Vol. 20 no. 5 2004, pages 689-700
DOI: 10.1093/bioinformatics/btg469

-

01_
11018

A statistical framework for combining and
interpreting proteomic datasets

Michael A. Gilchrist!*, Laura A. Salter? and Andreas Wagner!

:‘ "Department of Biology and 2Department of Mathematics and Statistics,
University of New Mexico, Albuquerque, NM 87106, USA

Received on August 27, 2003; accepted on September 25, 2003
Advance Access publication January 22, 2004

ABSTRACT

Motivation: To identify accurately protein function on a
proteome-wide scale requires integrating data within and
between high-throughput experiments. High-throughput pro-
teomic datasets often have high rates of errors and thus
yield incomplete and contradictory information. In this study,
we develop a simple statistical framework using Bayes’ law
to interpret such data and combine information from differ-
ent high-throughput experiments. In order to illustrate our
approach we apply it to two protein complex purification
datasets.

Results: Our approach shows how to use high-throughput
data to calculate accurately the probability that two proteins are
part of the same complex. Importantly, our approach does not
need a reference set of verified protein interactions to determ-
ine false positive and false negative error rates of protein
association. We also demonstrate how to combine information
from two separate protein purification datasets into a combined
dataset that has greater coverage and accuracy than either
dataset alone. In addition, we also provide a technique for
estimating the total number of proteins which can be detected
using a particular experimental technique.

Availability: A suite of simple programs to accomplish some
of the above tasks is available at www.unm.edu/~compbio/
software/DatasetAssess

INTRODUCTION

and shortcomings, such as gene expression data, evolutionary
comparisons and network topology can provide further insight
into protein function (Tongt al., 2002; Deanet al., 2002;
Saitoet al., 2002, 2003). This wealth of information, how-
ever, also has its problem. Specifically, each experimental
technique to characterize protein function has its own source
of both random and systematic errors. Such errors can lead
to contradictory results within and between high-throughput
experiments. This problem underscores the need for a cohes-
ive framework to integrate data from multiple sources to
understand a proteins role within a cell.

We believe that this study represents an important step in
the development of such a framework. Below, we develop a
simple Bayesian approach which permits the integration of
information within and between protein interaction datasets.
We illustrate our approach with data on protein complexes,
which allows us to calculate the probability that two proteins
occur within the same complex. Our approach, however, can
just as easily be applied to direct protein—protein interaction
datasets which, in contrast, would permit calculation of the
probability that two proteins interact directly.

Because our framework is Bayesian in nature, we can
integrate information from replicated experiments using one
experimental technique, as well as information from experi-
ments using different experimental techniques. Other recent
studies have also employed Bayesian techniques to evalu-
ate or identify possible protein—protein interactions (Edwards

Numerous experimental approaches are available to charactéi-al ., 2002; Goldberg and Roth, 2003). Our approach is cur-
ize protein function on a genome-wide scale. They includdently limited in that it can only be applied to datasets which
two-hybrid assays which detect direct protein—protein interProvide information on the same level of biological organiza-
actions (Itoet al., 2001; Uetzt al., 2000), mass spectroscopy tion (e.g. direct interactions or protein complexes). Although
of purified protein complexes which detect associations ofur framework permits integration of data from different such
proteins within a complex (Gaviet al., 2002; Hoet al., levels, to do so is beyond the scope of this study.

2002) and gene deletions that assess a proteins impact ontiere, we analyze the results of two recently published
metabolism and fitness (Steinmetzal., 2002; Allenet al.,  high-throughput experiments that purified hundreds of pro-
2003). Each of these approaches provides information on t&in complexes in the yeaSaccharomyces cerevisiae. The
particular level of biological organization (i.e. direct interac- Study by Gaviret al. (2002) used tandem affinity purification
tions versus complex composition versus phenotypic effects{TAP) while the study by Hoet al. (2002) used high-

Additional sources of information, each with its own strengthsthroughput mass-spectrometric protein complex identification
(HMS-PCI). We will refer to the datasets from these studies

by the specific purification technique used.
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Both the TAP and the HMS-PCI datasets use technique§) " Infermation (b) Experimental Trials
to purify protein complexes in which a focal ‘bait’ protein '
is modified by integrating a standard polypeptide ‘hook’ into
the protein via standard recombinant DNA techniques. The
bait protein is then expressed inside a cell where it may carry
out its function as part of one or more protein complexes.
To detect the other proteins in a complex, the complex is
purified from a cell lysate via affinity chromatography using
the hook of the bait protein. The purified proteins retained
on the affinity column are then separated and identified using
mass-spectrometry. These proteins are often referred to as )

. . d) Data Interpretation (c) Data Summary
‘prey’ proteins, a convention we employ here. Because the
prey proteins are thought to associate with the bait within a
protein complex, we define a ‘true’ association as occurring
between proteins which are members of the same complex.

