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Abstract 
Psychologists have provided abundant evidence that behavior can differ in fundamental ways when
problems are embedded in a meaningful, as opposed to abstract, context.  Our paper explores the effects
of meaningful context on behavior in a signaling game experiment.  Meaningful context significantly
increases the initial level of strategic play.  This effect fades over time, so that meaningful context
partially substitutes for experience.  There is also evidence that meaningful context can fundamentally
affect subjects’ reasoning processes. These results suggest that meaningful context might better capture
behavior in field settings and  improve the performance of  equilibrium refinements for certain games.
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2For example, compare Grether (1980) with Kahneman and Tversky (1972).  See Camerer (1995) for further
discussion of this and other methodological differences between economists and psychologists. 

3The most frequent error is selection of the card with a 4 rather than the card with 7.

One of the important methodological differences in experiments conducted by economists and

psychologists is the economist’s preference for studying behavior in generic (or abstract) settings as

opposed to the psychologist’s preference for embedding behavior in a naturalistic setting.  For example,

economists in studying Bayes’ rule typically operationalize the relevant probabilities using a “balls and

bingo cage” design.  In contrast, psychologists typically embed the relevant probabilities in a vignette, like

the taxi cab problem.2  Economists prefer abstract settings for a variety of reasons.  Perhaps foremost

among these is the belief that it is only the deep, underlying mathematical structure of the problem that

matters (or should matter) for behavior.  Additional reasons are that meaningful context may obscure the

underlying economic structure of the problem and that meaningful context may generate responses that

are inappropriate for the question at hand (e.g. Cohen, Levine, and Plott, 1978). 

Yet there are important reasons to study behavior in natural settings since there is abundant

evidence that subjects’ reasoning processes can be affected in fundamental ways when problems are

embedded in meaningful, as opposed to abstract or generic, context.  An important example of these

differences from the psychology literature is the “four card selection problem” introduced by Wason

(1966).  In a typical generic version of this problem subjects are shown four cards lying on a table top. 

They are told that each card has either an A or a K on one side and either a 4 or a 7 on the other.  The

four cards are arranged so that each of the four possibilities (A,K,4, or 7) is facing up on one card. 

Subjects are then asked to select two cards to determine whether the statement “all cards with an A on

one side must have a 4 on the other side” is true or false.  A “rational” subject should always select the

cards showing an A and a 7 – the other two cards are useless in verifying the truth of the statement.  In

fact, only about 10% of subjects select the correct cards in this generic version of the four card problem.3 



4See Dominowski (1995) for a survey of the literature on context effects in Wason’s four card selection
problem.  See Goldstein and Weber (1995) for a survey of context effects on assorted cognitive processes.

In contrast, meaningful context can have a dramatic impact on the frequency with which subjects are able

to correctly solve this problem.  In one famous example, researchers restated the problem in terms of

legal drinking age – each card had a beverage (beer or soda) on one side and an age (16 or 22) on the

other.  Subjects were asked to verify that any individual who was sixteen was drinking soda rather than

beer.  The proportion of correct responses with this framework was about 70% (Chrostowski and Griggs,

1985).  Analogous results have been found in psychological studies of other mental processes (memory,

learning, categorizing, deductive reasoning, problem solving, and cognitive development).4 

The present paper explores the potential effects of meaningful context in a signalling game

experiment.  It has long been known that signalling games often yield a bewildering profusion of

sequential equilibria.  This has led theorists to devise numerous refinements for limiting the set of

sequential equilibria (Grossman and Perry, 1986, Cho and Kreps, 1987, Banks and Sobel, 1987, and

Mailath, Okuno-Fujiwara, and Postlewaite,1993).  All of these refinements rely on the concept of forward

induction.  Not only are players expected to use sophisticated reasoning in interpreting messages, but they

are also supposed to anticipate the reasoning which will be used by other players in interpreting messages.

Early experimental work on signalling games purported to show that behavior was consistent with

a number of these induction based refinements (see Banks, Camerer, and Porter, 1994).   However, later

experiments have demonstrated that subjects tend to follow simple, history dependent learning processes

and, with the right game structure, can be induced into violating even the simplest of equilibrium

refinements (Brandts and Holt, 1992, 1993, Cooper, Garvin and Kagel, 1997a, b).  It is noteworthy that all

of these experiments were conducted using generic contexts.  Given the psychology results on reasoning

and context, this lack of a meaningful context may partially explain why subjects seem to make such

limited use of the forward induction arguments inherent in the refinements literature.  Put simply, generic



5A high cost monopolist may wish to increase its output in order to mimic a low cost type.  A low cost
monopolist may wish to increase its output in order to separate itself from high cost types.

context may rob subjects of any intuitive basis for applying these forward induction arguments.  The work

here explores this possibility and its implications for experimental economics as a whole.

Our signalling game experiment is based on Milgrom and Roberts’ (1982) entry limit pricing

model.  In this game, a potential entrant faces an incumbent monopolist with either high or low costs. 

Critically, the entrant only wishes to enter the industry if it believes the monopolist has high costs.  While

the entrant cannot directly observe the monopolist’s costs, it does observe an output decision by the

monopolist before choosing whether or not to enter the industry.  This gives the monopolist an incentive to

strategically manipulate its output in order to change the entrants’ beliefs about its true costs.5  We refer

to such strategic behavior as “limit pricing.”

The limit pricing model provides a natural context for the game, not a context we expect students

to have direct experience with, but one which we believe can provide a meaningful framework for

thinking about the problem.  Sessions are divided between treatments which employ a generic context and

treatments in which the context is meaningful.  The generic context uses abstract terms throughout.  For

example, monopolists are referred to as “A players”and potential entrants are described as “B players.” 

Other terms are given similarly meaningless labels.  The meaningful context uses natural terms while

avoiding any value laden language.  Thus, the monopolist is referred to as the “existing firm” and the

potential entrant becomes the “other firm” deciding between entering “this” market or some “other”

market.  

We postulate two possible effects of meaningful context. On a low level, we hypothesize that

meaningful context may serve as a catalyst, speeding up the learning and adjustment process but not

necessarily changing the underlying reasoning process.  These are “weak context effects,” since neither

the main features of the adjustment process nor the equilibrium outcome play converges to are affected



by the use of meaningful context. We also hypothesize that there may exist “strong context effects,”

where meaningful context not only speeds up the learning and adjustment process, but also impacts on

subjects’ underlying reasoning processes.  The latter may alter the equilibrium adjustment process and/or

the equilibrium outcome that play converges to.  We examine data from several versions of the limit

pricing game for both weak and strong context effects.

