Conflict and concordance in phylogenomic datasets

DR. STEPHEN A. SMITH
UNIVERSITY OF MICHIGAN

$$
M
$$

Molecular data availability

Molecular data availability (with whole genomes)

Articles Submit \quad Alerts About $\nabla \quad$ All GigaSci

Article Contents

Abstract

Supplementary data

ACCEPTED MANUSCRIPT

10KP: A Phylodiverse Genome Sequencing Plan 〕

Shifeng Cheng Michael Melkonian, Stephen A Smith, Samuel Brockington,
John M Archibald, Pierre-Marc Delaux, Fay-wei Li, Barbara Melkonian,
Evgeny V Mavrodiev, Wenjing Sun ... Show more
Author Notes
GigaScience, giy013, https://doi.org/1 Published: 20 February 2018

Freshwater alga in the genus Zygnema would be one target of sequencing project. NORBERT HÜLSMANN/FLICKR (CC BY-NC-SA 2.0)

Plant scientists plan massive effort to sequence 10,000 genomes

Large datasets with many genes

Typical phylogenetic analyses

- 1-10 genes
- 17 genes. Plants (Soltis et al. 2011)
- 19 genes. Birds (Hackett et al. 2007)

Transcriptomic and genomic phylogenetic analyses

- 140 genes. Metazoa (Dunn et al. 2008)
- 242 genes. Metazoa (Ryan et al. 2013)
- 248 genes. Turtles (Chiari et al., 2012)
- 1185 genes. Molluscs (Smith et al. 2011)
- 1720 genes. Rice (Cranston et al. 2007)
- 2970 genes. Seed plants (Lee et al. 2011)
- >8000 genes. Birds (Jarvis et al. 2014)
- 259 genes. Birds (Prum et al. 2015)
- 859 genes. Seed plants (Wickett et al. 2014)

Concatenate genes to get more information

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5

More information (all the genes together)

Combining gene trees (using conflict as information)

Each gene contributes individually

Assume one underlying tree

Triumphant phylogenomics

EXPLORING UNDERLYING MOLECULAR PATTERNS AND PROCESSES

Caryophyllales

- >12,500 species in 39 families
- extreme disparity in life history and ecology

Carnivory

Cold environments

Photosynthetic modifications

Morphological modifications

Duplications in carnivores

Walker et al. 2017

4 duplications associated with the evolution of carnivory

Duplications and diversification

- It has been suggested that diversification is associated with genome duplications

Are there diversification shifts associated with genome duplication?

Are there climatic shifts associated with genome duplication?

Caryophyllales: annual mean temperature

Nyctaginaceae, Phytolaccaceae, etc.

Portulacaceae, Montiaceae, etc.

Caryophyllaceae

5036 taxa

Amaranthaceae

Summary of biological results

- Duplications are not associated with faster speciation
- Duplications occur before increases in speciation
- Many duplications associated with expanded climate ranges

There are cracks on the horizon...

Duplications in carnivores

Walker et al. 2017

7 duplications associated with the evolution of carnivory

Duplications in carnivores

Walker et al. 2017

7 duplications associated with the evolution of carnivory

Nyctaginia capitata

Mirabilis multiflora

Abronia umbellata

Dunn et al. 2008

Alternative views

Just showed you this one
$/$

Schierwater et al. (2009)

15 mitochondrial and 34 nuclear genes GTR and WAG models

Dunn et al. (2008)
6 mitochondrial and 144 nuclear genes WAG and CAT models

Philippe et al. (2009)
128 nuclear genes
CAT model

Porifera

Placozoa

Cnidaria

Ctenophora

Bilateria

Metazoan phylogeny using 242 genes

Sequenced the whole genome

Is data the problem?

Ryan et al. 2013

Genomic data do not support comb jellies
as the sister group to all other animals
Davide Pisani, Walker Pett, Martin Dohrmann, Roberto Feuda, Omar Rota-Stabelli, Hervé Philippe, Nicolas Lartillot, and Gert Wörheide

Are molecular

 models the problem?PNAS 2015 December, 112 (50) 15402-15407. https://doi.org/10.1073/pnas. 1518127112

Building a more complete view of the Tree of Life

Open Tree of Life tried to accommodate this but is there a way to resolve any of this confidently?

