria at outputs 3-5 involve strategic play by MHs as they choose higher output

levels than would be optimal if they ignored the impact of their choice on E�s response.

Two pure strategy separating equilibria also exist. In both of these MHs choose output level 2 and

are always entered on; MLs either always choose output level 6 or always choose output level 7 and never

incur entry.  With MLs choosing output levels 6 or 7, MHs cannot profitably imitate them as they earn

more by choosing their myopic maxima (choice of output 2 dominates outputs 6 and 7 for MHs).  Once

again the beliefs supporting these equilibria are that any deviation from the proposed equilibrium involves

an MH  type with sufficiently high probability to induce entry, as this deters MLs from choosing lower

output levels. These separating equilibria involve strategic play (limit pricing) by MLs since output levels

6 and 7 are higher than would be ideal if the effect on E�s response is ignored.

For Tables 1a and 1c (the quantity game with low cost Es) the expected value of IN is greater

than OUT if both types choose the same output level. This destroys any pure strategy pooling

equilibrium, leaving the two pure strategy separating equilibria just described. Also playing a role in the

experimental data is a mixed strategy equilibrium where MHs choose 2 with probability .80 and 5 with

probability .20 and MLs always choose 5.  This too involves strategic play by MLs as they choose a

higher output level than would be optimal ignoring E�s response.

As is typical of signaling games, the limit pricing game suffers from an overabundance of

equilibria.  To obtain sharper predictions, we apply the most common of the equilibrium refinements for

signaling games, the intuitive criterion of Cho and Kreps (1987).  This reduces the equilibria in games

with high cost Es to pooling at output 4 or 5, and the efficient separating equilibrium with MLs choosing



8For example, consider the inefficient separating equilibrium with MLs choosing 7.  Roughly, the intuitive criterion
tells us that out of equilibrium beliefs should not put positive weight on deviations that can't conceivably increase a
player�s payoffs over his payoffs in the candidate equilibrium.  Suppose a 6 is played.  This deviation can never be
profitable for a MH since 6 in a strictly dominated strategy for them.  Therefore the beliefs must put 100% weight
on this deviation coming from an ML.  It follows directly that playing 6 is a profitable deviation for an ML,
destabilizing the separating equilibrium where MLs choose 7.

9Flipping alone would be totally transparent.  A linear transformation without flipping, while somewhat less
transparent, doesn�t force players to change actions in order to continue playing strategically.  Without forcing
changes in actions  it is difficult to determine whether any meaningful transfer occurs, as opposed to simple inertia. 
Hence, we made both changes.
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6.  For games with low cost Es, only the separating equilibrium with MLs choosing 6 survives.8

C.  Price Game: For Experiment 1 we needed a game that is closely related to the quantity game with low

cost entrants.  We therefore constructed a comparable game with subjects choosing over �price.�  Payoffs

in the price game are a linear transformation of the payoffs in the quantity game, with payoffs flipped

around the horizontal and vertical axes of the payoff table as well.9  These payoffs are shown in Table 2. 

[Insert Table 2 here]

To get Ms� payoffs in the price game, subtract 50 from the payoffs in Table 1a and then multiply

by 1.25.  The payoff tables are then flipped from top to bottom, and the location of low cost types�

payoffs are flipped from right to left.  Es� payoffs are obtained from Table 1c by subtracting 25 from low

cost entrants payoffs and then multiplying by 1.25.  The position of the two columns are then flipped. 

From a game theoretic point of view, the price game and the quantity game are identical.  None of the

equilibrium predictions are affected by the transformation (once we control for the flipping of the payoff

tables), nor are the incentives necessary to induce strategic play affected.

III)  Experimental Procedures and Design: We begin this section by describing the general procedures

used in all experiments.  We then lay out the specifics of the experimental design.  Table 3 summarizes

the main details of the experimental treatments.  

[Insert Table 3 here]

General Procedures:  Each experimental session employed between 12 and 16 subjects who were

randomly assigned to computer terminals.  All sessions included an even number of subjects so all

individuals could play in every round.  For inexperienced subject sessions, a common set of instructions



10A copy of the instructions is available on Cooper's website, www.weatherhead.cwru.edu/djcooper .

11One session had only 24 games since it was conducted in an undergraduate economics class during class time,
which limited the number of games.
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were read out loud, with each subject having a written copy.10  By reading the instructions out loud, we

ensure that details of the game are common knowledge.  For example, all subjects hear (and know that the

other subjects hear) that the ex ante probability of each M type is 50%.  Subjects had copies of both Ms�

and Es� payoff tables and were required to fill out short questionnaires to insure their ability to read them. 

After reading the instructions, questions were answered out loud and play began with a single practice

round followed by more questions.  At the beginning of experienced subject sessions, an abbreviated

version of the full instructions was read out loud with each subject having a written copy.

Before each play of the game the computer randomly determined each M�s type and displayed

this information on the Ms' screens.  Ms chose first, with each M's choice sent to the E they were paired

with for that game.  The program automatically highlighted the possible payoffs for each choice made by

the Ms and asked them to confirm their choice, limiting the possibility of mistakes.  Es then decided

between IN and OUT.  Once again, possible payoffs were highlighted and subjects were asked to confirm

their decisions.  Following each play of the game subjects learned their payoffs and Es were told the type

of M they were paired with. In addition, the lower left-hand portion of each subject�s screen displayed the

results of all pairings.  In particular, we displayed for each pairing M�s type, M�s action, and E�s

response.  Thus, subjects had access to a full history of Ms� actions conditioned on their type and Es�

responses conditioned on Ms� actions.  Subject identification numbers were suppressed throughout to

preserve anonymity.  

To speed learning, subjects switched roles after every 6 games, with Ms becoming Es and vice

versa.  We refer to a block of 12 games with each subject playing each role for 6 games as a "cycle." 

Within each set of 6 games, each M was paired with a different E for every play of the game. 

All but one inexperienced subject session had 36 games, with the number of games announced in

advance.11  Experienced subject sessions had a minimum of 36 games, with all but two of the control



12These sessions also tended to be shorter since only an abbreviated version of the instructions were read and
subjects were familiar with the game.
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sessions having 48 games.  All of the crossover treatments use experienced subjects.  

When crossovers took place all subjects were given written copies of the new payoff tables.  A

brief set of instructions were read out loud indicating that the basic structure of the game was the same as

before (e. g., Ms continued to choose first, followed by Es responses) but that payoffs had changed. The

number of additional games to be played was announced as well.

Subjects were recruited through announcements in undergraduate classes and posters placed

throughout the University of Pittsburgh and Carnegie Mellon University, and advertisements in campus

newspapers.  This resulted in recruiting a broad cross section of undergraduate and graduate students from

both campuses.  Sessions lasted a little under two hours.  Subjects were paid $5 for showing up on time.

Earnings averaged $17.50 per subject in inexperienced subject sessions.  Earnings were generally higher

in experienced subject sessions, largely as a result of playing more games.12  

At the end of the inexperienced sessions, subjects were asked if they were interested in returning

for a second session.  Experienced subject sessions generally took place about a week after the

inexperienced subject sessions.  Subjects from different inexperienced subject sessions were mixed in the

experienced subject sessions.  Econometric analysis indicates that there are no systematic differences

between choices in the inexperienced sessions for subjects who later returned for an experienced subject

session and those who did not.

Sessions were conducted using both a �generic� context and a �meaningful� context.  The generic

context uses abstract terms throughout.  For example, monopolists are referred to as �A players,� with the

two types being �A1 types� and �A2 types� respectively, and potential entrants are described as �B

players.�  Other terms are given similarly meaningless labels.  The meaningful context uses natural terms

while avoiding any value laden language.  Thus, the monopolist is referred to as the �existing firm,� with

the two types being �high cost firms� and �low cost firms� respectively, and the potential entrant becomes

the �other firm� deciding between entering �this� market or some �other� market.  No subject was ever



13Due to the limitations of the data set, we cannot identify any interaction between the type of context employed and
the size of the crossover effect.  This can be seen most clearly for Experiment 2, where all of the crossover sessions
employed a meaningful context.  The context controls allow us to identify that there is positive transfer in
Experiment 2 even if the crossover sessions are directly compared only to the control sessions employing
meaningful context.  Given the lack of any crossover sessions using generic context, we cannot determine if varying
the context would affect the size of the crossover effect.  This issue is a topic for future research.

14One crossover session included thirteen subjects who had already been in an earlier experienced session.  Data
generated by these twice-experienced subjects is not included in our analysis, nor are these subjects included in the
count of 65 subjects in the crossover sessions.  Completely excluding the data from this session has no effect on our
qualitative conclusions.
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switched between generic context and meaningful context or vice versa. For sessions with a crossover

from the quantity to price game (or vice versa), labels were changed following the crossover where

appropriate.  For example, in a meaningful context session the strategies would change from being

labeled as "output" to being labeled as "price."  Any such changes were noted in the instructions subjects

received for the cross-over.

Earlier results find that the use of meaningful context speeds up learning for inexperienced

subjects (Cooper and Kagel, 2003a), but does not affect the play of experienced subjects. We employ

control variables for any potential context effects in the statistical analysis.13

Experimental Design, Experiment 1: Experiment 1 crosses subjects from the quantity game with low cost

entrants (Tables 1a and 1c) to the price game (Tables 2a and 2b) or vice versa. The relatively easy

crossover in Experiment 1 should provide a best-case scenario for generating positive transfer.  The flip

side of this is that if subjects fail to exhibit substantial transfer between these two games there would be

little point to exploring transfer between less closely related games.

The data set for Experiment 1 includes 131 subjects who returned for an experienced subject

session; 65 subjects in five crossover sessions and 66 subjects in five control sessions without a

crossover.14  Experienced subjects in the crossover sessions were switched from the quantity game with

low cost entrants to the price game (or vice versa) following 12 periods of play.  Play then continued for

an additional 36 periods.

