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ASTRAL background

@ Recall our ideas about inference under the phylogenetic coalescent model
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@ ASTRAL is a summary statistic method for species tree estimation:

» Step 1. Estimate gene trees for each locus
» Step 2. Extract all quartet relationships from the estimated gene trees
> Step 3. Find the species tree that “agrees” with as many quartets as possible

Kubatko and PAUPertone Species Tree Estimation Lab August 8, 2019 4 /40



ASTRAL background

@ Recall our ideas about inference under the phylogenetic coalescent model

/NP N\

SPECIES TREE GENE TREE

A A N

@ ASTRAL is a summary statistic method for species tree estimation:

» Step 1. Estimate gene trees for each locus v/
» Step 2. Extract all quartet relationships from the estimated gene trees
> Step 3. Find the species tree that “agrees” with as many quartets as possible

Kubatko and PAUPertone Species Tree Estimation Lab August 8, 2019 5 /40



ASTRAL
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ASTRAL background

@ Recall our ideas about inference under the phylogenetic coalescent model
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ASTRAL

@ Step 3. Find the species tree that “agrees’ with as many quartets as
possible

> This is a non-trivial problem .... recall that we expect substantial incongruence
among trees

» However, unrooted gene trees cannot be anomalous for four taxa in the
absence of gene flow, so if the gene trees are correct, then this is easy

» ASTRAL uses the Weighted Quartet Score of a candidate species tree —
defined to be the number of quartets from the set of input gene trees that
agree with the candidate species tree

» Optimization problem — need to search for the species tree that maximizes the
Weighted Quartet Score
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ASTRAL
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ASTRAL background

@ Recall our ideas about inference under the phylogenetic coalescent model
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o ASTRAL is a summary statistic method for species tree estimation:

» Step 1. Estimate gene trees for each locus v/
> Step 2. Extract all quartet relationships from the estimated gene trees v'

» Step 3. Find the species tree that “agrees” with as many quartets as possible
v
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Additional features of ASTRAL

@ ASTRAL can also estimate branch lengths (in coalescent units)

@ ASTRAL also provides a measure of uncertainty: local posterior probability

» Assume that the “clusters” on each edge of the
branch under consideration are correct

Quadripartition

> Use the gene trees to obtain quartet frequencies for
the three possible arrangements of clusters

» Assume a prior distribution on the quartet trees
(Yule prior with parameter \)

» Compute the posterior probability that this branch
appears in the true species tree, given the observed

Sayyari and Mirarab, 2016 X
quartet frequencies
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ASTRAL performance

ASTRAL is statistically consistent when the gene trees are known without
error

o ASTRAL will perform well when the gene trees can be estimated well

Computational efficiency: the estimation of gene trees is the time-consuming
step, but can be parallelized

@ Crucial assumption: true unrooted quartets have higher probability than
other quartet relationships

@ Assessment of uncertainty: use the local posterior probability (now
recommended over the bootstrap)
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SVDQuartets (or just SVDQ)

Goal of this work:
Develop a full data approach that is computationally feasible for large-scale data

How?

@ Summarize data differently, so that model requires less computation

@ Develop theory to infer relationships among quartets of taxa very accurately

@ Use a quartet assembly method to build a large tree
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Recall the phylogenetic coalescent model with mutation

Example: Want to compute the probability that taxon A has nucleotide T, taxon
B has nucleotide G and taxon C has nucleotide T — call this prgt

1
§e
0.63 0.12 0.12 0.12
ta__ —0.05 b —0.025 2. =02 3 .~ =0.025
PreT . PTeT . PreT . PTeT .

preT = 0.63 x 0.05+0.12 x 0.025 + 0.12 x 0.2+ 0.12 x 0.025 = 0.0615

1 For intuition only, not completely correct ...
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But .... there are a lot of histories!

TABLE 3. The number of valid coalescent histories when the gene
tree and species tree have the same topology. The number of his-
tories is also the number of terms in the outer sum in equation (12).