The systematic and random errors encountered in protein
complex characterization fall into two categories, false neg-
ative and false positive errors. False negative errors occur
when an experiment fails to identify all members of a pro-
tein complex. Conversely, false positive errors occur when aFig. 1. lllustration of our statistical approach with a hypothetical
experiment identifies additional proteins that are not part oflataset. § Two proteins are connected by an edge if they are part
the protein complex. Previous work (e.g. Edweetal., 2002;  of the same protein complex. The panel illustrates the initial lack of
von Meringet al., 2002) has shown that the false negative andonfidence in any such associatiob) The results from three sep-
false positive error rates for any given technique to identifyarfite hypothgtical e.xperimentall trials in which proteiwas used
protein interactions can be quite high. twice as a bait protein and proteinwas used oncec) Representa-

Our goal in this study is to build a statistical model, which tion of the experimental data from the trials in (b) through_tl(meu')_
. - values. The symbalrepresents the number of opportunities (trials)
takes r?f‘dom errors into ‘?‘CCOU”L aIIovymg us to calculate th%e had to observe an association whileepresents the number of
probability that two proteins co-occur in the same Cornple}‘times such an association was experimentally obserdgd@he pos-

give the available experimental data. Our statistical model iggrior probability of each possible protein—protein association based
based on a mechanistic description of how the data in a singlgn the data summarized in (b) and a hypothetical false positive error
protein complex characterization experiment is generated. Irate, ¢, false negative error rate, and the prior probability of an
addition, our model also allows us to estimate the false positivassociationp. The specific values shown for these error rates are
and false negative random error rates of a dataset without thagbitrarily chosen and merely serve to illustrate the principle behind
use of a protein complex reference set. our approach.

Below, we first illustrate our approach with a simple hypo-
thetical example. We then apply our model to the TAP and
HMS-PCI datasets individually and jointly. This allows us to information on which proteins associate with that bait protein.
combine the TAP and HMS-PCI datasets to increase furthefor example, imagine a scenario involving only four proteins
both accuracy and coverage. We then evaluate our models w, x andy (Fig. 1). If we were to conduct an experiment
ability to predict protein—protein associations by comparingusing proteirv as a bait, we can view this experiment as an
our results to a set of known associations. Our comparisonpportunity to observe a possible association between protein
shows that the model can predict the probability that two prov and the proteins, x andy. In repeating this experiment,
teins are truly associated to a remarkable degree. The modedk would have a second chance to observe associatians of
produces a complete weighted graph of pairwise protein assevith w, x andy. A third experiment, now using protein as
ciations. We show how this weighted graph can be converted bait, can be viewed as a third opportunity to observe a pos-
into an unweighted graph, and that this graph has statisticalible association between proteinandw, as well as a first
properties consistent with that found in other studies of yeastpportunity to observe a possible association between protein

Trial Bait Prey

(0,0)

protein interaction networks. w and proteins or y. At the end of these three experiments,
we have had three trials for observing an association between
MODEL AND RESULTS v andw, two trials for observing an association betwaen
) andx, one trial for observing an association betweeand
A hypothetical dataset x and no trials for observing an association betweamdy.

From a sampling perspective, each experiment using on@/e definer as the number of trials we have for observing an
bait protein provides an opportunity or ‘trial’ to gather association between two particular proteins. For example, in
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the above scenario,is equal to 3, 2, 1 and 0 for the protein Each of these rates is specific to a particular experimental
pairs(v, w), (v, x), (w,x) and(x, y), respectively. technique and represents the random errors associated with

However, just because we have the opportunity to observeuch a technique. Non-random errors, i.e. systematic errors
an experimental association does not mean we will necewhich repeatedly occur due to the inherent nature of an exper-
sarily do so. Consequently, we defing‘success’) as the imental technique, can also occur. However, at this point we
number of experimental observations that two proteins assawill ignore such errors because, as we shall later show, they
ciate (0< s < ). Imagine that we carry out the above three appear to be much lower than the random error raasde.
experiments and that we get the following results: our first The false negative error rate, is equal to the probability
experimentusing proteinas a baitidentifies proteinsandy,  that, for any given trial, we will fail to observe an association
our second experiment usingidentifiesw andx, and our  between two proteins that occur within the same complex.
single experiment using identifiedv andx (Fig. 1b). In  Conversely, the false positive error rapejs equal to the prob-
Figure 1c we illustrate how these experimental results can bability that, for any given trial, we will observe an association
summarized as a set @f, s) values for each possible associ- between two proteins that do not occur within the same com-
ation. As we shall show, the number of trialto observe an plex. Using our hypothetical example, if proteinsw andx
association and the number of timesuch an association is associate with one another to form a single complex, then
experimentally observed will affect our confidence that suctour first experiment withy had one false negative observation
an association truly occurs. because an association betweamdx was notobserved. This

