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Abstract

In almost common value auctions one bidder (the advantaged bidder) has a

valuation advantage over all other (regular) bidders. It is well known that in

second-price auctions with two bidders, even a slight private value advantage

can have an explosive effect on auction outcomes as the advantaged bidder wins

all the time and auction revenue is substantially lower than in a pure second-

price common-value auction. We explore the robustness of these results to the

addition of more regular bidders in second-price auctions, and the extent to

which these results generalize to ascending-price English auctions in an effort to

provide insight into when and why one ought to be concerned about such slight

asymmetries.
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1 Introduction

Common-value auctions are auctions where the ex-post value of the item is

the same for all bidders. What makes such auctions interesting is that bidders

do not know the value prior to bidding, but instead receive affiliated private

information signals that are related to the underlying value.1 Almost common-

value auctions differ from pure common value auctions by having an advantaged

bidder whose ex-post valuation is (slightly) higher than that of all other, n

regular, (n ≥ 1), bidders. Although it does not seem obvious that a small

private-value advantage can have a dramatic impact on auction outcomes, that

is precisely what happens in second-price sealed-bid auctions and in ascending-

price English auctions. Bikhchandani (1987) shows that in a sealed-bid, second-

price auction with only two bidders, even the tiniest such asymmetry causes the

advantaged bidder to win all the time and drastically reduces seller’s revenue

compared to the corresponding pure common value auction setting (also see

Avery and Kagel, 1997; Klemperer, 1998).2 Perfect symmetry is a convenient

modeling assumption but in many circumstances firms are known to have some

idiosyncratic, private-value advantage in an otherwise common-value auction.3

Thus, these findings raise several important questions that we address in this

1 In dynamic auctions, such as ascending-bid English auctions, bidders also observe the
prices at which other bidders drop out and may use this additional information to reformulate
their bidding strategy. A survey of common value auctions can be found in Kagel and Levin,
2001.

2However, Avery and Kagel (1997) show that this ”explosive” effect does not carry over to
first-price sealed bid auctions.

3For example, in the U. S. governments’s spectrum (air wave rights) regional auctions, it
was common knowledge that PacTell had a private value advantage in the Los Angeles and
San Francisco markets (Cramton, 1997).
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paper.

First, we explore whether the explosive impact on auction outcomes result-

ing from a small private-value advantage in second-price auctions extends to

auctions with more than one regular bidder. Using the “wallet game” as the

benchmark model (Avery and Kagel, 1997; Klemperer, 1998) we find that the

explosive effect reported in the two bidder case does not generalize to the addi-

tion of more regular bidders. In fact, increasing the number of regular bidders

generates a continuous dampening of the explosive effects found in the two bid-

der case. However, somewhat surprisingly, the private value advantage remains,

and is substantial, even as the number of regular bidders grows without bound.

In addition, we argue that, other things equal, the seller actually benefits

from the additional aggressiveness of an advantaged bidder. What hurts the

seller, and often dominates this outcome, is that regular bidders tend to bid

less aggressively in most circumstances, which suppresses revenue. Thus, in

cases where the regular bidders response to the aggressiveness of the advantaged

bidder is small, or nonexistent, revenues may be higher than in the pure common

value auction case.

A second example deals with English auctions which always have just two

bidders in the last stage. As such, English auctions would seem to be most

vulnerable to the explosive effects of small asymmetries. This example shows

that even when the private value advantage is such that there exist explosive

effects with two bidders, this explosive effect evaporates with the addition of a

second regular bidder. That is, in this example, the addition of a second regular
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bidder is sufficient to eliminate the explosive effect found in the two bidder case,

even though the auction inevitably reduces to two bidders in the last stage of

the game.

The structure of the paper is as follows: Section 2 introduces the basic model

and then goes on to provide the examples yielding the results outline above.

Section 3 summarizes our analytical results and discusses them in relationship

to the limited experimental data on auctions in which one bidder has a private

value advantage. Throughout we use very simple models to shed light on these

issues and to answer these important questions.

