Personality and cooperation in finitely repeated prisoner's dilemma games

John Kagela,1, Peter McGeeb,∗

a Department of Economics, Ohio State University, Columbus, OH 43210, USA
b Department of Economics, National University of Singapore, 1 Arts Link, Singapore 117570, Singapore

HIGHLIGHTS

• Personality trait agreeableness is related to cooperation in finitely repeated prisoner’s dilemma.
• Effect of agreeableness on cooperation is robust to inclusion of controls including cognitive ability.
• One standard deviation increase in agreeableness raises chance of cooperation by 15% points.

ARTICLE INFO

Article history:
Received 15 March 2014
Received in revised form 20 May 2014
Accepted 30 May 2014
Available online 11 June 2014

JEL classification:
D03
C92
C73

Keywords:
Finitely repeated prisoner dilemma
Personality
Cooperation

ABSTRACT

We investigate the role personality plays in Finitely Repeated Prisoner’s Dilemma (FRPD) games. Even after controlling for demographic factors such as race, course of study, and cognitive ability, we find that cooperative behavior is significantly related to the Big Five personality trait Agreeableness. A one standard deviation increase in agreeableness increases the predicted probability of cooperation by a subject with modal demographic characteristics from 67.9% to 80.6%.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Economists are increasingly concerned with the role personality traits play in economic outcomes (Heckman et al., 2006; Borghans et al., 2008; Becker et al., 2012). Much of this work is done using survey data, but experimental economists are beginning to explore personality traits, which are easily measured in the laboratory (e.g., Deck et al., 2012; Feliz-Ozbay et al., 2013; Fréchette et al., 2013; Proto and Rustichini, 2013).

We examine the role personality plays in one of the most replicated results in experimental economics: early round cooperation in a finitely repeated Prisoner’s Dilemma (FRPD). Several theories have been proposed and explored to account for these decisions (e.g., Kreps et al., 1982; Neyman, 1985; Selten and Stoecker, 1986; Jeheil, 2005). We hypothesize that early round cooperation in FRPD games is in part related to personality traits, in particular to the Big Five personality trait “Agreeableness”. Agreeableness is a broad trait associated with more specific traits—altruism, trust, cooperativeness. Previous attempts to link measurable traits in experimental games similar to the standard prisoner’s dilemma game have been reported in Boone et al. (1999), Pothos et al. (2011) and others, but none have done so within the context of FRPD games.
sessions lasting about 1.5 h each.

z-Tree (Fischbacher, 2007). A total of 52 subjects participated in 5 super-games, and demographic information and SAT/ACT scores. Table 1 provides summary statistics for the data collected.

Subjects consented to allowing the registrar to furnish us with their CPAs and SAT/ACT scores. Table 1 shows the distribution of subjects by gender, ethnicity/nationality, and major.

Table 1
Summary statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extroversion score</td>
<td>3.11</td>
<td>0.74</td>
<td>1.88</td>
<td>4.75</td>
</tr>
<tr>
<td>Agreeableness score</td>
<td>3.70</td>
<td>0.64</td>
<td>1.67</td>
<td>4.78</td>
</tr>
<tr>
<td>Conscientiousness score</td>
<td>3.47</td>
<td>0.69</td>
<td>1.67</td>
<td>4.67</td>
</tr>
<tr>
<td>Emotional stability score</td>
<td>2.66</td>
<td>0.75</td>
<td>1.38</td>
<td>4.50</td>
</tr>
<tr>
<td>Openness/Intellect score</td>
<td>3.44</td>
<td>0.59</td>
<td>2.19</td>
<td>4.80</td>
</tr>
<tr>
<td>SAT composite score (N = 25)</td>
<td>1218</td>
<td>149.44</td>
<td>930</td>
<td>1420</td>
</tr>
<tr>
<td>ACT composite score (N = 28)</td>
<td>27.89</td>
<td>3.03</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>White</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science and engineering</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business and economics</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Sample size equals 52 unless otherwise noted. The personality traits are measured using scales with 8–10 items, each scored using a five point Likert scale. The number reported for each trait is the average score over the items and can range from 1 to 5. The composite score for the SAT includes the math and critical reading sections but not the writing section; the national mean score on these two sections was 1010 in 2012. The national mean score for the composite ACT score was 21.1 in 2012.

Fig. 1. Payoff matrix in ECUs.

while simultaneously controlling for cognitive ability, as is done here.

2 Boone et al. (1999) look at a different set of personality measures on cooperative behavior in a Prisoner’s Dilemma: locus of control, self monitoring, sensation seeking, and type A behavior; they find that cooperative behavior is systematically related to a number of these traits. Among psychologists, Hirsh and Peterson (2009), Potthos et al. (2011), and Lonnqvist et al. (2011) look at the impact of Big Five traits on behavior in variants of the Prisoner’s Dilemma. However, these studies are all one-shot games with some combination of non-neutral language, a lack of financial incentives, a lack of additional controls, or substantial variances from the standard Prisoner’s Dilemma (e.g., sequential moves, larger strategy space).