_ . . experiment also had one false positive observation because an

A ﬁa?'sﬁ'ca‘ model for analyzing protein association between and y was observed. In contrast, our
association data second and third experiments had no false negative or false
As we have just shown, we can categorize experimentgbositive observations.
information on any particular protein—protein association by If we assume that the random experimental errors are inde-
the number of experimental trials and successes in a datasegndent of each other, then the probability of observing
i.e. byt ands, respectively. Our goal in this section is to build associations out of trials follows a binomial distribution.
a statistical model using Bayes'’ law that allows us to interpreUnder Hy, the two proteing and j occur within the same
this information in a quantitative manner. After building this protein complex. The probability that we will successfully
statistical model, we will first illustrate its use by applying it observe an association betweéeand; is equal to - v. Thus
to the above hypothetical dataset. Then, we will apply it to thaf Hj is true, the probability of observingassociations out

high-throughput datasets mentioned above. of ¢ trials for proteing and; is,
We begin by defining two alternative and complementary ;

hypotheses. The first hypothesH;y, is that two proteing Pr(s|Hy,t,v) = ( )v’s(l —v)’. (1)
N

and j associate by occurring within the same protein com-
plex. The second hypothesid,, is that proteingandj donot  In contrast, under the complementary hypothégisthe two
associate, i.e. they do not occur within the same protein conproteinsi and j do not occur within the same protein com-
plex. We emphasize that the protein complex data we analyzglex. The probability that we will observe a false association
does not permit inference of direct physical contact betweeibetween and j underHs is equal tog. Thus, if H, is true,
proteins, which motivates our definition of association asthe probability of observing associations out aftrials is
adherence to the same complex. ;
The principal idea behind Bayesian statistics is to improve Pr(s|Ho,t,¢) = ( )(1 — ) 9", (2)
an estimate of the probability that a hypothesis is correct §
by weighting information from an experiment with a prior Because ourfalse positive error rate is defined from a sampling
probability, i.e. a probability that the hypothesis is correctperspective of the prey population, it should be noted that it
in the absence of any such data. This improved estimate differs from the false positive error rates estimated by other
generally referred to as a posterior probability. The goal offesearchers (e.g. Mrowlaal., 2001; Edwardst al., 2002).
our statistical approach is to calculate the posterior probab¥hese researchers define a false positive error rate, FP, as
ility of H1, Pr(H1), based on available experimental data.the probability that an observed association does not actually
[BecauseH; andH, are complementary hypotheses, by defin-occur. In contrast, our false positive error rape,measures
ition Pr(H1) = 1 — Pr(H2).] We reach this goal in two steps. the probability that any given prey protein will be erroneously
First, we calculate the probability of observinguccesses in purified in an experimental trial. The false positive rate FP
t trials under each of the hypothes#s and H>. We then use is useful for interpreting results of a specific experimental
Bayes’ law to calculate the posterior probability . trial in a high-throughput dataset. However, it is not only a
In order to calculate the probability of observiagsuc-  function of the false positive sampling error rage,but also
cesses undeH; and H,, we need to define two terms: the the false negative sampling error rate\We will discuss more
false negative error rate and the false positive error rage  explicitly how v and¢ relate to FP in the Results section.
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Equations (1) and (2) allow us to calculate the probabilityand false positive error rates associated with each of these
of s observations out of trials under the assumption that techniques, then it follows that,
either H, or H; is true, respectively. Bayes’ law allows us to .
combine these probabilities in order to calculate the posterio Pr(s|Hy,t,v)p
probability thatH; is true. The use of Bayes’ law requires that Pr(s|Hi,1,v)p + Pr(s|Ha, 1, (75)(1 —p) '
we introduce the prior probabilities that eith&i or H, are 4)
true. Prior probabilities represent our knowledge of a system
before the incorporation of additional information such as ouwhere,
values of ands (Hilborn and Mangel, 1997). Letdenote the
prior probability for Hy, i.e. p is equal to the probability that
two proteins selected at random from a proteome are found
within the same protein complex. It follows that the prior .
robability for H, is simply 1— p. Applying Bayes’ law to - -
gursyster)rq, itfollows thalit)rqe posterizﬁgrogabil?{ylﬁfgiven P(s|H2, 1, ¢) = 1_[ Pr (si|Ha, ti, i) -
t experimental trials ang experimental observations is, i=1

Pr(HLE 5,5, 0) =

n
Pr3|Hy,7,) = [ [ Presil Ha, i, vi)
i=1

Pr(s|Hi,t,v)p In our current analysis we have assumed that the underly-

Pr(s|Hy,7,v)p + Pr(s|Ha, 1, 6)(1 — p) ing processes follow a binomial model as in.Equations (1)
3 and (2). Other datasets, such as the two hybrid datasets, may
®)

, o ) ) require more complex models since they give information on

Bayes’ law, as applied in Equation (3), simply states thayjrect protein—protein interactions rather than protein associ-

the posterior probability off; is equal to the probability of - ations within a complex. Furthermore, Equation (4) could be

observing the datay, s), under the hypothesid weighted  generalized further to allow for other forms of data, such as

by the prior probability off1, divided by the total probability \RNA expression correlation coefficients or functional data.
of observing(z, s). In the absence of any experimental data

(i.e.r = 0), the right-hand side of Equation (3) simplifies to Applying our model