2 The Model

Preliminary: Let there be n + 1 bidders, n regular bidders denoted by i,

i = 1, 2, ..., n, and one advantaged bidder denoted by n + 1. Each of the n +

1 bidders privately observes a signal Xi ∈ [0, 1], i = 1, 2, ..., n, n + 1, i.i.d.

from a distribution function F (t), on [0, 1], with F 0(t) = f(t) > 0, on (0, 1).

Denote the valuation of each bidder by Vi and the vector of all n+1 signals by

x = (X1, ...,Xn,Xn+1). A pure common-value auction in such an environment

usually assumes that Vi = V (x) for all i. In an almost common-value auction

Vi = V (x) for only the regular bidders, i = 1, ..., n, while the advantaged bidder,

the (n + 1)th bidder, has an (ex-post) valuation Vn+1(x) ≥ V (x), ∀x, with a

strict inequality for some x. The idea of a small private value advantage is

captured by allowing the possibility that ∀² > 0, although Vn+1(x) ≥ V (x),
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Vn+1(x) ≤ V (x) + ².

For example, in the “wallet game” there is one regular bidder (n = 1) and one

advantaged bidder with V1(x) = X1+X2 and V2(x) = V1(x)+ ²X2. (Avery and

Kagel, 1997; Klemperer, 1997, 1998). In a second-price, sealed-bid common-

value auction with ² = 0, the symmetric equilibrium bidding strategy is, b(Xi) =

2Xi. With ² = 0, the bidder with the highest signal, XH , wins the auction and

pays the equilibrium bid of the rival, the holder of the lower signal, which is 2XL.

There is no ex post regret for both the winner and the loser since the winner

earns (XH +XL)− (2XL) = XH −XL ≥ 0 and the loser, should she have won,

would have earned (XH +XL)− (2XH) = XL−XH ≤ 0. Clearly, each bidder’s

ex-ante probability of winning is 1/2 and seller’s revenue is 2EF [XL|XL ≤ XH ].

However, once ² > 0, no matter how small ² is, the results change drastically:

(1) The advantaged bidder wins all the time and (2) Since the equilibrium

strategy of the regular bidder is now b1(X1) = X1, seller’s revenue becomes

EF [X], which is substantially lower than revenue in the symmetric case.4,5

The first example shows that the explosive effects of the second-price wallet

game do not generalize to auctions more than two bidders.

Example 1. Consider the wallet auction with n ≥ 2 regular bidders

4Avery and Kagel (1997) report a class of asymmetric equilibria in the private value ad-
vantage case, and like here, analyze the most aggresive equilibrium in the class.

5Note that under the standard assumption of increasing hazard rates, ∂[ f(t)
1−F (t) ]/∂t > 0,

2EF [XL|XL ≤ XH ] − EF [X] =
R 1
0
1−F (t)
f(t)

[1 − 2F (t)]f(t)dt > 1−F (t)
f(t)

R 1
0 [1 − 2F (t)]f(t)dt =

1−F (t)
f(t)

[1 − R 10 2F (t)]f(t)dt] = 0, where t is the unique solution to [1 − 2F (t)] = 0. The

reduction in expected revenue can be quite large. With a uniform distribution it goes down
with any ² > 0, by 25%, from 2

3
to 1

2
.
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where, without loss of generality, we use averages, rather than sum of valuations.

The common value for each of the n regular bidders is the average of all the

n+ 1, i.i.d. signals and the value for the advantaged bidder is larger by having

a slightly “extra” value from her private signal. Formally: ∀i = 1, ..., n, Vi =

V (x) = 1
n+1

Pn+1
j=1 Xj , Vn+1 = V (x) +

²Xn+1

n+1 .

Proposition 1 bn+1(X) = α(n, ε)X, and bi(X) = [ (n−1)−2²
(n−1)(1+2²) ]α(n, ε)X, i =

1, ..., n is a Nash equilibrium for the second-price auction with n ≥ 2, where,

α(n, ε) = [(n−1)(n+3)−2²][1+2²]−2n²
2(n+1)[(n−1)−2²]

6 .