The Big Five personality characteristics represent a consensus among personality psychologists on a general taxonomy of personality traits. The focus of the Big Five is on internal consistency rather than predictive ability, designed to measure personality at a very broad level of abstraction; with each dimension summarizing a large number of distinct, more specific, personality characteristics.

3 No norms are available for the BFI, but a large comparison set can be found in Appendix A.

3 The Big Five personality characteristics represent a consensus among personality psychologists on a general taxonomy of personality traits. The focus of the Big Five is on internal consistency rather than predictive ability, designed to measure personality at a very broad level of abstraction; with each dimension summarizing a large number of distinct, more specific, personality characteristics.

2 Statistical tests for cooperation rates focus on outcomes in the first round because subsequent behavior is highly dependent on earlier outcomes, creating complicated interdependencies that are difficult to account for econometrically. Further, once two or more rounds have passed in which one agent has defected, in the overwhelming number of cases both agents defect for the remainder of the super-game.

5 One subject who identified as black was from Nigeria, while one subject who identified as Chinese was from Malaysia.

3. Experimental results

Table 2 reports marginal effects from probit models – incorporating various controls – of the likelihood that a subject cooperates in the first round of a super-game. In all cases the dependent variable is 1 if a subject cooperated, 0 otherwise, with standard errors clustered at the subject level. Column 1 includes basic regressors suggested by Dal Bo and Fréchette (2011) for infinitely repeated super-games: Previous opponent cooperated in Rd. 1 is a dummy variable equal to 1 if a subject faced an opponent who cooperated in the first round of the previous super-game (0 otherwise), Subject cooperated in Rd. 1 of first super-game is a dummy variable equal to 1 if a subject cooperated in the first round of the first super-game (0 otherwise; included to capture innate tendencies to cooperate), and Super-game is a linear time trend variable included to capture any learning or experience effects in the data. All three variables are significant at the 5% level or better in column 1 and every subsequent specification.

Column 2 adds basic demographic variables – gender, ethnicity/nationality and academic major – obtained from the university Registrar’s office. There are several ethnicity/nationality categories but approximately 88% of subjects identify as white, black, or Chinese, so we include these three categories and collapse the other categories into one group, Other Group. Among these categories, white and black subjects are primarily US citizens, while those identifying as Chinese are primarily students from the People’s Republic of China. Adding these controls to the variables shows that non-white subjects are less likely to cooperate: Chinese subjects are 32.3% less likely to choose to cooperate relative to whites ($p = 0.03$), and blacks are 29.2% less likely to cooperate ($p = 0.09$). We do not have any a priori hypotheses with regard to race. Moreover, our experiment is not designed to investigate hypotheses about race and subjects were not aware of the other player’s race. The significant marginal effects for blacks are not robust to the inclusion of other control variables in columns 3 and 4, but the marginal effects for Chinese are. That Chinese subjects in our sample are less cooperative stands in contrast to the findings in Hemsath and Pomponio (1998), suggesting that more work is necessary to understand any cultural differences. The existing literature finds

Table 2 reports marginal effects from probit models – incorporating various controls – of the likelihood that a subject cooperates in the first round of a super-game. In all cases the dependent variable is 1 if a subject cooperated, 0 otherwise, with standard errors clustered at the subject level. Column 1 includes basic regressors suggested by Dal Bo and Fréchette (2011) for infinitely repeated super-games: Previous opponent cooperated in Rd. 1 is a dummy variable equal to 1 if a subject faced an opponent who cooperated in the first round of the previous super-game (0 otherwise), Subject cooperated in Rd. 1 of first super-game is a dummy variable equal to 1 if a subject cooperated in the first round of the first super-game (0 otherwise; included to capture innate tendencies to cooperate), and Super-game is a linear time trend variable included to capture any learning or experience effects in the data. All three variables are significant at the 5% level or better in column 1 and every subsequent specification.

Column 2 adds basic demographic variables – gender, ethnicity/nationality and academic major – obtained from the university Registrar’s office. There are several ethnicity/nationality categories but approximately 88% of subjects identify as white, black, or Chinese, so we include these three categories and collapse the other categories into one group, Other Group. Among these categories, white and black subjects are primarily US citizens, while those identifying as Chinese are primarily students from the People’s Republic of China. Adding these controls to the variables shows that non-white subjects are less likely to cooperate: Chinese subjects are 32.3% less likely to choose to cooperate relative to whites ($p = 0.03$), and blacks are 29.2% less likely to cooperate ($p = 0.09$). We do not have any a priori hypotheses with regard to race. Moreover, our experiment is not designed to investigate hypotheses about race and subjects were not aware of the other player’s race. The significant marginal effects for blacks are not robust to the inclusion of other control variables in columns 3 and 4, but the marginal effects for Chinese are. That Chinese subjects in our sample are less cooperative stands in contrast to the findings in Hemsath and Pomponio (1998), suggesting that more work is necessary to understand any cultural differences. The existing literature finds

2 Boone et al. (1999) look at a different set of personality measures on cooperative behavior in a Prisoner’s Dilemma: locus of control, self monitoring, sensation seeking, and type A behavior; they find that cooperative behavior is systematically related to a number of these traits. Among psychologists, Hirsh and Peterson (2009), Potthos et al. (2011), and Lonnqvist et al. (2011) look at the impact of Big Five traits on behavior in variants of the Prisoner’s Dilemma. However, these studies are all one-shot games with some combination of non-neutral language, a lack of financial incentives, a lack of additional controls, or substantial variances from the standard Prisoner’s Dilemma (e.g., sequential moves, larger strategy space).