Our results can be summarized as follows: Although meaningful context does not affect the

overall pattern of play observed in the data, there is strong support for the existence of weak context

effects.  In particular, the presence of meaningful context substantially increases the frequency of limit

pricing by high cost monopolists in early rounds.  This effect fades over time, so that meaningful context

acts as a partial substitute for experience.  Meaningful context only modestly increases the overall

frequency of strategic play for low cost monopolists.  However, significantly more subjects attempt to

limit price at least once as low cost monopolists in sessions with meaningful context.  We argue that this

may reflect a strong context effect.  The data also suggest that meaningful context can affect the

equilibrium outcome in signalling games.  One of our treatments is designed to retard the development of

limit pricing by making it difficult for potential entrants to recognize the existence of dominated strategies

for high cost monopolists.  With generic context, the amount of limit pricing by low cost monopolists is less

in this treatment (than in our standard treatment) and limit pricing typically does not occur at the efficient

separating equilibrium (the intuitive outcome).  If strong context effects exist, we might expect to see one

or both of these effects eliminated with meaningful context.  Although meaningful context does not

eliminate the decline of limit pricing in this treatment, outcomes are somewhat more consistent with the

intuitive outcome.  This last result is not strong enough to be statistically significant, but it suggests that

strong context effects may emerge in related games. 

Overall, our results have several implications for the experimental study of game theory, and for

experimental economics in general.  The use of meaningful context can matter.  Specifically, meaningful



context can speed up the natural learning processes of subjects.  Assuming that the context is carefully

designed to avoid demand induced effects, experimenters should be able to achieve cleaner convergence

and obtain sharper results with the use of meaningful context.  Further, in some signalling games the use

of meaningful context may even change the equilibrium that play converges to.  On the other hand, our

data provides no evidence that meaningful context can alter subjects’ reasoning processes sufficiently  to

be able to establish the sophisticated, forward thinking behavior that the equilibrium refinements literature

is based on.  Rather, behavior will continue to be best characterized by adaptive learning models with

boundedly rational agents.

II. The Limit Pricing Game

A. Experimental Design: The payoffs and signals employed are based on Milgrom and Roberts' (1982)

model of limit entry  pricing.  Milgrom and Roberts describe a two period game with a homogeneous good

and a linear market demand curve.  The game is played between a monopolist (M) and a potential entrant

(E).  There are two possible monopolist types, high and low cost (MH and ML).  The M's cost level is

realized according to predetermined probabilities that are common knowledge.  The game begins with M

observing its type.  In the first period of the game, M chooses a price absent any rival producers.  E sees

this price, but not M's type, and either enters or stays out in the second period.  It is assumed that if entry

occurs the two firms behave as Cournot duopolists in the second period.  If entry does not occur, M

produces its profit maximizing, uncontested monopoly quantity in the second period.  The asymmetric

information, in conjunction with the fact that it is profitable to enter against MHs, but not against MLs,

provides an incentive for limit-pricing in the first period.

In our experiment we simplify the game even further, collapsing the two-stage game into a single

stage by imposing the second stage outcomes and providing Ms with a payoff table representing the net

profit from both stages.  This change allows us to focus on the signalling aspects of the game, and has the



6Payoffs are given in the experimental currency francs.  Francs were converted to dollars at the end of the
experiment, with one franc equal to $.001.

added benefit of speeding up play in the experiment.

The “standard quantity” version of Ms’ payoffs are given in Table 1a.  Payoffs to Ms include the

profit for their first stage decision added to the present discounted value of the profit in the second stage,

where we impose the Cournot outcome following entry (IN) or the uncontested monopoly outcome

following not entering (OUT) in the second stage.  Ms’ choices, 1-7, may be thought of as output levels,

with higher output corresponding to lower prices.6  The prior probabilities of the two M types are 50%

throughout..

Three features of the standard quantity game capture the main strategic elements confronting

Ms.  First, all else being equal, Ms are always better off if Es choose OUT rather than IN.  It follows that

Ms can gain by deterring entry.  Second, reflecting their lower marginal costs, MLs generally prefer

higher output (lower prices) than MHs.  This can be seen in Ms’ actions should they ignore the effect of

their choices on E's behavior -- MLs would choose an output of 4 as opposed to 2 for MHs.  These

choices will be referred to as the Ms’ “non-strategic” maxima.  Finally, output choices 6 and 7 are

dominated strategies for MHs, but not for MLs.  At these outputs MLs can perfectly distinguish

themselves from MHs so that pure strategy separating equilibria exist.

[Insert Table 1 here]

E’s payoff table reflects the second period returns for staying out or entering and playing a

Cournot duopoly game.  Two different payoff tables, Tables 1b and 1c, are used for Es in the standard

quantity game.  These represent high cost (EH) and low cost (EL) entrants respectively.  Only one of

these two tables is in effect at any given time.  In both tables it always pays to play IN when M is known

to be an MH type and to play OUT against an ML type.  However, given the prior probability of the

different M types, the expected value of OUT is greater than IN in Table 1b (250 vs. 187) and the



7All of the equilibria to be described are sequential (Kreps and Wilson, 1982).

expected value of IN is greater than OUT in Table 1c (350 vs. 250).  

In some sessions Ms’ choices were characterized in terms of prices rather than quantities.

Payoffs in the standard price game are a linear transformation of payoffs in the standard quantity game,

leaving equilibrium predictions unaffected. Statistical analysis finds no significant differences between

play in the price and quantity games, other things equal.  As such we do not distinguish between the two

treatments, referring to both as the “standard game,” with all discussion framed in terms of the quantity

game.

A more substantial variation in the standard quantity game involved changing  MHs’ payoffs for

output levels 6 and 7 from negative to positive numbers, as shown in italics on Table 1a.  All sessions with

this altered payoff table used ELs (Table 1c).  Even with this change, play of 6 or 7 is still a dominated

strategy for MHs, and equilibrium predictions are unaffected.  Rather, this change in payoffs is designed

to make the detection of dominated strategies more difficult for subjects.  Following Cooper et al (1997a),

we refer to this as the  “zero anticipation” treatment.

B. Equilibrium Predictions: For the standard game with EHs, there exist multiple pure strategy pooling,

as well as separating, equilibria.7  Pure strategy pooling equilibria occur at output levels 1-5. For example,

consider a pooling equilibrium at output 3. Given the prior probabilities over M’s type, E’s expected value

of OUT is greater than IN so that pooling deters entry. Out-of-equilibrium beliefs (OEBs) which support

this equilibrium are that any deviation involves an MH type with sufficiently high probability to induce

entry.  Given these OEBs both MHs and MLs achieve higher profits at 3 rather than deviating to their

non-strategic maxima.  Similar OEBs support the other pooling equilibria: any deviation from the proposed

equilibrium represents an MH type with sufficiently high probability to induce entry.  Pooling equilibria at

output levels 3-5 involve strategic behavior (limit-pricing) as MHs produce a larger quantity (and charge a



lower price) than would occur under full information. 

