@iochromaland @dangates_j

Inferring the history of hybridization: A case study in lochrominae (Solanaceae)

Stacey D. Smith¹ and Daniel J. Gates^{1,2,3}

¹University of Colorado-Boulder ²University of Nebraska-Lincoln ³Currently at University of California Davis

Carr 1995 AJB

Evolutionary outcomes

Will hybrids 'stand out' during phylogenetic analysis?

Hybrids will not be 'readily identifiable' from indices like CI, N(trees), unless the parents are distantly related

McDade, 1990, 1992

Study system: lochrominae (Solanaceae)

State of affairs before 2000

Acnistus	1	Mexico - northern S. America
Dunalia	5	Colombia - Argentina
Eriolarynx	3	Bolivia - Argentina
lochroma	20 + five undescribed	Colombia - Peru, + Galapagos
Saracha	2	Venezuela - Bolivia
Vassobia	2	southern S. America

Phylogeny of Iochrominae

Combined ML analysis of ITS, *LFY*, *waxy* (~4000bp)

Bolded branches with >75% BS and >95% PP

l. squamosum I. lehmannii 📕 I. cyaneum loxense cornifolium I. fuchsioides 📕 l. gesnerioides 📕 I. calycinum I. sp. nov. I. edule 📒 I. cf. peruvianum I. salpoanum 📒 I. confertiflorum A. arborescens (A. arb. (Costa Rica) I. ellipticum (Galapagos) V. dichotoma V. breviflora E. lorentzii I. australe 🔳 E. fasciculata D. brachyacantha D. spinosa I. parvifolium - D. obovata 🔳 D. spathulata D. solanacea S. quitensis S. punctata I. grandiflorum I. nitidum - I. umbellatum I. "tingoense"

2 cm

(Smith & Baum, 2006 AJB)

Problematic taxa: I. stenanthum

ITS

LFY

waxy

Problematic taxa: I. ayabacense

ITS

waxy

Maybe these are hybrids?!

Iochroma cyaneum

Genome size ~ 3Gb

Data quality vs. power

Consensus species tree inferred from ca. 240 loci with STAR (Liu et al., 2008) from Gates et al. (2018)

In the best of all possible worlds..

Solís-Lemus and Ané 2016

- Detect signature of hybridization in phylogeny
- Identify tips with hybrid ancestry and their parents
- Estimate timing of event
- Scale to sizeable clades

2 cm

Revisit our putative hybrids

I. ayabacense

I. stenanthum

Can we identify them and their parents with phylogenomic data?

A McDade-style experiment

<u>Prediction</u>: Addition of hybrids will increase conflict, reducing the concordance among genes and certainty of relationships

<u>Approach</u>: Quantify **concordance** and internode certainty (IC) for each branch and across the tree (TC) (Salichos et al. 2014)

One F1

No hybrids

<u>Prediction</u>: Addition of hybrids will increase conflict, reducing the concordance among genes and certainty of relationships

<u>Approach</u>: Quantify **concordance** and internode certainty (IC) for each branch and across the tree (TC) (Salichos et al. 2014)

F1 + *I. ayabacense*

I. ayabacense + I. stenanthum

<u>Prediction</u>: Addition of hybrids will reduce tree-like structure of species relationships

<u>Approach</u>: Test ability to reject **panmixia** or fully **bifurcating** model (χ 2 statistics) with TICR (Stenz et al. 2015)

One F1

No hybrids

<u>Prediction</u>: Addition of hybrids will reduce tree-like structure of species relationships

<u>Approach</u>: Test ability to reject **panmixia** or fully **bifurcating** model (χ 2 statistics) with TICR (Stenz et al. 2015)

F1 + I. ayabacense

I. ayabacense + I. stenanthum

Identification of hybrid taxa and parents

<u>Prediction</u>: Putative hybrids will reflect inferred ancestry based on morphology and geography

<u>Approach</u>: Use HyDe (Kubatko and Chifman, 2015) to detect hybrid taxa and parents; similar results with D-statistic analysis

Identification of hybrid taxa and parents

<u>Prediction</u>: Putative hybrids will reflect inferred ancestry based on morphology and geography

<u>Approach</u>: Use HyDe (Kubatko and Chifman, 2015) to detect hybrid taxa and parents; similar results with D-statistic analysis

F1 + *I. ayabacense*

I. ayabacense + I. stenanthum

The known-knowns

- Adding hybrid taxa to the phylogeny decreases concordance, certainty in relationships, and tree-like structure
- Inferring which taxa are hybrids or parents of hybrids is hard

Future directions

- Expand sampling within and across species of lochrominae
- Combine existing (and new) statistics in an ABC approach to localize events
- Test power in relationship to parental distance, evolutionary rate, etc.

Acknowledgements

Thanks to:

Funding from:

National Science Foundation

Daniel Gates Bryan Carstens Corinne Grover

University of Nebraska-Lincoln

University of Colorado-Boulder www.colorado.edu/smithlab Follow @iochromaland for-the-love-of-trees.blogspot.com

Localization of hybridization

<u>Prediction</u>: Reticulate events will be inferred in datasets with hybrids; among hybrids and/or their parental lineages

<u>Approach</u>: Fit significant reticulation events with SNaQ (Solís-Lemus and Ané 2016)

No hybrids

One F1

Localization of hybridization

<u>Prediction</u>: Reticulate events will be inferred in datasets with hybrids; among hybrids and/or their parental lineages

<u>Approach</u>: Fit significant reticulation events with SNaQ (Solís-Lemus and Ané 2016)

F1 + I. ayabacense

I. ayabacense + I. stenanthum