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Species tree inference
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ASTRAL background

Recall our ideas about inference under the phylogenetic coalescent model

ASTRAL is a summary statistic method for species tree estimation:

I Step 1. Estimate gene trees for each locus
I Step 2. Extract all quartet relationships from the estimated gene trees
I Step 3. Find the species tree that “agrees” with as many quartets as possible
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ASTRAL

Step 2. Extract all quartet relationships from the estimated gene trees
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ASTRAL background

Recall our ideas about inference under the phylogenetic coalescent model

ASTRAL is a summary statistic method for species tree estimation:

I Step 1. Estimate gene trees for each locus X
I Step 2. Extract all quartet relationships from the estimated gene trees X
I Step 3. Find the species tree that “agrees” with as many quartets as possible
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ASTRAL

Step 3. Find the species tree that “agrees” with as many quartets as

possible

I This is a non-trivial problem .... recall that we expect substantial incongruence
among trees

I However, unrooted gene trees cannot be anomalous for four taxa in the
absence of gene flow, so if the gene trees are correct, then this is easy

I ASTRAL uses the Weighted Quartet Score of a candidate species tree –
defined to be the number of quartets from the set of input gene trees that
agree with the candidate species tree

I Optimization problem – need to search for the species tree that maximizes the
Weighted Quartet Score
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ASTRAL background

Recall our ideas about inference under the phylogenetic coalescent model

ASTRAL is a summary statistic method for species tree estimation:

I Step 1. Estimate gene trees for each locus X
I Step 2. Extract all quartet relationships from the estimated gene trees X
I Step 3. Find the species tree that “agrees” with as many quartets as possible

X
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Additional features of ASTRAL

ASTRAL can also estimate branch lengths (in coalescent units)

ASTRAL also provides a measure of uncertainty: local posterior probability

Sayyari and Mirarab, 2016

I Assume that the “clusters” on each edge of the
branch under consideration are correct

I Use the gene trees to obtain quartet frequencies for
the three possible arrangements of clusters

I Assume a prior distribution on the quartet trees
(Yule prior with parameter �)

I Compute the posterior probability that this branch
appears in the true species tree, given the observed
quartet frequencies
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ASTRAL performance

ASTRAL is statistically consistent when the gene trees are known without
error

ASTRAL will perform well when the gene trees can be estimated well

Computational e�ciency: the estimation of gene trees is the time-consuming

step, but can be parallelized

Crucial assumption: true unrooted quartets have higher probability than

other quartet relationships

Assessment of uncertainty: use the local posterior probability (now

recommended over the bootstrap)
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SVDQuartets (or just SVDQ)

Goal of this work:

Develop a full data approach that is computationally feasible for large-scale data

How?

Summarize data di↵erently, so that model requires less computation

Develop theory to infer relationships among quartets of taxa very accurately

Use a quartet assembly method to build a large tree
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Recall the phylogenetic coalescent model with mutation

Example: Want to compute the probability that taxon A has nucleotide T , taxon

B has nucleotide G and taxon C has nucleotide T – call this pTGT

B C A

1 � e�t

0.63

p1a
TGT = 0.05

B C A

1
3e

�t

0.12

p1b
TGT = 0.025

A C B

1
3e

�t

0.12

p2
TGT = 0.2

A B C

1
3e

�t

0.12

p3
TGT = 0.025

pTGT = 0.63 ⇥ 0.05 + 0.12 ⇥ 0.025 + 0.12 ⇥ 0.2 + 0.12 ⇥ 0.025 = 0.0615

* For intuition only, not completely correct ...
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But .... there are a lot of histories!

34 J. H. DEGNAN AND L. A. SALTER

TABLE 2. The minimum number of gene trees needed to capture
90% of the gene tree distribution as a function of the type of sym-
metry of the species tree (a, maximally asymmetric; s, maximally
symmetric), the number of taxa (n), and branch lengths. In the first
three branch length columns, all branches have the indicated length.
The fourth and fifth columns have all branches with length 1.0
except the indicated branch. Note that the minimum number of gene
trees listed grows more slowly than the number of tree topologies
based on the number of taxa (see Table 3).

