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What SDVQuartets is ....

o SVDQuartets is a method for species tree inference based on the
multispecies coalescent that can be applied to multilocus, SNP, or coalescent
independent sites data.

@ The theory underlying the method is valid for data arising from very general
models:

v

GTR+14+G model and all submodels
» with or without the molecular clock

> variation in rates and effective population sizes along branches

v

gene flow between sister taxa
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What SDVQuartets is not ....

o SVDQuartets is not a concatenation method!
@ It is NOT a summary statistics method — at least not in the traditional way.
o It does NOT try to approximate maximum likelihood (or anything else).

o It is NOT model-free.
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Why is it called SVDQuartets?

@ Basic idea:

> Break the problem into quartets = sets of 4 taxa

> Infer the unrooted four-taxon tree for each quartet — this is done using a
mathematical technique called singular value decomposition (SVD)

> Reassemble the quartets to form an overall species tree estimate

@ Lots of small details for each step — we'll review the major ideas in the first
half of today's tutorial
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Site pattern frequencies

o Example:

ull

1

A tree for 4 taxa, which may be a
subtree of a larger tree
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Site pattern frequencies
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Site pattern frequencies
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Site pattern frequencies

o For each set of 4 sequences (quartet), we can count the relative
frequencies of the 256 possible site patterns

Piki Taxon A Taxon B Taxon C Taxon D Frequency

| A A A A baaaa

2 A A A C baaac

3 A A A G PAAAG

4 A A A T PAAAT
129 G G G A pacca
130 G G G C peeae
255 T T T G pTTTG
256 T T T T prrrT
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Flattening matrix

o For each set of 4 sequences (quartet), we represent the pattern

frequencies by a flattening matrix:

AA
AC
AG
Flatyy g1 (2,43 (P) = AT

cA

@ Matrix rank: number of linearly independent rows and columns

AA

Panaa
Pasca
Paaca
Daata
Pcana

AC

Panac
Paacc
Pance
Paatc
Pcaac

AG

Paanc
Paace
Pance
Paate
Pcanc

AT

DAaAAT
Paact
Paact
DPaaTT
Dcaat

CA

Pacar
Pacca
Pacca
Pacta
Pccan

cC

Pacac
Pacce
Pacce
Pacre
Pccac

@ Main result: when the flattening corresponds to the tree that generated the
data, the matrix rank will be fewer than the number of rows/columns
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Intuition on reduced rank/linear dependencies

True tree
A
A C A C
A C c A
c A A C
C A C A

E.g., all 4 of these site patterns have
the same expected frequency

f(AC|AC)=f(AC| CA)=f(CA|AC)=Ff(CA| CA)
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Intuition on reduced rank/linear dependencies

True tree

A

E.g., all 4 of these site patterns have

A
c
A

c

4
C
A
C

A

the same expected frequency

f(AC|AC)=f(AC| CA)=f(CA|AC)=Ff(CA| CA)

Incorrect tree

4
A A C C
A C C A
C A A c
C c A A

These patterns are not all expected
to have the same expected
frequency if they evolved on the
other tree

f(AA| CC)#F(AC| CA)#f(CA| AC)=f(CC| AA)
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Intuition on reduced rank/linear dependencies

A: :A G: :G
A A G G

AA AG GA GG

AA | a
Flattening matrix AG
for 1,2]3,4 GA
GG a
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Intuition on reduced rank/linear dependencies

>~ o=
<, = o<

| AA AG GA GG

Flattening matrix AG| b
for1,2|3,4 GA b

GG a
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Intuition on reduced rank/linear dependencies

> o<
< - >~

Flattening matrix AG | b b
for1,2|3,4 GA b b
GG b b a
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Intuition on reduced rank/linear dependencies

A: :G G: :A
A G G A

AA AG GA GG

AA | a b b c

Flattening matrix AG | b b
for1,2]3,4 GA| b b
GG| ¢ b b a
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Intuition on reduced rank/linear dependencies

A: :G
A G
G: :G
A G

| AA AG GA GG
AA | a b b c
Flattening matrix AG| b d d b
for 1,2|3,4 GA b d d b
GG| ¢ b b a
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Numerical example

Expected flattening matrix for 1,2|3,4
AA AG GA GG
AA ]0.093008 0.061355 0.061355 0.068115
AG | 67061355 0.046728 0.046728" 0.061355
GA | 0.061355 0.046728 £:046728 0.061355

