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Despite the importance of recombination in genetics
many questions remain regarding the details of the
recombination process. What determines where recom-
bination occurs along a chromosome? How much
recombination occurs in recombination hotspots? Is the
recombination process influenced by local polymor-
phisms? How do rates change over evolutionary time?
Answering such questions will help us to understand
the molecular basis of recombination, as well as provide
important clues to its evolutionary significance. In addi-
tion, as our knowledge of how the recombination rate
varies within genomes increases, so will our ability to
understand and make use of patterns of association
between alleles (or LINKAGE DISEQUILIBRIUM1,2, LD) for map-
ping the genetic basis of phenotypic variation3.
Crucially, the ability to identify the genetic components
of phenotypic variation depends on our knowledge of
how different parts of the genome are correlated, which
is in turn determined, to a large extent, by the recombi-
nation process.

Unfortunately the direct measurment of recombina-
tion rates at high resolution is a difficult and costly
process4–6. Pedigree studies, because they include only
few informative meioses, produce genetic maps that sim-
ply do not have the resolution to assess how recombina-
tion rates vary at the level of single genes2,7,8. Conversely,

analyses of sperm samples have provided remarkable
insights into how the recombination rate varies at a few
locations within the human genome; however, these
studies say nothing about recombination rates in
females, and are extremely difficult to carry out4,9.
Without improvements in genotyping efficiency, large-
scale crossing experiments in model organisms are also
prohibitively expensive. So, it follows that indirect statis-
tical methods for learning about recombination, such as
population-genetic methods, can be exceptionally useful;
these methods infer recombination rates from patterns
of genetic variation among DNA sequences that are
sampled randomly from a population10–12. With large-
scale surveys of genetic variation now becoming an
important focus of modern population genetics,
researchers need to be aware of the statistical methods
that are available for analysing such data and how to
interpret the results.

In this review, we discuss how information about
recombination can be obtained from population DNA
samples, which statistical models can be used to obtain
estimates of the recombination rate and how to inter-
pret the application of such methods to empirical data.
Finally, we consider some of the challenges that arise
from analysing variation in the data using a population-
genetic model (so-called model-based inference) and

LINKAGE DISEQUILIBRIUM

(LD). A measure of genetic
associations between alleles at
different loci, which indicates
whether allelic or marker
associations on the same
chromosome are more common
than expected.
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Obtaining an accurate measure of how recombination rates vary across the genome 
has implications for understanding the molecular basis of recombination, its evolutionary
significance and the distribution of linkage disequilibrium in natural populations. 
Although measuring the recombination rate is experimentally challenging, good 
estimates can be obtained by applying population-genetic methods to DNA sequences
taken from natural populations. Statistical methods are now providing insights into 
the nature and scale of variation in the recombination rate, particularly in humans. 
Such knowledge will become increasingly important owing to the growing use of 
population-genetic methods in biomedical research.
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sample of chromosomes23,30,31. Consider a region of the
genome that does not recombine, such as the Y chromo-
some32, or a single nucleotide position. Looking back in
time, we can trace the ancestry of the DNA through its
parents, grandparents, and so on. For two DNA sam-
ples, the two lineages will meet or ‘coalesce’ at some
point in the past (for example, the Y chromosomes of
two brothers coalesce in their father). For a larger sam-
ple, we can describe this history of coalescence as an
inverted tree33–35 (FIG. 1a). The differences seen between
the sampled DNA sequences are therefore due to muta-
tion events that must have occurred on the tree36,37. We
are unlikely ever to know the tree in its entirety (includ-
ing the times at which lineages coalesced and mutations
occurred37), but we can learn much about the tree from
the data13,38; for example, we can assess which sequences
are most closely related.

Now consider the effect of recombination. At each
individual nucleotide we still have a tree, but different
parts of the genome will have different trees34,39–42

(FIG. 1b). Sites that are very close together, which there-
fore rarely recombine, will probably share the same tree;
however, as the recombination distance between sites
grows the correlation between the trees decreases42. We
can therefore describe the ancestry of the sample of
recombined chromosomes by using a complex graph39

that includes a series of coalescence and recombination
events (FIG. 1b,c), but which allows us to recover the 
marginal genealogy at any given position. Again, we can
never know the graph in its entirety, but the data 
provides valuable information about the graph10.

How does describing data using a graph help us to
learn about recombination? First, by thinking about
where coalescent, recombination and mutation events
have occurred on the tree42, we can determine what their
influence is on patterns of genetic variation31. Second, if
we can model the process that generates the graph, we
can potentially use the data to estimate the parameters
of the process (including the recombination rate)12,39,43.

Counting recombination events
What can we learn about recombination without trying
to model the process that generates the underlying
recombination graph? The most common statistical
approach is to count the number of recombination
events that have occurred in the history of a sample:
although the family tree of our sample of chromo-
somes is not known, historical recombination events
can leave signature patterns in population-genetic data
that can be very informative. However, as we argue
below, this method, which does not rely on generating a
model of the recombination process, is the least 
successful. So, although learning about recombination
doesn’t necessarily mean modelling the process that
generates the underlying recombination graph, meth-
ods that do (discussed in later sections) are generally
the most reliable.