Proof. See appendix.

Note that with ² = 0 we have ∀i = 1, ..., n, bi(X) = bn+1(X) =
n+3
2(n+1)X,

which is the symmetric equilibrium for the pure common value case. With an

advantaged bidder, ² > 0, bn+1(X)bi(X)
= (n−1)(1+2²)

(n−1)−2² , ∀i = 1, ..., n. Here with a tiny

² > 0 and n > 1, the advantaged bidder is only slightly more aggressive than

a regular bidder even with just two regular bidders.7 Next we note that even

with just two regular bidders it is obvious that for any small δ > 0, ∃ small

enough ε(δ) > 0, such that the ex-ante probability of winning the auction does

not exceed 1
3 + δ for the advantaged bidder and is not less than 1

3 − δ
2 for the

regular bidders. Thus, the advantaged bidder wins only slightly more often than

6There is a whole class of Nash equilibria but ours is the “closest” to the symmetric one.
There are asymmetric, bully-sucker, equilibria even in the pure CV case where one bidder is
very aggressive and others are bidding very law. In such equilibria the bully may win all the
time and revenue may be very low even in the symmetric structure.

7With only two bidders, n = 1, the expression for the advantaged bidder, b2(X2) is “divided
by zero,” suggesting that in this case the advantaged bidder ought to bid “very aggressively.”
Bikhchandani’s (1987) paper explicitly poses the question of the stability of the symmetric
equilibirum with ε > 0 and n > 1, with no solution to this question identified prior to this.
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the regular bidders.

The question is, why do these explosive effects disappear in the wallet auction

with the addition of just one more regular bidder? In any realization of private

signals in such an auction the expected utility of the advantaged bidder, E[ua], is

strictly higher than that of the regular bidder, E[ur]. Bidding in a second-price

auction reflects the (maximum) willingness to pay conditional on the information

inferred by the winning event. In other words, each bidder is just indifferent

between winning or losing, if she has to pay her own bid. It is impossible to

have such a common bid price with only one regular bidder. This is because

in equilibrium it implies that the willingness to pay of the advantaged and

disadvantaged bidders are identical, conditional on the two signals that give rise

to such a common bid. But, this contradicts the assumption that the advantage

bidder’s expected utility is strictly higher in such an event, which implies that

she prefers to bid higher and break the tie. This rules out the possibility that

the range of the possible bids for the two types overlap, and is the basis for the

explosive effect of the private value advantage with just one regular bidder.

However, such a contradiction cannot be established with more than one

regular bidder. To see why, take the case of two regular bidders and let b(z),

b1(y) = b2(y) represent the bid functions of the advantaged and the two regular

bidders. Assume that there are z0 and y0 such that b(z0) = b1(y0) = p. The

event used to calculate the willingness to pay of the advantaged bidder is: A =:

{z = z0, y
H = y0 ≥ yL}, where yH and yL, represent the highest and lowest

signals of the regular bidders. In contrast, a regular bidder who holds y0, must
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consider an additional event in calculating her willingness to pay, namely: B =:

{z ≤ z0, yH = y0 = yL}. B is the event that the tieing price, p, is coming from

another regular bidder, a possibility that does not exist with only one regular

bidder. Is event B more favorable than event A for a regular bidder? In other

words, is E[ur|B] > E[ur|A]? A positive answer is entirely possible and very

likely. When the advantaged bidder is more aggressive in equilibrium, as in

the auction considered here, it follows that z0 < y0. Thus, the more favorable

conditioning of moving from yL ≤ y0 in event A to yL = y0 in event B, more

than compensates for the worsening conditioning of moving z = z0 in A to

z ≤ z0 in B. As a result, it is even possible that E[ur|B] > E[ua|A] > E[ur|A].