Sym-
metry n

Branch lengths

1.0 0.5 0.2 ⌅1 ⇧ 0.01 ⌅n�2 ⇧ 0.01

a 4 4 7 10 7 9
a 5 13 27 58 19 21
a 6 33 118 345 51 61
a 7 96 512 2239 140 155
s 4 4 10 12 10 10
s 5 15 35 62 21 26
s 6 38 144 441 63 87
s 7 140 869 3452 207 363

TABLE 3. The number of valid coalescent histories when the gene
tree and species tree have the same topology. The number of his-
tories is also the number of terms in the outer sum in equation (12).

Taxa

Number of histories

Asymmetric trees Symmetric trees Number of topologies

4 5 4 15
5 14 10 105
6 42 25 945
7 132 65 10,395
8 429 169 135,135
9 1430 481 2,027,025
10 4862 1369 34,459,425
12 58,786 11,236 13,749,310,575
16 9,694,845 1,020,100 6.190 ⇥ 1015

20 1,767,263,190 100,360,324 8.201 ⇥ 1021

FIG. 7. The exact probability of topological equivalence between
species and gene trees as a function of branch lengths and number
of taxa. Probabilities were computed for branch lengths between
0.01 and 5.00 in increments of 0.01. Only asymmetric trees were
used for this example. Symmetric trees show a very similar pattern
(results not shown).

APPLICATIONS

Probability of Topological Equivalence of Gene Trees and

Species Trees

Because the complete distribution of gene trees for a given

species tree is available, the probability that the gene tree

has the same topology as the species tree can be computed

directly. Figure 7 shows the probability that the gene tree is

topologically equivalent to the species tree when branch

lengths vary continuously from 0.01 to 5.00 (assuming all

branches have the same length) for different numbers of taxa.

This figure can also be used to determine the branch lengths

that would be necessary to have any desired probability that

the gene tree and species tree are topologically equivalent.

Note that even for moderately long branches, the probability

of topological equivalence quickly decreases with the number

of taxa.

Pamilo and Nei (1988) give a conservative upper bound

for this probability,

n�2 2
�⌅ iP ⇧ 1 � e . (14)�A ⇥ ⇤3i⇧1

From equation (12), the probability of any three-taxon gene

tree matching its species tree is 1 � , and the bound is�⌅i�e
based on decomposing an n-taxon species tree into n � 2

three-taxon trees, one for each internal branch, and treating

these trees as independent. Here each three-taxon tree con-

sists of an internal branch, its two descendent branches, and

its sister branch. For example, in the seven-taxon tree ex-

ample, the three-taxon tree corresponding to branch 5 has the

branches 2, 3, and 4, and could be represented as (2,(3,4)).

The closeness of this bound to the exact probability can

be evaluated for different tree shapes and sizes as well as

branch lengths using equation (12). Because the assumption

of independence is more nearly met, as Pamilo and Nei (1988)

note, when the branch lengths are larger, the bound is tighter

for trees with longer branches. The bound is also tighter for

trees that are more nearly symmetric (Fig. 8), because for

asymmetric trees lineages are more constrained in their order

of coalescence and are therefore less independent. Although

the bound is fairly close when the branch lengths are mod-

erately large, as the number of taxa increases and branch

lengths are held constant, the ratio of the bound to the exact

probability increases (Fig. 8). This indicates that the bound

is not asymptotically approaching the exact probability.

Notice that P⇤,�(G ⇧ ⇤) and PA only refer to the probability
that a random gene tree has the same topology as the fixed

species tree. For a given observed gene tree, the coalescent

model does not provide a method for determining the prob-

ability that the species tree has the same topology as the gene

tree. Because the coalescent model treats the species tree as

a parameter, one could adopt a Bayesian point of view to

assign probabilities to species trees given gene trees. This

would require assigning a prior distribution on the space of

species trees, where the space would include branch lengths

as well as topologies.