The simplest way of spotting historical recombina-
tion events is to look at pairs of single nucleotide poly-
morphisms (SNPs). For two bi-allelic loci with ancestral
and derived alleles A/B and a/b, respectively, the possible

how estimates of the recombination rate can aid the
application of LD-based strategies for mapping disease-
associated loci.

Thinking about recombination
From trees to graphs. The distribution of genetic varia-
tion (or polymorphisms) along chromosomes contains a
large amount of information about the underlying
recombination rate13. New mutations arise on a single
genetic background in complete association with all of
the polymorphisms that are carried by that chromo-
some. Over time these associations are broken down by
the process of recombination, so that, in theory, the
degree of association (or LD) between alleles in a sample
of chromosomes is simply a function of the age of the
mutation and the recombination rate2,14,15. However,
many other evolutionary forces, such as population his-
tory (geographical structure and changes in population
size)14,16, mutation17,18, natural selection19,20 and chance
events in small populations (genetic drift), also affect
patterns of LD20–24, as can the design of the experiments
that are used to determine these patterns, such as MARKER

ASCERTAINMENT25–28. Consequently, naive, deterministic
models of the relationship between recombination and
LD fail to capture the enormous stochasticity that under-
lies the evolutionary process and could generate mislead-
ing inferences about patterns of genetic variation29.

A highly successful way of modelling the impact of
evolutionary randomness on genetic variation is to
think about the underlying genealogical history of a

MARGINAL GENEALOGY

The part of a genealogical graph
that corresponds to a single
locus or stretch of DNA that is
inherited without
recombination.

MARKER ASCERTAINMENT

The process by which new
genetic markers are obtained 
— for example, by 
re-sequencing a subset of
chromosomes in a population
sample. If those markers are
population-specific then
inferences that are based on
them in other populations might
be biased through so-called
ascertainment bias.
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Figure 1 | Ancestral genealogies and the effects of recombination. Statistical inferences of
evolutionary processes often centre on a description of the genealogy underlying a population or
sample. The coalescent is a stochastic process that generates such genealogies. In the legend, 
0 and 1 denote ancestral and derived alleles, respectively. a | The genealogy of a single hypothetical
locus is represented by a single bifurcating tree. A mutation event of 0→1 (arrow) gives rise to a
derived allele. b | The genealogy of a second locus (red) that is physically close to the locus depicted
in part a is shown; its genealogy is partially correlated with the original (blue) genealogy (these are
known as MARGINAL GENEALOGIES). If mutations occur along the two lineages (indicated by the solid
arrows) then the recombination event will be detected in the resulting two-locus gametes, because,
as shown here, all four possible gametes (0,0; 0,1; 1,0; 1,1) are observed in the sample. It should be
noted that there are two lineages along the red genealogy for which a mutation event can cause the
recombination event to be detected (red solid and dashed arrows). c | In these two genealogies 
the recombination event cannot be detected from the resulting data, no matter which lineages
mutations occur on. This is because there is no combination of lineages among the two marginal
genealogies along which mutations will give rise to all four possible two-locus gametes. For this
reason smaller samples are less informative about recombination than larger samples.
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above, most leave no trace in the sample. Second, even if
we could, we would have to know how many genera-
tions the underlying graph spanned to estimate the 
per-generation recombination rate. To overcome these
difficulties we need to model the underlying process
explicitly. The coalescent34,52,53 is a probabilistic model
(or stochastic process) that describes the distribution of
the underlying tree or genealogy of a sample of chromo-
somes in an idealized population. Recombination can
easily be incorporated into this model, in which case it is
often referred to as the ancestral recombination graph
(ARG)39–42. As with the standard coalescent34,35,52, basic
ARG models assume a constant population size with ran-
dom mating, evolutionary neutrality and uniformity of
recombination rates across the genome54. Generalization
to more complicated demographic scenarios, however, is
straightforward33–35.

The population recombination rate. Within the context
of the ARG, the key parameter in determining patterns
of LD is the product of the PER-GENERATION RECOMBINATION

RATE, r, and the EFFECTIVE POPULATION SIZE (N
e
)1: ρ = 4N

e
r

(where ρ is the POPULATION RECOMBINATION RATE; in popula-
tion genetics per-generation rates typically appear in
their product with the effective population size). r can
depend on genomic factors, such as local sequence or
DNA structure, whereas ρ also depends on demo-
graphic history (through N

e
) and can therefore differ

substantially between populations. Although direct
measurements, such as those obtained through sperm-
typing or pedigree studies, can be used to estimate r
directly, population-genetic data can only be used to
estimate ρ. Independent estimates of N

e
are then

required to infer r from ρ.