Nevertheless, in equilibrium, as in our proposition, the overall expected utility

of a regular bidder weighted by the probabilities of events A and B can be (is)

the same as the expected utility of the advantaged bidder conditional on event

A. An additional complication that must be kept in mind (accounted for in

our derivation) is to calculate the correct posterior probabilities of a tie coming

from the advantaged bidder or from another regular bidder.

A more intuitive, though less revealing, answer as to why the explosive

effect disappears is that with more than one regular bidder, the regular bidder

needs to shave her bid by less to guard against the winner’s curse coming from

the aggressiveness of the advantaged bidder, since the tieing bid may be with

another regular bidder who is not as aggressive as the advantaged bidder. The

result is less bad news as a result of winning for a regular bidder, hence less

need to shave their bids in response to the winner’s curse.
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The impact of additional competition on bidding, although continuing to

mitigate the asymmetry, does not eliminate it altogether. With one more regu-

lar bidder, bn+2(X)bi(X)
represents the new bidding ratio and it is simple to show that

[ bn+2(X)bk(X)
|k=1,...,n+1− bn+1(X)bi(X)

|i=1,..,n] = [n(n−1−2²)−(n−1)(n−2²)](1+2²)
(n−2²)(n−1−2²) = [ −2²(1+2²)

(n−2²)(n−1−2²) ] <

0. Thus, as competition grows this ratio is getting smaller, starting with 1+2²
1−2²

with only two regular bidders. However, the equilibrium does not converge to

that of the symmetric second-price auction equilibrium as n grows: As limn→∞ bn+1(X) =

1+2²
2 X, and limn→∞ bi(X) = 1

2X so that limn→∞
bn+1(X)
bi(X)

= [1 + 2²] > 1. Fur-

ther, as n grows without bound,

limn→∞ bi(X) = 1
2 , so that the probability of the advantaged bidder winning is

2²
1+2² .

So far we have addressed the robustness of the explosive effects in the wallet

auction to a bidder having a private value advantage. Our results show that

once there is more than one regular bidder: (1) The advantaged bidder does not

win all the time in a second-price auction, (2) The change in bidding strategies

corresponds to the size of the advantage in a continuous and non-drastic fashion

so that a tiny ² corresponds to only a tiny reduction in revenue, and (3) Although

the effects of a private value advantage on bidding strategies are smaller with

larger numbers of regular bidders, they remain proportional to the size of the

private value advantage even as competition grows without bound.

Our next observation corrects for a possible misconception in the literature

on almost common-value auctions with just two bidders namely, that the exis-

tence of an advantaged bidders always reduces seller’s revenue (see Bikhchan-
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dani, 1987; Avery and Kagel, 1997; and Klemperer 1998). Ceteris paribus, a

seller in a second-price auction necessarily benefits from higher bidding. How-

ever, in equilibrium we expect regular bidders to accommodate the more aggres-

sive advantaged bidder by lowering their bids. And, since the second-highest bid

sets the price, we might expect a lower price than in the absence of the aggressive

advantaged bidder. Indeed such results are reported in previous papers analyz-

ing the “wallet game.” However, it is obvious that there is a genuine trade off

here. In cases where regular bidders do not accommodate the advantaged bid-

der, or their adjustments are mild relative to the symmetric equilibrium, we can

expect revenue to increase. One example of this is the “maximum game” studied

in Bulow and Klemperer (2002) and Cambell and Levin (2001). In this game the

common value for each of the n regular bidder is the highest signal among the

n+1, i.i.d. signals and the value for the advantaged bidder is “slightly” higher.

Formally: Vi = V (x) =Max{Xi}n+11 ,∀i = 1, ..., n, Vn+1 = (1+ ²)V (x). In this

game it is easy to show that ∀n ≥ 1 : A) bi(Xi) = Xi ∀i = 1, ..., n, is the

dominant solvable bidding strategy for all regular bidders. B) bn+1(Xn+1) ≥ 1,

is the dominant solvable bidding strategy for the advantaged bidder. C) The

advantaged bidder wins all the time. D) ∀² > 0, seller’s expected revenue

is (substantially) higher than in the pure common value auction with ² = 0.