3 The Big Five personality characteristics represent a consensus among personality psychologists on a general taxonomy of personality traits. The focus of the Big Five is on internal consistency rather than predictive ability, designed to measure personality at a very broad level of abstraction; with each dimension summarizing a large number of distinct, more specific, personality characteristics.

2 Statistical tests for cooperation rates focus on outcomes in the first round because subsequent behavior is highly dependent on earlier outcomes, creating complicated interdependencies that are difficult to account for econometrically. Further, once two or more rounds have passed in which one agent has defected, in the overwhelming number of cases both agents defect for the remainder of the super-game.

5 One subject who identified as black was from Nigeria, while one subject who identified as Chinese was from Malaysia.
that business and economics majors are less likely to cooperate in prisoner’s dilemma games than subjects majoring in other areas (e.g., Frank et al., 1993). Our results are broadly consistent with this, and add that science and engineering students are less likely to cooperate than liberal arts majors and undecided students, though the differences are not significant in this specification.

The specification in column 3 adds the Big Five personality traits (agreeableness, extroversion, conscientiousness, neuroticism, and openness), which are of primary interest. Each of these variables is standardized within our sample to have a mean of zero and a standard deviation of 1. There are some changes in the marginal effects of the controls in column 2 after the inclusion of the Big Five: the marginal effect for blacks is 29% smaller and is no longer significant, and the marginal effects of studying science and engineering or business and economics both nearly double in magnitude, with p-values of 0.11 and 0.04, respectively. Among the personality traits, only agreeableness is associated with a significant marginal effect: a one standard deviation increase in agreeableness is associated with a 13.9% increase in the likelihood of cooperation in the first stage game of a super-game. Evaluating the predicted probability at modal or average demographic characteristics, the predicted probability of cooperation is 70.9%, with a one standard deviation increase in agreeableness increasing the predicted probability to 82.1% (Wald test p = 0.004).7 For the second largest racial group – Chinese – with otherwise modal characteristics, the same change in agreeableness increases the predicted probability from 37.1% to 51.6% (Wald test p = 0.003).

Feliz-Ozbay et al. (2013) show that including a measure of cognitive ability may be important when estimating the marginal effects of the Big Five personality traits. For cognitive ability we use composite SAT and ACT scores as a proxy for cognitive ability as they are readily available and are highly correlated with various other measures of cognitive ability (Frey and Detterman, 2004).

Feliz-Ozbay et al. (2013) show that including a measure of cognitive ability may be important when estimating the marginal effects of the Big Five personality traits. For cognitive ability we use composite SAT and ACT scores as a proxy for cognitive ability as they are readily available and are highly correlated with various other measures of cognitive ability (Frey and Detterman, 2004).
increase in agreeableness is associated with a 15% point increase in the likelihood that a subject cooperates in the first stage game of a super-game. The same comparison of predicted probabilities of cooperation for the modal group shows that a one standard deviation increase in agreeableness increases the probability of cooperation from 67.9% to 80.6% (Wald test $p = 0.012$).

Our results show the importance of both personality and the history of play for cooperative behavior. One question these results raise is whether the demographic variables, especially agreeableness, impact the decision to cooperate in the first round of the first super-game. If so, it is possible that the models in columns 3 and 4 are misspecified. Probits reported in Appendix A show that (1) none of the demographic, personality and cognitive ability characteristic included in Table 1 are significant predictors of the subjects decision to cooperate in the first round of the first super-game and (2) running our preferred specification from Table 1 but omitting the dummy variable for whether a subject cooperated in the first round of the first super-game, the estimated marginal effects for the other regressors change very little. Taken together, these results indicate that factors influencing initial cooperation decisions remain unexplained.

4. Summary and conclusions

Our results provide insight into the motivations behind cooperation in finitely repeated Prisoner’s Dilemma games. Many attempts have been made to formalize the preferences that might explain such cooperation, often relying on behavioral “types” or beliefs about these types in the population (e.g., Kreps et al., 1982; Andreoni and Miller, 1993; Brosig, 2002). Our findings suggest that these preferences and types can be related to individual traits, particularly Agreeableness as measured by the Big Five inventory. Understanding how individual differences influence play in games such as the FRPD may be an important step in enabling economists to explain the heterogeneity in behavior reported for games such as this.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.econlet.2014.05.034.

References

9 In unreported results, we used GPA in place of SAT/ACT scores. The results are qualitatively and quantitatively similar. We use SAT/ACT scores in our preferred specification because GPA is a noisier measure of cognitive ability (Noftle and Robins, 2007).

10 The modal category for SAT/ACT test scores is a score below the 95th percentile.