Two pure strategy separating equilibria exist for the standard game with EHs .  In both of these

MHs always choose 2 and are always entered on; MLs either always choose 6 or always choose 7 and

never incur entry.  With MLs choosing 6 or 7, it does not pay for MHs to imitate them as they earn

greater profits by choosing their non-strategic maxima (choice of 2 dominates 6 and 7 for MHs).  Once

again the OEBs supporting these equilibria are that any deviation from the proposed equilibrium involves

an MH  type with sufficiently high probability to induce entry, as this deters MLs from choosing lower

output levels. These separating equilibria involve strategic behavior (limit pricing) by MLs as they produce

a larger quantity (and charge a lower price) than under full information conditions.

In the standard payoff treatment with ELs no pure strategy pooling equilibria exist. With both Ms

choosing the same output level, the expected value of IN is greater than OUT in Table 1c.  This destroys

any pure strategy pooling equilibrium.  The two pure strategy separating equilibria still exist with ELs. 

The standard game with ELs also has several partial pooling (mixed strategy) equilibria.  One of these is

especially noteworthy, as it arises in a significant number of simulations.  In this equilibrium, MLs always

select 5 while MHs mix between 2 (probability .80) and 5 (probability .20).  Es always enter on output

levels other than 5, and enter on 5 with probability .11.  Finally, the equilibrium set for the zero anticipation

treatment is identical to that for the standard game with ELs.

As is typical of signalling games, the limit pricing game suffers from an overabundance of

equilibria.  To obtain sharper predictions, we apply the most common of the equilibrium refinements for

signalling games, the intuitive criterion of Cho and Kreps.  This reduces the equilibrium set for the

standard game with EHs to pooling at 4 or 5, or separating with MLs choosing 6.  All three of these

outcomes involve limit pricing by one type.  With ELs, only the separating equilibrium in which MLs

choose 6 satisfies the intuitive criterion. 

Previous experiments (Brandts and Holt, 1992 and 1993, and Cooper, Garvin, and Kagel, 1997a)



find that equilibrium refinements do a poor job of predicting subjects’ behavior in signalling games.  As an

alternative, Cooper, Garvin, and Kagel (1997b) propose a simple adaptive learning model which captures

the major features in the evolution of subjects’ behavior.  This learning model is closely related to fictitious

play, modified to allow for play versus a population and Es having some ability to recognize dominated

strategies.  For the standard game with EHs, the model predicts that Ms’ choices will initially cluster at

their non-strategic maxima (2 for MHs and 4 for MLs).  In response, the entry rate for 2 will rise while

the entry rate for 4 falls.  This increase in the entry rate differential induces MHs to limit price by

switching to play of 4.  In the long run, play converges to the pooling equilibrium at 4.  The early stages of

play in simulations of the learning model are identical with ELs – initial play of the non-strategic maxima

leads to a rise in entry rate differentials which in turn induces MHs to attempt pooling at 4.  However,

pooling at 4 is not an equilibrium in games with ELs, which leads to an increase in the entry rate on 4,

thereby promoting limit pricing by MLs.  The exact nature of limit pricing depends on the ability of Es to

recognize the existence of dominated strategies.  If most Es recognize that play of 6 or 7 must come from

MLs, the entry rate on these strategies will be very low.  These low entry rates encourage MLs to limit

price by choosing 6.  Eventually, play converges to the intuitive outcome (the efficient separating

equilibrium with MLs playing 6). On the other hand, if Es have difficulty recognizing the dominated

strategies, as we would expect with the zero anticipation treatment, entry rates on 6 and 7 will be

relatively high. This has two effects: (1) the emergence of limit pricing by MLs is slowed down relative to

the standard treatments and (2) limit pricing occurs primarily at output level 5 rather than 6.  Confirmation

of these two predictions have been reported in Cooper et al (1997a) within a generic context.

III. Experimental Procedures

Each experimental session employed between 12 and 16 subjects who were randomly assigned to

computer terminals.  A common set of instructions were read out loud, with each subject having a written



8One session had only 24 games since it was conducted in an undergraduate economics class during class
time, which limited the number of games. We believe that switching roles within a session speeds up learning,
although we have never tested this formally.

9Results from a number of the generic sessions have been reported previously in Cooper et al (1997a, b).

copy. Subjects had copies of both Ms’ and Es’ payoff tables and were required to fill out short

questionnaires to insure their ability to read them.  After reading the instructions, questions were

answered out loud and play began with a single practice round followed by more questions. 

Before each play of the game the computer randomly determined each M’s type.  After seeing

their types, Ms chose a number between 1 and 7.  Each M's choice was sent to the E they were paired

with for that play of the game, after which the Es decided between IN and OUT.  Following each play of

the game subjects learned the outcome of their own choices and the type of M player they were paired

with (but not the other player’s identity).  In addition, the lower left-hand portion of each subject’s screen

displayed the results of all pairings (Ms' choices, Es' responses, and Ms' type) with subject identification

numbers suppressed.  The format in which this information was presented is a treatment variable which is

discussed below.  Subjects switched roles after every 6 games, with M players becoming E players and

vice versa.  Within each set of 6 games each M was paired with a different E in each round.  Sessions

typically had 36  games with the number of games announced in advance.8

Subjects were recruited through announcements in undergraduate classes and posters placed

throughout the University of Pittsburgh and Carnegie Mellon University.  The posters resulted in recruiting

a broad cross section of undergraduate and graduate students from both campuses.  Sessions lasted a

little under two hours.  Subjects were paid $5 for showing up on time. Earnings averaged $17.50 per

subject.

Table 2 summarizes the experimental treatments.  The treatment variables of primary interest are

what type of instructions were used (generic vs. meaningful context) and how feedback was presented to

subjects after each round (black and white and unsorted or color coded and sorted by output level).9



[Insert Table 2 here]

In generic context (GC) sessions, neutral terms were used throughout.  For example, Ms were

called “A players” (type A1 for MH, type A2 for ML) and Es were called “B players.”  The instructions

provided subjects with no guidance as to what sort of situation was being modeled.  In meaningful context

(MC) sessions the language used was more natural, with Ms referred to as “existing firms” and Es

referred to as “other firms” who were deciding between entry into “this industry or some other industry.” 

The two M types were specifically described as being “high cost” and “low cost.”  We were careful to

avoid pejorative terms which could elicit strong meaning responses – for example, we did not refer to Ms

are “monopolists”and purposely characterized Es choices as a decision to enter one industry or another

rather than simply choosing between in and out.   The instructions provided the subjects with a concrete

setting for the game, competition between an existing firm and a potential entrant.  While we would be

extremely surprised if any of our subjects had direct experience with this context, it should provide a

meaningful framework for organizing their thoughts about the structure of the game.  

We intentionally avoided the use of a context which subjects would be likely to have direct

experience with.  One possible role of meaningful context is to facilitate transfer of experience from

other, related games (see Cooper, Kagel, Lo, and Gu, 1999).  We wanted to eliminate this possibility,

focusing on how meaningful context impacts the reasoning processes of subjects facing a game for the

first time.