Model-based approaches. Before we review the various
ways of estimating recombination rates within the con-
text of the coalescent, it is worth considering the value of
model-based methods of estimating the recombination
rate. The idealized model of a population that was devel-
oped by Wright and Fisher — on which the coalescent is
based — is far from biological reality. Natural popula-
tions, including human, do not, of course, conform to
any such simple demographic models55. So, what can we
learn by using a model that we know a priori is incorrect?
First, the model might be incorrect in detail, but still offer
a good description of the existing patterns of variation. In
particular, the effective population size effectively sub-
sumes details of the demographic history of a population
into a single number, even though its precise relationship
to CENSUS POPULATION SIZE is very difficult to evaluate56.
Sometimes, however, demographic history cannot be col-
lapsed into a single number57,58; moreover, different
aspects of the data can result in different estimates for the
effective population size. Nevertheless, demographic
oversimplification might not be problematic, particularly
if the researcher is interested in comparing recombina-
tion rates in different parts of the genome. Second, even if
a model is incorrect (and all models are, to some degree)
it could still allow us to make useful and accurate predic-
tions about the recombination processes and related

HAPLOTYPES (or gametes) that can be obtained are: AB, Ab,
aB and ab. If all of these allelic combinations are observed
in a sample then either recurrent mutation or recombina-
tion must have occurred somewhere in the history of the
sample44. Assuming an INFINITE SITES MUTATION MODEL,
recombination must be responsible — in this context the
FOUR-GAMETE TEST (FGT) scores a recombination event if all
four possible two-locus haplotypes occur (FIG. 1b).

Carrying out the FGT on all pairs of sites in a region
identifies intervals at which recombination must have
occurred. R

m
is a conservative estimate of the minimum

number of recombination events that have occurred in
the history of the entire sample of chromosomes. R

m
is

obtained by assuming that all overlapping intervals, in
which recombination is deemed to have occurred, origi-
nate from the same recombination event23. However, this
assumption is very conservative, and it is often possible to
detect that more than one recombination event has
occurred in an interval by comparing the number of hap-
lotypes with the number of polymorphic sites45. Briefly, if
M haplotypes are observed in a region with N segregating
sites, then at least M–N recombination events must have
occurred (if M<N then the minimum number of recom-
bination events is 0). M–N is therefore a local lower
bound and combining these local bounds allows the con-
struction of the global minimum number of recombina-
tion events that have occurred in a region, R

h
. Crucially,

R
h

can be used to check whether recombination
events are clustered or occur uniformly throughout
the genome45. The most sophisticated model-free
(non-parametric) methods for counting recombination
events try to reconstruct the underlying graph that corre-
sponds to the one that would result from the smallest
number of recombination events46; however, this
approach is technically very challenging.

How well do such methods do at counting the true
number of recombination events that have occurred in
the history of a sample? Extensive simulations40,47,48 have
been used to address this question. Typically, only a
small proportion of recombination events in the simu-
lated genealogies can be detected in population-genetic
data (FIG. 1c). The reason being that fairly specific condi-
tions need to be met for a recombination event to be
detectable: genetic diversity of the region, age of the
event49, sample size and demographic history are all
important factors. The issue of sample size is particu-
larly problematic — small samples are unlikely to con-
tain the rarest gamete necessary for the detection of
recombination events, but the rate at which adding
extra chromosomes improves the estimate is extremely
low (of the order of the log of the log of the sample
size)50. In short, although we can use model-free 
counting methods to learn about recombination45,51, we
generally greatly underestimate the true level of recom-
bination that has occurred47,48.

Estimating recombination rates
There are two problems in trying to estimate recombi-
nation rates from population-genetic data. First, we
cannot simply count the number of recombination
events in the underlying graph because, as explained

HAPLOTYPE 

The combination of alleles or
genetic markers that is found on
a single chromosome of a given
individual.

INFINITE SITES MUTATION

MODEL

A model that assumes that there
are an infinite number of
nucleotide sites and
consequently that each new
mutation occurs at a different
locus.

FOUR-GAMETE TEST

(FGT). If all four possible
gametes are observed for two 
bi-allelic loci then this test infers
that a recombination event must
have occurred between them
(under an infinite sites mutation
model).

PER-GENERATION

RECOMBINATION RATE

(r). The probability of a
recombination event occurring
during meiosis.

EFFECTIVE POPULATION SIZE

(N
e
). The size of the ideal

constant-size population, in
which the effects of random drift
would be the same as those seen
in the actual population.

POPULATION RECOMBINATION

RATE 

(ρ). Population-genetic
parameters are generally
proportional to the product of a
molecular per-generation rate
(for example, the per-generation
recombination rate, r) and the
effective population size (N

e
).

The population recombination
rate has therefore often been
defined as ρ = 4N

e
r.

CENSUS POPULATION SIZE

Actual population size (total
number of individuals) as
compared to the theoretical
effective population size.
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(BOX 1). The likelihood of a parameter given an observed
data set is proportional to the probability of the data
given the model parameters61,62. The value of ρ at which
the probability of observing the data is highest is the
maximum-likelihood estimator of the recombination
rate61. Calculating likelihoods in population genetics is
notoriously complicated and the difficulties increase
rapidly with the size of the data sets38,63. The best full-
likelihood methods use MARKOV CHAIN MONTE CARLO

(MCMC) and importance sampling10,39 (IS) strategies to
infer population-genetic parameters13,37,38 (BOX 1).

