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Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Relationship between population genetics and phylogenetics

I Population genetics: Study of genetic variation within a
population

I Phylogenetics: Use genetic variation between taxa (species,
populations) to infer evolutionary relationships

I So far, we’ve assumed:
I Each taxon is represented by a single sequence – this is often

called “exemplar sampling”
I We have data for a single gene and wish to estimate the

evolutionary history for that gene (the gene tree or gene
phylogeny)
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Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Relationship between population genetics and phylogenetics

I Given current technology, we could do much more:
I Sample many individuals within each taxon (species,

population, etc.)
I Sequence many genes for all individuals

I Need models at two levels:
I Model what happens within each population (standard

population genetics)
I Apply within-population models to each population

represented on a phylogeny (more recent work)
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Wright-Fisher Model

I Assumptions:

I Population of 2N gene copies

I Discrete, non-overlapping generations of equal size

I Parents of next generation of 2N genes are picked randomly
with replacement from preceding generation (genetic
differences have no fitness consequences)

I Probability of a specific parent for a gene in the next
generation is 1

2N
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Why study population genetics?
Wright-Fisher Model
The Coalescent

The Coalescent Model

I Discrete Time Coalescent

I P(two genes have same parent in the previous generation) is
1

2N

I Number of generations since two genes first shared a common
ancestor ∼ Geometric( 1

2N )

I Number of generations since at least two genes in a sample of

k shared a common ancestor ∼ Geometric( k(k−1)
4N )
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Number of generations since at least two genes in a sample of k shared a common

ancestor ∼ Geometric( k(k−1)
4N )

I Define Gk,k to be the probability that k genes have k distinct
ancestors in the previous generation. Then

Gk,k =

(
2N − 1

2N

)(
2N − 2

2N

)
· · ·

(
2N − (k − 1)

2N

)
=

(
1− 1

2N

)(
1− 2

2N

)
· · ·

(
1− k − 1

2N

)
= 1−

(
1 + 2 + 3 + · · ·+ (k − 1)

2N

)
+O

(
1

N2

)
= 1− k(k − 1)

4N
+O

(
1

N2

)
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Number of generations since at least two genes in a sample of k shared a common

ancestor ∼ Geometric( k(k−1)
4N )

I Therefore, the probability that at least two genes share a
common ancestor in the previous generation is

1− Gk,k =
k(k − 1)

4N
+O

(
1

N2

)

I Since this is the same in each generation, we have that the
number of generations until at least two genes in a sample of
k shared a common ancestor ∼ Geometric( k(k−1)

4N )

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Number of generations since at least two genes in a sample of k shared a common

ancestor ∼ Geometric( k(k−1)
4N )

I Therefore, the probability that at least two genes share a
common ancestor in the previous generation is

1− Gk,k =
k(k − 1)

4N
+O

(
1

N2

)

I Since this is the same in each generation, we have that the
number of generations until at least two genes in a sample of
k shared a common ancestor ∼ Geometric( k(k−1)

4N )

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Continuous-time Coalescent – Kingman’s Approximation

I Kingman (1982a, b, c) considered the case where N (population
size) is very large relative to k (sample size).

I Then, we can ignore the terms that are O(1/N2) – this amounts to
assuming that three or more genes coalescing in the same
generation happens relatively rarely in comparison to two genes
coalescing in one generation.

I We have

I Time since two gene copies had a common ancestor ∼
exponential ( µ = 2N )

I Time to coalescence of k gene copies into k − 1 ∼
exponential( µ = 4N/(k(k − 1)) )

where time, T , is measured in number of generations.

I This is generally a very good approximation, provided N is large
enough.

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Continuous-time Coalescent – Kingman’s Approximation

I Kingman (1982a, b, c) considered the case where N (population
size) is very large relative to k (sample size).

I Then, we can ignore the terms that are O(1/N2) – this amounts to
assuming that three or more genes coalescing in the same
generation happens relatively rarely in comparison to two genes
coalescing in one generation.

I We have

I Time since two gene copies had a common ancestor ∼
exponential ( µ = 2N )

I Time to coalescence of k gene copies into k − 1 ∼
exponential( µ = 4N/(k(k − 1)) )

where time, T , is measured in number of generations.

I This is generally a very good approximation, provided N is large
enough.

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Continuous-time Coalescent – Kingman’s Approximation

I Kingman (1982a, b, c) considered the case where N (population
size) is very large relative to k (sample size).

I Then, we can ignore the terms that are O(1/N2) – this amounts to
assuming that three or more genes coalescing in the same
generation happens relatively rarely in comparison to two genes
coalescing in one generation.