© The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syw101
Advance Access publication November 16, 2016
Bayes Factors Unmask Highly Variable Information Content, Bias, and Extreme Influence in Phylogenomic Analyses

Jeremy M. Brown ${ }^{1, *}$ and Robert C. Thomson ${ }^{2}$

Contentious relationships in phylogenomic studies can be driven by a handful of genes

Supermatrix

Supermatrix					
	Gene1	Gene2	Gene3	$\ldots \ldots$	Gene $_{i}$

d

Xing-Xing Shen ${ }^{1}$, Chris Todd Hittinger ${ }^{2}$ and Antonis Rokas ${ }^{1 \star}$

Outlying genes
Should we do two (or few) topology tests?

Coalescent topologies were favored for biological reasons
Supermatrix topologies were assumed to reflect error
Two topology comparisons exposed "outlier" genes
When removed, supermatrix topologies match coalescent topologies

Walker et al. in press

Important lessons

Just concatenation and gene tree / species tree (ASTRAL) are probably not going to cut it

Systematic error

- Researchers need to be significantly more careful about the underlying data
- Check for errors
- in homology/orthology
- Alignment
- Heterogeneity in molecular evolution

Biological sources of error

- Gene duplication and loss
- ILS
- Hybridization

Potential "outlier" genes

- One or a few genes can drive phylogenetic inference
- Especially problematic with concatenation

Can we take a different approach to phylogenomic data analysis?

Edge-based look at plants

Wickett et al. 2014 initial 1KP paper

Conducted ASTRAL and supermatrix analyses on many different datasets

ASTRAL and supermatrix trees are largely congruent but disagree
This didn't settle all the arguments

Phylotranscriptomic analysis of the origin and early diversification of land plants

Norman J. Wickett ${ }^{\text {a,b,1,2 }}$, Siavash Mirarab ${ }^{\text {c,1 }}$, Nam Nguyen ${ }^{\text {c }}$, Tandy Warnow ${ }^{\text {c }}$, Eric Carpenter ${ }^{\text {d }}$, Naim Matascie ${ }^{\mathrm{e}, \mathrm{f}}$, Saravanaraj Ayyampalayam ${ }^{\text {g }}$, Michael S. Barker ${ }^{\text {f }}$, J. Gordon Burleigh ${ }^{\text {h }}$, Matthew A. Gitzendanner ${ }^{\text {h,i }}$, Brad R. Ruhfel ${ }^{\text {h,j,k }}$, Eric Wafula ${ }^{1}$, Joshua P. Der ${ }^{1}$, Sean W. Graham ${ }^{m}$, Sarah Mathews ${ }^{\text {n }}$, Michael Melkonian ${ }^{\circ}$, Douglas E. Soltis ${ }^{\text {h,i,k }}$, Pamela S. Soltis ${ }^{\text {h,i,k }}$, Nicholas W. Miles ${ }^{\text {k }}$, Carl J. Rothfels ${ }^{\text {p,q }, ~ L i s a ~ P o k o r n y ~}{ }^{\text {p,r }}$, A. Jonathan Shaw ${ }^{\text {p }}$, Lisa DeGironimo ${ }^{\text {s }}$, Dennis W. Stevensons, Barbara Surek ${ }^{\text { }}$, Juan Carlos Villarreal ${ }^{\text {t }}$, Béatrice Roure ${ }^{\mathrm{u}}$, Hervé Philippe ${ }^{\mathrm{u}, \mathrm{v}}$, Claude W. dePamphilis ${ }^{\mathbf{1}}$,

Sister to land plants

Zygn-sister
(Timme et al 2012)

(Karol et al 2001)

ANA-grade angiosperms

(Qiu et al 2010)

Bryophytes

Lv-basal

Moss + Lv

Bryo monophy.