Thus, with such valuations a seller is necessarily better off having an advan-

taged bidder. Further, even within the often studied “wallet game” with just

one regular bidder the seller benefits from an advantaged bidder once we use

a generalized uniform distribution, F (t) = tα, with α ∈ (0, [1 +√5]/4), rather
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than the uniform case where α = 18

Our second example addresses our final question: Does a demand structure

in which a private value advantage produces an explosive effect in the two bid-

der case always perpetuate that effect in an English auction with more than

one regular bidder? A negative answer would be quite alarming since an En-

glish auction reduces to two bidders in the end. An affirmative answer, on the

other hand, while not assuring the absence of such an explosive effect, at least

demonstrates that such an effect is not inevitable.

Example 2. Consider the following informational structure: There are

three signals, x := (X1, X2, X3), each is i.i.d, from a well behaved distribution

function F (·) defined on [0, 1]. Denote by Y1 > Y2 > Y3, the highest, the

middle and the lowest signal. Let the common value of a regular bidder and

the valuation of the advantaged bidder be defined by Vreg(x) = Y1+Y2+Y3
3 and

Vadv(x) = Vreg(x) +
ε
3(Y2 − Y3) > Vreg(x), where ε ∈ (0, 1). Consider first

a SPA with only two bidders. The SNE bidding function for the pure CV

case (ε = 0), is given by B1(X) = B2(X) =
2
3X + 1

3

R 1
0
tdF (t). Although

not exactly the wallet game, both models have the same implications: a) ∀x,

Vadv(x) > Vreg(x), b) By mimicing the arguments provided earlier it can be

shown that the introduction of even a slight private value advantage has the same

explosive effects as in the original wallet game, i.e., the advantaged bidder wins

all the time and seller revenue is substantially lower than in the pure common

value auction game. Consider now an English auction version of this game with

8Details are ommited but will be provided by the authors upon request.
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three bidders, one advantaged and two regular bidders. We Let d1adv(X) and

d1reg(X) denote the dropping price rule of the advantaged and the regular bidder

given that their signal is X and that no one has dropped yet. We assume in

this example that when the first bidder drops the two remaining bidders can

tell whether a regular bidder or an advantaged bidder has dropped.9 Thus, let

d2adv(Z, d
1) denote the dropping price rule for the advantaged bidder who has a

signal Z and who observes the first drop-out price. We denote by d2reg(Z, d
1
adv)

and d2reg(Z, d
1
reg) the dropping price rule for a regular bidder who has a signal

Z and who observes the first drop-out price from an advantaged bidder or a

regular bidder, respectively.

Proposition 2 The profile of strategies: d1adv(X) = d
1
reg(X) = X, d

2
adv(Z, d

1) =

1, d2reg(Z, d
1
adv) = (2Z + d

1
adv)/3, d

2
reg(Z, d

1
reg) = (Z + 2d

1
reg)/3. is a Bayesian

Nash Equilibrium of this English Auction.

Proof. We show first that there are strictly positive expected profits for all

bidders in the proposed equilibrium. If all bidders follow the proposed strategies

then the holder of Y3, regardless of her type, would be the first to drop out so that

d1 = Y3. Case 1: The advantaged bidder drops first. In this case the regular

bidder holding Y2, drops next and sets a price of d2reg(Z, d
1
adv) =

2Z+d1adv
3 =

2Y2+Y3
3 . The winner is the regular bidder holding the highest signal, Y1 and her

9We also have an example of an English auction with three bidders where only the drop-out
price but not the identity of the bidder is revealed. This example makes the same point as the
one here. In it, the advantaged bidder adopts in equilibrium the same strategy as a regular
bidder regardless of her signal value and there is no explosiveness. However, the example
provided here is more realistic (and challenging) as one could argue that often bidders know
the identity of those who drop out.
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payoffs are: Vreg(x) − d2reg(Z, d1adv) = Y1+Y2+Y3
3 − 2Y2+Y3