Pr(H1lt,s,v,¢,p) =

the prior probability forH1, p. As the number of trials;,  In this section we move from a hypothetical dataset to the
increases, the posterior probability of an association divergesAP and HMS-PCl datasets created by Gaial. (2002) and
from the prior probabilityp. Ho et al. (2002), respectively. The false positive error rate

Figure 1d illustrates the application of this approach tofalse negative error rate and prior association probabiligy
our hypothetical example. Given a false positive error rateassociated with each of these datasets are unknown. Thus, we
a false negative error rate, and a prior probabilgy,that  must first estimate these parameters. As we will show now, it
two proteins occur within the same complex, Equations (1)s possible to do so by studying the distributionof) values
and (2) serve to calculate the posterior probability for any ofin a high-throughput dataset.
the possible associations in our hypothetical example. Fur- .
thermore, we can represent all the possible protein—proteifrStimating model parameters
associations using a complete (fully connected) graph whos@/e begin our estimation by noting that Equations (1)—(3)
nodes correspond to proteins, and whose edges have weiglaow us to calculate the probability of observingexperi-
that correspond to the probability that two proteins are part ofnental associations giverobservations and the parameters,
the same complex (Fig. 1d). The properties of this weighted, ¢ andp. From these equations it follows that the likelihood
graph can either be analyzed directly, or one can convert th€ of observing a set of parameter valugsp andp given a
graph into an unweighted graph by choosing a probabilitysingle(z, s) value is given by
threshold and including only edges with weights above this
threshold. LW, ¢, plt,s) = A=)V p+¢"(1—9) (1 —-p).

For applications to real data, it is of course important to (5)
estimate model parameters such as the false positive and neg- )
ative error rates. Before showing how to do this, we note tha_igny one observedr, s) value does not contain very much
Bayes' law allows us to incorporate information from mul- information on the parametens, ¢ andp. However, because

tiple data sources. Indeed, Equation (3) can be generalized fig"-throughput datasets contain many experimental trials,
) ' S ) e e amount of information contained in the distribution of

f ” . | techni lobal k%t,s) values for an entire dataset can be appreciable. We find
rom different experimental techniques, or global networkit .onyenient to tabulate this distribution in a matrix Z, whose

properties such as clustering coefficients (Goldberg and RO“éntriesZt,s correspond to the number of times a particular
2003). For example, if ands represent sets of trialsand  pair of values(, s) occurred in a high-throughput experiment.
observationss generated with different experimental tech- Assuming independence between associations, the total like-
niques and and¢ represent vectors of mean false negativelihood, £, of a set of values, ¢ andp given this matrix Z
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can be calculated from Equation (5) as Table 1. Maximum-likelihood estimates of false negative error ratdalse
positive error ratep and global association prigs,for the TAP (Gaviret al.,
fmax 1 2002) and HMS-PCI (Het al., 2002) datasets
L, ¢, 012y =[] J[A=v)'V T p+o' A=) AL-p)]™,
=15=0
= 6 Dataset Parameter
(6) A . X
v ¢ P