“True” branch lengths
in expected

substitutions/site GG | 0.068115 0.061355 0.061355 0.093008

Expected site-pattern
frequencies

Pasaa 0.09300841
PasaG 0.06135527
Paaca 0.06135527
PaaGG 0.06811487
Pacan 0.06135527
Pacac 0.04672782
PAGGA 0.04672782
PAGGG 0.06135527
Peaa 0.06135527 etc.
PearG 0.04672782
PGAGA 0.04672782
Peace 0.06135527
Peoaa 0.06811487
PGGAG 0.06135527
Pascca 0.06135527
PG6G6 0.09300841
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Numerical example

“True” branch lengths
in expected
substitutions/site

Expected site-pattern
frequencies

Pansa 0.09300841
PasG 0.06135527
Paaca 0.06135527
PAAGG 0.06811487
Pacaa 0.06135527
PAGAG 0.04672782
PaGeA 0.04672782
Pacee 0.06135527
Peasa 0.06135527
PGAAG 0.04672782
Pcaca 0.04672782
Peace 0.06135527
Pceaa 0.06811487
Pceac 0.06135527
PGGGA 0.06135527
Pecee 0.09300841
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Expected flattening matrix for 1,2|3,4

AA AG GA GG

AA |[0.093008 0.061355 0.068115
AG |0.061355 0.046728 0.061355
GA

GG | 0.068115 0.061355 0.093008

Delete redundant 3rd row and column...
AA AG GG
AA 0.093008 0.061355 0.068115
AG 0.061355 0.046728 0.061355
GG 0.068115 0.061355 0.093008
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Numerical example

“True” branch lengths
in expected
substitutions/site

Expected site-pattern
frequencies

Pasna 0.09300841
Pasne 0.06135527
Paaca 0.06135527
ParcG 0.06811487
Pacaa 0.06135527
Paca 0.04672782
PAGGA 0.04672782
Pasee 0.06135527
Pcana 0.06135527
Pearc 0.04672782
Peaca 0.04672782
PGaGcG 0.06135527
PcGaa 0.06811487
Peeac 0.06135527
Peeca 0.06135527
P&eae 0.09300841

Expected flattening matrix for 1,2 3,4

AA AG GA GG
AA [0.093008 0.061355 0.068115
AG | 0.061355 0.046728 0.061355
GA
GG | 0.068115 0.061355 0.093008

Delete redundant 3rd row and column...

AA AG GG
AA 0.093008 0.061355 0.068115
AG 0.061355 0.046728 0.061355
GG 0.068115 0.061355 0.093008

Note that we can now obtain the last column

of the above matrix as a linear combination of

the first two columns:
fAA,GG= ‘fAA,AA+ 2.62617 fAA,AG =0.068115
fac,66= fac,aa+ 2.62617 fagac= 0.061355
fe6,66 = -fae,aa+ 2.62617 fggac = 0.093008
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Numerical example

“True” branch lengths
in expected
substitutions/site

Expected site-pattern
frequencies

Paaaa
Paanc
Paaca
Paace
Pacaa
PrGAG
Pacea
Pacee

PGaaG
Pcaca
Peace
Peeaa
Peeac
PGGeA
PGG6G

0.09300841
0.06135527
0.06135527
0.06811487
0.06135527
0.04672782
0.04672782
0.06135527
0.06135527
0.04672782
0.04672782
0.06135527
0.06811487
0.06135527
0.06135527
0.09300841

Expected flattening matrix for 1,2|3,4

AA AG GA GG
AA [0.093008 0.061355 0.068115
AG |0.061355 0.046728 0.061355
GA
GG | 0.068115 0.061355 0.093008

Delete redundant 3rd row and column...

AA AG GG
AA | 0.093008  0.061355 0.068115
AG | 0.061355  0.046728  0.061355
GG | 0.068115  0.061355  0.093008

Note that we can now obtain the last column

of the above matrix as a linear combination of

the first two columns:
fance= faaaa+ 2.62617 fanac = 0.068115
faG,66 = -fac,aa+ 2.62617 fagac= 0.061355
fee,66= -fogaa+ 2.62617 fog,ac = 0.093008

. matrix has only two linearly independent
rows and columns; rank is 2
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What if we construct a flattening matrix for a tree that did

NOT generate the data?

| AA AG GA GG

AA | a b b c

Flattening matrix AG | b d d b
for1,2|3,4 GA| b d d b
GG| ¢ b b a

AA_ AG_ GA GG

AA | a b b
Flattening matrix AG

for1,312,4
GA
GG
Laura Kubatko and Dave Swofford SVDQuartets Tutorial
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What if we construct a flattening matrix for a tree that did
NOT generate the data?