Experimental Design, Experiment 2: Experiment 2 pushes subjects ability to learn between games by

confronting them with a more difficult crossover.  Subjects in Experiment 2 are first trained in the limit
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pricing game with high cost Es (Tables 1a and 1b).  Past experience with this game shows that play will

reliably converge to the pooling equilibrium at output 4 (Cooper, Garvin, and Kagel, 1997b).  The

crossover treatment in this game involves switching Es payoffs from Table 1b to Table 1c. This change

eliminates all pooling equilibria.  We compare the development of strategic play by MLs (play of output

levels 5 - 7) following the crossover to the control group where Es are low cost types throughout.  

The design of Experiment 2 is driven by past analysis of games of this sort. Models based on

fictitious play have done a good job of tracking the evolution of play in earlier experiments with this

limit-pricing game (Cooper, Garvin and Kagel, 1997a,b; Cooper et al., 1999).  In Section VI we develop

the predictions of such a model for Experiments 1 and 2 at length, but for now a summary will suffice. 

For the limit pricing game with high cost Es, the fictitious play model (without sophisticated learners)

predicts that inexperienced subjects will pool at output 4, with minimal strategic play by MLs. The model

also predicts that, following a crossover from high cost Es to low cost Es, the probability of strategic play

by MLs will be less than or equal to the probability of strategic play as MLs for inexperienced subjects. 

In other words, the fictitious play model predicts (weakly) negative transfer.  Intuitively, fictitious play

learners treat their opponents as a fixed distribution.  Unable to anticipate the effect of changing their

opponents� payoffs, these unsophisticated learners have no reason to switch to strategic play as MLs

following the crossover.  Only when MLs have had an opportunity to learn from direct observation that

Es� behavior has changed following the crossover will they begin to limit price.

One prediction of the fictitious play model (without sophisticated learners) is that the degree to

which MLs play strategically following the crossover in Experiment 2 will be adversely affected by the

extent of their experience with the high cost entrant game.  To determine if any such effect exists, the

crossover to the game with low cost Es occurred at different times.  In one session subjects were crossed

in the 13th game after returning as experienced subjects.  In a second session, all subjects played in a full

second (experienced subject) session with high cost Es before playing in a third session in which they



15One subject was once experienced in this session.  She was needed to make an even number of players. 

16Formal statistical tests of this statement are described in footnote 35 in the appendix.

17An entry rate differential of only 13% is required to make 4 more profitable for MHs than 2 or to make 6 more
profitable for MLs than 4.
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were crossed to the low cost E game in the 13th game.15 In the third session half the subjects had played in

one prior session with high cost Es and half had played in two prior sessions with high cost Es.  This

session was crossed to the low cost E treatment in the 25th game.  

The control (no crossover) data set for experiment 2 is the same as the control in Experiment 1.

IV) Results for Experiment 1: Crossovers Between the Quantity and Price Games: To ease the

exposition, all data have been transposed to the quantity game regardless of whether it comes from the

quantity or the price game.  For example, if an M in the price game chooses price level 2, this gets

transposed into output level 6.  Empirically, behavior is indistinguishable between the two payoff tables

prior to the crossover.16

[Insert Figure 1 here]

Conclusion 1: Play in control sessions starts with Ms largely choosing their respective myopic maxima,
with strategic play by MLs (play of output levels 5 - 7) developing only gradually. 
Strategic play by MLs increases steadily over time.  By the end of the experienced
control sessions, the vast majority of MLs are playing strategically.

To give a frame of reference for the crossover sessions, we start by seeing how play develops in

the control sessions.  Figure 1 reports the relative frequency of Ms� choices at each output level along

with the entry rates in 12 period cycles.  For inexperienced sessions, this figure only includes data from

subjects who later returned for an experienced session.

In the first twelve periods play by both M types is clustered around their respective myopic

maxima (output 2 for MHs, 4 for MLs).  Responding to the high entry rates at low output levels, MHs

attempt to pool with MLs by choosing 4.  By the final 12 periods of inexperienced play, more than half of

MHs� choices involve strategic play (choice of 3 and 4).  Given that the entry rate in these final 12

periods is much lower for 3 and 4 than for 1 and 2, this movement by MHs is well justified.17  As MHs
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begin to imitate MLs, the entry rate for output 4 rises.  Given the lower entry rates on outputs 5 and 6,

strategic play at either of these outputs is more profitable for MLs than choosing the myopic maximum in

the final two cycles of the inexperienced control sessions. None the less, the myopic maximum remains

the modal choice for MLs in the final twelve period cycle of inexperienced subject play. 

The first twelve period cycle of the experienced control sessions looks much like a continuation

of the inexperienced sessions.  Entry rate differentials continue to support strategic play by both MHs and

MLs, strategic play by MLs continues to increase, but the myopic maximum (output level 4) remains the

modal choice for MLs.  Over time, incentives to limit price become stronger and stronger for MLs, and 

strategic play by MLs steadily increases.  By the second twelve period cycle of the experienced control

sessions, play of the myopic maximum is no longer the mode for MLs, and by the final two cycles

(periods 25 - 36 and 37 - 48) the myopic maximum is getting less play than either output level 5 or 6.  To

summarize, the dynamic in the control sessions shows a slow but steady movement by MLs 

towards strategic play.

In considering how this dynamic is disrupted by the crossover in Experiment 1, we focus on

strategic play by MLs. We focus on MLs rather than MHs for several reasons: (1) unlike MHs, the use of

outputs greater than the myopic maximum by MLs unambiguously involves strategic play, (2) this

strategic play is consistent with an equilibrium for MLs (whereas choices of 3 and higher are not for

MHs), and (3) the slow emergence of strategic play by MLs in the control sessions indicates that it is

more difficult to master than MHs� early efforts to mimic MLs.

Conclusion 2: The crossover from the quantity game to the price game (and vice versa) retards the
development of strategic play for MLs compared to the control group.  Strategic play
does not revert back to inexperienced subject levels, rather it remains flat at the pre-
crossover level for a full cycle of play, and then begins to grow again.

[Figure 2 here]

To illustrate the effect of the crossover on MLs, Figure 2 graphs the percentage of strategic play

by MLs in each treatment over time.  Choices of output levels 5, 6, and 7 are classified as strategic play

by MLs since these choices involve quantities greater than the myopic maximum.  Prior to the crossover,



18The crossover has virtually no effect on MHs' choices as compared to the control sessions, but does cause a small
(but statistically significant) change in Es behavior.  This change in Es behavior reduces the incentives for MLs to
limit price, a factor that is controlled for in the formal econometrics of the appendix. 

19 This is as detailed a play by play account of strategic behavior by MLs as is possible under our design since
subjects switch roles between E and M every six games, as well as changing their type of M between games. Thus,
if we were to take the three periods prior to the crossover we would have an incomplete sample of subjects choices
as half the time they are playing as MHs (or as Es).  By selecting out for each subject each of the three periods prior
to the crossover they played as MLs we have a complete sample of their play as MLs. 
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the two graphs look like twins.  In both cases, there is a steady increase in the proportion of strategic play. 

The small gap between the treatments is roughly constant over time.  At the point of the crossover, a large

gap emerges between the two treatments.  While strategic play by MLs continues to grow steadily in the

sessions without a crossover, strategic play by MLs plateaus in the sessions with a crossover.  Unlike the

control sessions, the myopic maximum remains easily the modal choice for MLs immediately following

the crossover (periods 13-24 of the experienced crossover sessions).  Although growth eventually

resumes in the crossover sessions, the level of strategic play by MLs never catches up with the level in the

control sessions.18

This crossover effect can be more closely examined by breaking the data down at the finest

possible level, looking at each time a subject plays as an ML.19  There is steady growth in strategic play

immediately prior to the cross-over with the proportion of strategic play increasing by an average of 4.6%

per play for the three plays (as MLs) immediately prior to the cross-over.  In contrast, for the first play as

an ML immediately following the crossover the percentage of strategic play decreases by 3.1%.  It then

recovers to its former growth rate in subsequent periods, increasing by an average of 5.6% per play in the

following three plays as an ML.  In other words, the stall in learning is coming from a quick drop in

strategic play by MLs followed by a gradual recovery.

Although the results for Experiment 1 have been presented in terms of descriptive statistics,

formal regression analysis demonstrates the statistical significance of the pause in MLs� learning

following the crossover.  The regression analysis controls for individual effects in the data (repeated

observations for the same individuals) and the behavior of Es.  The results of this analysis show that the



20The statistical analysis also controls for the fact that several sessions employed meaningful context, whereas others
did not.  
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stall in learning by MLs following the crossover cannot be attributed to changes in entry rates following

the crossover.20  The statistical analysis also indicates that this stall in strategic play is not compensated

for over the last two cycles of play, so that strategic play by MLs in the cross-over group is below that of

the controls through the end of the experienced subject sessions.  Although the formal statistical analysis

is essential to the conclusions reached, it is technical in nature and does not change any of the conclusions

we reach from examining the descriptive statistics.  As such it is reported in an appendix. 

V) Results from Experiment 2: Many plausible stories can be told about the mechanism underlying

positive transfer in Experiment 1.  At one extreme, a subject may be learning to limit price through a trial

and error learning process without any deeper understanding of the nature of the game. This subject can

nevertheless transfer what they have learned in the quantity game and successfully apply it to the price

game by recognizing the relatively straight forward mapping between the two games. Once the mapping

is recognized, strategies that worked well before will be successful following the crossover.  Thus,

positive transfer in Experiment 1 only requires minimal understanding of the strategic elements of the

game. 

