Conflict and concordance in phylogenomic datasets

DR. STEPHEN A. SMITH UNIVERSITY OF MICHIGAN

S

Molecular data availability

Genbank Bases

Molecular data availability (with whole genomes)

All GigaSci

Article Contents

Abstract

Supplementary data

ACCEPTED MANUSCRIPT

10KP: A Phylodiverse Genome Sequencing Plan 👌

Shifeng Cheng ☎, Michael Melkonian, Stephen A Smith, Samuel Brockington, John M Archibald, Pierre-Marc Delaux, Fay-wei Li, Barbara Melkonian, Evgeny V Mavrodiev, Wenjing Sun ... Show more

Author Notes

GigaScience, giy013, https://doi.org/1 **Published:** 20 February 2018

Freshwater alga in the genus Zygnema would be one target of sequencing project. NORBERT HÜLSMANN/FLICKR (CC BY-NC-SA 2.0)

Plant scientists plan massive effort to sequence 10,000 genomes

By Dennis Normile | Jul. 27, 2017, 8:00 AM

Large datasets with many genes

Typical phylogenetic analyses

- 1-10 genes
- 17 genes. Plants (Soltis et al. 2011)
- 19 genes. Birds (Hackett et al. 2007)

Transcriptomic and genomic phylogenetic analyses

- 140 genes. Metazoa (Dunn et al. 2008)
- 242 genes. Metazoa (Ryan et al. 2013)
- 248 genes. Turtles (Chiari et al., 2012)
- 1185 genes. Molluscs (Smith et al. 2011)
- 1720 genes. Rice (Cranston et al. 2007)
- 2970 genes. Seed plants (Lee et al. 2011)
- >8000 genes. Birds (Jarvis et al. 2014)
- •259 genes. Birds (Prum et al. 2015)
- 859 genes. Seed plants (Wickett et al. 2014)

Concatenate genes to get more information

---- L. morrowii

Combining gene trees (using conflict as information)

Each gene contributes individually

Triumphant phylogenomics

EXPLORING UNDERLYING MOLECULAR PATTERNS AND PROCESSES

Broad patterns

Caryophyllales

- >12,500 species in 39 families
- extreme disparity in life history and ecology

Carnivory

Cold environments

Photosynthetic modifications

Morphological modifications

Genome duplications in Caryophyllales

- 168 species
- 736 gene regions used for inference (from thousands identified)
- 26 duplications
- Yang et al. 2017

Duplications in carnivores

Walker et al. 2017

4 duplications associated with the evolution of carnivory

Duplications and diversification

• It has been suggested that **diversification** is associated with **genome duplications**

Are there diversification shifts associated with genome duplication?

Are there climatic shifts associated with genome duplication?

Caryophyllales: annual mean temperature

Stephen A. Smith

Summary of biological results

 Duplications are not associated with faster speciation

 Duplications occur before increases in speciation

 Many duplications associated with expanded climate ranges

There are cracks on the horizon...

Duplications in carnivores

Walker et al. 2017

7 duplications associated with the evolution of carnivory

Duplications in carnivores

Walker et al. 2017

7 duplications associated with the evolution of carnivory

Ctenophores Sponges

Jellyfish

Bilateria

Alternative views

Metazoan phylogeny using 242 genes

Ryan et al. 2013

Genomic data do not support comb jellies as the sister group to all other animals

Davide Pisani, Walker Pett, Martin Dohrmann, Roberto Feuda, Omar Rota-Stabelli, Hervé Philippe, Nicolas Lartillot, and Gert Wörheide

PNAS 2015 December, 112 (50) 15402-15407. https://doi.org/10.1073/pnas.1518127112

Are molecular models the problem?

Building a more complete view of the Tree of Life

Open Tree of Life tried to accommodate this but is there a way to resolve any of this *confidently*?