This means that calculating the likelihood – and thus using likelihood-based

methods for inference – will be di�cult, especially for large-scale data

Alternative approach: compute explicitly (i.e., write formulas for) the site

pattern probabilities for 4-taxon trees, and look for “structure”
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Looking for structure in site pattern probabilities ....

1 2 3 4

Taxon Sequence

1 ACCAATGCCGATGCCAAA

2 ACCATTGCCGATGCCATA

3 ACGAAAGCGGAAGCGAAA

4 ATGAAAGCGGAAGCCAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] pAAAA pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·

1

CCCCCCCCA
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Looking for structure in site pattern probabilities ....

1 2 3 4

Taxon Sequence

1 ACCAATGCCGATGCCAAA

2 ACCATTGCCGATGCCATA

3 ACGAAAGCGGAAGCGAAA

4 ATGAAAGCGGAAGCCAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG pCAAT pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·
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Looking for structure in site pattern probabilities ....

1 2 3 4

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA

2 ACCATTGACGGAGCCAATA

3 ACGAAAGACGGAAGCAAAA

4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC ] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·

1

CCCCCCCCA
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Looking for structure in site pattern probabilities ....

1 2 3 4

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA

2 ACCATTGACGGAGCCAATA

3 ACGAAAGACGGAAGCAAAA

4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·
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Looking for structure in site pattern probabilities ....

1 2 3 4

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA

2 ACCATTGACGGAGCCAATA

3 ACGAAAGACGGAAGCAAAA

4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·

1

CCCCCCCCA

These two columns are identical – matrix rank is reduced by one
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Results

Main Result:

Species tree inference: For a flattening matrix constructed on the true

four-taxon tree, the matrix rank is 10 under the following model

I species tree ! gene tree ::: coalescent process

I gene tree ! data ::: nucleotide substitution models: GTR+I+� and submodels

This result still holds when the species tree violates the molecular clock

and/or when there is variation in e↵ective population size across the branches

and/or when there is gene flow between sister taxa
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What about the incorrect tree?

1 3 2 4

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA

2 ACCATTGACGGAGCCAATA

3 ACGAAAGACGGAAGCAAAA

4 ATGAAAGTCGGAAGCTAAA

Flat12|34(P) =

0

BBBBBBBB@

[AA] [AC] [AG ] [AT ] [CA] · · ·
[AA] 5 pAAAC pAAAG pAAAT pAACA · · ·
[AC ] pACAA pACAC pACAG pACAT pACCA · · ·
[AG ] pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
[AT ] pATAA pATAC pATAG pATAT pATCA · · ·
[CA] pCAAA pCAAC pCAAG 2 pCACA · · ·
[· · · ] · · · · · · · · · · · · · · · · · ·

1

CCCCCCCCA

These two columns are no longer identical – full rank matrix in both cases

(rank = 16)
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How can we use these facts to estimate the species tree?

Basic idea:

I Data: aligned DNA sequences for multiple loci or for a collection of SNPs

I Estimate the flattening matrix for each of the following trees:

Species tree estimation using algebraic statistics

Main idea: use the observed site pattern distribution to provide information about

which of the three possible splits for a set of four taxa is the true split.

A

B D

C A

C D

B A

D B

C

The program SVDscores computes a score for each split in a given quartet of taxa

and chooses the split with the best (lowest) score.

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 2 / 9

I Compute a measure of how close each of the three observed flattening
matrices is to a matrix with rank 10 – we use the SVDScore

I Pick the tree relationship that gives the smallest SVDScore
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Simulation study 1 – can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 – can we detect the correct split?

Simulate data from the GTR+I+� model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second row: 10 genes of 500bp

12|34 13|24 14|230e
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Simulation study 1 – can we detect the correct split?