I We have

I Time since two gene copies had a common ancestor ∼
exponential ( µ = 2N )

I Time to coalescence of k gene copies into k − 1 ∼
exponential( µ = 4N/(k(k − 1)) )

where time, T , is measured in number of generations.

I This is generally a very good approximation, provided N is large
enough.

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Why study population genetics?
Wright-Fisher Model
The Coalescent

Continuous-time Coalescent – Kingman’s Approximation

I To generate a genealogy of k genes under Kingman’s
coalescent:

I Draw an observation from an exponential distribution with
mean µ = 4N/(k(k − 1)). This will be the time of the first
coalescent event (looking from the present backwards in time).

I Pick two lineages at random to coalescence.

I Decrease k by 1.

I If k = 1, stop. Otherwise, repeat these steps.
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Example Genealogies Under Kingman’s Coalescent

t15
t10
t4
t16
t12
t11
t20
t5
t1
t2
t19
t18
t3
t14
t8
t7
t17
t13
t6
t9

t14
t13
t5
t16
t3
t15
t17
t9
t1
t8
t6
t2
t18
t4
t20
t11
t12
t7
t10
t19

t11
t14
t17
t8
t15
t3
t13
t1
t19
t18
t5
t6
t2
t7
t4
t12
t9
t16
t20
t10

t10
t3
t19
t5
t6
t12
t15
t18
t17
t9
t7
t11
t1
t8
t13
t14
t16
t20
t2
t4

t18
t9
t19
t5
t15
t13
t7
t20
t4
t14
t11
t12
t2
t6
t8
t17
t10
t3
t1
t16

t19
t17
t8
t2
t12
t7
t4
t9
t16
t14
t5
t1
t20
t15
t10
t13
t18
t6
t3
t11
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies

I Two measures of the size of a genealogy are commonly
defined:

I TMRCA = the time of the most recent common ancestor of all
lineages sampled

I Ttotal = the total time represented by the geneaology

I Of interest are the mean, variance, and probability distribution
of these.
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies

I Define Ti to be the time in the history of the sample during
which there were exactly i ancestral lineages.

I Note that TMRCA =
∑k

i=1 Ti and Ttotal =
∑k

i=1 iTi

T2

T3

T4

T5
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - TMRCA

I Note that TMRCA =
∑k

i=1 Ti and Ti ∼ Exp(µ = 4N
i(i−1))

I Therefore, the mean is

E (TMRCA) =
k∑

i=2

E (Ti ) =
k∑

i=2

4N

i(i − 1)

= 4N
k∑

i=2

(
1

i − 1
− 1

i

)
= 4N

(
1− 1

k

)
I If time is measured in units of 2N generations (coalescent

units), then the mean is 2(1− 1
k )
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - TMRCA

I Mean time to coalescence of all lineages is

4N

(
1− 1

k

)
I Notes:

I When k is large, it takes ≈ 4N generations to reach the
MRCA

I When k = 2, it takes ≈ 2N generations to reach the MRCA

I For a large sample, much of the total time represented in the
genealogy will be spent waiting for the last coalescence to
occur.
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - TMRCA

I We can also show that Var(TMRCA) = (4N2)
∑k

i=2
1

i2(i−1)2

I We can show that as the sample size k →∞, Var(TMRCA)
converges to 4π2/3− 12 ≈ 1.16 (in coalescent units).

I Since TMRCA is the sum of k − 1 independent exponential
random variables Ti , we have the following distribution for
TMRCA:

fTMRCA
(t) =

k∑
i=2

(
i

2

)
e−( i

2)t
k∏

j=2,j 6=i

(j
2

)(j
2

)
−

( i
2

)
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - Ttotal

I Note that Ttotal =
∑k

i=1 iTi and Ti ∼ Exp(µ = 4N
i(i−1))

I Therefore, the mean is

E (Ttotal) =
k∑

i=2

iE (Ti ) =
k∑

i=2

i
4N

i(i − 1)

= 4N
k−1∑
i=1

1

i

I If time is measured in units of 2N generations (coalescent
units), then the mean is 2

∑k−1
i=1

1
i
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - Ttotal

I We can also show that Var(Ttotal) = (2N2)

[
4

∑k−1
i=1

1
i2

]
I Note that as the sample size k →∞, Var(Ttotal) converges to

2π2/3 ≈ 6.58 (in coalescent units).

I Since Ttotal is the sum of k − 1 independent exponential
random variables iTi , we have the following distribution for
Ttotal :

fTtotal
(t) =

k∑
i=2

i − 1

2
e−

i−1
2

t
k∏

j=2,j 6=i

j − 1

j − i
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies - TMRCA and Ttotal
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies

I We need one more quantity to be able to link our population
genetics model to our phylogenetic model – the probability that a
specified number of coalescent events have occurred in a fixed
amount of time, t.