In designing these treatments our original goal was to see if we could somehow speed up the

emergence of limit pricing.  As such, in addition to adding meaningful context we also changed the way

information was presented to subjects at the end of each round.  Recall that at the end of each round

subjects are shown the outcomes for all pairings.  In the original generic sessions, the pairings are

presented in a random order in a black and white format.  Results reported by Miller and Plott (1985)

suggested that performance of the intuitive criterion could be improved by presenting the data in a more



10Within each cycle subjects have played 6 times as Es and 6 times as Ms. In reporting data by cycles we
conceal changes over time within a cycle for the sake of averaging over the population holding levels of experience
approximately equal.  A more fine grained analysis would confound changes over time within a cycle with changes
resulting from different individuals playing different roles.  The statistical analysis that follows uses individual
subject data.

structured fashion.  We therefore altered the presentation format for the MC sessions.  Pairings with MH

types were highlighted in red, while pairings with ML types were highlighted in green, with the feedback

ordered by output levels.  These changes were intended to make it easier to identify, for example, that

MHs were generally associated with low output levels.  To distinguish which of our changes - meaningful

context or information feedback - were responsible for the changes in behavior observed, we ran several

generic sessions with color coded and sorted feedback.  All sessions in this control treatment employed

standard games with ELs. In what follows these will be referred to as the “feedback” sessions. 

IV.  Experimental Results

A. An Overview of the Data:  Figures 1-6 depict the development of play over time for each of the major

treatments.  Play is pooled into twelve period cycles (periods 1 - 12 for cycle 1, periods 13 - 24 for cycle

2, and periods 25 - 36 for cycle 3).10  The figures show the percentage of play for each M type for each

strategy, with entry rates listed below the strategy.  Data is pooled across sessions of the same treatment.

Data for the feedback sessions will be discussed separately.

[Insert Figures 1-6 here]

The general pattern of play is the same across all treatments regardless of context:  In standard

games with both EHs and ELs, Ms’ play is initially concentrated around their respective non-strategic

maxima.  From the very beginning this leads to much higher entry rates for outputs of 3 or less than for

higher outputs.  Responding to this entry rate differential, MHs start to mimic ML’s, so that by the third

cycle, 4 has become the modal outcome for MHs for all treatments.

Comparing EL sessions with EH sessions, entry rates are substantially higher at all output levels



11In contrast, the average entry rate differential in games with EHs does not support MLs’ limit pricing in
the third cycle of play.

and are increasing over time for output level 4, rather than decreasing.  As a result, in later cycles of play

it becomes attractive for MLs to separate to higher outputs.  (An entry rate differential of 13% is required

to make moving from 4 to 6 optimal for MLs.  By the third cycle, this differential is over 20%, on average,

in standard games with ELs.11)  While 4 remains the modal outcome for MLs in the third cycle of

standard games with ELs, around 30% of ML play involves limit pricing (output levels 5, 6 or 7).

Recall that the zero anticipation payoff tables are designed to make it more difficult for Es to

recognize that 6 and 7 are dominated strategies for MHs.  This treatment is expected to yield lower levels

of limit pricing than observed in the standard treatment, and to shift limit pricing towards 5 rather than 6 or

7.  These predictions are borne out by the data.  Only 13% of MLs’ play in the third cycle involves limit

pricing (12% in GC sessions and 15% in MC sessions), less than half the rate observed under the

standard treatment. Moreover, the probability of playing 5 conditional on limit pricing in the third cycle is

higher in the zero anticipation treatment (61%) than in the standard treatment (46%), with this difference

coming entirely from the GC sessions..

The figures show that meaningful context has no impact on the general pattern of  play.  Ms’

initial choices are concentrated at their respective non-strategic maxima both with and without MC.  In

both cases limit pricing only gradually emerges, largely in response to Es behavior.  The overall pattern of

play in both treatments is consistent with the Cooper et al. learning model (as well as other learning

models).  This is not to say that the MC treatment has no effect on behavior.  To the contrary it does,

most importantly in speeding up the development of  MHs’ limit pricing and, to a lesser extent, facilitating

the development of MLs’ limit pricing as well.  In what follows we document these effects.

B. Games with High Cost Entrants:  Table 3 summarizes choice data from standard games with EHs.

The top half of this table reports the proportion of strategic play by type.  For both types of M, strategic



12More specifically, coded as 1 for output level 3 or greater for MHs and output level 5 or greater for MLs. 

13For example, suppose we are considering an ML player in period 25.  We take the difference between the
observed entry rate for periods 1 - 24 following outputs 3 and 4 (non-strategic play for an ML) and the observed
entry rate for periods 1 - 24 following outputs 5, 6, and 7 (strategic play for an ML).  Note that these probabilities are
conditioned on the output level selected, not the type of M which selects the output.  These should be the
probabilities which are relevant to an M.

play is defined as choice of an output level greater than their non-strategic maxima (output of 3 or greater

for MHs and 5 or greater for MLs).  The bottom half of the table gives entry rates at various output

levels.

[Insert Table 3 here]

From the aggregate data in Table 3, we observe that both M types play more strategically in MC

sessions than in GC sessions.  For MHs, this effect is strongest in the first cycle of play (29% strategic

play with GC vs. 47% with MC), and fades over time.  For MLs the effect grows over time, peaking in

the third cycle (7% strategic play with GC vs. 19% with MC).  Thus, the data in Table 3 suggest that

meaningful context accelerates the emergence of limit pricing.

Table 4 provides formal statistical tests for these context effects.  All of the regressions reported

in this table are probits.  To control for individual effects, all of the probits include a random effect term. 

This term is always statistically significant at the 1% level, but is suppressed in the table since it is of no

economic interest.  The dependent variable in the regressions is the occurrence of limit pricing, coded 1 if

limit pricing occurred and 0 otherwise.12  The first set of independent variables control for trends over

time. Cycle 2 is a dummy for observations in the second cycle and Cycle 3 is a dummy for observations in

the third cycle.  The next set of variables control for context effects over time.  The variable MC i is a

dummy for meaningful context interacted with a dummy for cycle i.  The final independent variable,

Delta23, controls for the behavior of Es.  For each M player in each period  we calculate the observed

entry rate differential between playing non-strategically and playing strategically for his/her type.13  This

entry rate differential proxies for the unobservable beliefs of Ms.  We interact the entry rate differential



14 The three MC dummies are not jointly significant at standard levels (÷2 = 4.52, 3 d.f). All tests of joint
significance reported in this paper are log likelihood ratio tests.

with a dummy which equals 0 for cycle 1 and 1 for cycles 2 and 3.  This interaction is used because the

entry rate in unstable in early periods.  Moreover, given that subjects enter the experiment with some prior

beliefs and no experience, the entry rate differential probably serves as a poor proxy for beliefs in early

periods.  Table 4 reports parameter estimates for a variety of specifications with standard errors given in

parentheses.  Log likelihoods for each model are reported at the bottom of the table, and statistical

significance for individual parameters is indicated in terms of a 2-tailed z-test.