Stephen A. Smith

Bayes Factors Unmask Highly Variable Information Content, Bias, and Extreme Influence in Phylogenomic Analyses

JEREMY M. BROWN 1,* and Robert C. Thomson 2

Contentious relationships in phylogenomic studies can be driven by a handful of genes

В

Α

Coalescent topologies were favored for biological reasons Supermatrix topologies were assumed to reflect error Two topology comparisons exposed "outlier" genes When removed, supermatrix topologies match coalescent topologies

Walker et al. in press

Important lessons

Just concatenation and gene tree / species tree (ASTRAL) are probably not going to cut it

Systematic error

- Researchers need to be significantly more careful about the underlying data
- Check for errors
 - in homology/orthology
 - Alignment
 - Heterogeneity in molecular evolution

Biological sources of error

- Gene duplication and loss
- ILS
- Hybridization

Potential "outlier" genes

- One or a few genes can drive phylogenetic inference
- Especially problematic with concatenation

Can we take a different approach to phylogenomic data analysis?

Wickett et al. 2014 initial 1KP paper

Conducted ASTRAL and supermatrix analyses on many different datasets

ASTRAL and supermatrix trees are largely congruent but disagree

This didn't settle all the arguments

Phylotranscriptomic analysis of the origin and early diversification of land plants

Norman J. Wickett^{a,b,1,2}, Siavash Mirarab^{c,1}, Nam Nguyen^c, Tandy Warnow^c, Eric Carpenter^d, Naim Matasci^{e,f}, Saravanaraj Ayyampalayam^g, Michael S. Barker^f, J. Gordon Burleigh^h, Matthew A. Gitzendanner^{h,i}, Brad R. Ruhfel^{h,j,k}, Eric Wafula^l, Joshua P. Der^l, Sean W. Graham^m, Sarah Mathewsⁿ, Michael Melkonian^o, Douglas E. Soltis^{h,i,k}, Pamela S. Soltis^{h,i,k}, Nicholas W. Miles^k, Carl J. Rothfels^{p,q}, Lisa Pokorny^{p,r}, A. Jonathan Shaw^p, Lisa DeGironimo^s, Dennis W. Stevenson^s, Barbara Surek^o, Juan Carlos Villarreal^t, Béatrice Roure^u, Hervé Philippe^{u,v}, Claude W. dePamphilis^l, Tao Chen^w, Michael K. Deyholos^d, Regina S. Baucom^x, Toni M. Kutchan^y, Megan M. Augustin^y, Jun Wang^z, Yong Zhang^v, Zhijian Tian^z, Zhixiang Yan^z, Xiaolei Wu^z, Xiao Sun^z, Gane Ka-Shu Wong^{d,z,aa,2}, and James Leebens-Mack^{g,2}

Matrix type	Supermatrix					ASTRAL				
Alignment	AA	DNA to AA			AA	AA DNA to AA		DNA		
Codon positions	NA	1 and 2	all	NA	NA	1 and 2	all	NA		
Sister to land plants Zygnematophyceae-sister Charales-sister Coleochaetales-sister										
Bryophytes Mosses + liverworts Bryophytes monophyletic Hornworts-sister Liverworts-basal Hornworts-basal										
Gymnosperms Gnepine Conifers monophyletic Gnetifer Gnetales-sister										
Angiosperms Eudicots + magnoliids Eudicots + mag/Chlor Magnoliids + Chloranthales Mag + Chlor, monocots Monocots + eudicots										
ANA-grade angiosperms Amborella + Nuphar Amborella-sister	untrim.unpart 50genes.unpart 50genes50sites.unpart 50genes50sites.part 50genes50sites.gamma.part 50genes50sites.gamma.unpart 50genes50sites.25X.unpart 50genes50sites.25X.unpart 604genes.trimExt.unpart 604genes.trimExt.gamma.unpart 604genes.trimExt.Bayes.CAT	untrim.unpart 50genes50sites.unpart 50genes50sites.unpart 50genes50sites.gamma.part 50genes50sites.gamma.part 50genes50sites.25X.unpart 50genes50sites.25X.unpart 604genes.trimExt.unpart 604genes.trimExt.gamma.unpart 604genes.trimExt.Bayes.CATGTR	untrim.unpart 50genes50sites.unpart 50genes50sites.unpart 50genes50sites.gamma.part 50genes50sites.gammatpart 50genes50sites.25X.unpart 50genes33taxa.unpart 604genes.trimExt.unpart 604genes.trimExt.gamma.unpart	50genes50sites.unpart 50genes50sites25X.unpart	50genes.25X 50genes.25X 50genes33taxa	untrim a untrim.gamma 50genes.25X 50genes33taxa	untrim a 50genes 25X 50genes.25X	50genes.25X		
	Strong Support	Weak Support	Compatible (Weak Rejection)		Strong Rejection					

Look at the nucleotide data

852 gene regions

3rd positions removed because of molecular evolution issues with Selaginella

Take an edge-based view of the reconstruction of the relationships without requiring the genes to share topology beyond the edge of interest

Each gene is partially overlapping in taxonomic coverage

Answering the question: What does the information in **this dataset** suggest for the resolution of several clades?