wherermax is the maximum number of times any one asso-
ciation has been used in the high-throughput experiment. B%P 0.348 1.07x 1072 1.88x 10:2
finding the parameter values that maximizef Equation (6) Ms-pCl 0-539 130> 107 188> 10
for a given set of eXperimental data' §), we can obtain The asterisk+) indicates parameters which differ between datasets at thke 0.0001
maximum likelihood estimates of ¢ andp. level using likelihood ratio tests. As explained in the text, we assumed both datasets had
In order to arrive at such estimates, it is necessary to knowe same prior probability.
approximately how many different prey proteins a particular
experimental technique can detect. For our likelihood funcassociations detectable with these techniques, the TAP and
tion in Equation (6), the values af ; for s = 0 will be a  HMS-PCI datasets provide information on approximately 25
function of both the total number of trials and the number ofand 20% of them, respectively. In contrast, the combined
different detectable prey protein. For instance, if an experidataset provides information on 39% of all possible protein—
mental technique can only detect interactions between 100@rotein associations, thus illustrating a great advantage of
of all 6000 yeast proteins, then each bait protein experimerfg€ing able to combine information from separate datasets.
effectively conducts a trial for 1000 possible associations. In i
this case, a single bait experiment that detects three interadeCMParing the global performance of TAP and
ing proteins generates three instancesraf) = (1,1) and HMS-PCI
997 instances oft, s) = (1, 0). If, however, an experimental Table 1 contains maximum likelihood estimatesiof and
technique can potentially detect 2000 prey proteins, then thg as well as the results of a likelihood ratio test (Hilborn and
same single bait experiment would generate three instancddangel, 1997) comparing these parameters between datasets.
of (¢,s) = (1,1 and 1997 instances ¢f,s) = (1,0). Inthe  The estimated false negative ratesre high for both data-
Appendix, we use a randomization approach to estimate thgets, but the TAP approach is significantly better at detecting
number of detectable prey proteins. Our results indicate thatrue protein—protein association than HMS-PCI. Specifically,
on average, the TAP and HMS-PCI datasets sample from aur estimates fov imply that each TAP experimental trial
population of approximately 2500 prey proteins. A compu-will miss one out of three true protein—protein associations
tational analysis (data not shown) of yeast codon usage biag; = 0.346), whereas the HMS-PCI data will miss one out of
and experimental analyses of protein expression data (Gydwo true protein—protein associatios£ 0.539). In addition
et al., 2000) suggest a reason for this low prey populatiorto having a lower false negative error rate, the TAP dataset also
size: mass-spectroscopy techniques that rely on previous elelsas a significantly lower estimated false positive error rate than
trophoretic separation are poor at detecting proteins at lowhe HMS-PCI datasetf(= 1.07x 10-3 versus 1.3« 10~3).
abundances. Such proteins constitute a large fraction of th&lthough the false positive error rates are more than two orders
yeast proteome. of magnitude less than the false negative error rates, the num-
Having estimated the number of detectable prey proteiner of false positive errors in an experimental trial scales with
allows us to maximize Equation (6), and thus to obtain maxthe total number of detectable prey proteins. Specifically, if
imum likelihood estimates of, ¢ and 5 without having each bait experiment samples from an estimated population
to refer to a protein reference set. Because both the TABf 2500 experimentally detectable prey proteins, on average
and HMS-PCI datasets can detect similar types of proteinwe would expect to see 1.6710~2 x 2500= 2.66 false pos-
protein associations, and because our estimates (Appendix Ajve protein interactions in each TAP experiment, and x30
for the number of prey proteins they can detect are sim10~2 x 2500= 3.25 false positive interactions in each HMS-
ilar, we constrained the interaction priprto be the same PCIl experimental trial. Taken together with the association
for both high-throughput datasets. A stand-alone softwargrior, p, of 1.88x 10~3, these estimates imply that we would
program which estimates these parameters given a Z maéxpect to see 3.08 and 2.17 true positive interactors for the
rix and the number of detectable prey proteins is available average TAP and HMS-PCI experimental trial, respectively.
http://www.unm.edu/~compbio/software/DatasetAssess. As mentioned previously, our false positive error rate is
In addition to increasing our confidence that an associdefined from a sampling perspective of the prey population
ation does or does not exist between two proteins, our abilityand differs from the FP false positive error rate used by other
to combine datasets also increases the number of proteimesearchers (e.g. Mrowlaal., 2001; Edwardst al., 2002).
protein associations on which we have any informationWe can estimate FP from our parameter estimates dividing
For example, of the 2.4% 10° possible protein—protein the expected number of observed false positive associations
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by the sum of the expected number of observed true and fals&ble 2. Ther—s posterior probability table for the TAP (Gavéhal., 2002)

positive associations, i.e. dataset
— ¢~ p) ) 7) Trials, ¢ Observationss
dpLl—p)+ A —v)p 0 1 2
Note that the FP is independent of the size of the prog 0.00188 — —
tein population detectable with a particular technique. Usingt 0.000652 0.537 —
Equation (7) yields FP values of 0.46 and 0.60 for the TAP and 0.000226 0.286 0.999

HMS-PCI datasets, respectively. These values are consistent

. . Each cell in the table represents the posterior probability that two proteins associate
V_Vlth those eStImate_d by Edwaresal. (2002) and the general givent trials ands experimental observations of an association. Posterior probability
flndmgs of von Merlnget al. (2002). values were generated using Equation (3) and the MLEs of the false negative error rate,

false positive error rate and the association pfiph andp, respectively.
Posterior probabilities of protein associations

The above error rate estimates not only allow a crude globatable 3. The t—s posterior probability table for the HMS-PCI (Hat al.,
comparison of high-throughput protein complex data, they cag002) dataset

also be used to extract more fine-grained information on the
likelihood of observing individual interactions, information Triass, s Observationss

that depends on the number of trials and observation3 0 1 2 3 >4
for any particular protein—protein association. To begin with,

we note that there are multiple differences among the TAP and® 0.00188 — — — —
HMS-PCI datasets that the above global error analysis doeg 0.00102 0.401 — - -

: . 0.000549 0.265 0.996 — —
not reveal. For instance, although the TAP dataset consist 0.000296 0.163 0.992 1.00 _
of fewer experimental trials than the HMS-PCI dataset, the4 0.00016 0.0951 0.986 1.00 1.00
TAP dataset has greater breadth in that it used 588 different 8.62e-05 0.0537 0.974 1.00 1.00
bait proteins as opposed to the 490 different bait proteins of6 4.65e-05 0.0297 0.953 1.00 1.00
the HMS-PCI dataset. Conversely, the HMS-PCI dataset has 2.51e-05  0.0162 0.916 1.00 1.00
greater depth in that approximately 33% of the bait proteinsg %:2?:625 8:88232 8:?24 igg igg
were used more than once. Thus even though the error ratgg 3.94e-06 0.00258 0.63 0.999 1.00
associated with the HMS-PCI dataset is greater than the TARL 2.13e-06 0.0014 0.479 0.998 1.00
dataset, these additional trials can give us greater confidenéé 1.15e-06 0.000754 0.332 0.997 1.00
in the presence or absence of specific individual association$3 6.19e-07 0.000407 0.211 0.994 1.00