[Insert Table 4 here]

The probit analysis confirms the impressions based on the raw data in Table 3.  First, consider the

probit analysis on MH data shown in the left panel of Table 4.  Model 1 confirms that there is significant

growth in levels of strategic play over time as indicated by the large, positive, and statistically significant

coefficients for the cycle dummies.  Given that this is the single most obvious feature of the data, it is

reassuring to know that the probit analysis easily detects it. Model 2 shows that MHs  respond strongly to

differences in the incentives to limit price; this follows from the large, positive, and statistically significant

coefficient for Delta23.  This result is consistent with the predictions of the Cooper et al. learning model

(as well as other learning models) – limit pricing develops primarily in response to high entry rate

differentials.  Comparing Model 3 with Model 2, the MC dummy has a statistically significant effect in the

first cycle (5% level), with the effect trailing off noticeably over the second and third cycles of play.14 

Thus, MC accelerates the emergence of limit pricing by MHs, but does not affect the level of limit pricing

in the long run.

Turning to the probit analysis for MLs, shown in the right panel of Table 4, Model 1 once again

shows a significant growth in limit pricing over time.  Model 2 finds that the level of limit pricing only

depends weakly on the entry rate differential, failing to achieve statistical significance at even the 10%



15The context dummies miss joint significance at even the 10% level (÷2 = 4.80, 3 d.f.). The differing
significance levels for Delta23 in Model 2 and Model 3 suggests correlation between Es’ behavior and the presence
of meaningful context.  Indeed, in Table 3 we see that the entry rate in the third cycle following play of 5, 6, or 7 is
about 13% lower in MC than in GC sessions.  Formal tests do not find this difference to be significant, partially due
to the small number of observations of strategic play by MLs.

16There was little difference between MH behavior in these two experienced subject sessions.

level.  This is not surprising.  Since there are relatively few observations of strategic play by MLs,

Delta23 will necessarily be a weaker proxy for MLs’ beliefs than for MHs’ beliefs.  With the inclusion of

MC dummies in Model 3, the effect of Delta23 vanishes entirely.  The only significant context effect

occurs in the third cycle (10% level), with MC boosting levels of strategic play for MLs.15

We expect the occurrence of strategic play by MLs in EH sessions to be a transient phenomenon,

since the incentives are typically strongly in favor of a pooling equilibrium at 4.  To confirm this prediction,

we brought back randomly selected subjects for a second session, one with the GC treatment and one

with the MC treatment.  Subjects enrolled in the same treatment as they had participated in originally. 

Consistent with our expectations, there was virtually no strategic play by MLs in the experienced subject

sessions.  For the GC session, no example of strategic play by an ML was observed.  In the MC session,

only six observations of strategic play by an ML occurred (4.2% of all such observations).Thus, although

meaningful context has a small impact on MLs in the experienced subject sessions, there is no evidence

that it pushes play towards a separating equilibrium.  Although the MC treatment gets MLs to consider

limit pricing as a potential safe haven, the long term incentives in favor of non-strategic play are far to

strong to induce MLs to deviate from the pooling equilibrium at 4.16

C. Game with Low Cost Entrants:  Table 5 summarizes choice data from standard games with ELs. 

Note that this table includes data for the feedback treatment (generic instructions but with color coded

and sorted feedback).  Table 6 provides equivalent information for the zero anticipation treatment.

[Insert Tables 5 and 6 here]



Looking at the standard games, there is considerably more limit pricing by MHs in the MC

treatment for the first cycle of play (27% for GC versus 38% for MC).  However, these differences

disappear over time, almost an exact replication of the results reported in the previous section for EHs. 

There is also slightly more limit pricing by MLs in the MC treatment than in the GC treatment.  The raw

data for the feedback treatment suggests that it is not the color coding and sorting of feedback information

that is responsible for the MC results since (1) except for cycle 3, the frequency of limit pricing for the

feedback treatment is uniformly less than in the MC treatment and (2) the frequency of limit pricing in the

feedback treatment is just as likely to be below the frequency in the GC treatment as above it.  

The effects of MC in the zero anticipation treatment largely match the results in standard games. 

We observe more limit pricing by MHs in cycle 1 for games with MC (33% vs. 25%) and uniformly more

limit pricing for MLs in games with MC (14% vs. 10% averaged over all three cycles).  However, as

anticipated, there is a uniformly lower frequency of limit pricing by MLs here compared to the standard

games, regardless of the context.

The probit regressions in Table 7 compare GC with MC.  Data from the standard game and the

zero anticipation game are pooled.  The models are  identical to those employed in Table 4 except for the

inclusion of a new set of dummies for the zero anticipation treatment (ZA  i = 1 for zero anticipation

games in cycle i; = 0 otherwise).  For MHs (left panel of Table 7), Model 1 shows the expected growth in

strategic play over time.  Model 2 confirms that MHs respond strongly to historic entry rate differentials

(the Delta23 variable).  For Model 3 MC 1 is positive and significant at the 1% level. Although neither

MC 2 nor MC 3 are significant at even the 10% level, the signs of both are positive, and  jointly, the three

MC dummies are significant at the 10% level (÷2 = 6.42, 3 d.f.). In contrast, none of the ZA dummies is

individually significant in model 3, nor are they jointly significant.  This is as anticipated, since the zero

anticipation treatment is designed to only affect outputs 6 and 7, choices that are basically irrelevant for

MHs. 



[Insert Table 7 here]

The right side of Table 7 provides probits for MLs.  Model 1 shows the increase in strategic play

over time that is characteristic of the raw data.  The Delta23 variable has the expected sign in model 2. In

model 3, the three ZA dummies are all negative and jointly significant at the 10% level (÷2 = 6.86, d.f. =

3),  with ZA 3 significant at the 5% level and ZA 2 significant at the 10% level. Thus, as expected, the

zero anticipation treatment significantly inhibits limit pricing by MLs.  The signs of the MC dummies are

all positive in model 3, indicating that meaningful context promotes strategic play by MLs.  But the impact

is not as strong as the ZA treatment itself, as only MC 1 is significant at the 10% level, and jointly the

three MC parameters aren’t significant at standard levels (÷2 = 2.62, 3 d.f.). 