3 = Y1−Y2
3 > 0. Case

2: A regular bidder drops first at d1 = Y3. In this case the price is set by the

other regular bidder d2reg(Z, d
1
reg) = (Z + 2d

1
reg)/3 =

Z+2Y3
3 . The winner is the

advantaged bidder and her payoffs are [Y1+Y2+Y33 + ε
3(Y2−Y3)]−d2reg(Z, d1reg) =

(Y1−Z)+(Y2−Y3)
3 + ε

3 (Y2 − Y3) ≥ (1+²)(Y2−Y3)
3 > 0.

Next, we show that an advantaged bidder has no incentive to deviate from

the proposed equilibrium when all others follow it. Case 1: The advantaged

bidder is holding the lowest signal and ought to drop first at d1 = Y3. Dropping

even earlier does not matter. Dropping later matters only if the other two

regular bidders drop first. But, in this case the holder of Y2 drops first at

d1 = Y2 and the holder of Y1 drops next and sets the price at d2reg(Z, d
1
reg) =

(Z + 2d1reg)/3 =
Z+2Y2
3 = Y1+2Y2

3 . By winning the advantaged bidder earns:

[Y1+Y2+Y33 + ε
3(Y2 − Y3)]− [Y1+2Y23 ] = ε

3(Y2 − Y3)− Y2−Y3
3 < − (Y2−Y3)(1−ε)3 < 0.

Case 2: The advantaged bidder is holding one of the two highest signals. In

this case she wins for sure and earns positive payoffs. Raising her bid would not

matter and dropping out would only eliminate her positive payoffs of winning.

Finally we show that a regular bidder has no incentive to deviate from the

proposed equilibrium when all others follow it.. Case 1: The advantaged bidder

is holding the lowest signal. In this case the advantaged bidder drops first at

d1 = Y3 and the specified equilibrium of the second stage is the standard one

so proof is omitted. Case 2: The advantaged bidder is holding one of the two

highest signals. In this case one of the regulars must be holding the lowest

signal. If that regular bidder (who is holding the lowest signal) drops earlier
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than d1 = Y3, it does not matter. If she stays longer it maters only if she wins.

In this event, if the other regular drops first then the advantage bidder stays

active until the price reaches 1 and winning by a regular bidder at a price of

1 assures losses. If on the other hand, as a result of not dropping at d1 = Y3

the advantaged bidder drops first it implies that her signal must be Y2. In this

case the price is set by the other regular who holds Y1 at d2reg(Z, d
1
adv) =

(2Z + d1adv)/3 =
2Y1+Y2

3 . Thus by deviating and winning such a regular bidder

earns: Y1+Y2+Y3
3 − 2Y1+Y2

3 = −Y1−Y33 < 0. Thus, in case 2, the regular bidder

who holds the lowest signal does not wish to deviate and drops first at d1 = Y3.

Given this, the other regular bidder who holds one of the two highest signals

has no reason to deviate, as winning against the advantaged bidder (who bids

1 in this case) assures losses.

It is worth noting that in cases where a regular bidder drops first, and the

advantaged bidder bids aggressively enough to assure winning, the remaining

regular bidder is not using dominated bids. That is, once a regular bidder drops

at d1 = Y3, the remaining regular bidder who holds Z ≥ d1infers that the value

of the item is at least 2d
1+Z
3 , as the signal of the advantaged bidder must be at

least d1,and in equilibrium does not use dominated lower bids.

In equilibrium the bidder with the lowest signal drops out first regardless

of her identity. If the advantaged bidder drops first then the two remaining

regular bidders proceed as if in a pure common-value auction. However, if, as

equilibrium dictates, a regular bidder drops first then the advantaged bidder

bids aggressively enough to assure winning. Thus, although in a two bidders
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auction the advantaged bidder wins all the time, here in equilibrium her ex-ante

probability of winning is only 2/3. And, of course, there is positive incentive for

regular bidders to enter the auction in the first place.