I The probability that u lineages coalesce into v lineages in time t is
given by (Tavare, 1984; Watterson, 1984; Takahata and Nei, 1985;
Rosenberg, 2002)

Puv (t) =
u∑

j=v

e−j(j−1)t/2 (2j − 1)(−1)j−v

v !(j − v)!(v + j − 1)

j−1∏
y=0

(v + y)(u − y)

u + y
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Why study population genetics?
Wright-Fisher Model
The Coalescent

Properties of Genealogies

I When u and v are small, these are easy to compute. For example,

P21(t) = probability that 2 lineages coalescence to 1 lineage in time t

= probability of 1 coalescent event in time t when k=2

= P(T ≤ t),where T ∼ Exp(µ =
4N

2(2− 1)
)

=

∫ t

0

1

2N
e−

x
2N dx = 1− e−

t
2N

I Similarly,

P22(t) = prob. of no coalescence in time t when k=2

= P(T > t)

=

∫ ∞

t

1

2N
e−

x
2N dx = e−

t
2N
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Gene Tree Topology Distributions
Applications of the Gene Tree Topology Distribution
Gene Tree Branch Length Distributions

The Coalescent Model Along a Species Tree

I So far, we’ve considered the coalescent process within a single
population.

I A phylogenetic tree consists of many populations followed
throughout evolutionary time:
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Gene Tree Topology Distributions
Applications of the Gene Tree Topology Distribution
Gene Tree Branch Length Distributions

The Coalescent Model Along a Species Tree

I Goal is to apply coalescent model across the phylogeny. The
basic assumption is that events that occur in one population
are independent of what happens in other populations within
the phylogeny.

I More specifically, given the number of lineages entering and
leaving a population, coalescent events within populations are
independent of one another.

I It is also important to recall an assumption we “inherit” from
our population genetics model: all pairs of lineages are equally
likely to coalesce within a population.
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The Coalescent Model Along a Species Tree

I When talking about gene tree distributions, there are two
cases of interest:

I The gene tree topology distribution

I The joint distribution of topologies and branch lengths

I Start with the simple case of 3 species with 1 lineage sampled
in each and look at the gene tree topology distribution
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

Example of gene tree probability computation (for simplicity, let’s use coalescent units
for our time scale):

(a) Prob = 1 − e−t ; (b), (c), (d) Prob = 1
3
e−t
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

I Thus, we have the following probabilities:

I Gene tree (A,(B,C)): prob = 1− e−t + 1
3e−t = 1− 2

3e−t

I Gene tree (B,(A,C)): prob = 1
3e−t

I Gene tree (C,(A,B)): prob = 1
3e−t

I Note: There are two ways to get the first gene tree. We call
these histories.

I The probability associated with a gene tree topology will be
the sum over all histories that have that topology.
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Example: Computation of Gene Tree Topology Probabilities for the 3-taxon Case

I What are these probabilities like as a function of t, the length
of time between speciation events?

B C A

(b)

prob = 1−exp(−t)

B C A

prob = (1/3)exp(−t)

B A C

prob = (1/3)exp(−t)

B C A

prob = (1/3)exp(−t) 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t (Coalescent Units)
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Example: A Slightly Larger Case

I Consider 4 taxa – the human-chimp-gorilla problem
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Coalescent Histories for the 4-taxon Example

I There are 5 possibilities for this example:
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Computing the Topology Distribution by Enumerating Histories

I In the general case, we have the following:
The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Degnan and Salter, Evolution, 2005
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Computing the Topology Distribution by Enumerating Histories

I In the general case, we have the following:
The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Degnan and Salter, Evolution, 2005
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Computing the Topology Distribution by Enumerating Histories

I The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Number of terms only known in special cases (Rosenberg, 2007)
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Computing the Topology Distribution by Enumerating Histories

I The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Multiply probabilities associated with history over internal branches
(once the number of lineages entering and leaving a branch is
known – which is what is given by the histories – coalescence
happens independently along branches)
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Computing the Topology Distribution by Enumerating Histories

I The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Probability of getting sequence of coalescent events that is
consistent with g
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Computing the Topology Distribution by Enumerating Histories

I The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Probability that u lineages coalescent into v in time tb
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Computing the Topology Distribution by Enumerating Histories

I The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

=
∑

histories

∏
b

wbPu(b),v(b)(tb)

Length of branch b
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34 J. H. DEGNAN AND L. A. SALTER

TABLE 2. The minimum number of gene trees needed to capture
90% of the gene tree distribution as a function of the type of sym-
metry of the species tree (a, maximally asymmetric; s, maximally
symmetric), the number of taxa (n), and branch lengths. In the first
three branch length columns, all branches have the indicated length.
The fourth and fifth columns have all branches with length 1.0
except the indicated branch. Note that the minimum number of gene
trees listed grows more slowly than the number of tree topologies
based on the number of taxa (see Table 3).