Table 8 presents probits designed to distinguish the effects of meaningful context from the sorting

and color coding of feedback that accompanied it.  Data are pooled from all standard games with ELs,

including the three feedback sessions.  The models are similar to those employed in Tables 4 and 7 but

include dummy variables for the feedback treatment (Feed i = 1 for the feedback treatment in cycle i, = 0

otherwise).  For MHs (left panel of Table 8), none of the three feedback dummies are individually

significant at standard levels, nor are the three dummies jointly significant at standard levels (÷2 = 4.50, 3

d.f.).  However, the MC i dummies in Model 2 are all positive with MC 1 significant at the 5% level and

MC 2 significant at the 10% level,  consistent with the results reported in Table 7.  For MLs (right panel

of Table 8), the Feed 1 dummy is negative in sign and significant at the 10% level, indicating that color

coding and sorting of feedback hindered the development of strategic play.  This seems inherently

implausible and more than likely reflects either a statistical fluke or a simple reduction in random errors

with clearer feedback.  The three feedback dummies are not jointly significant at the 10% level (÷2 =

6.12, 3 d.f.).  Further, as in Table 7, the three MC dummies are all positive, but have less explanatory

power for MLs compared to MHs. 

[Insert Table 8 here]



17By way of contrast 84%of all subjects play strategically at least once as MHs.  We concentrate on
behavior of MLs, since almost all subjects limit price at lease once as MHs .

In short, the results from Table 8 provide no evidence that color coding and sorting of feedback,

by itself, systematically increases the level of strategic play compared to the generic sessions. Although

this does not preclude some sort of  strong interaction effect between color coding and sorting of

feedback and meaningful context that is not identified through our experimental treatments, it definitely

rules out color coding and sorting of feedback alone as being alone responsible for the increased levels of

strategic play associated with the MC treatment.

Overall, the probit analysis of sessions with ELs matches the analysis with EHs.  We find

consistent effects from the MC treatment.  These effects are largely confined to early periods for MHs,

with little impact of meaningful context for MLs.  Further, these effects cannot be attributed to the use of

color coding and sorting of feedback employed in the MC treatment.

D.  Strong Context Effects: All of the evidence we have analyzed thus far is consistent with the

presence of weak context effects (meaningful context speeds up the adjustment process but does not

fundamentally change the underlying reasoning).  We also find some suggestion of strong context effects

in the data (meaningful context fundamentally changes the reasoning process), although this evidence is

far from conclusive.

[Insert Table 9 here]

Although the MC treatment does not have a strong effect on the frequency with which MLs limit

price, it has a strong impact on the likelihood that MLs will try and limit price at least once.  Table 9

breaks down the probability of an ML limit pricing at least once by treatment.  Excluding the feedback

sessions, only 55% of all subjects try to limit price even once as MLs.17  However, in GC sessions the

rate is 45% compared to 61% in MC sessions.  Computing Z-statistics, these differences are significant at

the 8% level (Z = 1.79, two-tailed test) for standard games with EHs and at the 5% level (Z = 1.94, two-



18The probability of limit pricing at least once as an ML in the feedback sessions is not significantly
different from the likelihood for GC sessions.  Inclusion of this data in our analysis would have somewhat
strengthened our conclusions.

tailed test) for standard games with ELs.  Pooling the data for sessions with ELs and EHs the differences

are highly significant (Z = 2.83, p < .01, two-tailed test).18 

To the extent that an ML trying to limit price at least once involves a fundamental change in the

reasoning process, the data in Table 9 provide evidence of strong context effects.  It is clear from the

structure of this game that trying to limit price as an ML is fundamentally different from trying to limit

price as an MH. This follows from two observations.  First, MHs immediately confront strong incentives

to limit price, while MLs have weaker incentives which only gradually develop over time.  For example,

consider the first cycle in the standard game with ELs.  For both MHs and MLs, a 13% entry rate

differential between playing non-strategically and limit pricing is needed to induce strategic play.  For

MHs the observed entry rate differential is 29%, but for MLs the observed entry rate differential is only

11%. Thus, MLs receive less obvious cues to behave strategically than MHs.  Second, when MHs limit

price, they imitate, using strategies which are already being commonly used by MLs.  When MLs limit

price, they must innovate, using strategies which are largely unemployed.  Therefore, the MHs have

strong evidence that limit pricing will reduce the risk of entry while MLs do not, and MHs have the

advantage of being able to imitate rather than having to  innovate.  All of this suggests that the MC

treatment is getting subjects playing as MLs to think about an approach to the game which is less than

obvious.

Additional evidence for strong context effects can be found from the zero anticipation treatment.

As noted previously, this treatment retards the development of limit pricing and shifts limit pricing away

from the intuitive outcome.  This second effect, shifting limit pricing away from the intuitive outcome, is

stronger in the GC treatment: Limit pricing occurred almost entirely at 5 in the GC treatment, but was

evenly split between 5 and 6 in the MC treatment.



Further, these effects tend to persist as evidenced from experienced subject sessions. Bringing

subjects back from the GC sessions and enrolling them in the same treatment, in the third cycle 32% of

MLs’ play involved limit pricing. However, there was not a single play of the intuitive outcome!   In

contrast, experienced subjects under the MC treatment had both more limit pricing (42% versus 32%) and

substantially more limit pricing at the intuitive outcome (32% versus 0%) in the third cycle of experienced

subject play.

These results are consistent with the existence of strong context effects.  Use of the intuitive

outcome implies a fairly sophisticated chain of reasoning.  Subjects not only need to realize that there are

dominated strategies which neither they nor others will use, they also need to anticipate that other subjects

will have the same realization.  More concretely, subjects playing the intuitive outcome must anticipate

that others will interpret a play of 6 as coming from an ML, since this is a dominated strategy for MHs. 

To the extent that increased play of the intuitive outcome in the zero anticipation sessions with MC

reflects subjects having worked through this logic, it appears that meaningful context stimulates more

sophisticated reasoning.

It must be stressed that this last result is only suggestive.  We are talking about subtle effects with

a relatively small amount of data.  Even if the observed shift from limit pricing at 5 to limit pricing at 6

held up with a large sample, this would represent a second order effect.  Even with meaningful context,

the dominant features of the zero anticipation treatment remain how little limit pricing occurs and how

little play of the intuitive outcome occurs.  Even in the third cycle of the experienced subject session with

MC, less than half of ML play involves limit pricing and less than half of all limit pricing occurs at the

intuitive outcome.  As a point of contrast, Cooper et al (1997b) report data from an experienced subject

GC session for the standard game with ELs.  In the third cycle, 85% of play by MLs involved limit pricing

and virtually all of it occurred at the intuitive outcome of 6 (83% of total play by MLs, 97% of limit

pricing).  Thus, the effect of making payoffs positive for the dominant strategies overwhelms any effects



19In the first cycle of play, the probability of an M being a MH type conditional on choice of 3 or 4 is 25.5%
in GC sessions as opposed to 32.3% in MC sessions.

due to the change in the contextual framework of the experiment.

