## Physics 2301: Problem Set #5

These problems are due Wednesday Feb 12 by upload of a PDF to Carmen.

0. Essential Skills



1.

Consider a gyroscope comprising a uniform disk (of mass m and radius R) and a (massless) handle of length  $\ell$ . There is gravity g in what we'll call the  $-\hat{z}$  direction, and the handle makes an angle  $\phi$  relative to the horizontal as it attaches to a frictionless pivot. We are given the spin rate  $\omega_s$ , and as you understand, the full spin vector is  $\vec{\omega} = \omega_s \hat{e}_3 + \Omega \hat{z}$  where  $\Omega$  is a quantity we seek to determine.

- (a) For the special case  $\phi = 0$ , express  $\vec{L}$  and find the precession rate  $\Omega$ .
- (b) For generic  $\phi$ , work in the "gyroscopic approximation" where we assume  $\omega_s \gg \Omega$  (and that we can therefore ignore the contribution of  $\Omega \hat{z}$  to  $\vec{L}$ , again find (approximately) the precession rate  $\Omega$  for general angle  $\phi$ .
- (c) Finally, make no approximation as you include the  $\Omega \hat{z}$  contribution to  $\vec{L}$ , and find the quadratic equation which  $\Omega$  must satisfy. (No need to solve the quadratic.)
- 2. Consider a crude model of a tennis racquet, consisting of a hoop of mass m and radius R attached to a handle of length 2R which also has mass m. The racquet is initially floating motionless in outer space when it is struck by a downward blow at point B, giving the system momentum P in to the page. Find the resulting velocity  $(\vec{v}_A)$  of the point at the end of the handle immediately after the blow. What is



the kinetic energy of the racquet?

3. Consider a "half-pipe" (a frictionless rail in the shape of a semi-circle of radius R) on a turntable rotating counterclockwise at  $\omega$ . We work in the rotating frame, and represent Shaun White by a bead of mass m which starts essentially at rest at the origin ( $\phi = 0$ ) and slides along the rail to point A



- (a) Parameterizing  $\vec{r}(\phi) = R \sin \phi \hat{x} + R(1 \cos \phi) \hat{y}$ , compute the work done by the centrifugal force from the origin to generic point  $\phi$ , and verify that it equals the change in centrifugal potential,  $\frac{1}{2}m\omega^2 |\vec{r}|^2$ .
- (b) Find the speed of the bead (relative to the turntable) and the normal force on the bead as a function of  $\phi$ .
- 4. Morin 10.18 (Oscillations across the equator) p. 482
- 5. Morin 10.29 (Bead on a hoop) p. 485
- 6. Morin 10.31 (Roche limit) and 10.32 (Roche limit with rotation) p. 486
- 7. (BONUS) Morin 10.12 (Shape of the Earth) p. 479. Make a Mathematica notebook following the book's discussion of this 4-star problem, doing the needed numerical integrals with NIntegrate.