Number of histories

Taxa  Asymmetric trees Symmetric trees  Number of topologics
4 5 4 15
5 14 10 105
6 42 25 945
7 132 65 10,395
8 429 169 135,135
9 1430 481 2,027,025
10 4862 1369 34,459,425
12 58,786 11,236 13,749,310,575
16 9,694,845 1,020,100 6.190 X 1015
20 1,767,263,190 100,360,324 8.201 x 102!

@ This means that calculating the likelihood — and thus using likelihood-based
methods for inference — will be difficult, especially for large-scale data

o Alternative approach: compute explicitly (i.e., write formulas for) the site
pattern probabilities for 4-taxon trees, and look for “structure”
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Looking for structure in site pattern probabilities ....

Taxon Sequence
1 ACCAATGCCGATGCCAAA
2 ACCATTGCCGATGCCATA
12 3 4 3 ACGAAAGCGGAAGCGAAA
4 ATGAAAGCGGAAGCCAAA
[AA]  [AC] [AG] [AT] [CA]
[AA]  pasaa  PAAAC  PAAAG  PAAAT  PAACA
[AC] pacan Ppacac  pacac  PAcaT  Pacca
Flatio34(P) = | [AG] pacaa PAGAC PAGAG PAGAT  PAGCA
[AT] pataa  PATAC  PATAG  PATAT  PATCA
[CA]  pcana Ppcaac  Pcaac  PcaaT  Pcaca
August 8, 2019
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Looking for structure in site pattern probabilities ....

1 2 3 4
[AA]
[AC]
F/at12‘34(P) = [AG]
[AT]
[CA]

[AA]

PAcAA
PAGAA
PATAA
PCAAA

Taxon  Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
[ACl [AG] [AT] [cA
PAAAC PAAAG PAAAT PAACA
PACAC PACAG PACAT PACCA
PAGAC PAGAG PAGAT PAGCA
PATAC PATAG PATAT PATCA
PcAAC

PcaAG 2 Pcaca
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Looking for structure in site pattern probabilities ....
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Looking for structure in site pattern probabilities ....

1.2 3 4
[AA]
[AC]
Fl3t12‘34(P) = [AG]
[AT]
[CA]

[AA]
5

PACAA
PAGAA
PATAA
PCAAA

Taxon  Sequence
1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
[AC]  [AG] [AT] [CA]

PAAAC  PAAAG  PAAAT  PAACA

PACAC  PACAG  PACAT PAcca

PAGAC  PAGAG  PAGAT Pacca

PATAC  PATAG  PATAT  PATCA

Pcaac

PcaAG 2 Pcaca

These two columns are identical — matrix rank is reduced by one
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Results

Main Result:

@ Species tree inference: For a flattening matrix constructed on the true
four-taxon tree, the matrix rank is 10 under the following model

> species tree — gene tree ::: coalescent process

> gene tree — data ::: nucleotide substitution models: GTR+I+I" and submodels

@ This result still holds when the species tree violates the molecular clock
and/or when there is variation in effective population size across the branches
and/or when there is gene flow between sister taxa
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What about the incorrect tree?

1 3 2 4
[AA]
[AC]
FIat12|34(P) = [AG]
[AT]
[CA]

[..]

[AA]
5
PACAA
PAGAA
PATAA
PCAAA

Taxon Sequence

1 ACCAATGCCGGAGCCCAAA
2 ACCATTGACGGAGCCAATA
3 ACGAAAGACGGAAGCAAAA
4 ATGAAAGTCGGAAGCTAAA
[AC]  [AG] [AT] [cA

PAAAC  PAAAG  PAAAT  PAACA

PACAC  PACAG  PACAT  PAccA

PAGAC  PAGAG  PAGAT Pacca

PATAC  PATAG  PATAT  PATCA

PcaAc

PCAAG 2 Pcaca

These two columns are no longer identical — full rank matrix in both cases

(rank = 16)
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How can we use these facts to estimate the species tree?

o Basic idea:

» Data: aligned DNA sequences for multiple loci or for a collection of SNPs

» Estimate the flattening matrix for each of the following trees:

B D C D D B

» Compute a measure of how close each of the three observed flattening
matrices is to a matrix with rank 10 — we use the SVDScore

> Pick the tree relationship that gives the smallest SVDScore
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Simulation study 1 — can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 — can we detect the correct split?