Furthermore, we can use Equation (4) to combine the inform** 3.348-07 0.00022 0.126 0.99 1.00

ation from both datasets so that we may take advamage of boEAch cell in the table represents the posterior probability that two proteins associate,
the breadth of the TAP dataset with the depth of the HMS-PCljiven: trials ands experimental observations of an association. Posterior probability
dataset. This combined dataset consists of 1325 experimenmwes were generated using Equation (_3) ang the ML!ES of the f_alse neg.ative error rate
wials with 984 different prey proteins, epestesror e ande oo plo no) especthay Thssitesel
Using Equation (3) and our maximum likelihood estimatesait protein.
(MLESs) of the false negative error rate,false positive error
rate, ¢ and interaction prior, we created tables of pos-
terior probability values for the TAP and HMS-PCI datasetsthat the association really exists [Pf;) = 0.537 in Table 2].
(Tables 2 and 3). Because these tables are organized by tfiis lack of strong confidence is due to the fact that both
number of experimental trials to observe an associati@nd  the false positive error ratep, and the association prior,
the number of times;, an association was observed, we will p, are of similar magnitude. If we carry out two trials and
refer to them as—s posterior probability tables. We also cal- observe an association with a particular prey protein in one
culated a—s posterior probability table from Equation (4) for trial, and no association in the other trial, the posterior probab-
the(z, s) data from the combined TAP and HMS-PCI datasetdlity that the observed association truly occurs is even lower
(Table 4). [Pr(H1) = 0.286 in Table 2]. However, if two trials detect
Examining the—s posterior probability tables (Tables 2—4), the same association (= 2), then the likelihood that this
we find that the probability that an observed association trulyassociation truly occurs attains a value ot #y) = 0.999.
occurs changes with the number of experimental trialsnd  In general, with only one experimental trial, it is unclear
observationsg, in a straightforward manner. For example, whether an observed association reflects a true association
with only one experimental trial and an observed associatiomyr a false positive error. However, for any given number
i.e. (¢,s) = (1,1), we can only have moderate confidenceof trials, 7, the likelihood that an association truly occurs
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Table 4. A subset of the—s posterior probability table based on both the jncreases dramatically as the number of observed associations
TAP (Gavinet al., 2002) and HMS-PCI (Het al., 2002) datasets s increases. This is less obvious from Table 2, because the
TAP data does not contain more thag 2 trials for any pro-
HMS-PCl trials; ~ HMS-PCI successes, tein. It is more strikingly demonstrated by Table 3, because
0 1 2 3 >4 the HMS-PCI data contains up to= 14 trials for some
associations. Table 3 also shows the confidence that any one

association truly occurs decreases for a constant number of

(@) TAP(z,s) = (2,0

2 8'888?22 0_0742 - - - association observations, in an increasing number of tri-

5 6.576.05 00414 0966  — . als, t. For instance, for low f_;lnd moderate va_lu_est df.e.

3 355e-05 0.0228 0.939 1.00 — t < 7)two or more observations of an associatiorn( 2)

4 1.91e-05 0.0124 0.892 100 1.00 leads to a posterior association probability greater than 0.9.
5 1.03e-05  0.00674 0817 100 100 However, ift increases to eight trials the posterior association

6 557e-06  0.00365 0707 0999 1.00 probability decreases to 0.854 foe= 2. Fort = 10 it further

7 3e-06 0.00197 0565 0999 100 0.63 Th for this d i th teri

8 162606 000106 0412 0998 100 decreasesto0.63.Thereason forthis decrease inthe posterior
9 8.74e-07 0.000575 0.274 0.996 1.00 Pprobabilityisthatthe chance of observing the same false pos-

10 4.72e-07  0.00031 0.169  0.993 1.00 itive association multiple times increases with the number of

11 2.54e-07 0.000167  0.0992 0.986 1.00 trials.

12 1.37e-07 9.03e-05 00561  0.975 1.00  eorhorating data from different datasets has the same qual-

13 74108 487¢-05 00311 0955 100 .. Hoct ducti dditional trials. F o if

14 4608 26305 0017 0919 100 tative effectas conducting additional trials. For example, i

) TAP(1,5) = (2.1) a particular association hds, s) values equal ta2,0) and

' o 1 2 >3 (6,2 for the TAP and HMS-PCI data, respectively, the pos-
0 0286 _ o . terior probability that this association truly exists is 0.707. A
1 0.178 0.993 _ _ similar value of 0.854 for this posterior probability would
2 0.105 0.987 1.00 — result if the TAP data contained no trials for this associ-

3 0.0592 0.976 1.00 1.00 ation but the HMS-PCI dataset contained eight trials and

4 0.0329 0.957 100 1.00 two observations, i.e(t,s) = (0,0) and (8,2, respect-

5 0.018 0.923 1.00 1.00 velv. The di 05 b h | ¢

6 0.00979 0.867 1.00 1.00 ively. The discrepancies between these values comes from

7 0.00531 0.778 1.00 1.00 the differences in error rates between the datasets. The com-

8 0.00287 0.654 0999  1.00 plete tables for the combined dataset as well as a database of

9 0.00155  0.505 0999 1.00 trial, success and posterior probability values are available at
10 0.000837  0.355 0.997  1.00 } N ;

1 0000452  0.226 0.095 100 http://www.unm.edu/~compbio/software/DatasetAssess.