| AA AG GA GG

AA | a b b 4

Flatteningmatrix AG | b d d b
for1,2|3,4 GA| b d d b
GG| ¢ b b a

AA AG GA GG

AA | a b b d

Flattening matrix AG
for 1,312,4

or 131 GA

GG

C
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What if we construct a flattening matrix for a tree that did

NOT generate the data?

|AA AG GA GG

AA | a

Flattening matrix AG | b
for1,2|3,4 GA| b
GG| ¢

Flattening matrix AG
for 1,3|2,4

b

d
d
b

b c
d b
d b
b a

AA AG GA GG

AA | a b b d

b c d b

GA| b d c b

GG| d b b a

No redundant rows;
matrix is full rank (=4)
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How can we use this for species tree inference?

o Fact: Under the multispecies coalescent model for DNA sequence data:

> the flattening matrix corresponding to the true tree has rank 10

> the flattening matrix corresponding to each of the two alternative topologies
has rank 16 (there are 16 rows and 16 columns)

o Complication: For empirical data, the site pattern frequencies approximate
the true probabilities, but aren’t exact

@ Solution: Find a a way to measure how close we are to a reduced rank matrix
Use singular value decomposition!
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Singular value decomposition

@ Basic idea: Decompose an initial matrix into 3 new ones, such that multi
plying the new matrices as shown below returns the original matrix exactly

M= UZV

@ The matrix X contains the singular values (16 values here, since the
flattening matrix is 16 x 16)

o Fact: The number of non-zero singular values is equivalent to the matrix rank
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The SVD Score

8V (s) 1,21 14123
1 0.279686 0.278714 0.278716
2 0.21899 0.219191 0.219191
3 0.10902 0.110392 0.110389
_a P ”
= “Frobenius dlStar‘lCE- to 4 0.056873 0.05709 0.05709
nearest rank 4 matrix

5 8E-05 0.008875 0.006886
6 6.14E-05 0.006315 0.006305
Simulation conditions: 7 4.93E-05 0.003286 0.003286
8 3.8E-05 0.003244 0.003246
e tree = (((1:0.05,2:0.05):0.05,3:0.1):0.05,4:0.15) 9 p 0.00205 0.002903

* 1,000,000 sites
® HKY model: k=4 t=(0.1, 0.2, 0.3, 0.4) © 3.098:05 0.002499 0002499
® all sites share same history (no incomplete 1 2.69E-05 0.001471 0.001472
lineage sorting, horizontal transfer, gene 12 2 23E-05 0.001182 0.001181

duplication and loss, etc.)

13 1.3E-05 0.001009 0.001008
14 1.03E-05 0.000837 0.000937
15 6.19E-06 0.000382 0.000384
16 1.56E-06 0.000377 0.000375
score 0.000133 0.011353 0011354
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12134 |
12135
12145
14135

2's

23145 |

Suppose we infer
these quartet
relationships for
5 taxa
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3

4
12|35 1

12145 —>

1435 5 c

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3 4
12|35 1

12145 ——>

14|35 5 c

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 3 4
12135 1

12045 —>

14|35 5 .

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

1234 . 3 4
12|35

12145 T~

14|35 2 ? 5

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 . 3 4
12|35

1204 —>

14|35 5 c

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 . 3 4
12|35

12145 —>

14|35 5 5
23|45

4 consistent quartets, 1 inconsistent quartet
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 2

1 4
12|35

12145 T~

14|35 3 ? 5

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 2

1 4
12|35

12145 T >

14|35 3 ? 5

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 . 2 4
12|35

120145 —>

14|35 3 c

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 2 4
12|35 1

12145 T >

14|35 3 ? 5

2345
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34 2 4
12|35 1

P 0 S ——

14|35 3 c

23|45
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More than 4 taxa

Compute invariant scores for all quartets, choosing the
best resolution for each one.

Search for a tree that minimizes the number of
inconsistent quartets (i.e., seek a solution to the
Maximum Quartet Consistency problem).

12|34

1 2 4
12|35
12145 —>
14|35 3 5
23|45

2 consistent quartets, 3 inconsistent quartet

Now evaluate the remaining 13 trees and choose the one
that maximizes the number of consistent quartets
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More than 4 taxa

While evaluation of each possible tree might work well
for 5-tip trees, the number of possible trees for n tips
grows too quickly to make it a general strategy.

Must use a heuristic algorithm to search for the
best tree:
e The default in PAUP* is a heavily modified
version of “QFM” (Reaz et al., 2014)
® Other algorithms are available in PAUP* and
elsewhere
e Unfortunately, the MQC problem is NP-hard
(i.e., exact solution will be slow for large
numbers of tips)
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On to the tutorial!
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