E: Es’ Behavior: Our analysis up to this point has concentrated on the behavior of Ms.  We have also

performed a complete analysis of Es’ behavior.  The details of this analysis are available from the authors

upon request.  In brief, statistical analysis of Es’ behavior finds no context effects which cannot be

explained as reactions to Ms’ behavior. For example, consider Es’ behavior in standard games with ELs. 

Looking at the lower part of Table 5, it appears that the MC treatment induces more mistakes by Es –

they enter less frequently following non-strategic play by MHs (output 1 - 2) and more frequently

following non-strategic play by MLs (output 3 - 4).  However, this increase in mistakes is largely

explained by the increase in limit pricing by MHs in the MC sessions, which gives Es greater incentive to

enter following outputs 3 - 4.19

The minimal impact of the MC treatment on Es’ behavior is consistent with our observation that

meaningful context primarily affects play by accelerating subjects’ learning processes.  Compared to Ms,

Es simply don’t have much to learn.  Following non-strategic play by an MH (outputs 1 - 2) or by an ML

(outputs 3 - 4), Es are  mainly doing the right thing even in the first cycle of play.  The only place where

accelerated learning might help an E is following strategic play by an ML (outputs 5 - 7).  However, play

of these outcomes is relatively rare, so that any such effects are unlikely to be observed in the data.

V.  Conclusions and Discussion

The cognitive psychology literature finds that the presence of meaningful context can

fundamentally affect the ability of experimental subjects to solve reasoning problems.  If similar effects

exist for the sophisticated reasoning problems inherent in game theory, the standard methodology of using

generic context for game theoretic experiments is seriously flawed.



We report the results of a series of experiments designed to test for the effects of meaningful

context in a signalling game experiment.  We hypothesize that there may exist either weak context

effects, speeding up subjects’ reasoning processes but not fundamentally changing them, or strong context

effect which fundamentally change subjects’ reasoning processes.

The data indicate that general patterns of play are not fundamentally altered by the use of

meaningful context: (1) A simple adaptive learning model better characterizes behavior than equilibrium

theory regardless of the context employed, (2) Although meaningful context gets substantially more low

cost monopolists to initially try a separating strategy in games where both pure strategy pooling and

separating equilibria exit, it is not enough to counteract the strong incentives for a pooling as a result of

entrants behavior, and (3) Although meaningful context promotes play of the intuitive outcome when we

have purposely made it more difficult to identify (the zero anticipation treatment), this result is of second

order importance to the fact that limit pricing is severely retarded regardless of context in this treatment. 

These results will, no doubt, give comfort to those economists who believe that deep structure is all  that

matters.

However, there is compelling evidence for the existence of weak context effects, primarily in

terms of speeding up the emergence of limit pricing by high cost monopolists.  Evidence for strong context

effects exists as well, but is far from conclusive. We believe that context is an important and

underappreciated role in the careful design and interpretation of economic experiments.  Because of

weak context effects, the use of meaningful context is likely to speed up convergence to equilibrium in

economic experiments.  This makes it far more likely that sharp results will be observed. It also implies

that long run outcomes in experiments with meaningful context are more representative of what we would

expect to see in field settings with their rich and meaningful context.  

Finally, there are many cases where the underlying incentives favoring one equilibrium or another

are not so strong as in the games explored here. Thus,  if strong context effects exist, and we believe that



they do,  in games with weaker incentives favoring one equilibrium over another, we should be able to

design an experiment in which switching between generic and meaningful context will alter the equilibrium

outcome with no change in the underlying structure of the game.  For example, one should be able to

design an experiment in which switching between meaningful and generic context alone will determine 

whether or not Cho-Kreps intuitive criteria will or will not be satisfied.  This is an exercise that remains to

be conducted.
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Table 1a:
Monopolist Payoffs

High Cost Monopolist Low Cost Monopolist

Monopolist
Action

Entrant Response Monopolist
Action

Entrant Response

IN OUT IN OUT

1 150 426 1 250 542

2 168 444 2 276 568

3 150 426 3 330 606

4 132 408 4 352 628

5 56 182 5 334 610

6 -188
(38)

-38
(162)

6 316 592

7 -292
(20)

-126
(144)

7 213 486

Note: Italicized numbers represent changes in payoffs made for the ZA treatment.

Table 1b:
Entrant Payoffs, High Cost Entrants

Entrant’s
Strategy

Monopolist’s Type

High Cost Low Cost

IN 300 74

OUT 250 250

Table 1c:
Entrant Payoffs, Low Cost Entrants

Entrant’s
Strategy

Monopolist’s Type

High Cost Low Cost

IN 500 200

OUT 250 250





Table 2

Summary of Treatments

Generic Context
Black and White,

Unsorted Feedback

Generic Context
Colored, Sorted

Feedback

Meaningful Context
Colored, Sorted

Feedback

Standard Payoffs High
Cost Entrants 2 sessions No sessions 6 sessions

Standard Payoffs Low
Cost Entrants 4 sessions* 3 sessions 6 sessions

ZA Treatment
Low Cost Entrants 2 sessions No sessions 2 sessions

* One session had only 24 periods.



Table 3

Summary of Results
Standard Game with High Cost Entrants

Proportion of Strategic Play by Ms

MHs MLs

GC MC GC MC

Cycle 1 .289 .465 .122 .116

Cycle 2 .467 .518 .114 .178

Cycle 3 .565 .601 .068 .188

Entry Rate by Es

GC MC

Output
1 - 2

Output
3 - 4

Output
5 - 7

Output
1 - 2

Output
3 - 4

Output
5 - 7

Cycle 1 .551 .163 .077 .515 .234 .129

Cycle 2 .633 .158 .182 .543 .178 .070

Cycle 3 .600 .097 .167 .650 .171 .043



Table 4

The Effect of Meaningful Context on Frequency of Strategic Play
Standard Games with High Cost Entrants

MH Probits ML Probits

107 subjects, 963 observations 114 subjects, 1025 observations

Variable Model 1 Model 2 Model 3 Variable Model 1 Model 2 Model 3

Constant -.161
(.111)

-.195+

(.101)
-.566**
(.219)

Constant -1.961**
(.196)

-1.943**
(.200)

-1.736**
(.473)

Cycle 2 .325**
(.121)

-.777**
(.273)

-.387
(.362)

Cycle 2 .344*
(.161)

.071
(.226)

.077
(.621)

Cycle 3 .790**
(.112)

-.460+

(.273)
.117

(.367)
Cycle 3 .297*

(.131)
.094

(.198)
-.501
(.355)

MC 1 --- --- .560*
(.255)

MC 1 --- --- -.258
(.497)

MC 2 --- --- .251
(.306)

MC 2 --- --- .116
(.404)

MC 3 --- --- .016
(.305)

MC 3 --- --- .781+

(.461)

Delta23 --- 3.177**
(.622)

2.755**
(.646)

Delta23 --- 2.360
(1.498)