Simulate data from the GTR+I4+I model for a 4-taxon tree and examine split scores
First row: 5,000 SNP sites; Second row: 10 genes of 500bp
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Simulation study 1 — can we detect the correct split?

Change in scores as amount of data increases

Kubatko and PAUPertone
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How do we assess variability?

@ How can we measure confidence in the inferred split?

@ Use a nonparametric bootstrap procedure
» Generate bootstrap data sets from the original data matrix
» Compute split scores on all three splits for each bootstrap data matrix

» Record the number of bootstrap data sets for which each split is inferred, and
use the proportion of these as a bootstrap support measure

@ Evaluate performance of the bootstrap procedure using the same simulated
data
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Assessing support using the bootstrap

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine bootstrap

support scores
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support scores

Branch Lengths=0.5

Assessing support using the bootstrap

Branch Lengths=1.0

Branch Lengths=2.0
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Extension to larger trees

Algorithm

@ Generate all quartets (small problems) or sample quartets (large problems
@ Estimate the correct quartet relationship for each sampled quartet

@ Use a quartet assembly method to build the tree - PAUP* uses the method
of Reaz-Bayzid-Rahman (2014), called QFM, to build the tree.
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Extension to larger trees

@ Multiple lineages are handled as follows:

@ Sample four species
@ Select one lineage at random from each species
© Estimate the quartet relationships among the four sampled lineages

@ Restore the species labels (but lineage quartets are saved, too)

@ Quantify uncertainty using the bootstrap
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e Data: 7 (sub)species, 26 individuals (52 sequences), 19 genes

Species Location No. of individuals per gene
S. catenatus catenatus Eastern U.S. and Canada 9
S. c. edwardsii Western U.S. 4
S. c. tergeminus Western and Central U.S. 5
S. miliarius miliarius Southeastern U.S. 1
S. m. barbouri Southeastern U.S. 3
S. m. streckerii Southeastern U.S. 2
Agkistrodon sp. (outgroup) u.s. 2

Kubatko and PAUPertone Species Tree Estimation Lab
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Empirical example: Sistrurus rattlesnakes
All quartets and 100 bootstrap replicates

~ 11 minutes
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Empirical example: Sistrurus rattlesnakes
All quartets and 100 bootstrap replicates
~ 11 minutes

SVDQuartets boostrap consensus

Agkistrodon

S.c. catenatus
93
S.c. edwardsii
100
S.c. tergeminus
S.m. miliarius
46
S.m. streckeri
100
L S.m. barbouri
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Comparison between methods

@ SVDQuartets

Statistically consistent for estimating the quartet trees

Will perform well when there are a lot of data (multilocus or SNP) available
More complex model = more data needed

Valid when the molecular clock is violated

Valid when there is gene flow between sister taxa

Computationally efficient, including bootstrapping

Will soon include estimates of branch lengths

vV vy VY VY VY VvYYvY

e ASTRAL

» Statistically consistent when gene trees are known without error
> Will perform well when gene trees can be estimated well
> Gene flow can cause the method to fail (because then quartets can be
anomalous)
» Computationally efficient after individual gene trees have been estimated
» Can provide estimates of branch lengths
Local posterior probabilities used to quantify uncertainty in the data
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Comparison between methods

@ How do these compare to Bayesian methods, such as STARBEAST?2 and
BPP?

» STARBEAST?2 and BPP carry out estimation under the model, including all
model components

» Estimation of the posterior distribution provides a natural way to quantify
uncertainty

» ASTRAL and SVDQ use features of the model to assess fit of the data to the
model

* ASTRAL: gene trees

* SVDQ: site pattern probabilities

» Trade-offs involved in choosing among methods: computational efficiency,
robustness to the model, etc.
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Tutorial

Now on to the tutoriall

The tutorial is available at http://phylosolutions.com/tutorials/
wh2019-svdq-astral/species-trees-tutorial.html
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