Sym-
metry n

Branch lengths

1.0 0.5 0.2 !1 " 0.01 !n#2 " 0.01

a 4 4 7 10 7 9
a 5 13 27 58 19 21
a 6 33 118 345 51 61
a 7 96 512 2239 140 155
s 4 4 10 12 10 10
s 5 15 35 62 21 26
s 6 38 144 441 63 87
s 7 140 869 3452 207 363

TABLE 3. The number of valid coalescent histories when the gene
tree and species tree have the same topology. The number of his-
tories is also the number of terms in the outer sum in equation (12).

Taxa

Number of histories

Asymmetric trees Symmetric trees Number of topologies

4 5 4 15
5 14 10 105
6 42 25 945
7 132 65 10,395
8 429 169 135,135
9 1430 481 2,027,025
10 4862 1369 34,459,425
12 58,786 11,236 13,749,310,575
16 9,694,845 1,020,100 6.190 $ 1015

20 1,767,263,190 100,360,324 8.201 $ 1021

FIG. 7. The exact probability of topological equivalence between
species and gene trees as a function of branch lengths and number
of taxa. Probabilities were computed for branch lengths between
0.01 and 5.00 in increments of 0.01. Only asymmetric trees were
used for this example. Symmetric trees show a very similar pattern
(results not shown).

APPLICATIONS

Probability of Topological Equivalence of Gene Trees and

Species Trees

Because the complete distribution of gene trees for a given

species tree is available, the probability that the gene tree

has the same topology as the species tree can be computed

directly. Figure 7 shows the probability that the gene tree is

topologically equivalent to the species tree when branch

lengths vary continuously from 0.01 to 5.00 (assuming all

branches have the same length) for different numbers of taxa.

This figure can also be used to determine the branch lengths

that would be necessary to have any desired probability that

the gene tree and species tree are topologically equivalent.

Note that even for moderately long branches, the probability

of topological equivalence quickly decreases with the number

of taxa.

Pamilo and Nei (1988) give a conservative upper bound

for this probability,

n#2 2
#! iP " 1 # e . (14)!A " #3i"1

From equation (12), the probability of any three-taxon gene

tree matching its species tree is 1 # , and the bound is#!i⅔e
based on decomposing an n-taxon species tree into n # 2

three-taxon trees, one for each internal branch, and treating

these trees as independent. Here each three-taxon tree con-

sists of an internal branch, its two descendent branches, and

its sister branch. For example, in the seven-taxon tree ex-

ample, the three-taxon tree corresponding to branch 5 has the

branches 2, 3, and 4, and could be represented as (2,(3,4)).

The closeness of this bound to the exact probability can

be evaluated for different tree shapes and sizes as well as

branch lengths using equation (12). Because the assumption

of independence is more nearly met, as Pamilo and Nei (1988)

note, when the branch lengths are larger, the bound is tighter

for trees with longer branches. The bound is also tighter for

trees that are more nearly symmetric (Fig. 8), because for

asymmetric trees lineages are more constrained in their order

of coalescence and are therefore less independent. Although

the bound is fairly close when the branch lengths are mod-

erately large, as the number of taxa increases and branch

lengths are held constant, the ratio of the bound to the exact

probability increases (Fig. 8). This indicates that the bound

is not asymptotically approaching the exact probability.

Notice that P%,!(G " %) and PA only refer to the probability
that a random gene tree has the same topology as the fixed

species tree. For a given observed gene tree, the coalescent

model does not provide a method for determining the prob-

ability that the species tree has the same topology as the gene

tree. Because the coalescent model treats the species tree as

a parameter, one could adopt a Bayesian point of view to

assign probabilities to species trees given gene trees. This

would require assigning a prior distribution on the space of

species trees, where the space would include branch lengths

as well as topologies.