Approximate-likelihood approaches. Computational
cost is a great concern for full-likelihood approaches,
which rely heavily on numerically intensive statistical
procedures even for moderate data sets (for example,
see REFS 64–67). Several approaches have therefore been
developed to try to approximate the likelihood surface
to scale estimation up to the large population-genetic
data sets that are being investigated at present11. These
approaches either ignore low frequency markers,
which hold relatively little information about recombi-
nation, or they consider only a small number of mark-
ers at a time. Separate likelihoods are calculated for
these subsets of the data and then combined to obtain
the approximate likelihood estimator.

In the most extreme approximation only the allele
distributions of two-locus systems are considered68,, and
for each pair of sites the likelihood surface for the
recombination (and possibly mutation) parameter 
is constructed independently. A ‘composite likelihood’ is
then obtained by multiplying all pairwise likelihoods68,69.
Although such approaches clearly ignore much of the
information that is contained in the data, they are very

properties, such as LD patterns. Prediction is a great
strength, not least because it allows models to be tested
experimentally (for example, by comparing the estimated
rates to those measured directly in sperm-typing studies).

In the next few sections, we briefly describe various
coalescent-based methods for estimating the population
recombination rate. These methods are also listed and
compared in TABLE 1.

Moment estimators. Several ESTIMATORS have been 
constructed that use SUMMARY STATISTICS of the data to infer
ρ 23,59,60. For example, the VARIANCE of the pairwise differ-
ences between nucleotide sequences can be interpreted as
a measure of LD and this or a different summary statistic
can be used to estimate ρ 23. These types of estimators are
very easy to calculate and are computationally inexpen-
sive, but they do not include all of the information that is
contained in the data32,37. Conversely, the estimators that
are described below attempt to include all aspects of the
data, in particular the fact that the DNA sequences in
the sample are correlated through the underlying
genealogy.

Full-likelihood approaches. Full-likelihood approaches
estimate the probability of observing a given data set
under an assumed population-genetic model. They
incorporate the genealogical structure that underlies a
sample and attempt to use all of the information in the
data. However, full-likelihood approaches are computa-
tionally extremely expensive. One of the model parame-
ters to be estimated is ρ, but the model might also depend
on the mutation rate and demographic parameters. In
this approach, extensive simulations are carried out to
estimate the LIKELIHOOD SURFACE for the model parameters

ESTIMATOR

A statistical method that is used
to obtain a numerical estimate
for a quantity of interest, such as
a model parameter.

SUMMARY STATISTIC

A statistical function that
summarizes complex data in
terms of simple numbers
(examples include the mean and
variance).

VARIANCE

A statistic that quantifies the
dispersion of data about the
mean.

LIKELIHOOD SURFACE

The likelihood of a parameter is
proportional to the probability
of obtaining the observed data
under a parametric model given
the model parameter. The
likelihood surface is a
function/curve that specifies
how well the data agrees with the
predictions made by a
parametric model for different
values of the model parameter.

MARKOV CHAIN MONTE CARLO

A computational technique for
the efficient numerical
calculation of likelihoods.

Table 1 | Methods for counting recombination events and estimating recombination rates from population-genetic data

Brief description of method Website address References

Counting recombination events

Rm home.uchicago.edu/~rhudson1/source.html events 40

Rh www.stats.ox.ac.uk/mathgen/software.html 45

Mimimum number of topologies underlying a sample N/A 46

Moment-based estimators*

Joint distribution of allele frequencies and LD home.uchicago.edu/~rhudson1/source.html 23

Estimator based on average characteristics of four sequences lifesci.rutgers.edu/~heylab 59

Likelihood analysis based on summary statistics of the data home.uchicago.edu/~rhudson1/source.html 60

Full-likelihood approaches*

Importance sampling N/A 39

Lamarc and recombine (MCMC) evolution.genetics.washington.edu/lamarc.html 12

Bayesian MCMC N/A 102

IS implemented in two programs: INFS and FINS www.maths.lancs.ac.uk/~fearnhead/software 10

Approximate-likelihood approaches*

Pairwise likelihoods home.uchicago.edu/~rhudson1/source.html 68

Marginal likelihoods/composite likelihoods www.maths.lancs.ac.uk/~fearnhead/software 11

Pairwise likelihoods www.stats.ox.ac.uk/mathgen/software.html 69

Approximate multi-locus haplotype diversity www.stat.washington.edu/stephens/software.html 70

*Estimation of recombination rates. See main text and Box 1 for further details of methods. FINS, Full likelihood for finite site model; INFS, Full likelihood for infinite sites model;
IS, Importance sampling; LD, linkage disequilibrium; MCMC, Markov Chain Monte Carlo; N/A, not applicable;  Rh, improved estimate of the lower bound on recombination
event number; Rm, estimated lower bound on the number of recombination events (see text for more details).
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Moment methods are typically the fastest to com-
pute estimates, but they also use little information, have
considerable variance and can be strongly affected by
deviations from model assumptions. Full-likelihood
methods, by contrast, use the most information but are
computationally expensive (often prohibitively so).
Approximate-likelihood methods generally lie some-
where between the two extremes, though some of them
lack consistency71. Of these methods, two-locus sam-
pling distributions seem to be somewhat less influ-
enced by demography than multi-locus systems and are
little biased by SNP ascertainment, which indicates
considerable robustness (E. DeSilva and M.P.H.S.,
unpublished data).

