Species Tree Estimation: Theoretical Challenges of Today and Tomorrow

Laura Kubatko Departments of Statistics and Evolution, Ecology, and Organismal Biology, OSU

(STwitter: Laura Kubatko $P(p_j|(\mathcal{G}_h, t_h)) \int f_h(t_h|(S, \tau)) dt_h$

Species Tree Estimation Workshop 2018

June 4, 2018 1 / 15

Theoretical challenges of today and tomorrow

- Question: From the perspective of a developer of methods/models, what are the challenges we currently face, and what do we expect the future challenges to be?
 - Computational and modeling challenges
 - Challenges in maximizing information gained
 - User adoption and training
 - Challenge of training next generation of developers

- Issue 1: "Local" vs. "Global" models
- Example: For a single gene, we might use model selection to estimate the most appropriate evolutionary model
 - Estimate the phylogeny accurately
 - Estimate parameters, variances, learn about evolutionary process in that gene
- Scaling up: What if we have 100 genes? 1,000 genes?
 - Model selection for each gene would involve lots of tests
 - Fitting a general model to all genes involves lots of parameter estimates
- Question: What about machine learning approaches?

• Example: Kubatko et al. (2011)

Locus ^a	Aligned length	PI sitesb (ingroup only)	Substitution model	Average divergence
Α	296	31	K80 + /	0.02527
1	220	12	K80	0.01297
4	267	5	K80 +	0.00726
11	420	14	K80 + /	0.01199
25	262	14	TVMef + /	0.06160
31	256	8	F81	0.01071
41	274	7	НКҮ	0.00625
51	260	10	K80	0.02073
61	194	3	НКҮ	0.00819
63	471	8	HKY+/	0.01019
TBP	796	26	HKY+/	0.01444
CBA	525	9	HKY+/	0.08465
OD	522	16	K81uf+/	0.01337
CTC.	0.40	20	110/11	0.01107

<ロト < 回 > < 三 > < 三 > < 三 > の へ () <

- Issue 2: "Dig deep" to understand model/method performance
- Example: Statistical efficiency of invariants-based methods as we move to genome-scale data
 - Invariants approaches were widely viewed to lack statistical efficiency for gene tree estimation
 - But, species tree estimation is fundamentally different
 - "Invariants are worth attention, not for what they can do for us now, but what they might lead to in the future."
 - Joseph Felsenstein (2006)
 - Current invariants-based methods: ABBA-BABA, HyDe, and (in some sense) SVDQuartets

What is a phylogenetic invariant?

• Site pattern probability:

Define p_{ACAA} to be the probability that Taxon 1 has nucleotide A, Taxon 2 has nucleotide C, Taxon 3 has nucleotide A, Taxon 4 has nucleotide A

What is a phylogenetic invariant?

• Consider two four taxon trees and assume the Jukes-Cantor (JC69) model

イロト イポト イヨト イヨト

• Topology invariant:

 $p_{ACAA} - p_{CAAA}$

• Relative statistical efficiency of maximum likelihood vs. SVDQuartets for 4 taxa

Maximizing information

• How do we select data to sequence/include in an analysis?

• Example 1: What is the effect of missing data in an analysis?

Impact of Missing Data on Phylogenies Inferred from Empirical Phylogenomic Data Sets

Béatrice Roure,¹ Denis Baurain,^{‡,2} and Hervé Philippe*¹

¹Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada ²Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium

[‡]Present address: Eukaryotic Phylogenomics, Department of Life Sciences, Université de Liège, Liège, Belgium

*Corresponding author: E-mail: herve.philippe@umontreal.ca.

Associate editor: Barbara Holland

sequence evolution. First, we note that parsimony-uninformative incomplete characters are actually informative in a probabilistic framework. A reanalysis of Lemmon's data set with this in mind gives a very different interpretation of their results and shows that some of their conclusions may be unfounded. Second, we investigate the effect of the progressive introduction of missing data in a complete supermatrix (126 genes × 39 species) capable of resolving animal relationships. These analyses demonstrate that missing data perturb phylogenetic inference slightly beyond the expected decrease in resolving power. In particular, they

MBE 30(1):197–214, 2012

イロト 不得下 イヨト イヨト

Maximizing information

• How do we select data to sequence/include in an analysis?

• Example 1: What is the effect of missing data in an analysis?

Impact of Missing Data on Phylogenies Inferred from Empirical Phylogenomic Data Sets

Béatrice Roure,¹ Denis Baurain,^{‡,2} and Hervé Philippe*¹

¹Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada

²Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, Université de Liège, Liège, Belgium

[‡]Present address: Eukaryotic Phylogenomics, Department of Life Sciences, Université de Liège, Liège, Belgium

*Corresponding author: E-mail: herve.philippe@umontreal.ca.

Associate editor: Barbara Holland

sequence evolution. First, we note that parsimony-uninformative incomplete characters are actually informative in a probabilistic framework. A reanalysis of Lemmon's data set with this in mind gives a very different interpretation of their results and shows that some of their conclusions may be unfounded. Second, we investigate the effect of the progressive introduction of missing data in a complete supermatrix (126 genes × 39 species) capable of resolving animal relationships. These analyses demonstrate that missing data perturb phylogenetic inference slightly beyond the expected decrease in resolving power. In particular, they

MBE 30(1):197-214, 2012

イロト 不得 トイヨト イヨト

Maximizing information

• How do we select data to sequence/include in an analysis?

- Example 2: Should we "filter" genes/sites/taxa?
- From yesterday's talks:
 - Robert Literman: SISRS software will filter by percent missing and by amount of variation in loci
 - Andy Anderson: "Phylogenomic analysis of a putative missing link sparks reinterpretation of leech evolution"

User adoption and training

• I have a great new idea! How do I get people to try it?

OR

That seems like a great idea! Should I invest X + hours to try to run my data through the software?

- Example issues:
 - Little incentive for making user-friendly software (funding, career progression)
 - "Teaching" the method: requires travel, substantial time preparing
 - These things are more or less difficult depending on career stage
- **Big worry** that important methods may be overlooked because they lack a good implementation, while less good methods may become popular because they are easy to run.

User adoption and training

• How can we best reach people?

- Workshops: Woods Hole, Bodega Bay, etc. if feasible to attend
- Traditional classroom instruction if at an institution with an appropriate instructor/resources
- Online materials

if internet connection and other infrastructure allow

Books

keep costs low, keep book accessible

Training the next generation of developers

• Broad-based experience seems necessary for development of effective methodology

- How do we achieve this for our students and post-docs?
 - ▶ What combination of coursework and project-based work is appropriate?
 - Pre-requisite set of skills?
 - ▶ How do we adapt to changing demands/trends (technological, analytic, etc.)?

Tell us what you think!

- Now, it's your turn!
- Please compete the surveys to provide valuable information on your perceptions of this field.
- Please also communicate with us throughout the day and afterwards.

イロト イボト イヨト イヨ