At the other extreme a subject may have mastered the general principles underlying the game,

allowing them to easily master the crossover from the quantity to the price game. This sort of ultra-

sophisticated learner not only learns to play strategically, but also forms a model of how their opponents

are playing (and why) and understands why playing strategically is a good response to Es� behavior.  For

successful transfer between the price and quantity games, this subject needs to recognize that the same

general principles apply to both games, which should be relatively easy given the strong similarity

between the two games.

One can easily imagine many intermediate levels of sophistication between these two extremes. 

The point is that these two strongly contrasting approaches, learning an action and learning a general

principle, yield observationally equivalent predictions for Experiment 1.  Experiment 2 examines a



21Only subjects who participated in the cross-over sessions are included in Figure 3. 

22Because subjects are crossed over at different times, this panel pools subjects with differing levels of experience. 
The purpose here is to provide a snapshot of subjects� behavior immediately prior to the crossover.
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crossover that allows us to distinguish between differing levels of sophistication in subjects� learning. 

Thus, it enables us to better understand the behavioral mechanism underlying transfer between games.

Conclusion 3: In games with high cost Es, play converges towards a pooling equilibrium at output level
4, with little strategic play by MLs at any point in time.

[Insert Figure 3 here]

Figure 3 shows inexperienced subjects� play in the game with high cost Es, and the last cycle of

experienced subjects� play prior to the change in Es� payoffs.21 For the first twelve period cycle, the

myopic maximum is the modal outcome for both M types.  However, MLs and MHs face quite different

incentives to move from their myopic maxima to strategic play.  For MHs, the entry rate differential

between outputs 2 and 4 is 36.5% for the first twelve period cycle, well above the 13% differential needed

to make strategic play incentive compatible, and grows to 59.3% for the final twelve period cycle.  For

MLs, the entry rate differential between 4 and 6 hovers at 19% in the first twelve period cycle, just a little

above the 13% differential needed to make strategic play incentive compatible, and drops to 12% by the

final twelve period cycle.  Consistent with their strong incentives to play strategically, a large proportion

of MHs choose output 3, 4 or 5 even in the first twelve period cycle (47.1%), with the frequency of

strategic play growing steadily over time after that.  For the final twelve period cycle of the inexperienced

play, output level 4 is easily the modal outcome for MHs (53.5%), and 63.2% of MH play can be

classified as strategic play (outputs 3, 4 or 5).  Consistent with their weak incentives to limit price, there is

little strategic play by MLs even in the first twelve period cycle (9.2%), with the proportion of strategic

play changing only slightly over time (14.9% in the final 12 period cycle).  Overall, there is smooth

movement towards the pooling equilibrium at 4.

In the last twelve period cycle before Es payoffs changed, differences in the incentives to limit

price have become even more extreme.22  The entry rate differential between 2 and 4 has risen to 72.4%,



23Given that there are no choices of output 6 in this cycle, we cannot actually calculate the entry rate differential
between outputs 4 and 6.  However, it can�t be greater than the 7.6% entry rate for output 4.
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while the entry rate on 4 has fallen to 7.6%.23  Following these strong incentives, the pooling equilibrium

at 4 has gained even more strength. For MHs, 60.2% of play is at 4, and 67.3% involves strategic play of

some sort. For MLs, 89.6% of play is at 4 and there is almost no strategic play (5.2%).

Conclusion 4: MLs in the crossover treatment look much more like experienced than inexperienced
subjects in the control sessions.  Experience in a game with high cost Es appears to be a
good substitute for experience in a game with low cost Es.

In considering the effect of the crossover from high to low cost Es our focus is once again on

strategic play by MLs.  Following the crossover, it immediately becomes incentive compatible for MLs to

play strategically � the entry rate differential between output 4 and 6 jumps to 44.8% in the first cycle

following the crossover.  Strategic play by MLs in the first cycle following the crossover is substantially

higher than in the first cycle of inexperienced subject play in the control group (25.7% versus 8.5%).  It is

also substantially higher than for these same MLs in the last cycle prior to the crossover (25.7% versus

5.2%).  MLs following the crossover are neither continuing to do what they did before the crossover, nor

are they behaving like naive subjects.  Indeed, inexperienced subjects in the control group never achieve

the level of strategic play observed for MLs in the first twelve period cycle following the crossover. It is

only by the first twelve period cycle of the experienced subject control group that we see more strategic

play by MLs (40%) than immediately following the crossover.  Thus, experience in the game with high

cost Es appears to be a good substitute for experience in the game with low cost Es. 

[Figure 4 here]

Figure 4 provides a detailed view of the crossover effect for MLs.  The unit of time on the x-axis

is how many times a subject has played as an ML.  On average, each subject will have three such plays in

a twelve period cycle.  In the control sessions, time is measured from the beginning of the session.  For

example, �Play 1� is the first time an inexperienced subject has played as an ML.  In the crossover

sessions time is measured from the point of the crossover.  In this case �Play 1� is the first time a subject

has played as an ML following the crossover.  The graph plots the percentage of strategic play by MLs in



24For the first twelve period cycle following the crossover, the entry rates following output levels 2, 4, and 6 are
.978, .615, and .167 respectively.  The corresponding figures are .800, .418, and .333 for the first cycle of the
inexperienced control sessions and .917, .609, and .182 for the first cycle of the experienced control sessions.
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inexperienced control sessions, experienced control sessions, and in the crossover sessions following the

crossover to low cost Es.  Looking at �Play 1,� MLs in the crossover treatment immediately limit price

more often than their counterparts in the inexperienced control sessions.  This suggests that MLs are

anticipating a change in Es� behavior following the crossover. The evolution of play by MLs in the

crossover treatment closely parallels that of the experienced control group, diverging steadily from the 

inexperienced control group. To summarize, subjects following the crossover look much more like

experienced than inexperienced subjects in the control sessions.  Experience in the game with high cost

Es helps subjects learn to play strategically as MLs in the game with low cost Es.

One potential confounding factor here is that there was somewhat more incentive for MLs to limit

price following the crossover than in the control sessions.24  However, as the formal statistical analysis in

the appendix shows, MLs� higher frequency of strategic play following the crossover remains statistically

significant after controlling for entry rate differences.

The formal statistical analysis also addresses several other questions.  First, it shows that the

timing of the crossover does not have a significant effect on the frequency of strategic play following the

crossover.  This is further evidence against fictitious play learning, absent the presence of a sizable

number of sophisticated learners.  Second, having been paired with an ML who played strategically prior

to the crossover has no significant effect on the frequency of strategic play following the crossover.  This

rules out imitation as explaining the jump in strategic play following the crossover.  However, playing

strategically prior to the crossover as either an ML or MH is positively and significantly correlated with

strategic play as an ML following the crossover.  Although this result in part reflects individual effects in

the data, it may also reflect deeper aspects of subjects� learning.  The structural model of learning

developed in Section VI indicates that rapid development of strategic play following the crossover is

closely tied to the presence of �sophisticated learners� in the population.  Sophisticated learners are more
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likely to play strategically for the game with high cost entrants and the game with low cost entrants,

thereby helping to generate the positive correlation between individual subjects� strategic play prior to

and after the crossover. 

Finally, it is worth contrasting the results here with those of Experiment 1.  In Experiment 1, the

cross-over treatment did not require any change in strategic behavior following the cross-over - subjects

should limit price as MLs both before and after the crossover.  The cross-over disrupted MLs� strategic

play relative to before the cross-over and relative to the control group - essentially stalling the growth in

strategic play for the cross-over group for a full cycle of play. In contrast, in Experiment 2 the cross-over

takes subjects who had learned to play strategically as MHs (with no strategic play in their role as MLs)

and requires that they change their behavior, playing strategically as MLs.  This would seem substantially

more demanding than the task confronting subjects in Experiment 1. However, in contrast to what one

might naively project on the basis of the stall in strategic play of MLs following the crossover in

Experiment 1, in Experiment 2 strategic play of MLs was substantially higher than either before the cross-

over and substantially higher than for the inexperienced control group. 

VI.  A Structural Model of Learning and Sophistication:  The data from Experiment 2 indicate that

subjects play far more strategically as MLs following the crossover than inexperienced subjects do in the

control sessions.  This result is inconsistent with the predictions of the fictitious play model that

motivated Experiment 2.  Since these predictions were driven by the inability of Ms to anticipate changes

in Es� behavior following the crossover, their failure suggests that some Ms are at least sophisticated

enough to anticipate the change in Es� behavior.

To explore this intuition more formally, this section develops and fits a structural model of

stochastic fictitious learning, examining the implications of adding sophisticated learners to the model.

The purpose of this analysis is threefold.  First, we want to show that the addition of sophisticated

learners improves the econometric fit to the data from Experiment 2.  Second, and more importantly, we

want to show that the addition of sophisticated learners enables the learning model to track the main

features of MLs� behavior following the crossover in Experiment 2.   Finally, we want to confirm that the



25The econometric analysis in the appendix employs a non-structural model of behavior. The work there is designed
to provide statistical support for the patterns identified in the text while controlling for the obvious covariates that
could, potentially, confound the results reported, and is not designed to test any specific model.  In contrast, this
section asks if the surprising degree of cross-game learning observed in Experiment 2 can be explained by the
presence of, and increasing numbers of, sophisticated learners.  The answer to this question requires the
development of a structural learning model.  