Applications
There are broadly four types of question that can be
asked when using estimators that are based on popula-
tion-genetic data. How much recombination occurs in
one region compared to another? Is there variation 
in the recombination rate within the region that is being
analysed? Is the effective population size of one popula-
tion greater or smaller than that of another population?
And, how good is the neutral coalescent with recombi-
nation at describing patterns of variation (that is, is
there evidence for the action of natural selection or
complex demographic processes)? Here we discuss
studies that address some of these questions.

BOX 2 shows the results of a comparison between full-
and composite-likelihood estimators of the population
recombination rate for two human genes, lymphotoxin
α (LTA) and lymphotoxin β (LTB), which are members
of the tumour necrosis factor family. The genes show
large differences in the amount of recombination —
LTA shows a considerable amount of recombination,
whereas LTB shows little or none. Furthermore, the esti-
mate for LTA is considerably higher in the African sam-
ple compared to the European sample. This pattern,
which is consistent across several genes, is probably 
due to the different demographic histories of the two

fast. In terms of bias and variance, simulations show
that these so-called point estimates (that is, those with
maximum composite likelihood) perform at least as
well as any other ad hoc approach68.

In addition to computational efficiency, approximate-
likelihood approaches that are based on two- (or more)
locus systems, which are known as composite-likelihood
approaches, have several other advantages. First, because
the number of possible combinations of allelic states
in a two-locus system can be easily enumerated, these
can be calculated without reference to the data and
can be tabulated. The use of the resulting lookup tables
can be used to further increase computational speed68.
Second, composite approaches can deal directly with
genotype data without having to infer haplotypes.
Third, it is straightforward to consider complicated
mutation and population models68,69.

Several other approximate methods for estimat-
ing ρ have been70, or are being, developed. Such
approaches typically aim to capture some aspects of
the ARG to estimate the recombination parameter.
Increasingly, such methods will be used to consider a
wide range of demographic models, different models of
the recombination process (for example, those that
incorporate GENE CONVERSION), as well as details of the
experimental design.

Comparing estimators. How do we compare different
estimators? The following factors might be of con-
cern: bias, variance, statistical efficiency, robustness to
deviations from the assumed model, computational
efficiency and, finally, consistency. Do we expect the
estimator to obtain the correct value? How much vari-
ability do we expect in estimates for a given value of the
underlying recombination rate? How much of the infor-
mation contained in the data does each estimator use?
How wrong will the estimate be if the assumptions are
incorrect? How fast can the estimate be computed?
Would the estimator be perfect if we had unlimited
amounts of data?

RECURSION

A repeated mathematical
operation that is often used to
aid numerical analysis.

GENE CONVERSION

The non-reciprocal transfer of
genetic information between
homologous genes as a
consequence of mismatch repair
after heteroduplex formation.

Box 1 | Calculating coalescent likelihoods

The likelihood of a set of population-genetic parameters — such as the mutation rate and the recombination rate — is
proportional to the probability of obtaining the sampled data under a stochastic model that assumes these parameter
values61. Analytical expressions are impossible to derive under the coalescent model for anything except trivial data sets,
so simulation-based techniques that obtain approximate probabilities are used instead101.

Simulation-based (or Monte Carlo) methods vary considerably in their design, but all use the same central idea, which
is to augment the data by its evolutionary history of coalescence, recombination and (usually) mutation13. Given a
complete history, it is easy to calculate both the probability of the data given the history, and the probability of the
history given the coalescent model and its parameters. The central difficulty is that there is an essentially infinite set of
histories that could have given rise to the data, and finding those that are highly probable under the assumed model is
comparable to the proverbial needle in a haystack dilemma.

Broadly, two approaches have been taken to finding probable genealogical histories. The first approach (known as
Markov Chain Monte Carlo; MCMC) is to make an initial guess and then to make subsequent adjustments — changes
that are more probable are accepted, whereas steps that are less likely are rejected, with a probability that is proportional
to how likely they are to have occurred under the assumed model. The alternative approach is to exploit the fact that the
likelihood of the data can be written as a RECURSION over possible ancestral states (that is, the data after a mutation has
been removed or a coalescent event has occurred, and so on) and to develop ways of choosing the ancestral states in such
a way that the sampler chooses probable histories (known as importance sampling). Both methods have advantages and
disadvantages38,101 and both are computationally intensive.
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and adaptive evolution77 as factors that influence human
diversity. An alternative route to model testing is to
compare population-genetic based estimates with inde-
pendent estimates of the same quantities. For example,
the ratio of population-genetic estimates of ρ and θ (the

populations (as captured in their respective effective
population sizes) and could reflect a population bottle-
neck during the geographic expansion of modern
humans out of Africa. A more consistent picture of the
differences in effective population size is obtained by
averaging across many genomic regions14,64,72 (FIG. 2).