-.102
(1.785)

Log
Likelihood

-458.13 -450.32 -448.06 Log
Likelihood

-291.35 -290.43 288.03

+ Significantly different from 0 at the 10% level
* Significantly different from 0 at the 5% level
** Significantly different from 0 at the 1% level



Table 5

Summary of Results
Standard Game with Low Cost Entrants

Proportion of Strategic Play by Ms

MHs MLs

GC
No Sorting

MC
Sorting

GC
Sorting

GC
No Sorting

MC
Sorting

GC
Sorting

Cycle 1 .276 .404 .354 .160 .175 .069

Cycle 2 .497 .513 .424 .209 .240 .153

Cycle 3 .539 .527 .590 .274 .310 .278

Entry Rate by Es

GC, No Sorting MC, Sorting

Output
1 - 2

Output
3 - 4

Output
5 - 7

Output
1 - 2

Output
3 - 4

Output
5 - 7

Cycle 1 .882 .527 .517 .798 .573 .400

Cycle 2 .935 .512 .410 .907 .605 .429

Cycle 3 .927 .577 .371 .880 .679 .402

GC, Sorting

Output
1 - 2

Output
3 - 4

Output
5 - 7

Cycle 1 .696 .337 .273

Cycle 2 .864 .386 .208

Cycle 3 .906 .577 .238



Table 6

Summary of Results
ZA Treatment with Low Cost Entrants

Proportion of Strategic Play by Ms

MHs MLs

GC
No Sorting

MC
Sorting

GC
No Sorting

MC
Sorting

Cycle 1 .247 .333 .072 .126

Cycle 2 .635 .454 .096 .141

Cycle 3 .482 .457 .121 .148

Entry Rate by Es

GC, No Sorting MC, Sorting

Output
1 - 2

Output
3 - 4

Output
5 - 7

Output
1 - 2

Output
3 - 4

Output
5 - 7

Cycle 1 .831 .479 .429 .662 .529 .250

Cycle 2 .824 .608 .444 .848 .561 .357

Cycle 3 .940 .741 .500 .849 .652 .467



Table 7

The Effect of Meaningful Context on Frequency of Strategic Play
Standard Games with Low Cost Entrants and ZA Treatment

MH Probits ML Probits

196 subjects, 1715 observations 196 subjects, 1717 observations

Variable Model 1 Model 2 Model 3 Variable Model 1 Model 2 Model 3

Constant -.439**
(.090)

-.498**
(.092)

-.710**
(.137)

Constant -1.494**
(.115)

-1.472**
(.114)

-1.672**
(.168)

Cycle 2 .486**
(.077)

-.135
(.183)

.059
(.319)

Cycle 2 .323**
(.099)

.251*
(.101)

.418**
(.146)

Cycle 3 .555**
(.073)

-.052
(.170)

.179
(.324)

Cycle 3 .626**
(.078)

.515**
(.088)

.567**
(.125)

MC 1 --- --- .493**
(.166)

MC 1 --- --- .324+

(.192)

MC 2 --- --- .256
(.205)

MC 2 --- --- .056
(.207)

MC 3 --- --- .208
(.200)

MC 3 --- --- .217
(.195)

ZA 1 -.304+

(.175)
-.279
(.177)

-.274
(.190)

ZA 1 -.121
(.224)

-.144
(.227)

-.158
(.235)

ZA 2 .065
(.177)

.228
(.182)

.211
(.193)

ZA 2 -.337
(.229)

-.421+

(.227)
-.452+

(.233)

ZA 3 -.190
(.196)

-.023
(.198)

-.046
(.209)

ZA 3 -.469*
(.215)

-.545*
(.220)

-.553*
(.224)

Delta23 --- 2.096**
(.549)

1.948*
(.811)

Delta23 --- .845**
(.293)

.871**
(.323)

Log
Likelihood

-1012.55 -1008.39 -1005.18 Log
Likelihood

-681.50 -679.02 -677.71

+ Significantly different from 0 at the 10% level
* Significantly different from 0 at the 5% level
** Significantly different from 0 at the 1% level



Table 8

The Effect of Colored, Sorted Feedback on Frequency of Strategic Play
Standard Games with Low Cost Entrants

MH Probits ML Probits

186 subjects, 1619 observations 186 subjects, 1633 observations

Variable Model 1 Model 2 Variable Model 1 Model 2

Constant -.618**
(.114)

-.675**
(.158)

Constant 1.987**
(.149)

-1.753**
(.172)

Cycle 2 -.320
(.347)

-.079
(.360)

Cycle 2 .460**
(.126)

.424**
(.155)

Cycle 3 .029
(.364)

.091
(.378)

Cycle 3 .833**
(.103)

.555**
(.133)

MC 1 .455**
(.171)

.518*
(.202)

MC 1 .545**
(.187)

.297
(.201)

MC 2 .642**
(.221)

.476+

(.254)
MC 2 .255

(.223)
.039

(.244)

MC 3 .330
(.219)

.344
(.246)

MC 3 .204
(.180)

.231
(.222)

Feed 1 --- .133
(.243)

Feed 1 --- -.542+

(.290)

Feed 2 --- -.359
(.250)

Feed 2 --- -.409
(.293)

Feed 3 --- .028
(.239)

Feed 3 --- .101
(.263)

Delta23 2.095*
(.899)

2.044*
(.932)

Delta23 .936**
(.315)

.978**
(.320)

Log Likelihood -937.80 -935.55 Log Likelihood -641.03 -637.97

+ Significantly different from 0 at the 10% level
* Significantly different from 0 at the 5% level
** Significantly different from 0 at the 1% level



Table 9

Proportion of MLs Using Strategic Play at Least Once

GC, No Sorting GC, Sorting MC, Sorting

Standard Payoffs
High Cost Entrants

.333
(10/30)

--- .524
(44/84)

Standard Payoffs
Low Cost Entrants

.517
(30/58)

.458
(22/48)

.713
(57/80)

ZA Treatment
Low Cost Entrants

.429
(12/28)

--- .600
(18/30)



Figure 1

Standard Payoffs with High Cost Entrants, Generic Context Sessions
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Figure 2

Standard Payoffs with High Cost Entrants, Meaningful Context Sessions
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Figure 3

Standard Payoffs with Low Cost Entrants, Generic Context Sessions

Cycle 1

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Output

P
ro

p
o

rt
io

n
 o

f 
P

la
y

MH
ML

Cycle 2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Output

P
ro

p
o

rt
io

n
 o

f 
P

la
y

MH
ML

Cycle 3

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Output

P
ro

p
o

rt
io

n
 o

f 
P

la
y

MH
ML



Figure 4

Standard Payoffs with Low Cost Entrants, Meaningful Context Sessions
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Figure 5

ZA Treatment, Generic Context Sessions
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Figure 6

ZA treatment, Meaningful Context Sessions
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