Change in scores as amount of data increases

0.
00
0

0.
00
2

0.
00
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Number of SNP Sites

M
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D
 S
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1000 5000 10000

12|34 split, branch lengths = 0.5
13|24 split, branch lengths = 0.5
14|23 split, branch lengths = 0.5
12|34 split, branch lengths = 1.0
13|24 split, branch lengths = 1.0
14|23 split, branch lengths = 1.0
12|34 split, branch lengths = 2.0
13|24 split, branch lengths = 2.0
14|23 split, branch lengths = 2.0
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How do we assess variability?

How can we measure confidence in the inferred split?

Use a nonparametric bootstrap procedure

I Generate bootstrap data sets from the original data matrix

I Compute split scores on all three splits for each bootstrap data matrix

I Record the number of bootstrap data sets for which each split is inferred, and
use the proportion of these as a bootstrap support measure

Evaluate performance of the bootstrap procedure using the same simulated

data
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Assessing support using the bootstrap

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine bootstrap
support scores
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Assessing support using the bootstrap

Simulate data from the GTR+I+� model for a 4-taxon tree and examine bootstrap
support scores
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Extension to larger trees

Algorithm

1 Generate all quartets (small problems) or sample quartets (large problems)

2 Estimate the correct quartet relationship for each sampled quartet

3 Use a quartet assembly method to build the tree - PAUP* uses the method

of Reaz-Bayzid-Rahman (2014), called QFM, to build the tree.

!

1 2 | 3 4

3 5 | 2 17

19 6 | 16 1

5 22 | 3 7

. . . .

!
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Extension to larger trees

Multiple lineages are handled as follows:

1 Sample four species

2 Select one lineage at random from each species

3 Estimate the quartet relationships among the four sampled lineages

4 Restore the species labels (but lineage quartets are saved, too)

Quantify uncertainty using the bootstrap
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Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species Location No. of individuals per gene

S. catenatus catenatus Eastern U.S. and Canada 9

S. c. edwardsii Western U.S. 4

S. c. tergeminus Western and Central U.S. 5

S. miliarius miliarius Southeastern U.S. 1

S. m. barbouri Southeastern U.S. 3

S. m. streckerii Southeastern U.S. 2

Agkistrodon sp. (outgroup) U.S. 2
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Empirical example: Sistrurus rattlesnakes

All quartets and 100 bootstrap replicates

⇠ 11 minutes
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Empirical example: Sistrurus rattlesnakes

All quartets and 100 bootstrap replicates

⇠ 11 minutes

Agkistrodon

S.c. catenatus

S.c. edwardsii

S.c. tergeminus

S.m. miliarius

S.m. streckeri

S.m. barbouri
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100

100

46

SVDQuartets bootstrap consensus
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Comparison between methods

SVDQuartets

I Statistically consistent for estimating the quartet trees
I Will perform well when there are a lot of data (multilocus or SNP) available
I More complex model =) more data needed
I Valid when the molecular clock is violated
I Valid when there is gene flow between sister taxa
I Computationally e�cient, including bootstrapping
I Will soon include estimates of branch lengths

ASTRAL

I Statistically consistent when gene trees are known without error
I Will perform well when gene trees can be estimated well
I Gene flow can cause the method to fail (because then quartets can be

anomalous)
I Computationally e�cient after individual gene trees have been estimated
I Can provide estimates of branch lengths
I Local posterior probabilities used to quantify uncertainty in the data
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Comparison between methods

How do these compare to Bayesian methods, such as STARBEAST2 and

BPP?

I STARBEAST2 and BPP carry out estimation under the model, including all
model components

I Estimation of the posterior distribution provides a natural way to quantify
uncertainty

I ASTRAL and SVDQ use features of the model to assess fit of the data to the
model

F ASTRAL: gene trees

F SVDQ: site pattern probabilities

I Trade-o↵s involved in choosing among methods: computational e�ciency,
robustness to the model, etc.
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Tutorial

Now on to the tutorial!

The tutorial is available at http://phylosolutions.com/tutorials/
wh2019-svdq-astral/species-trees-tutorial.html
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