Population-genetic methods can also be used to
detect local variation in the recombination rate, such as
in recombination hotspots. The question of whether
recombination events are clustered in hotspots is of
enormous interest at present, and being able to answer it
unambiguously could have great relevance in the effi-
cient design of ASSOCIATION STUDIES2,8,29,73,74. FIGURE 3 shows
the estimated recombination rate profile that was calcu-
lated from 50 unrelated males in a genomic region that
contains a known hotspot4. The resulting estimate agrees
remarkably with the sperm-typing analysis in terms of
the location of the hotspot and the degree to which the
rate is elevated. These examples show that even very
localized features of the underlying recombination
process can be detected given high quality data.
Published hotspots are about 1–2 kb wide, so an accurate
profile of the recombination process would require an
SNP density of >1 per 1kb. Obtaining this density is fea-
sible but expensive.

The great power of model-based estimation methods
is their ability to provide testable hypotheses61. Testing
models has benefits either way. If the model cannot be
shown to be wrong (it can never be proved right) it will
suffice, and if it is proved wrong we can learn important
biological lessons from trying to understand why it is
wrong. The idea behind model testing is to estimate
parameters within the context of a model, then carry out
simulations (or, where possible, derive mathematical
expressions) to ask whether particular features of the
data are compatible with the assumed model. For exam-
ple, model-testing approaches to LD have been used to
reveal the importance of historical population bottle-
necks64, recombination rate variation75 gene conversion76

PHASING

Determining the haplotype
phase (the arrangement of alleles
at two loci on homologous
chromosomes) from genotype
data using statistical methods.

ASSOCIATION STUDIES

A set of methods that are used to
correlate polymorphisms in
genotype to polymorphisms in
phenotype in populations.
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Figure 2 | The behaviour of estimators is largely
independent of genomic region. The graph shows the
ratios of the average inferred population recombination rates (ρ)
for 39 genomic regions. For each region, maximum-likelihood
estimates for the average recombination rate obtained from
European, Asian and Yoruban population samples were
divided by the inferred rate in an African American sample. The
population samples were taken from Gabriel et al.65 and
recombination rates were inferred using a composite-likelihood
estimator directly from the genotypes without inferring
haplotypes69. The box-plots show the 25–75% regions of the
distribution of ratios. The horizontal line inside each box
denotes the median and if the notches in two different boxes
overlap then their medians are not significantly different. The
whiskers of each box extend to the approximate 95th

percentiles of the distribution; outliers are indicated by the solid
circles. We find that the distributions of ratios are relatively tight.
This indicates that the estimator behaves in a very similar way
in different genomic regions.

Box 2 | Comparing maximum-likelihood estimates. 

The table shows the full- and composite-likelihood estimates of the population recombination rate (ρ) obtained from
two human genes, lymphotoxin α (LTA) and lymphotoxin β (LTB), in African and European populations. The full-
likelihood estimates were obtained after PHASING of the genotypes using PHASE103 (see the online links box). Composite-
likelihood estimates were obtained from genotype data (see the online links box). The mutation rate was determined
using Watterson’s estimator104. One possible interpretation of these results is that recombination is suppressed in LTB for
functional reasons. It is unlikely that association mapping in LTB would allow the fine localization of a potential causal
functional mutation within the gene. By contrast, it might be possible to do fine-mapping at the gene level in LTA,
especially in African population samples.

The difference in computational effort between the two approaches is substantial. Calculating the maximum-
likelihood estimate in LTA in Africans using the full-likelihood approach took just over 6 central processing unit (CPU)
hours on a Pentium 4 Xeon 2.4 Ghz, whereas the composite-likelihood estimate was obtained in slightly less than 2 CPU
minutes on the same machine.

Gene (gene size) Full-likelihood estimate of ρ Composite-likelihood estimate of ρ

Africa* Europe‡ Africa* Europe‡

LTA (4.9 kb) 7.3 5.5 11 7

LTB (4.4 kb) 0 1 3 0

*n = 24. ‡n = 23. kb, kilobases.
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Further complications of biological reality
Any process of inference is based on explicit or implicit
assumptions, and if those assumptions are not correct
then they will affect the accuracy of our inferences32,37,79.
It is therefore important to understand which aspects of
biological reality are likely to affect the inferences that
are made about recombination rates. Several biological
factors might contribute to MODEL MIS-SPECIFICATION. Some
of these biological factors are described below, along
with some possible ways of addressing the challenges
that they might pose.

Mutation. In many species (such as viruses and bacte-
ria) and at certain positions in the human genome
(such as CPG ISLANDS), many mutations have occurred at a
single nucleotide position in the history of the sample80.
It is important to detect when this has occurred because
recurrent or back mutation can create patterns of varia-
tion that resemble those caused by recombination69 (a
phenomenon that is known as homoplasy). Several
methods have been developed to try and distinguish
between homoplasy and recombination as the genome-
wide source of such patterns81. The more reliable of these
methods considers the fact that recombination generally
occurs more frequently between physically distant loci
than neighbouring ones. Such methods seem to be
robust to the complexities of mutational processes in
organisms such as the human immunodeficiency
virus (HIV), and coalescent-based methods to esti-
mate recombination rates have also been developed
for such genomes.

population mutation rate) should be the same as the
ratio of experimental estimates of the per-generation
recombination and mutation rates. That the ratios do
not agree in humans78 indicates that the assumed model
might lack an important element of biological reality.