26We have not explicitly considered other classes of learning models such as the reinforcement learning model of
Roth and Erev (1995) or the EWA model of Camerer and Ho (1999).  Determining the learning model that best
tracks the behavior of subjects goes well beyond the scope of the present paper. Our goal is to develop a learning
algorithm that can track behavior in Experiment 2.  Given that these other learning models embody unsophisticated
learners, they would presumably require some sort of similar augmentation to track the crossover in Experiment 2.
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learning model without sophisticated learners is sufficient to explain the behavior of MLs following the

crossover in Experiment 1.  While there are presumably sophisticated learners present in the data from

Experiment 1, it is only when we consider the more challenging crossover in Experiment 2 that their

presence becomes necessary to track the data.25

A.  The Learning Model: The basic learning model treats Ms as belief-based learners in the spirit of

stochastic fictitious play (Fudenberg and Levine, 1995).  We choose this model because similar models

have done a good job of tracking the evolution of play in earlier signaling game experiments (Cooper,

Garvin, and Kagel, 1997a, b; Cooper et al., 1999).26  The model, although only described for Ms in our

limit pricing game, generalizes in a straight forward way to other games.

A belief-based learning model requires an algorithm for choosing a strategy in period t given

beliefs, a rule for updating beliefs from period t to period t+1, and a rule for generating initial beliefs.  Let

Cij
t(IN) and Cij

t(OUT) be weights that player i puts on the responses �IN� and �OUT� respectively in

period t following output j.  These variables can be roughly thought of as modified counts for the number

of times each outcome has been observed.  Let bij
t(IN) and bij

t(OUT) be the probabilities that player i

assigns to the responses �IN� and �OUT� respectively in period t following output j.  These represent

player i�s beliefs.  Beliefs are generated from  Cij
0(IN) and Cij

0(OUT) using the following two formulas:

(eq. 1a)b (IN)
C (IN)

C (IN) C (OUT)
ij
t ij

t

ij
t

ij
t

=
+



27In previous fitting exercises (Stahl, 2000; Cooper and Stockman, 2000), introducing autocorrelation into the model
substantially improved the fit. 

28The probability of a player choosing the same output twice in a row (as the same type) is greater than 1-pchange
since he may reselect the same output when picking a new strategy.
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(eq. 1b)b OUT b INij
t

ij
t( ) ( )= −1

Given bij
t(IN), bij

t(OUT), and player i�s type in period t, let πij
t be player i�s expected payoff from

choosing output j in period t.  With probability pchange, player i selects a new strategy in period t. 

Otherwise, he uses the same output as the last time he played as the same type.27  Player i�s probability of

choosing output j in period t (subject to choosing a new output), pij
t, is then generated via a logit rule:28

(eq. 2)p e

e
ij
t

ij
t

ik
t

k

=
∑
=

λπ

λπ

1

7

This rule has the usual interpretation.  The precision parameter λ is the level of noise in the system.  If λ =

0, the result is pure noise with each strategy chosen with equal probability.  As λ ÿ 4, we get arbitrarily

close to best-response to beliefs.

Individuals learn by updating Cij
t(IN) and Cij

t(OUT) from period to period.  Some notation is

required before the updating rule can be written down.  Let δ be the discount rate for past experience. 

Define cij
t(IN) and cij

t(OUT) to be the number of times that player i chose output j in period t and

observed the responses �IN� or �OUT� respectively.  Define c-ij
t(IN) and c-ij

t(OUT) to be the number of

times that an M player other than player i chose output j in period t and observed the responses �IN� or

�OUT� respectively.  Finally, given that subjects see the results for all other pairings, let wOther be the

weight players put on the experience of other players relative to their own experiences. The updating rule

for Cij
t(IN) in periods with no crossover is given by equation 3, with the updating rule for Cij

t(OUT)

defined in an analogous manner.  Note that updating takes place even in periods where player i isn�t

playing as an M.



25We have explored a variety of other specifications for how beliefs might be transformed following the crossover. 
The qualitative results are unaffected by alternative specifications.
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(eq. 3)C (IN)
C (IN)

1
c (IN) w c (IN)ij

t 1 ij
t

ij
t

Other ij
t+
−=

+
+ + ⋅

δ

For periods following a crossover, the updating rule needs to account for the possibility that

subjects will �reset� their beliefs.  In other words, beliefs following the crossover are treated as a convex

combination of beliefs prior to the crossover and the beliefs of an inexperienced subject.  Suppose a

crossover takes place between period t and period t + 1.  Let ρ be the weight on resetting beliefs.  Player

i�s beliefs are first updated using (3).  The following additional transformation is then made, where

Cij
t(IN) gives the counts prior to the transformation and C'ijt(IN) gives the counts following the

transformation.  An analogous transformation is made for C'ijt(OUT).

(eq. 4)C IN C IN C INij
t

ij
t

ij' ( ) ( ) ( ) ( )= − +1 0ρ ρ

Intuitively, (1 - ρ) gives the weight subjects put on experience from the previous related game.  Setting ρ

= 1 is equivalent to saying that there is no cross-game learning and setting ρ = 0 is equivalent to saying

that the games are treated as being identical.25 

To generate initial values for Cij
0(IN) and Cij

0(OUT), we fit initial beliefs for each of the seven

strategies.  Since probabilities must add up to 1, this involves fitting 7 parameters.  We then fit a single

variable, �Strength,� that determines the initial strength of beliefs for all seven strategies.  Cij
0(IN) and

Cij
0(OUT) are backed out of the fitted parameters.  Let bj

0(IN) be the initial belief that an E will enter

following output level j.  Then Cij
0(IN) = bj

0(IN)@Strength and Cij
0(OUT) = Strength - Cij

0(IN).

Having described the basic learning model, we now modify it to include two additional types:

non-learners and sophisticated learners.  Non-learners start with the same initial beliefs as unsophisticated

learners, and make choices in exactly the same way as unsophisticated learners, but never update their

beliefs.  A sophisticated learner models Es as being unsophisticated learners who are maximizing their

payoffs subject to their beliefs.  This implies that a sophisticated learner anticipates that changes in
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payoffs will affect Es' choices, and that Es' behavior will change as they accumulate more experience.

In choosing how to incorporate sophistication into the learning model, our goal is to use the

minimal level of sophistication necessary to track the data reported in Experiment 2.  The type of

sophistication we have added represents a relatively modest change to the stochastic fictitious play model.

This approach has a number of antecedents in the literature, particularly Milgrom and Roberts (1991),

Selten (1991), Nagel (1995), Stahl (1996), and Camerer, Ho, and Chong (2002).  Its key role is to allow

Ms to anticipate changes in entry rates following the crossover.  Although subjects may in fact be

operating at a higher level of sophistication, learning very general concepts about signaling games, the

data does not force us to this conclusion.  The level of sophistication added to the model does not imply

that subjects can generalize what they have learned in the limit pricing game to a radically different

signaling game any better than inexperienced subjects.  For example, our sophisticated learners would not

necessarily be able to perform any better than inexperienced subjects in Brants and Holt�s (1992)

signaling game or in Miller and Plott�s (1985) game as they have substantially different structures from

the present game.  It remains an open empirical question whether or not the higher levels of sophistication

needed for such cross-game learning exist in the population.

Going into the details, a sophisticated learner needs to build beliefs that best replicate the beliefs

an unsophisticated E might have.  These are not the sophisticated player�s beliefs, rather they are his best

estimate of unsophisticated Es� beliefs.  Thus, he builds these beliefs in exactly the same manner that an

unsophisticated E would.  In estimating the beliefs of unsophisticated Es, updating is done in a manner

analogous to (3) and (4) above, but with one important difference � outcomes from other players are

weighted equally to a player�s own outcomes.  Intuitively, a sophisticated learner is building fictitious

beliefs for other players and therefore has no reason to overweight his own experience.  Given his best

estimate of the beliefs of Es, a sophisticated learner generates a probability of entry for each output level

using a logit rule analogous to (2).  The resulting probabilities give a sophisticated learner�s beliefs about

the behavior of Es.  Based on these beliefs, a sophisticated learner generates his own choice in exactly the

same manner as an unsophisticated learner.  Thus, a sophisticated learner uses a noisy best response to a



26The model can be modified to allow for types who anticipate a mixture of other types or use a mixture of
sophisticated and unsophisticated learning.  While this would no doubt improve the model�s ability to fit the data, it
complicates the model while adding little to our understanding of the underlying cognitive process.

27We do not assign specific types to the subjects.  Instead, we generate the likelihood of a subject's observed choices
subject to being a certain type, and then generate the full likelihood by taking the weighted average over types,
where the weights are given by the ex ante probability of each type.  Allowing players to switch types at more
points in time generates a statistically significant improvement in the fit, reflecting the presumably continuous
nature of switching in reality, but does not change the qualitative results.  Allowing types that switch up more than
one level of sophistication or types that switch to lower levels of sophistication does not generate a statistically
significant improvement in the fit.
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noisy best response to beliefs based on observed outcomes.26

The model allows players to switch types over the course of play.  To simplify computations, the

only time this switch is allowed is when players return as experienced subjects.  We further simplify the

model by only allowing players to move up a single level of sophistication.  Thus, there are three �pure�

types (non-learners, unsophisticated learners, and sophisticated learners) and two �switching� types (non-

learner to unsophisticated learner and unsophisticated to sophisticated learner).  The ex ante probabilities

of these five types are parameters that we fit from the data.27

B.  Fitting the Model: The model was fit using data from all subjects (including the controls) who

returned for an experienced subject session in Experiment 2.  All plays as an M in both roles are used. 

Parameter estimates are generated through standard maximum likelihood techniques, with probabilities

bounded between 0 and 1.  When the algorithm ran into the boundaries for these parameters, they were

set equal to the boundary values to allow for convergence.