Degnan and Salter, Evolution, 2005
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Applications of the Topology Distribution - Example 1

I Motivation: Paper by Ebersberger et al. 2007. Mol. Biol.
Evol. 24:2266-2276

I Examined 23,210 distinct alignments for 5 primate taxa:
Human, Chimp, Gorilla, Orangutan, Rhesus

I Looked at distribution of gene trees among these taxa -
observed strongly supported incongruence only among the
Human-Chimp-Gorilla clade.
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Applications of the Topology Distribution - Example 1

76.6% 11.4% 11.5%

Observed proportions of each
gene tree among ML phylogenies
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Applications of the Topology Distribution - Example 1

76.6% 11.4% 11.5%

Observed proportions of each
gene tree among ML phylogenies

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Gene Tree Topology Distributions
Applications of the Gene Tree Topology Distribution
Gene Tree Branch Length Distributions

Applications of the Topology Distribution - Example 1

76.6% 11.4% 11.5%

79.1% 9.9% 9.9%

Observed proportions of each
gene tree among ML phylogenies

Predicted proportions using
parameters from Rannala &
Yang, 2003.
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Applications of the Topology Distribution - Example 2

I In the previous example, one topology is clearly preferred

I Must the distribution always look this way?

I Examine entire distribution when the number of taxa is small
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Applications of the Topology Distribution - Example 2

I Consider 4 taxa: A, B, C, and D

I Species tree:

A B C D

z

y
x

A Species
Phylogeny

A B C D

B

Matching Tree (MT)

B A C D

Swapped Tree (ST)

A B C D

Symmetric

Tree 1 (S1)

A C B D

Symmetric

Tree 2 (S2)

A D B C

Symmetric

Tree 3 (S3)

I Look at probabilities of all 15 tree topologies for values of x,
y, and z
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Degnan and Rosenberg, PLoS Genetics, 2006

Rosenberg and Tao, Systematic Biology, 2008

I The existence of anomalous
gene trees has implications
for the inference of species
trees
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Applications of the Topology Distribution - Example 3

I What about mutation? How does this affect data analysis?

I The coalescent gives a model for determining gene tree
probabilities for each gene.

I View DNA sequence data as the result of a two-stage process:

I Coalescent process generates a gene tree topology.

I Given this gene tree topology, DNA sequences evolve along the
tree.
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Applications of the Topology Distribution - Example 3

I Given this model, how should inference be carried out?

I Hypothesis: As more data (genes) are added, the process of
estimating species trees from concatenated data can be
statistically inconsistent

I May fail to converge to any single tree topology if there are
many equally likely trees.

I May converge to the wrong tree when a gene tree that is
topologically incongruent with the species tree has the highest
probability.
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Applications of the Topology Distribution - Example 3

I Given this model, how should inference be carried out?

I Hypothesis: As more data (genes) are added, the process of
estimating species trees from concatenated data can be
statistically inconsistent

I May fail to converge to any single tree topology if there are
many equally likely trees.

I May converge to the wrong tree when a gene tree that is
topologically incongruent with the species tree has the highest
probability.
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Applications of the Topology Distribution - Example 3

x=0.2, y=1.0

Generate 100 gene
trees in COAL

Generate 100 gene
trees in COAL

Generate 100 gene
trees in COAL

Generate 100 gene
trees in COAL

.

.

.

.

.

.

.

.

.

.

.

Estimate species tree

Estimate species tree

Estimate species tree

Estimate species tree

Generate sequence data using Seq-Gen
Estimate gene tree using PAUP*

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Gene Tree Topology Distributions
Applications of the Gene Tree Topology Distribution
Gene Tree Branch Length Distributions

Applications of the Topology Distribution - Example 3
Simulation Study 1

0 2000 4000 6000

0.
0

0.
4

0.
8

Re
la

tiv
e 

Fr
eq

ue
nc

y MT; p=0.3017
S1; p=0.3004
ST; p=0.2931

A x = 0.01, y = 2.0

0 2000 4000 6000

0.
0

0.
4

0.
8

Number of Genes

Re
la

tiv
e 

Fr
eq

ue
nc

y

MT; p=0.2360
S1; p=0.2495
ST; p=0.2296

E x = 0.01, y = 1.0

0 2000 4000 6000

0.
0

0.
4

0.
8

MT; p=0.2548
S1; p=0.2412
ST; p=0.2236

B x = 0.05, y = 1.0

0 2000 4000 6000

0.
0

0.
4

0.
8

Number of Genes

MT; p=0.0788
S1; p=0.1208
ST; p=0.0753
S2; p=0.1053
S3; p=0.1053

F x = 0.05, y = 0.05

0 2000 4000 6000

0.
0

0.
4

0.
8

MT; p=0.2776
S1; p=0.2310
ST; p=0.2159

C x = 0.1, y = 1.0

0 2000 4000 6000

0.
0

0.
4

0.
8

Number of Genes

MT; p=0.0887
S1; p=0.1190
ST; p=0.0799
S2; p=0.1043
S3; p=0.1043

G x = 0.1, y = 0.05

0 2000 4000 6000

0.
0

0.
4

0.
8

MT; p=0.1334
S1; p=0.1335
ST; p=0.1038

D x = 0.1568, y = 0.1568

0 2000 4000 6000

0.
0

0.
4

0.
8

Number of Genes

MT; p=0.1038
S1; p=0.1051
ST; p=0.0791

H x = 0.25, y = 0.01

Stat 882: Statistical Phylogenetics - Lecture 6



Population Genetics Models
Coalescent Theory for Phylogenetic Inference

Gene Tree Topology Distributions
Applications of the Gene Tree Topology Distribution
Gene Tree Branch Length Distributions