In any realizations where the advantaged bidder holds the lowest signal the

seller’s revenue is the same as in the pure common-value auction. In realizations

where the advantaged bidders has one of the two highest signals and wins the

differences between the seller’s revenue in the almost common-value auction and

the pure common-value auction is EF [(Y1+2Y3−3Y2)/6]. It worth nothing that

this last expression may be positive for certain distribution functions.10

The reason that a third bidder “stabilizes” the English auction is quite dif-

ferent here than in our first example. The English auction is a dynamic auction

where bidders update their beliefs and thus their assessment of the value of the

item as the auction progresses. An advantaged bidder who wishes to exploit her

advantage while holding the lowest signal must refrain from exiting the auction.

However, defection by such inaction necessarily raises the price to a level that

such defection is unprofitable. This is the case in spite of the fact that the

remaining regular bidder would adopt a less aggressive strategy after observing

that a regular bidder had dropped out first.

10For F (x) = xλ, it is easy to show that signEF [(Y1 + 2Y3 − 3Y2)/6] = sign(1− 3λ).
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3 Summary and Conclusion

Bikhchandani (1987) was the first to establish that in a second-price common

value auction the existence of a small private value advantage can have an

explosive effect on auction outcomes, with the advantaged bidder winning all

the time and a sharp reduction in seller’s revenue. His analysis was confined

to the case of two bidders, leaving open the question of the extent to which the

results would generalize to more than two bidders. Klemperer (1998) extends

the analysis to a simple ”wallet game” auction game that can serve as a useful

teaching device, to takeover battles with ”toeholds” (also see Bulow, Huang,

and Klemperer, 1999), and relates the theoretical results to outcomes from US

Airwaves Auctions and to a notable merger case in the UK. Klemperer (2002)

also relates the results to English auctions, pointing out that since such auctions

always end with just two active bidders, that the explosive effects on seller’s

revenue are a key consideration in sensible auction design. Avery and Kagel

(1997) experimentally investigate the wallet game, comparing a pure second-

price common value auction to one in which there is an advantaged bidder. They

extend the theoretical analysis showing that the explosive effect does not emerge

in a first-price sealed-bid auction. Further, Avery and Kagel’s experimental

results suggest a proportionate response to the private value advantage in the

second-price auctions, rather than the explosive effect the theory predicts. This

suggests a possible behavioral constraint on the theory’s predictions.

The present paper extends the analysis in several directions. First, we show

16



that the explosive effect in the wallet game does not extend to a second-price

auction with more than one regular bidder. In this case the advantaged bidder

does not win all the time and the change in bidding strategies (compared to the

pure common value auction case) corresponds to the size of the private value

advantage in a continuous fashion, so that a tiny ² corresponds to only a tiny

reduction in seller revenue. However, somewhat surprisingly, the private value

advantage remains as the number of regular bidders grows without bounds. In

addition, we correct the impression that in such auctions revenue necessarily

decreases. Our second example provides an information structure in which

there is an explosive effect on revenue and winning in the two bidder case,

but this explosive effect does not carry over to an English auction with more

than one regular bidder. This is important since one can legitimately argue

that an English auction reduces to a two bidder auction in the end. While far

from proving that one need not worry about such explosive effects in English

auctions, it does demonstrate that these explosive effects are not inevitable in

English auctions with more than one regular bidder even when they are present

in the two bidder case.

The available empirical evidence also leaves ample scope for experimental in-

vestigation of almost common value auctions. As noted, Avery and Kagel (1997)

found a proportionate rather than explosive response to one bidder having a pri-

vate value advantage in the wallet game, contrary to the theory’s prediction.