We set the initial beliefs for subjects playing in games with high cost Es and in games with low

cost Es equal, as a log likelihood ratio test fails to reject the null hypothesis of identical initial beliefs (χ2

= 9.68, 7 d.f., p > .10).  To simplify computations, the following parameters are set equal (where relevant)

for all three behavioral types: the precision parameter (λ), the probability of changing strategies (pchange),

discounting of past experience (δ), and the reset parameter (ρ). In addition, the initial beliefs sophisticated

learners assign to unsophisticated Es are forced to be identical across the following output classes: low

outputs (1 and 2), intermediate outputs (3 and 4), and high outputs (5, 6, and 7).  Relaxing these

restrictions would only strengthen our main conclusions.
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The data set includes repeated observations from the same individuals which cannot be treated as

being statistically independent.  The inclusion of �inertia� in the model through the variable pchange

somewhat controls for these individual effects.  The inertia variable adds correlation between

observations from the same individual, so that its effect is roughly analogous to what a random effect

specification does in more standard sorts of analysis.  To the extent that this does not account for all of the

individual effects in the data, we apply the correction for clustering suggested by Moulton (1986) and

White (1994) to the standard errors.  This correction is a close variation on the commonly used sandwich

estimator of the variance-covariance matrix.  As it turns out, this correction has only a small effect on the

standard errors for the parameter estimates of primary interest.

Conclusion 5: The addition of �sophisticated� learners to the basic model of fictitious play generates a
statistically significant improvement in the fit to the data.

[Table 4 here]

The results of the maximum likelihood estimation are reported in Table 4.  Standard errors

(corrected for clustering) are shown in parentheses.  The estimates of initial beliefs are suppressed for all

models since these are of little direct interest. Results from three versions of the model are reported. 

Model 1 only includes non-learners.  Model 2 includes non-learners and unsophisticated learners, with no

switching between non-learners and unsophisticated learners.  When a probability of switching is

included in Model 2, the maximization algorithm sets it equal to zero (indicating that it can be deleted). 

Model 2 is equivalent to a standard model of stochastic fictitious play.  Model 3 is the full model with

non-learners, unsophisticated learners, and sophisticated learners, as well as switching between types.

Comparing Model 1 with Model 2, we see an enormous improvement in the log-likelihood (χ2 =

603.60, 5 d.f., p < .01).  Not surprisingly, given the strong dynamics in the data, the evidence in favor of

learning is overwhelming.  The improvement in the log-likelihood going from Model 2 to Model 3 is also

enormous and significant at the 1% level (χ2 = 189.42, 6 d.f., p < .01).  Looking at the parameter

estimates, the proportion of sophisticated learners increases from 18.8% in the inexperienced sessions to

32.4% in the experienced sessions, and the estimated proportion of non-learners falls from 25.4% in the



28Some secondary features of the parameter estimates in Model 3 are worth noting.  First, the estimate for ρ, the
�reset� parameter, is not significantly different from 0 at even the 10% level.  Unsophisticated learners' beliefs are
barely affected by the crossover.  Second, the estimate of �weight on others� experience� is tiny and statistically
insignificant.  The beliefs of unsophisticated learners are based almost entirely on their own experience.  Finally, the
probability of changing strategies is always significantly less than 1, indicating substantial autocorrelation.

29For each twelve period cycle for each treatment (no crossover vs. crossover), we calculated the probability of each
output level being played and the probability of entry following each output level.  These probabilities were used to
randomly generate the choices of Es and MHs observed by the simulated MLs.
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inexperienced sessions to 18.1% in the experienced sessions.  Even though the latter decrease is not

statistically significant, the population is clearly moving toward greater sophistication over time.28

C.  Simulations: The simulations reported in this section show that the learning model without

sophisticated learners misses important features of the data for Experiment 2 that the model with

sophisticated learners captures. Thus, the addition of sophisticated learners to the model is not just

statistically significant, it is economically significant as well. 

Conclusion 6: The learning model with sophisticated learners generates substantially better tracking of
MLs� behavior in the crossover treatment of Experiment 2.  Growth over time in the
proportion of sophisticated learners provides a mechanism for the positive transfer
observed in the crossover treatment of Experiment 2. 

We simulate Ms� learning using the parameters generated by the maximum likelihood estimation. 

The simulations are designed to closely mimic the experiment.  Since we are primarily interested in the 

strategic play of MLs, the responses of Es and MHs are generated randomly using the observed

frequencies in the data.29  Simulations were run for inexperienced subject sessions with 36 games and

experienced subject sessions with 48 games, with the crossovers taking place in game 13.  As in the

experiment, simulated subjects alternated between playing as Ms and Es, with half of the simulated

subjects as Ms for the first half of each twelve period cycle and the other half as Ms in the second half. 

One slight difference from the experiment is that we forced each simulated player to be an ML (MH)

exactly three times in each twelve period cycle.  For each model and each treatment, play was generated

for 10,000 simulated subjects for each of the five behavioral types (including the two switching types),

using the fitted probabilities of each type to generate aggregate behavior.

[Figure 5 here]
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Figure 5 displays strategic play by MLs from the simulations in the same way that Figure 4 did

for the experimental data.  The unit of time on the x-axis is how many times a subject has played as an

ML.  As in Figure 4, each panel plots the percentage of strategic play by MLs in inexperienced and 

experienced control sessions, and in the crossover sessions.  The top panel reproduces the data from the

experiment (Figure 4), the middle panel simulates play without sophisticated learners, and the bottom

panel simulates play with sophisticated learners.

Comparing the top and middle panels of Figure 5, the simulated subjects do not replicate the

immediate jump in strategic play by MLs that is observed in the data following the crossover.  Intuitively,

unsophisticated learners have no mechanism to quickly adjust their beliefs about Es' behavior following

the change in their payoffs.  The only way the model without sophisticated learners can even partially fit

the rapid jump to strategic play following the crossover is by allowing for very fast learning following the

crossover.  (This is the reason for the higher values of the discount parameter δ and the reset parameter ρ

in the model without sophisticated learners, as compared to the model with sophisticated learners.)  These

simulations confirm that, even fitted to data from the crossover sessions, the learning model without

sophisticated learners cannot track the data from Experiment 2.

The graph in the bottom panel, showing data from the simulations with sophisticated learners,

looks much more like the experimental data: Simulated subjects in the crossover treatment immediately

show more strategic play as MLs following the crossover than simulated inexperienced subjects in the

control treatment.  Following the crossover, strategic play by simulated MLs grows gradually, paralleling

the growth of strategic play for experienced simulated subjects in the control treatment. Thus, the addition

of sophisticated learners not only improves the statistical fit to the data, it allows us to track the major

features of play following the crossover.

The presence of sophisticated learners who immediately anticipate the effect of changing Es'

payoffs explains why subjects should play strategically as MLs at least as much following the crossovers

as in the inexperienced control sessions.  However, the presence of sophisticated learners isn't sufficient

to explain why there is more strategic play by MLs following the crossovers than in the inexperienced



30Specifically, suppose we reran the simulations of Model 3 but didn�t allow for any growth in the proportion of
sophisticated learners.  Comparing the first play as an ML in the inexperienced control sessions with the first play as
an ML following the crossover in Experiment 2, we see only a 2% increase in the frequency of strategic play.  This
is far smaller than the 8% difference observed in the actual data or the 12% difference in the simulations with
switching between types.

31The fitted values of the salient parameters with standard errors are as follows: λ = .019 (.001), pchange = .715 (.017),
δ = .086 (.010), wother = 2.4 × 10-2 (4.3 × 10-2), and probability, non-learner = .230 (.060).
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control sessions. Following the crossover in Experiment 2, sophisticated learners immediately jump to

strategic play as MLs.  However, they are only somewhat more likely to play strategically (due to greater

experience and greater incentives for strategic play) than sophisticated learners in the inexperienced

control sessions.  If there weren�t any more sophisticated learners in the population following the

crossover than in inexperienced control session, we would see almost exactly the same level of strategic

play as in the inexperienced control sessions.30  In the learning model, experience with the game with high

cost Es helps generate more strategic play by MLs because the level of sophistication has grown over

time in the subject population as a result of playing a related game.  That is, the big difference between

the crossover sessions and the inexperienced control sessions is that previous experience with the high

cost entrant game results in a higher percentage of sophisticated learners in the subject population.  Thus,

the primary mechanism underlying the surprising degree of positive transfer in Experiment 2 is the

growth in sophistication in the subject population.

[Figure 6 here]

We claimed earlier that the basic model of fictitious play, not including sophisticated learners,

was sufficient to predict MLs behavior in Experiment 1. To substantiate this claim we fit the learning

model with non-learners and unsophisticated learners to the control data from Experiment 1 and simulate

MLs� behavior in the crossovers using these parameter values.31  We ran sets of 10,000 simulations for

different values of ρ, the reset parameter.  Figure 6 shows strategic play by MLs in these simulations as ρ

varies.  Again, the unit of time on the x-axis is how many times a subject has played as an ML.  In the

control sessions this is measured from the beginning of the session, while in the crossover sessions it is

measured from the point of the crossover with 1 denoting the first play following the crossover. By
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varying the value of ρ, we can easily generate the sort of slowdown seen in the data.  For example, with ρ

= .05 (a very modest reset to inexperienced subject play) the level of strategic play by MLs following the

first twelve period cycle after the crossover is almost exactly the same as immediately prior to the

crossover.  Sophisticated learners are presumably present in Experiment 1 (indeed, a statistically

significant proportion of sophisticated learners can be detected using the control data alone), but their

presence is not necessary to organize the data.  This is in sharp contrast to Experiment 2 where their

presence plays a critical role in organizing the data.

Conclusion 7: While sophisticated learners are no doubt present in Experiment 1, their presence is
not needed to explain the crossover effects observed in Experiment 1.

VII) Summary and Conclusions: This paper studies cross game learning in signaling games. Study of

cross game learning is important since as Fudenberg and Kreps (1988) note:

 ". . . it seems unreasonable to expect the exact same game to be repeated over and over; put
another way, if we could only justify the use of Nash analysis in such situations, we would not
have provided much reason to have faith in the widespread applications that are found in the
literature.  Faith can be greater if, as seems reasonable, players infer about how their opponents
will act in one situation from how opponents acted in other, similar situations." 