Hw-basal (Qiu et al 1998) (Chang \& Graham 2011) (Renzaglia et al 2000) (Nishiyama et al 2004) (Nickrent et al 2000)

Gymnosperms

Angiosperms

Eudi + Mag
(Lee et al 2011)
Eudi + Mag/Chl (Burleigh et al 2009)

Mono + Eudi
(Soltis et al 2011)

ANA-grade angiosperms

Analyses on these data

Look at the nucleotide data

852 gene regions

$3^{\text {rd }}$ positions removed because of molecular evolution issues with Selaginella

Take an edge-based view of the reconstruction of the relationships without requiring the genes to share topology beyond the edge of interest

Each gene is partially overlapping in taxonomic coverage
Answering the question: What does the information in this dataset suggest for the resolution of several clades?

Work with: Joseph Walker, Joseph Brown, Nat Hale (and me)

Gene tree examination exposes errors

Examine trees for systematic error

- Crazy outgroup/ingroup issues
- Really long branches

Analyses

Instead of examining one or a few topologies

- Check concordance and conflict with ML gene trees (can filter on support)
- Constrain topologies based on the edges we are interested in and their alternatives

Which constraint had the highest likelihood (and > $2 \operatorname{Lnl}$)?

Check every gene
Count genes
Sum $\Delta L n l$
Must have necessary taxa
Can't have crazy
outgroup/ingroup

Why not fixed topologies?

Several processes underlie these trees
As we incorporate more taxa or go deeper in the tree, we are likely to include even more complexity

Analyses again...

These are the better vs the alternatives and are concordant with the ML tree (so there isn't some even better alternative)

Analyses again...

These are the better vs the alternatives and are concordant with the ML tree (so there isn't some even better alternative)

Major clade	Resolutions	Genes	Genes $(>2 \ln \mathrm{~L})$	DlnL	DlnL >2
Eudicots	Magnoliids+eudicots*	114	98	1223.4	1204.3
	Monocots+eudicots	66	49	541.5	526.5
	Monocots+magnoliids	90	58	453.3	425.5

others+uninform.

Many that were in conflict are uninformative (weakly in conflict, weird relationships, etc) or represent very minority relationships

aruma henry

Zea mays Sorghum bicolor Brachypodium distachyon Oryza sativa
Sabal bermudana
Yucca filamentosa
Smilax bona-nox
Colchicum autumnale
Dioscorea villosa
Acorus americanus

Magnoliids are sister to eudicots

Amborella is sister to Angiosperms

Relationships within Gymnosperms are not clear

Gymnosperms are monophyletic

Bryophytes are not monophyletic

Of those trees that support...

127

filtered

how many support...

and of those, how many support...
$2 \mid n L$
\square others

Conclusions

By examining individual relationships we may be able to more confidently make conclusions regarding datasets and relationships

It is probably unreasonable to assume that all genes will speak to all the edges of a tree

- Rate of evolution
- Gene specific evolutionary processes

These approaches explored here are just the first steps, but

- They are tractable
- They are easily extensible
- They support a great deal of complexity

Questions remain

- Are these consistent with the coalescent?

Look for more coming soon!

Do you want to do anything that is here?

Check out the github and bitbucket under the

- User: blackrim
- Organization: FePhyFoFum

phyparts

- General tool for conflict and concordance
- If you have duplications
- https://bitbucket.org/blackrim/phyparts

phyx

- Many tools but pxbp can be useful if you have mostly (all) overlapping taxa
- https://github.com/FePhyFoFum/phyx

gophy

- New tool for intended to be faster and more efficient
- https://github.com/FePhyFoFum/gophy

Look for more things coming out of the lab
 over the next couple months

Acknowledgements

- Funding sources
- National Science Foundation
- DEB
- ABI
- University of Michigan
- Collaborators
- Smith lab
- Grad students
- Joseph Walker
- Drew Larson
- Lijun Zhao
- Postdoc
- Greg Stull
- Ning Wang
- Oscar Vargas
- Diego Serrano
- Undergrads
- Sonia Ahluwalia
- Julia Olivieri
- EJ Huang

blackrim.org
- Former postdocs
- Ya Yang
- James Pease
- Joseph Brown
- Cody Hinchliff
- Michael Moore
- Sam Brockington
- Douglas Soltis
- Pam Soltis
- All the Open Tree of Life folks