MODEL MIS-SPECIFICATION

The consequence of using a
parametric model in the
inference process that is different
from the true model under
which the data was generated.

CPG ISLANDS

Genome sequences of
>200 base pairs that have high
G+C content and CpG
frequency.
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Figure 3 | Estimating local recombination rate variation in a known recombination
hotspot. We used population-genetic data from 50 unrelated United Kingdom males to
estimate the local recombination rate, ρ, in a region with a known hotspot4. Both the intensity
and location of the hotspot are in very good agreement with the values that are obtained from
the sperm-typing analysis that is described in REF 4. Most of the recombination events seem to
cluster in a small region. Whereas sperm-typing approaches, by definition, can only estimate
male recombination rates, the population-genetic data is a combination of the behaviour of
female and male recombination. bp, base pairs; kb, kilobases.

Box 3 | Recombination and the hidden SNP problem

Imagine that a researcher wants to identify a locus that underlies a phenotype of
interest by carrying out an association-mapping study using single nucleotide
polymorphisms (SNPs). The first step would be to conduct a survey of genetic
variation at a given genomic region by typing SNPs collected from several
randomly sampled individuals. The sampled haplotypes (1–5) are shown in part a
of the figure, with the typed SNPs depicted in blue. Before embarking on the
association-mapping experiment, it is necessary to ascertain that variation at
interspersed sites that have not been examined (the shaded region in part a and red
dots in part b) will be in strong linkage disequilibrium (LD) with variation at the
polymorphisms that have been typed. If an interspersed SNP that contributes to
phenotypic variation is not in strong LD (part c; here an untyped SNP is depicted as
no longer being associated with a typed SNP in haplotype 3), subsequent mapping
will have low power.Whether this is likely or not will depend on the recombination
rate in the region, which can be estimated as described in the main text.

In this example, and assuming the standard neutral model, the conditional
probability, P

S 
, (see part d) that an SNP typed in the shaded region is not in LD

with the typed SNPs (defined as revealing at least one recombination event)
ranges from 0 (if ρ = 4N

e
r = 0) to 0.24, if there is free recombination. For the

observed haplotypes, we can estimate the likelihood of any given recombination
rate — the most likely value is 0, but the approximate 95% confidence interval
goes up to ρ = 10. In this instance, because there is a significant risk that
intervening SNPs will not be in strong LD with the typed SNPs, collecting more
detailed data (both more SNPs and more chromosomes) would be recommended
before proceeding with the association-mapping study.

N
e
, effective population size; ρ, population recombination rate; r, per-generation

recombination rate; P
S
, conditional probability that a SNP is not in LD with the

known SNPs.
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ability to detect recombination rate variation54,73,90.
However, such extreme forces should often be readily
detectable from other aspects of the data, such as levels of
diversity, the frequency distribution of mutations and
deviation from the HARDY–WEINBERG EQUILIBRIUM1,91. Where
such departures from neutrality are not detectable, esti-
mates of the relative recombination rate are likely to be
reliable (within the variance of the estimator)60,92,93.
Furthermore, estimates of the recombination rate to
mutation rate ratio can potentially correct for variation
in N

e
over the genome.Alternatively, estimation methods

can attempt to jointly estimate details of the recombina-
tion and demographic history. So far there has been little
development in these important areas owing to the mas-
sive computational burden of full-likelihood calculations
under even simple demographic models. However, the
advances in the use of approximations to full-likelihood
approaches that are described above11,68,69 are making it
possible to make joint inferences about recombination
and other evolutionary forces.

Neutrality. The assumption of evolutionary neutrality1

can also introduce serious bias into the recombination
rate estimators if it is invalid. In particular, if, as is 
certain94, selection has varied across the genome (for
example, through the effects of localized selective
sweeps89), then local estimates of the recombination rate
might be biased. Despite this, recent research indicates
that at least some estimators are robust to all but
extreme selection events, which can be detected by
standard neutrality tests (C. Spencer and G.A.T.M.,
unpublished data). Alternatively, a joint inference of
recombination and natural selection might be possi-
ble. For example, Przeworski95 considered the joint
estimation of recombination rate and the parameters
of a selective sweep by using the summary statistic
likelihood estimator of Wall92.

Interpreting LD data
So far we have largely considered what can be learned
about recombination from patterns of LD. However,
estimates of the population recombination rate can also
be used to inform the design of experiments that use LD
to map the genetic basis of human variation. At the 
simplest level, an estimate of the recombination rate 
can be thought of as a summary statistic of LD, which
can be compared directly between genes and popula-
tions. By contrast, patterns of LD from different samples
are often very difficult to interpret2,14,72. However, far
more important is the ability to use estimates of the
recombination rate (and the coalescent framework49) to
model patterns of genetic variation, either in regions of
the genome that have not been directly assayed in the
experiment (for example, by typing sparse sets of SNPs),
or the same region but in a subsequent survey (such as
in a different population).