Applications of the Topology Distribution - Example 3
Simulation Study 2
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Applications of the Topology Distribution - Example 3

I Performance of the Concatenation Approach:

I Can be statistically inconsistent when branch lengths in the
species phylogeny are sufficiently small

I May perform poorly even when branch lengths are only
moderately short

I What should we do? Need to design inference methods that
incorporate the coalescent process.
Dennis’s lecture next week
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Joint Density of Gene Tree Topology and Branch Lengths – An Example

Rannala and Yang 2003
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Gene Tree Branch Length Distributions

I We now have the following distributions
I p(g |S)
I f (g , t|S)

I We can thus, in theory, get the distributions of gene tree
branches by simply manipulating these quantities:

f (t|G ,S) =
f (g , t|S)

p(g |S)

I Integrating out branches which aren’t of interest gives joint or
marginal distributions

I Can even examine correlations between branch lengths
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Gene Tree Branch Length Distributions

I Complication: Region of integration will change for each
history within a given gene tree

I Branch length densities are then a mixture over histories

I For the case of four taxa, James Degnan and I have worked
out all joint and marginal distributions

I Simulate data and compare theoretical distribution to
observed distribution

I Correlations are also well-approximated by simulation
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Applications of Branch Length Distributions - Example 1

I Simulate 1,000,000
gene trees from species
tree
((A:1.0,B:1.0):1.0,(C:1.5,D:1.5):0.5);

I Of these, 449,599 had
the same topology as
the species tree

I Compare observed
distribution of branch
length connecting (A,B)
to root node to true
distribution

Density of T3−T1 given gene tree ((AB)(CD))

Number of generations
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I Good fit between observed
and true distributions
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Applications of Branch Length Distributions - Example 2

I Estimation of speciation times using information in gene trees
is often desirable

I Under the coalescent model (with no gene flow following
speciation), it must the case that gene divergence times
pre-date speciation times
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Figure 1: Example phylogeny showing both the species tree (bold lines) and the
gene tree (thin lines). Speciation events are marked by dotted horizontal lines,
and species tree branch lengths are the time intervals between these lines (the τi).
Coalescent events in the gene tree are marked with closed circles. In this paper,
we derive the distribution of T , the time interval between the last coalescent event
(reading the tree from bottom to top) and the first speciation event (reading the
tree from top to bottom). Note that three gene lineages exist prior to the first
speciation event in this example.

estimated using DNA sequence data for individual genes (Tavaré et al., 1997;
Fu, 1997; Tang et al., 2002). It is therefore of interest to understand the re-
lationship between speciation times and gene divergence times (Rosenberg
and Feldman, 2002).

In this paper, we consider the distribution of the time from the speciation
event at the root of the species tree, TD, to the gene coalescent time for the
most recent common ancestor (MRCA) of all genes in the sample, denoted by
TMRCA. We define T = TMRCA−TD, where time is measured from the present
to the past, and refer to this difference as the SG (species-gene) coalescent
time (see Figure 1). We extend previous work concerning the distribution of
the SG coalescent time (Takahata and Nei, 1985; Rosenberg and Feldman,
2002) to include population trees with an arbitrary number of tips, and we
examine the effects of species tree shape, species tree depth, and speciation

I What is the distribution of
this difference?

I How does it depend on
species tree shape (e.g.,
symmetry) and species tree
branch lengths?
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lationship between speciation times and gene divergence times (Rosenberg
and Feldman, 2002).

In this paper, we consider the distribution of the time from the speciation
event at the root of the species tree, TD, to the gene coalescent time for the
most recent common ancestor (MRCA) of all genes in the sample, denoted by
TMRCA. We define T = TMRCA−TD, where time is measured from the present
to the past, and refer to this difference as the SG (species-gene) coalescent
time (see Figure 1). We extend previous work concerning the distribution of
the SG coalescent time (Takahata and Nei, 1985; Rosenberg and Feldman,
2002) to include population trees with an arbitrary number of tips, and we
examine the effects of species tree shape, species tree depth, and speciation
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estimated using DNA sequence data for individual genes (Tavaré et al., 1997;
Fu, 1997; Tang et al., 2002). It is therefore of interest to understand the re-
lationship between speciation times and gene divergence times (Rosenberg
and Feldman, 2002).