12 0.000244  0.138 0991  1.00
13 0.000132  0.0796 0.983  1.00 .

14 71e-05  0.0446 0.968  1.00 Model validation
(©) TAP(1,5) = (2,2 For evaluating the predictive ability of our posterior probab-

0 1 >2 ilities, we used the MIPS Complex Catalog as a reference set.

0 0.999 — — The MIPS Complex Catalog (http://mips.gsf.de/projlyeast/

1 0.997 1.00 — catalogues/complexes/) is a hand-curated database created in

g g'ggi’ i'gg 1'88 1998 in which the composition of protein complexes was

4 0984 1.00 1.00 conf_lrmed b_y a varlgty of expe_rlmental techniques but does

5 0.97 1.00 1.00 not include information from high-throughput datasets. The

6 0.946 1.00 1.00 information in this catalog is at the protein complex level and

7 0.905 1.00 1.00 not the level of direct protein—protein interactions, thus allow-

g 8'322 (1)'889 i'gg ing us to compare our posterior probability values to the actual
10 0598 0.999 100 frequency at which an assomathn betwe'en two proteins with
11 0.445 0.998 1.00 a given(z, s) value occurs according to this database.

12 0.302 0.997 1.00 Overall, the MIPS Complex Catalog contains 1045 unique
13 0.189 0.994 1.00 open reading frames (ORFs) which implies more thari6°
14 0.112 0.988 1.00

possible pairwise protein—protein associations. Out of these

Each cell in a table represents the posterior probability that two proteins associate give% x 105 pOSSIble G'ISSO.CIatIOHS, Only 8711 are documented
t trials ands associations for the HMS-PCI dataset. Posterior probability values were@S aCtua”y occurring In the MIPS Complex CataIOg- We

generated using Equation (3) and the MLEs of the false negative error rate, false positvgan classify each of the & 10° possible protein_protein
error rate and the association pridrg andp, respectively. (a) whetr,s) = (2,0) in

the TAP dataset, (b) whei, s) = (2, 1) in the TAP dataset and (c) wheéns) = (2,2 assouanpns bY the correspondmg number of t”a’ls,and
in the TAP dataset. observationss, in the TAP and HMS-PCI data. Doing so
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Fig. 2. Observed frequency of protein—protein associations in the MIPS dataset versus the expected frequeney TkRh&@avinet al.,

2002), b) HMS-PCI (Hoet al., 2002) and ¢) combined datasets. Expected frequency values are based on Equations (3) and (4) and the
corresponding, ¢ andp, values. The dashed line illustrates the expected 1: 1 correlation between observed and expected frequencies. Data
has been binned in 5% intervals.

allows usto calculate the frequency at which a true associatioof protein interaction networks derived from other inter-
occurs for a given set oft,s) values in a given dataset. action data. While one loses information when converting
For example, in the TAP dataset, there are 707 possiblthe weighted posterior probability graph into an unweighted
protein—protein associations wheies) = (1,1). Of these  graph, unweighted graphs are the most common means of
707 possible associations, 459 correspond to a true assocepresenting association networks and, consequently, one can
ation according to the MIPS Complex Catalog. Therefore, thelraw on a wide variety of tools for their analysis (Harary, 1969;
observed frequency of a true protein—protein association giveBollobas, 1985). In addition, previous analyses of proteomic
(t,s) = (1,1 is 0.649 for the TAP data. The corresponding datasets all utilize unweighted graphs, providing a baseline
posterior probability value in Table 2 is 0.537. The resultsfor comparison. It is important to note that in graphs based on
of applying this approach to all values @fs) are summar- binary, two-hybrid interaction data (Wagner, 2001), an edge
ized in Figure 2, which illustrates that despite having used ndetween two proteins represents a direct interaction. In con-
information from the MIPS Complex Catalog, we can use outtrast, in the protein complex data we analyze here, an edge
statistical model to predict the probability of a true associatiorrepresents an association between two proteins on the level
in this reference dataset to a remarkable degree. For examplaf, the complex. As a consequence, we do not expect a con-
fitting a linear function to the weighted data explains moregruence between the statistics for these two different types of
than 90% of the variance and results in a highly significangraphs.

model fit (P < 0.001) in all three cases with slopes ranging We converted our weighted graphs into unweighted graphs
from 0.92 to 0.95. by retaining all edges with posterior probability values greater