This ability will be of considerable importance in
the application of SNP-based LD surveys such as the
HapMap project26. The HapMap project aims to
reduce human genetic variation to a set of representa-
tive markers that can then be used in HAPLOTYPE-BASED

Variation in the recombination process. The process of
recombination can also vary between organisms. For
example, gene conversion is an integral aspect of recom-
bination in eukaryotes, but it is generally not considered
in methods of inference76. Similarly, the recombination
process in HIV is very different from that of most
organisms82,83, and the rate at which it occurs can
depend on the degree of sequence divergence between
genomes. However, the evolutionary consequences84 of
gene conversion or TEMPLATE SWITCHING in HIV are easily
incorporated into coalescent models and present no
major obstacle to methods of inference82,85,86.

Demographic history. The presence of constant popula-
tion size with random mating is perhaps the most 
unreasonable assumption that is made by standard coa-
lescent methods of inference. As explained above, the
concept of effective population size goes some way to
subsuming many of the details of demographic history,
but factors that have a large influence on LD — strong
BOTTLENECKS16,87, population subdivision21, highly
restricted gene flow14, selfing88, recent and complete
SELECTIVE SWEEPS78,89, marker ascertainment27, and so on —
also have a considerable impact on estimators and the

TEMPLATE SWITCHING

The process by which RNA
templates are switched between
viral genomes during reverse
transcription.

BOTTLENECK

A temporary marked reduction
in population size.

SELECTIVE SWEEP

The process by which positive
selection for a mutation
eliminates neutral variation at
linked sites.

HARDY–WEINBERG

EQUILIBRIUM

A state in which the frequency of
each diploid genotype at a locus
equals that expected from the
random union of alleles.
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Figure 4 | Blocks and the interplay of recombination rate and demography. a | Haplotype
and/or linkage disequilibrium (LD) blocks are expected (and seen65) to depend on the sample
populations. Generally, the larger the effective population size the smaller the blocks will be. 
b | It is well known that haplotype and/or LD  blocks will arise by chance even if the
recombination rate is uniform18. If recombination hotspots (profile 1; denoted by *) are ubiquitous
features of the human genome, then some aspects of blocks will be transferable between
populations, with details of the block pattern dependent on demography. If, however,
recombination shows only mild levels of variation then blocks reflect past recombination events
and only very old recombination events can result in block boundaries that are shared between
populations (profile 2). So, whether or not blocks offer a convincing description of genetic
diversity depends on how the recombination rate varies along a stretch of DNA. kb, kilobases;
ρ, population recombination rate.
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still give rise to blocks, but they are population (and
potentially sample) specific25,26. By contrast, MINIMUM-

DESCRIPTION LENGTH APPROACHES, at least in simulated data,
often locate block boundaries at recombination
hotspots99,100. Estimating local recombination rate 
variation is therefore crucial for assessing whether or
not haplotype blocks reflect genuine recombination 
rate variation or are just artefacts of the block-
detection algorithm25,99.

Conclusions
It has long been known that knowledge of the recom-
bination rate will improve understanding of patterns
of LD in genomes. As population-genetic approaches
are becoming increasingly important in biomedical
research, through genetic association and/or func-
tional studies, understanding the recombination
process is an important challenge. The recent theoreti-
cal developments that have been reviewed here make
the estimation of reliable recombination rates from
population-genetic data possible, even if estimated
recombination rates will, of course, be biased by ignor-
ing factors such as demography and selection. In addi-
tion, they allow us to extract considerable information
about the recombination process. We therefore expect
that knowledge of (estimated) recombination rates
will augment LD studies and aid in their design and
interpretation.

or TAGGING96 APPROACHES for the study of complex dis-
eases, for example, as markers in genome-wide associ-
ation studies. The success of the approach requires
that typed SNPs adequately capture patterns of varia-
tion at untyped loci (through LD). Whether or not
this is true depends, to a large degree, on the level of
recombination (BOX 3). Similarly, haplotype diversity
in a region is determined by the local recombination
rate70. Estimating fine-scale variation in the recombi-
nation rate (for example, the location of hotspots)
could therefore have profound implications for
marker selection, not least because it can provide us
with an idea of how certain we can be that typed SNPs
adequately capture variation within the region.

A related issue is that estimates of the local recombi-
nation rate can be used to address whether haplotype
blocks97,98 are real (in the sense that they are regions of
low recombination that are bounded by recombination
hotspots) or stochastic (in the sense that they represent
chance historical events) features of the human genome
(FIG. 4). If most recombination events fall within small
and easily defined regions of the genome, that is, if
within-hotspot events account for most recombination
events, then blocks might be transferable between pop-
ulations and offer a useful description of genetic diver-
sity in genetic association studies. In the absence of true
hotspots, however, block definitions that are based on
summary statistics of haplotype diversity and/or LD can

HAPLOTYPE-BASED APPROACH

An approach to association
studies in which the 
co-inheritance of phenotypes
and haplotypes — as opposed to
single markers — is statistically
analysed.

TAGGING APPROACH

Identifying sub-sets of markers
(‘tags’) that describe patterns of
association or haplotypes among
larger marker sets.

MINIMUM-DESCRIPTION

LENGTH APPROACHES

A concept from information
theory, in which all of the
information contained in a
system (for example, a sample of
DNA sequences) is described in
the most compact form possible.
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