Our experiments provide evidence that subjects who have learned to play strategically in one game can

transfer much, but not all, of this knowledge to related games even if the actions necessary to play

strategically are quite different.  More important than establishing the presence of positive transfer, we

have begun to understand the mechanism(s) underlying this transfer.  We find evidence that there exist

sophisticated learners in the subject population and that the proportion of sophisticated learners increases

with experience.  This growth in sophistication plays a central role in fostering transfer.  In other words,

experience not only changes how subjects play games, but also how they approach related games,

generating increased sensitivity to the strategic implications of their actions, and the effects of changes in

other player�s payoffs.  It is this increased sensitivity to the strategic implications of the game that allows

them to perform so well compared to naive subjects when put into a new (but related) setting.

Although we attribute the positive transfer in Experiment 2 to the existence of a growing

population of sophisticated learners, the experimental design described above does not allow us to
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directly verify the existence (and increasing frequency) of sophisticated learners since we have no direct

observations of subjects� cognitive processes.  All we can state with certainty is that a learning model

with sophisticated types provides a consistent explanation for the observed data while one without

sophisticated types cannot, and that we have not found a plausible alternative explanation.  However, in

subsequent research in which two person teams play the roles of monopolist and potential entrants,

content analysis of communication between team members verifies (i) the existence of sophisticated

learners of the type modeled here and (ii) growing numbers of sophisticated learners as a result of

experience with related games (Cooper and Kagel, 2003b). 

It is worth noting that our results are far more encouraging regarding the possibility of positive

transfer than those typically reported by psychologists.  This no doubt reflects differences in the tasks

subjects are confronted with and the environments in which subjects are allowed to learn.  The

psychology literature has tended to focus on learning specific skills (e.g. how to drive a truck) or how to

solve certain classes of problems (e.g. logic puzzles).  Games, by their very nature, are interactive.  As a

result, a large part of what is learned is an understanding of how others will behave and, as shown here,

this understanding can aid in transferring learning from one environment to another.  This interactive

element of games is missing from the individual choice problems typically studied by psychologists.

We have only begun to scratch the surface of cross-game learning issues as they apply to

economic environments. All of the crossovers used in this paper take place within a relatively narrow

class of games. Finding positive transfer here, especially in the more difficult circumstances of

Experiment 2, would seem to be necessary, but far from sufficient, to inspire confidence in similar levels

of transfer for real economic environments.  On the plus side, the  interactive thinking that plays a central

role in generating the positive cross-game learning identified here is present in most strategic settings.  

On the negative side, the experimental design we use makes it relatively easy to see that there is a relation

between the different games being played.  In field settings, agents both have to recognize the underlying

game structure and then make the connection between related structures.  Because recognizing this

connection may be a significant stumbling block, exploring transfer will require directly addressing
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questions such as context effects, framing effects, and playing in teams rather than as individuals, topics

economists have traditionally been reluctant to explore.  The true level of sophistication reached by

subjects is also an open question.  Experiments where the games are less closely related, or unrelated

games are played between the games of direct interest, may also help shed light on this issue.  These items

are on our agenda, but unfortunately their exploration lies well beyond the scope of the present inquiry. 
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Table 1a:

Monopolist Payoffs

High Cost Monopolist (MH) Low Cost Monopolist (ML)

Monopolist

Action

Entrant Response Monopolist

Action

Entrant Response

IN OUT IN OUT

1 150 426 1 250 542

2 168 444 2 276 568

3 150 426 3 330 606

4 132 408 4 352 628

5 56 182 5 334 610

6 -188 -38 6 316 592

7 -292 -126 7 213 486

Table 1b:

Entrant Payoffs, High Cost Entrants

Entrant�s

Strategy

Monopolist�s Type

High Cost Low Cost

IN 300 74

OUT 250 250

Table 1c:

Entrant Payoffs, Low Cost Entrants

Entrant�s

Strategy

Monopolist�s Type

High Cost Low Cost

IN 500 200

OUT 250 250
Table 2a:

Monopolist Payoffs, Price Game



Low Cost Monopolist (ML) High Cost Monopolist (MH)

Monopolist

Action

Entrant Response Monopolist

Action

Entrant Response

IN OUT IN OUT

1 204 545 1 -428 -220

2 333 678 2 -298 -110

3 355 700 3 8 165

4 378 723 4 103 448

5 350 695 5 125 470

6 283 648 6 148 493

7 250 615 7 125 470

Table 2b:

Entrant Payoffs, Price Game, Low Cost Entrants

Entrant�s

Strategy

Monopolist�s Type

Low Cost High Cost

IN 219 594

OUT 281 281



32The session with all once experienced subjects and all twice experienced subjects was crossed over after the 1st cycle.  The session with half twice experienced
subjects was crossed over after the 2nd cycle.

Table 3
Summary of Experimental Treatments

Control Sessions Crossover Sessions
Experiment 1

Crossover Sessions
Experiment 2

Number of Sessions
(Experienced Only) 5 5 3

Number of Subjects
(Experienced Only) 65 66 38

Number of 12 Period Cycles, 
Inexperienced Sessions

3 cycles (except for one session that
only had two cycles) 3 3

Number of 12 Period Cycles,
Experienced Sessions

3 sessions w/ 4 cycles
2 sessions w/ 3 cycles 4 4

Twice-experienced subjects? No No All the subjects in one session, half the
subjects in a second session.

Timing of Crossover --- After first cycle After first cycle for 2 sessions, after
second cycle for the third session32

Type of Entrants and Equilibrium 
(Inexperienced & Before Crossover)

Low Cost Entrants
Separating Only

Low Cost Entrants
Separating Only

High Cost Entrants
Pooling and Separating

Type of Entrants and Equilibrium
(Following Crossover) --- Low Cost Entrants

Separating Only
Low Cost Entrants
Separating Only

Change in Presentation of Payoffs
Following Crossover? --- Flip from Quantity to Price 

(or vice versa) None



Table 4
MLE Results for Learning Models

Standard Errors Corrected for Clustering

Model 1 Model 2 Model 3

Properties of the Model

Non-Learners U U U

Unsophisticated Learners U U

Sophisticated Learners U

Switching Between Types U

Number of Parameters 9 14 20

Parameter Estimates

Precision (λ)
(Multiplied by 100)

1.534**

(.166)
1.960**

(.111)
2.384**

(.117)

Probability 
Change of Strategy (pchange)

.503**

(.023)
.645**

(.029)
.674**

(.026)

Discounting of 
Past Experience (δ)

.084**

(.009)
.060**

(.010)

Square Root of Weight on Initial Beliefs 
Following Crossover (ρ)

.054+

(.028)
.022

(.036)

Weight on Others' Experience (wOther)
(Multiplied by 100) 

.259
(.162)

.699
(.454)

Probability 
Non-Learner

.310**

(.053)
.254**

(.046)

Probability
Sophisticated Learner

.188**

(.044)

Probability Switching Type
Non-Learner to Unsophisticated

.073
(.072)

Probability Switching Type
Unsophisticated to Sophisticated

.136**

(.045)

Log Likelihood -4517.11 -4215.31 -4120.60

Notes: The full data set has 4595 observations over 104 individuals, including 2585 observations from 66
individuals in the control sessions and 2010 observations from 38 individuals in the crossover sessions.

** statistically significant at the 1% level *statistically significant at the 5% level
+ statistically significant at the 10% level



33See also White (1994).  Rather than assuming that observations from the same individual are independent, this
technique assumes that observations from the same individual are correlated and corrects the standard errors
accordingly.  This correction is a variation on the sandwich estimator and is the technique underlying the "cluster"
option in Stata.
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Appendix: Statistical Analysis of Experiments 1 and 2

We reached several conclusions in the text regarding the effects of the crossover treatments (namely
Conclusions 2, 4 and the discussion of results in the last paragraph of section V). This appendix shows that these
claims based on the raw data reported in the text hold up with formal econometric analysis of the data
controlling for covariates affecting behavior.  As in the text our focus here is on strategic play by MLs.

All of the regressions reported in this appendix are ordered probits.  The use of an ordered probit
specification recognizes that the output choices by Ms are inherently categorical data.  There are two reasons for
this.  First, suppose that the subjects have preferences over a continuum of possible output choices.  Because the
design only allows them seven possible choices, individuals whose true preferences differ may end up in the
same category.  For example, suppose that one subject most preferred output level is 4.8 and another�s is 5.2. 
These may both show up in the data as a choice of output level 5.  The use of an ordered probit explicitly
accounts for the mapping between a discreet choice set and an underlying continuous space of possible choices. 
Second, the game itself is fundamentally non-linear.  For example, consider the difference as an ML between
moving from output level 5 to 6 and moving from 6 to 7.  Beyond any strategic considerations, just considering
the payoffs, the later is a much larger change than the former.  The non-linearity of an ordered probit captures
the idea that not all changes of a single output level are equal.

The dependent variable in all of the regressions is the output level chosen by MLs.  (As in the main
body of the paper, choices in the price game have been transposed to be in terms of quantities.)  To correct for
individual effects in the data, standard errors are calculated using Moulton�s (1986) correction for clustering.33 
In addition to the ordered probits reported here, we have run a variety of other specifications including linear
models with a random effects specification, probits with a random effects specification, and ordered probits with
a limited number of categories and a random effects specification.  Our qualitative conclusions are the same for
any of these alternative approaches to the data.

Experiment 1: Regressions on ML data from Experiment 1 are reported in Table A.1.  The data set consists of
all observations, both from inexperienced and experienced sessions, for all subjects who returned for an
experienced subject session.  Although the inexperienced sessions are of no direct interest, including this data
permits better control of the individual effects in the data.