In this paper, we consider the distribution of the time from the speciation
event at the root of the species tree, TD, to the gene coalescent time for the
most recent common ancestor (MRCA) of all genes in the sample, denoted by
TMRCA. We define T = TMRCA−TD, where time is measured from the present
to the past, and refer to this difference as the SG (species-gene) coalescent
time (see Figure 1). We extend previous work concerning the distribution of
the SG coalescent time (Takahata and Nei, 1985; Rosenberg and Feldman,
2002) to include population trees with an arbitrary number of tips, and we
examine the effects of species tree shape, species tree depth, and speciation
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Applications of Branch Length Distributions - Example 2

I When considering the distribution of the MRCA of a sample
of lineages is of interest, we can simplify computation of the
distribution

I Let T be the distribution of the difference between the
speciation time and the time of the MRCA of all lineages.
Note that

fT |S(t) =
k∑

n=2

Pr(L = n|S)Pn1(t)

where L is the random number of lineages available to
coalesce above the root of the species tree

I Pr(L = n|S) can be computed recursively in a peeling-type
algorithm

Efromovich and Kubatko, SAGMB, 2008
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Applications of Branch Length Distributions - Example 2

I A particular example
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Figure 3: The three five-taxon species trees studied by Pamilo and Nei (1988).
For tree (a), horizontal dashed lines delimit time intervals (measured in units of
2N generations) whose length is denoted by τi for branch i. In (b) and (c), the τi

are assumed to represent the appropriate intervals, although the dashed lines are
not shown. Although the total depths of the trees depicted here are identical, we
comparatively analyze several collections of branch lengths both with and without
the assumption of constant depth across topologies.

eages at the root (and as a result for T having the exponential distribution) is
0.56, while the probability of having three lineages is 0.42. Another interest-
ing observation is that the first branch alone may change the mean time up to
40%, while, according to the above discussion, the maximal possible change
over all possible triplets (τ1, τ2, τ3) is 60%. This observation emphasizes that
for an asymmetric tree the first branch is the most influential factor for the
SG coalescent time.

Figure 5 allows us to analyze the probability mass function Pn as a func-
tion in τ1. As expected, P2 rapidly increases as τ1 increases from 0 to 2. At
the same time, P3 has a mode as a function in τ1 and its range is smaller.
Also the calculation supports our preliminary conjecture that it is unlikely
to have five gene lineages at the root of the asymmetric tree (a). The latter
explains why the mean SG coalescent time changes only up to 40% as τ1

changes from 0.01 to infinity; recall (4).
The length τ2 of the second branch affects the density in a similar manner

for fixed τ1 and τ3, although the effect is dramatically less pronounced. The
interaction between the effects of these two branches on the probability mass
function Pn is exhibited in the top four diagrams of Figure 5. The top–
left diagram indicates that the probability of having just two gene lineages
becomes relatively large only for larger values of τ1 and, at the same time,

I When τ2 = τ3 = 1.0, we
have the following:
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Figure 4: Densities fT |Sa(t), calculated according to Equation (3) for the species
tree (a) shown in Figure 3. Different lines correspond to different lengths of the
first branch τ1, with τ2 = τ3 = 1 and all γi = 1, i = 1, 2, 3. The legend also shows
corresponding probabilities Pn = Pr(L = k|S) and mean times µT = E(T |S)
calculated by Equation (4). For instance, for the case τ1 = 0.01 the probability of
having two lineages at the root is 0.01 and the mean time to coalescence is 1.4.

the second branch has little influence on this probability. The situation
changes dramatically for the probability of having three gene lineages (see
the top–right diagram). Here τ2 plays an important role whenever τ1 is
small, but its role diminishes for larger values of τ1. The outcome is similar
for the probability of having four gene lineages, although any pronounced
relationship holds for even smaller values of τ1. Finally, the probability of
having five lineages is only around 0.1 even when both τ2 and τ1 are very
small. The influence of τ3 on all these probabilities is small, and thus we skip
discussion of the effect of τ3.

Now let us visualize effects of τ1 and τ2 on the mean SG coalescent time
as well as on the total time, shown in the two bottom diagrams in Figure
5. The expected SG coalescent time decreases as either τ1 or τ2 increases,
but the effect of τ1 is dominant. At the same time, the maximal decrease is
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eages at the root (and as a result for T having the exponential distribution) is
0.56, while the probability of having three lineages is 0.42. Another interest-
ing observation is that the first branch alone may change the mean time up to
40%, while, according to the above discussion, the maximal possible change
over all possible triplets (τ1, τ2, τ3) is 60%. This observation emphasizes that
for an asymmetric tree the first branch is the most influential factor for the
SG coalescent time.