This might be explained by the fact that both inexperienced and once experi-

enced bidders suffered from a winner’s curse (failed to account for the winner’s
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curse) in the symmetric second-price common value auctions used as a control

condition. Recall that within the theory the explosive effect of the private value

advantage results from the regular bidder fully accounting for the heightened

adverse selection effect associated with beating the advantaged bidder. How-

ever, to the extent that bidders fail to fully account for this adverse selection

effect (they suffer from a winner’s curse) this explosive effect on revenue will not

be realized.11 The Avery-Kagel experiment begs the question of whether more

experienced bidders who have learned to largely avoid the winner’s curse would

respond appropriately to the presence of an advantaged bidder. While one

might presume this to be the case, to the extent that learning tends to be situa-

tion specific, rather than involving some deeper understanding of the economic

forces at work in the environment (for which there is some evidence, at least

with repsect to the winner’s curse; see Kagel and Levin, 1986), the fact that

bidders have learned to avoid the winner’s curse in the symmetric case might

not prepare them for the heightened adverse selection effect associated with the

private value advantage case. Further, and with an eye to situations outside the

lab, one must consider the extent to which bidders can be taught to understand

these adverse selection effects, as advantaged bidders have an obvious incentive

to have their disadvantaged rivals understand their disadvantageous position in

order to induce them to bid more passively.12

11There are several other examples where bidders suffering from a winner’s curse fail to
obey the comparative static predictions of the theory: the effects of public information on
seller revenue, the revenue raising possibilities inherent in ascending price English auctions
compared to sealed-bid auctions, and the effect of a bidder with inside information on seller
revenue. See Kagel and Levin (in press) for a review of these cases.
12Klemperer (2002) reports that in the US spectrum auctions that one firm with a private
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Appendix: Proof To Proposition 1

Proof. First we derive the equilibrium maximum willingness to pay, w, for

the advantaged bidder and the n regular bidders. Denote by z the signal of the

advantaged bidder and by y = Y 1n the highest signal of the n regulars. As in the

symmetric case, the maximum willingness to pay is derived as that price where a

bidder is indifferent between winning and paying w or losing, accounting for the

information in such an event. This is, in equilibrium, there is a tie w between

that bidder and another bidder which makes that bidder indifferent between

winning or losing at that price. For the advantaged bidder such an event im-

plies a tie with a regular’s bid (as there is only one advantaged bidder). Thus,

(A) (1+ε)z(w)+y(w)+(n−1)y(w)/2
n+1 = w, the left hand side is the value to the

advantaged bidder who ties at w with the highest regular bidder, where y/2, is

the expected value of each one of the other (n − 1) regular bidders given our

assumption that signals are i.i.d. from a uniform distribution. For the regular

bidder the willingness to pay equation is complicated by the fact that a tie may

also be with one of the other (n − 1) regular bidders and that given a tie the

probability of a tie with the advantaged bidder is different (larger) than a tie

with one regular. Thus, (B) z(w)+y(w)+(n−1)y(w)/2
n+1 [ y(w)

z(w)+(n−1)y(w) ] +

2y(w)+(z(w)+(n−2)y(w))/2
n+1 [ (n−1)z(w)

z(w)+(n−1)y(w) ] = w, where, z(w)+y(w)+(n−1)y(w)/2n+1 and

2y(w)+(z(w)+(n−2)y(w))/2
n+1 are the values of the item to the regular given a tie at w

with the advantaged bidder and a regular bidder respectively and [ y(w)
z(w)+(n−1)y(w) ]

and [ (n−1)z(w)
z(w)+(n−1)y(w) ], are the probabilities that, given a tie at w, the tie is with

the advantaged bidder and one of the (n − 1) other regulars respectively. The
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two bidding functions proposed in the proposition simultaneously solve equa-

tions (A) and (B), with w(z) = α(n, ε)z, and w(y) = [ (n−1)−2²
(n−1)(1+2²) ]α(n, ε)y. As

in the symmetric (pure) second-price, common-value case it is easy to verify (re-

sulting from the way we construct the maximum willingness to pay functions)

that: i) in equilibrium, the winner’s expected earning is positive; ii) neither the

advantaged bidder, nor any of the n regular bidders wish to deviate from the

proposed bidding functions.

.
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