[Insert Table A.1. here]

Formally, the full specification for the latent variable underlying the ordered probit is given by the following
equation: The variable Ot

i is the (latent) output for observation t of subject i.  The variable CO is a dummy for
the crossover treatment.  The variables CycE2, CycE3, and CycE4 are dummies for the second, third, and fourth
twelve period cycles of an experienced session.  The variables CycI1, CycI2, and CycI3 are dummies for the first,
second, and third twelve period cycles of an inexperienced session.  The variable ER is a vector of entry rate
controls and the variable Con is a vector of controls for the use of meaningful context.  The error term is given
by εt

i.  



34Identical regressions have been run using a variety of alternative entry rate controls, including ones that reflect
behavior in all preceding periods rather than just the current twelve period cycle.  The results of these alternative
regressions are similar to what is reported here.
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O CO Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc Cyc
Cyc Cyc Cyc CO Cyc Cyc Cyc CO Cyc Cyc CO Cyc

CO Cyc Cyc Cyc CO Cyc Cyc

t
i

E E E E E E I I I

I I I E E E E E E

I I I I I

= + + + + + + + + + +
+ + + + + + + + +

+ + + + +

α β δ δ δ δ
δ δ φ φ φ

φ φ

1 2 3 4 2 3 4 3 4 4 1 2 3

5 1 2 6 1 1 2 3 4 2 3 4 3 4

4 1 2 3 5 1 2

( ) ( ) ( )
( ) ( ) * ( ) * ( ) *

* ( ) * ( ) * ( )+ + + +φ γ η ε6 1CO Cyc ER ConI t
i

(Equation A.1)

Less formally, the independent variables used in the regressions can be broken into four general classes
as follows: 
1. Controls for the Time Period:  The base here is the first twelve period cycle in the experienced subject
sessions.  Dummies are used to generate differences going both forward and backward in time from this base. 
Specifically, the regressions include the following time dummies: inexperienced sessions, periods # 12;
inexperienced sessions, periods # 24, inexperienced sessions, all periods; experienced sessions, periods $ 13;
experienced sessions, periods $ 25; and experienced sessions, periods $ 37.  Because results for the
inexperienced sessions are of no direct interest, all parameter estimates for the inexperienced sessions are
suppressed on Table 1A.  Because the time dummies have an overlapping structure, the associated parameter
estimates capture differences between twelve period cycles.  For example, a positive estimate of the coefficient
for �Experienced, Periods $ 13� (δ1 in equation A.1) tells us that output levels are higher in the second twelve
period cycle of the experienced session than the first twelve period cycle of the experienced sessions.
2. Controls for the Crossover Treatment:  These include a dummy for all subjects who eventually
experienced a crossover (this dummy is coded as a 1 even before the subject actually goes through the
crossover) as well as interactions between the crossover dummy and the time dummies.  For purposes of
interpretation, the crossover dummy gives the difference between the two treatments in the base time period (the
first twelve period cycle of the experienced sessions) and the interactions then give differences in changes over
time.  For example, the parameter labeled �Crossover * Experienced, Period $ 13 (φ1 in equation A.1) estimates
the difference between the increase in output in the crossover treatment from the first to second twelve period
cycles of the experienced sessions and the increase in output in the no crossover treatment between these two
cycles.  A negative parameter estimate for this variable doesn�t mean that output is decreasing in the crossover
treatment (although this may also be true), but rather that output is increasing less than in the no crossover
treatment.  This �differences in differences� approach gives additional control beyond correcting the standard
errors for clustering for the different base levels of strategic play by MLs in the two treatments.
3. Controls for Es� Behavior:  The control variables are the entry rates for the current twelve period cycle
following outputs 2, 3, 4, 5, and 6.  These entry rates are calculated over all periods in the current twelve period
cycle and are calculated separately for each session.  To the extent that subjects� beliefs reflect the experience
that they are receiving, these five variables serve as a proxy for the unobservable beliefs.  Note that the measures
of entry rates only use information from the current twelve period cycle, not from previous cycles.  This is done
for two reasons.  First, based on the fitted parameters for the learning model, there is good reason to expect that
subjects� beliefs will disproportionately reflect experience from recent periods.  Second, and perhaps more
importantly, our central interest is in how behavior changes following the crossover.  We want to know if the
change in Ms� behavior following the crossover is reflecting a change in Es� behavior.  We therefore need a
measure of Es� behavior that emphasizes how entry rates have changed following the crossover rather than
reflecting entry rates prior to the crossover.  Using only the current cycle allows our measures to strongly and
rapidly reflect any changes in Es� behavior following the crossover.34  As a group, the entry rate controls are



35In the results section for Experiment 1, we assert that there is no significant difference between play in the price
and quantity games prior to the crossover.  To test this proposition formally, we ran ordered probits using all
choices by MLs prior to the crossover in Experiment 1.  The right hand side variables were dummies for the three
twelve period cycles of the inexperienced sessions, a dummy for the first twelve period cycle of the experienced
session, and interactions of these variables with a dummy for use of the price game.  (The dummy for the first cycle
of the inexperienced session is dropped to avoid colinearity.)  While the sign of the price game dummies is
consistently positive, none of these dummies was statistically significant even at the 10% level.  Thus, strategic play
was slightly more prevalent in the price game, but not to any significant degree.
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always easily significant at the 1% level.  However, because these parameters are not of direct interest, they are
suppressed in Table A.1. The second line of Table A.1 indicates whether these variables are included in the
regressions. 
4. Controls for Meaningful Context:  These include a dummy for subjects who experienced meaningful
context as well as interactions between the context dummy and the time dummies.  As these parameters are not
of direct interest here they are also suppressed in Table A.1.  Once again, the second line of the table indicates
whether these control variables are included in a regression.

Turning to the regression results, Model 1 checks for a crossover effect without controlling for entry
rates or context.  The key parameter for measuring the crossover effect is the dummy �Crossover* Experienced
Period $ 13� (φ1 in the formal specification).  This parameter estimate is negative and significant at the 1%
level.  Given the differences in differences structure of the econometric model, this result indicates that output is
increasing less between the first and second twelve period cycles in sessions with a crossover than those
without.  This regression confirms that the stalled learning observed in Figure 2 is significant even after
controlling for individual effects in the data.  The insignificant parameter estimates for �Crossover, Experienced,
Period $ 25� and �Crossover, Experienced, Period $ 37� (φ2 and φ3 in the formal specification) indicating that
the growth in strategic play by MLs in the cross-over treatment does not catch up to the controls over the last
two 12 period cycles.  
 This negative parameter estimate for �Crossover*Experienced Period $ 13� in Model 1 does not imply a
drop in output for the crossover sessions.  Adding together the dummies for �Experienced, Period $ 13� and
�Crossover*Experienced, Period $ 13,� the total change for crossover sessions is very slightly positive and not
significantly different from zero.  This confirms that the crossover puts a temporary halt to increases in strategic
play, rather than reducing it, and definitely does not return experienced MLs to the level of inexperienced
subject play.

Model 2 adds the five entry rate controls to the regression and Model 3 adds to this the controls for use
of meaningful context.  The control variables for entry rates easily achieve joint statistical significance at the 1%
level while the controls for use of meaningful context are just below the cutoff for significance at the 5% level. 
Adding these controls lessens the magnitude of the crossover effect as well as reducing its statistical
significance.  However, in both models, the parameter estimate for �Crossover*Experienced, Period $ 13� still
achieves statistical significance at the 5% level.   In neither model do the parameter estimates for �Crossover� (β
in equation A.1) achieve statistical significance at any standard level, indicating no significant differences
between the two treatments for experienced subjects prior to the cross-over.35  Further, both the
�Crossover*Experience, Period $ 25� and the  �Crossover*Experience, Period $ 37�parameters fail to achieve
statistical significance at standard levels, confirming the absence of any catchup in the cross-over treatment over
the last two cycles. 
 
Experiment 2: Regressions on ML data from Experiment 2 are reported in Table A.2.  The data set for these
regressions includes all data from games with low cost Es for subjects who returned for an experienced subject
session.  Note that data from games with high cost Es (data prior to the crossover) are not included.



36The natural reference point in Experiment 2 is the (absolute) level of strategic play in the cross-over treatment
compared to inexperienced controls.  In Experiment 1 the natural reference point is the change in the growth rate of
strategic play compared to the experienced controls following the cross-over. 
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[Insert Table A.2 here]

Formally, the full specification for the latent variable underlying the ordered probit is given by equation
A.2 below.  The variable Lo is a dummy for subjects who play the low cost entrant game is all periods.  This is
the control group.  The variable Hi is a dummy for subjects that play the high cost entrant game initially and
then are crossed over to the low cost entrant game.  In other words, this is a dummy for the crossover treatment. 
The variables CycI2 and CycI3 are dummies for the second and third twelve period cycles of the inexperienced
sessions.  The variables CycE1, CycE2, CycE3, and CycE4 are dummies for the first, second, third, and fourth
twelve period cycles of the experienced sessions.  Note that the time dummies do not have an overlapping
structure in this specification � we are measuring levels, not differences.  The variables CycCR1, CycCR2, and
CycCR3 are dummies for the first, second, and third twelve period cycles following the crossover from the high
cost entrant game to the low cost entrant game.  Thus, for subjects in the crossover treatment we control for time
since the subject started playing the low cost entrant game, not total time the subject has been playing some limit
pricing game.  The variable ER is a vector of entry rate controls and the variable Con is a vector of controls for
the use of meaningful context.  The variables SMH and SML measure a subject�s use of strategic play as an MH
and as an ML prior to the crossover.  The variable TCRS measures how experienced the subject was when the
crossover took place.  The variables SMH, SML, and TCRS are all set equal to zero for subjects in the control
sessions.  The error term is given by εt

i.
i
t 1 I2 2 I3 3 E1 4 E 2 5 E3 6 E 4

i
1 CR1 2 CR 2 3 CR 3 1 2 t

O Lo * Cyc Lo * Cyc Lo * Cyc Lo * Cyc Lo * Cyc Lo * Cyc

Hi * Cyc Hi * Cyc Hi * Cyc ER Con SMH SML TCRS IMT

= α + β + β + β + β + β + β

+δ + δ + δ + γ + η + λ + λ + τ + ι + ε

(Equation A.2)