Work with: Joseph Walker, Joseph Brown, Nat Hale (and me)

Gene tree examination exposes errors

Analyses

Instead of examining one or a few topologies

- Check concordance and conflict with ML gene trees (can filter on support)
- Constrain topologies based on the edges we are interested in and their alternatives

Why not fixed topologies?

Several processes underlie these trees

As we incorporate more taxa or go deeper in the tree, we are likely to include even more complexity

Analyses again...

These are the better vs the alternatives and are concordant with the ML tree (so there isn't some even better alternative)

Analyses again...

These are the better vs the alternatives and are concordant with the ML tree (so there isn't some even better alternative)

Allamanda cathartica

Major clade	Resolutions	Genes	Genes $(> 2 \ln L)$	DlnL	DlnL > 2	
Horworts	Hornworts sister*	110	83	677.6	654.1	
	Liverworts sister	56	41	294.1	280.8	
	Mosses+liverworts	81	40	228.9	190.2	
	All monophyly	81	37	185.3	148.5	
Gymnosperms	monophyly*	288	264	7259.0	7233.8	
	Gnetum sister	45	31	229.8	216.0	
	Cycas sister	39	18	120.3	105.2	
Gymno relat.	Gnepine*	107	85	1017.2	994.4	
	conifers	93	79	800.0	787.2	
	Gnetifers	134	55	288.1	217.8	
	Gnetales sister	76	40	211.2	176.3	
Amborella	$Amborella \ sister^*$	184	152	1501.1	1470.0	
	Amborella + Nuphar	118	75	564.2	526.3	
	Nuphar sister	111	62	392.2	345.2	
Eudicots	Magnoliids+eudicots*	114	98	1223.4	1204.3	
	Monocots+eudicots	66	49	541.5	526.5	
	Monocots+magnoliids	90	58	453.3	425.5	

In this dataset...

Magnoliids are sister to eudicots

Amborella is sister to Angiosperms

Relationships within Gymnosperms are not clear

Gymnosperms are monophyletic

Bryophytes are not monophyletic

By examining individual relationships we may be able to more confidently make conclusions regarding *datasets* and *relationships*

It is probably unreasonable to assume that all genes will speak to all the edges of a tree

- Rate of evolution
- Gene specific evolutionary processes

These approaches explored here are just the first steps, but

- They are tractable
- They are easily extensible
- They support a great deal of complexity

Questions remain

• Are these consistent with the coalescent?

Look for more coming soon!

Do you want to do anything that is here?

Check out the github and bitbucket under the

- User: blackrim
- Organization: FePhyFoFum

phyparts

- General tool for conflict and concordance
- If you have duplications
- https://bitbucket.org/blackrim/phyparts

phyx

- Many tools but pxbp can be useful if you have mostly (all) overlapping taxa
- https://github.com/FePhyFoFum/phyx

gophy

- New tool for intended to be faster and more efficient
- https://github.com/FePhyFoFum/gophy

Look for more things coming out of the lab over the next couple months

Acknowledgements

- Funding sources
 - National Science Foundation
 - DEB
 - ABI
 - University of Michigan
- Collaborators
 - Smith lab
 - Grad students
 - Joseph Walker
 - Drew Larson
 - Lijun Zhao
 - Postdoc
 - Greg Stull
 - Ning Wang
 - Oscar Vargas
 - Diego Serrano
 - Undergrads
 - Sonia Ahluwalia
 - Julia Olivieri
 - EJ Huang

https://github.com/blackrim/ blackrim.org

Former postdocs

- Ya Yang
- James Pease
- Joseph Brown
- Cody Hinchliff
- Michael Moore
- Sam Brockington
- Douglas Soltis
- Pam Soltis
- All the Open Tree of Life folks

Teaching Evo and Tech