Figure 5 allows us to analyze the probability mass function Pn as a func-
tion in τ1. As expected, P2 rapidly increases as τ1 increases from 0 to 2. At
the same time, P3 has a mode as a function in τ1 and its range is smaller.
Also the calculation supports our preliminary conjecture that it is unlikely
to have five gene lineages at the root of the asymmetric tree (a). The latter
explains why the mean SG coalescent time changes only up to 40% as τ1

changes from 0.01 to infinity; recall (4).
The length τ2 of the second branch affects the density in a similar manner

for fixed τ1 and τ3, although the effect is dramatically less pronounced. The
interaction between the effects of these two branches on the probability mass
function Pn is exhibited in the top four diagrams of Figure 5. The top–
left diagram indicates that the probability of having just two gene lineages
becomes relatively large only for larger values of τ1 and, at the same time,
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Figure 4: Densities fT |Sa(t), calculated according to Equation (3) for the species
tree (a) shown in Figure 3. Different lines correspond to different lengths of the
first branch τ1, with τ2 = τ3 = 1 and all γi = 1, i = 1, 2, 3. The legend also shows
corresponding probabilities Pn = Pr(L = k|S) and mean times µT = E(T |S)
calculated by Equation (4). For instance, for the case τ1 = 0.01 the probability of
having two lineages at the root is 0.01 and the mean time to coalescence is 1.4.

the second branch has little influence on this probability. The situation
changes dramatically for the probability of having three gene lineages (see
the top–right diagram). Here τ2 plays an important role whenever τ1 is
small, but its role diminishes for larger values of τ1. The outcome is similar
for the probability of having four gene lineages, although any pronounced
relationship holds for even smaller values of τ1. Finally, the probability of
having five lineages is only around 0.1 even when both τ2 and τ1 are very
small. The influence of τ3 on all these probabilities is small, and thus we skip
discussion of the effect of τ3.

Now let us visualize effects of τ1 and τ2 on the mean SG coalescent time
as well as on the total time, shown in the two bottom diagrams in Figure
5. The expected SG coalescent time decreases as either τ1 or τ2 increases,
but the effect of τ1 is dominant. At the same time, the maximal decrease is
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Applications of Branch Length Distributions - Example 2

I What can we conclude from this?

I Shorter branches lead to more potential for incomplete lineage
sorting, which results in longer times to the MRCA

I This effect will be most pronounced for branches that are close
to the root of the tree

I What about symmetry of the tree?
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I Consider a more symmetric tree:
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Figure 3: The three five-taxon species trees studied by Pamilo and Nei (1988).
For tree (a), horizontal dashed lines delimit time intervals (measured in units of
2N generations) whose length is denoted by τi for branch i. In (b) and (c), the τi

are assumed to represent the appropriate intervals, although the dashed lines are
not shown. Although the total depths of the trees depicted here are identical, we
comparatively analyze several collections of branch lengths both with and without
the assumption of constant depth across topologies.

eages at the root (and as a result for T having the exponential distribution) is
0.56, while the probability of having three lineages is 0.42. Another interest-
ing observation is that the first branch alone may change the mean time up to
40%, while, according to the above discussion, the maximal possible change
over all possible triplets (τ1, τ2, τ3) is 60%. This observation emphasizes that
for an asymmetric tree the first branch is the most influential factor for the
SG coalescent time.

Figure 5 allows us to analyze the probability mass function Pn as a func-
tion in τ1. As expected, P2 rapidly increases as τ1 increases from 0 to 2. At
the same time, P3 has a mode as a function in τ1 and its range is smaller.
Also the calculation supports our preliminary conjecture that it is unlikely
to have five gene lineages at the root of the asymmetric tree (a). The latter
explains why the mean SG coalescent time changes only up to 40% as τ1

changes from 0.01 to infinity; recall (4).
The length τ2 of the second branch affects the density in a similar manner

for fixed τ1 and τ3, although the effect is dramatically less pronounced. The
interaction between the effects of these two branches on the probability mass
function Pn is exhibited in the top four diagrams of Figure 5. The top–
left diagram indicates that the probability of having just two gene lineages
becomes relatively large only for larger values of τ1 and, at the same time,

I Two internal branches adjacent to the root node

I Suggests more possibility of incomplete lineage sorting =⇒
longer time to MRCA
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Coalescent Theory

I We now have the main ideas of the coalescent model and how
to apply it to a phylogeny.

I But there are many things we haven’t discussed: migration,
recombination, etc.

I Next week: How can we take this model and use it to infer a
species-level phylogeny?

I Thursday’s lab: Using the program COAL to compute gene
tree topology probabilities.
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