Less formally, the  independent variables fall into four categories as follows:
1. Controls for the Time Period Interacted with Treatment Dummy: The base in this specification is the
first twelve period cycle of the inexperienced sessions for subjects in the control sessions. The regressions
include the following dummies: inexperienced control sessions, periods 13 - 24; inexperienced control sessions,
periods 25 - 36; experienced control sessions, periods 1 - 12; experienced control sessions, periods 13 - 24;
experienced control sessions, periods 25 - 36; experienced control sessions, periods 37 - 48; crossover sessions,
periods 1 - 12 following the crossover; crossover sessions, periods 13 - 24 following the crossover; and
crossover sessions, periods 25 - 36 following the crossover.  Unlike the regressions for Experiment 1, the
parameter estimates on the time dummies represent levels, not differences.36  Thus, a positive parameter estimate
for �crossover, periods 25-36 after crossover� tells us that there is more strategic play by MLs in this time period
than in the first twelve period cycle of play by inexperienced subjects in the control sessions.  Parameter
estimates for the inexperienced sessions are suppressed in Table A.2 since they are not of any direct interest.
2. Controls for Es� Behavior:  These are identical to the controls used in the analysis of experiment 1. 
These parameter estimates are also suppressed in Table A.2 since they are not directly relevant.  The second line
of Table A.2 indicates whether these variables have been included in a model.
3. Controls for Meaningful Context:  These are identical to the controls used in the analysis of experiment
1.  The parameter estimates for these variables are not reported in Table A.2, but the second line of the table
shows whether these variables were included in a model.
4. Miscellaneous: Model 4 includes four miscellaneous independent variables.  One issue is whether
strategic play prior to the crossover is a good predictor for strategic play following the crossover.  We therefore
calculate two measures of strategic play prior to the crossover: the number of times a subject played strategically



37The parameter estimates are 1.022 and 1.012 respectively with standard errors of .239 and .229.
38The parameter estimates are -.043 and -.046 respectively with standard errors of .263 and .224.
39We have run Model 4 with controls for entry rates and the use of meaningful context.  While the resulting
specification is messier, it yields qualitatively identical results to the specification shown here.  We have also used
different variables to measure previous experience as an E paired with a strategic ML and get qualitatively similar
results.

Page A5

the last ten times as an MH prior to the crossover and the number of times a subject played strategically the last
ten times as an ML prior to the crossover.  Both of these variables are demeaned.  Another natural question is
whether the timing of the crossover matters.  To control for when the crossover occurs, Model 4 includes a
variable that measures how many twelve period cycles of experience a subject had before being crossed over. 
Since no subject was crossed over without at least four cycles of prior experience, we subtract four from this
variable to give it a minimum value of zero.  Finally, having directly observed strategic play by others might
serve as a catalyst for an ML playing strategically himself.  We therefore include a dummy for whether an ML
in the crossover treatment was, as an E prior to the crossover, paired with an ML who played strategically.  This
variable is demeaned.

Turning to the results, Model 1 in Table A.2 looks for a crossover effect without controlling for entry
rates or context.  The variable of primary interest here is �Crossover: Periods 1 - 12 After Crossover.� (δ1 in
equation A.2) This parameter captures the difference between inexperienced subjects in the first twelve period
cycle of the control sessions and subjects in the first twelve period cycle following a crossover.  The estimate is
positive and significant at the 1% level.  Both of the other crossover dummies are also statistically significant at
the 1% level, with the size of the parameter estimates increasing substantially over time.  If we modify the
specification so the other two crossover dummies (�Crossover: Periods 13 - 24 After Crossover� and
�Crossover: Periods 25 - 36 After Crossover� ) capture differences between the second and third cycles
following the crossover and the second and third cycles of the inexperienced control sessions, the two crossover
dummies remain significant at the 1% level.37  Thus, the regression analysis confirms that there is significantly
more strategic play by MLs following the crossover than in inexperienced control sessions, both in the first
twelve period cycle and throughout the session.

We can change the specification of Model 1 so that the parameter estimate for �Crossover: Periods 1 -
12 After Crossover� captures the difference between play in the first twelve period cycle following the crossover
and first twelve period cycle of the experienced control sessions. Likewise, we can also modify the specification
so the other two crossover dummies capture differences between the second and third cycles following the
crossover and the second and third cycles of the experienced control sessions.  With this specification, the
parameter estimate for �Crossover: Periods 1 - 12 After Crossover� becomes -.028 with a standard error of .180. 
This is not significantly different form zero.    Further, no significant differences can be found between
experienced control sessions and crossover sessions in later cycles either as the dummies for �Crossover:
Periods 13 - 24 After Crossover� and �Crossover: Periods 25 - 36 After Crossover� both fail to achieve
significance individually38 and the three crossover dummies fail to be jointly significant (χ2 = 0.29, 3 d.f., p >
.10).  Thus, there are no significant differences in strategic play between the crossover sessions and the
experienced control sessions. 

Model 2 adds the controls for Es� behavior to Model 1, and Model 3 adds the controls for context to
Model 2.  These additional controls are statistically significant at the 1% level (χ2 = 70.08, 12 d.f., p < .01), but
have no effect on our conclusions from Model 1.

Model 4 adds the two controls for strategic behavior prior to the crossover to Model 1, the control for
when the crossover took place, and the control for, as an E, having been paired with an ML who played
strategically prior to the crossover.39  While neither the timing of the crossover (τ in equation A.2) nor direct
experience with an ML playing strategically (ι in equation A.2) have a statistically significant effect, the
parameter estimates for both of the variables measuring strategic behavior prior to the crossover (λ1 and λ2 in
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equation A.2) are positive and statistically significant at the 1% level. 
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Table A.1

Experiment 1, Crossover Effects for MLs
Ordered Probits, Standard Errors Corrected for Clustering

Dependent Variable: Output Level

Model 1 Model 2 Model 3

Control Variables None Entry Rates Entry Rates
Context

Number of Parameters 19 24 31

(δ1) Experienced
Period $13

.473**

(.124)
.401**

(.135)
.577**

(.170)

(δ2) Experienced
Period $ 25

.220*

(.104)
.195+

(.102)
.103

(.136)

(δ3) Experienced
Period $ 37

.206
(.153)

.241
(.171)

.175
(.169)

(β) Crossover .311+

(.172)
.286

(.183)
.281

(.191)

(φ1) Crossover *
Experienced Period $ 13

-.469**

(.171)
-.385*

(.185)
-.385*

(.189)

(φ2) Crossover *
Experienced Period $ 25

.066
(.152)

.083
(.156)

.089
(.156)

(φ3) Crossover *
Experienced Period $ 37

.181
(.197)

.054
(.213)

.045
(.212)

Log Likelihood -3271.26 -3256.91 -3249.88

Notes: All regressions contain 2696 observations over 131 individuals.  Only individuals who returned for an
experienced session are included.  No observations from twice-experienced subjects are included. 

** statistically significant at the 1% level
* statistically significant at the 5% level
+ statistically significant at the 10% level
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Table A.2

Experiment 2, Crossover Effects for MLs:  Ordered Probits, 
Standard Errors Corrected for Clustering, Dependent Variable is Output Level

Model 1 Model 2 Model 3 Model 4

Control Variables None Entry Rates Entry Rates
Context None

Number of Parameters 15 20 27 19

(β3) No Crossover, Experienced
Periods 1 - 12

.613**

(.151)
.750**

(.213)
.395+

(.226)
.640**

(.158)

(β4) No Crossover, Experienced
Periods 13 - 24

1.095**

(.155)
1.268**

(.198)
.902**

(.197)
1.145**

(.163)

(β5) No Crossover, Experienced
Periods 25 - 36

1.323**

(.161)
1.418**

(.176)
1.053**

(.201)
1.384**

(.170)

(β6) No Crossover, Experienced
Periods 37 - 48

1.534**

(.191)
1.560**

(.213)
1.291**

(.289)
1.604**

(.204)

(δ1) Crossover
Periods 1 - 12 After Crossover

.585**

(.151)
.592**

(.167)
.436*

(.175)
.529**

(.194)

(δ2) Crossover
Periods 13 - 24 After Crossover

1.052**

(.240)
1.055**

(.241)
.915**

(.253)
1.010**

(.200)

(δ3) Crossover
Periods 25 - 36 After Crossover

1.277**

(.206)
1.355**

(.212)
1.238**

(.222)
1.380**

(.256)

(λ1) Strategic Play as MH
10 Plays Prior to Crossover

.123**

(.025)

(λ2) Strategic Play as ML
10 Plays Prior to Crossover

.235**

(.056)

(τ) Cycle When
Crossover Occurs

.022
(.089)

(ι) Paired with an ML 
Who Played Strategically

.238
(.193)

Log Likelihood -1999.67 -1993.31 -1964.63 -1929.74

Notes: All regressions contain 1654 observations over 104 individuals.  Individuals who were crossed from the game
with high cost entrants (Table 1b) to the game with low cost entrants (Table 1c) are included as well as individuals
from the no crossover cell of Experiment 1. 

** statistically significant at the 1% level
* statistically significant at the 5% level 
+ statistically significant at the 10% level