. . L than or equal to 0.5 and by disregarding all edges with a
Comparing global protein network statistics posterior value less than 0.5. A cutoff value of 0.5 may
among different data sources seem arbitrary, but this choice is motivated by the fact that
We can represent all possible protein—protein associationis minimizes the total number of mismatch errors between
in a graph whose nodes correspond to proteins and whodbe simple graph we construct and the graph one can con-
edges have weights that correspond to the probability thatruct based on the information in the MIPS Complex Catalog
two proteins are part of the same complex (Fig. 1d). Asdiscussed above (Fig. 3). For each unweighted graph we
described below, we converted the weighted graphs that resalculated the number of connected components, the average
ult from our analysis of protein complexes into unweighteddegree of a node, as well as the distribution of node degrees.
graphs, in order to compare their global structure with thosé-or the nodes in the largest components in each graph we
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Fig. 3. The fractional error for an unweighted protein interaction subgraph whose nodes are all contained in the MIPS Complex Catalog,
as a function of the probability threshold value for retaining edges between nodes. Errors were computed by comparing the subgraph to a
reference graph of known protein—protein associations derived from the MIPS Complex Catalog. An error is defined as a discrepancy between
the experimentally derived subgraph and this reference graph. The fractional error is equal to the total number of errors divided by the total
number of possible associations in the graph.

Table 5. Statistics for unweighted graphs derived from TAP, HMS-PCl and interactions. For all three datasets the degree distribution can
combined datasets be approximated by a power function where the frequency of
a protein of degree is proportional tal~“ (Fig. 4a). Similar

TAP HMS-PCI Combined to other studies, we do find that the tail of the distribution falls
off faster than expected under a power law. The exponents
All components are within the range found in several previous studies that first
gOdeS 1322 32% 1371 suggested a power-law degree distribution in protein interac-
omponents 51 77 ; . .
Mean degree 3.99 (4.31) 1.78 (1.85) 3.48 (3.79) gggznetworks (Jeongt al., 2001; Wagner, 2001; Het al.,
Degree exponent 1.45 2.26 1.54 )- . - .
L The average clustering coefficient in the largest graph
argest Component .
Nodes 1169 86 1136 components were orders of magnitude greater and the
Mean clustering 0.11 (0.23) 0.01 (0.05) 0.10 (0.26) characteristic path lengths were considerably smaller than
coefficient those observed earlier (Wagner, 2001). Again, these differ-
Mean path length 5.63(0.86) 5.88 (1.65) 5.87 (1.05) ences are not surprising. For example, one would expect a

- _ , lower path length between proteins in our graphs because
Isolated, i.e. disconnected, nodes were ignored for these calculations. Values in . L .
parentheses represent SD. each protein has, on average, more associations than direct
interactions. Finally, we note that the clustering coefficient
of a protein appears to decline inversely with protein degree
calculated the mean clustering coefficient and the charagfig. 4b). Ravaset al. (2002) argue that such a relationship

teristic path length. Finally, we compared the clusteringis evidence of a graph’s hierarchical structure.
coefficients for the entire graph to the node degree to look

for evidence of hierarchical structure in the graph (Ravasz

et al., 2002). The results are summarized in Table 5 and?!SCUSSION

representative distributions are presented in Figure 4. The approach we presented here rests on a representation of
For the TAP and combined dataset, the average proteihigh-throughput protein association data in the forntrof)

degree was greater than that observed earlier for binary proteiwalues, where indicates the number of trials or opportunities

interactions (Wagner, 2001). Such a higher value is expecteth observe an association between a baitand a prey protein, and

given that we are studying complex level associations which indicates the number of times the association was actually

include direct and indirect interactions, rather than just direcbbserved. We showed how to use this information, together
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Fig. 4. (a) Degree distribution ancbj mean clustering coefficien€, (k), versus degree, for data combined from the TAP and HMS-PCI
experiments (Gaviet al., 2002; Hoet al., 2002). The solid line in (a) represents expected frequencies of proteins with detpaesed on a
power law distribution where R4) o« d~4. a is the MLE for the exponent of the distribution. The solid line in (b) represents the expected
relationshipC (k) o« k1 given hierarchical structuring.

with a binomial model of protein sampling, Bayes' law, and Our approach does not allow us to detect systematic errors
a maximum-likelihood estimation of error probabilities, to and it would be difficult to do so for the given available data.
calculate a posterior probability that any two proteins areTo illustrate the nature of systematic errors, imagine that it
associated within the same protein complex. We applied thigvas possible to control laboratory conditions such that each
approach to the publicly available TAP and HMS-PCI high-replicate experiment using the same bait protein identifies the
throughput datasets (Gavah al., 2002; Hoet al., 2002). In  same prey proteins. Using our likelihood technique, we would
applying our approach we were also able to estimate indeestimate the random false positive and false negative error
pendently the random false positive and false negative erralates to be zero. This, however, would not mean our dataset
rates for each dataset. In spite of the high random error ratesas error free. For example, the required chemical modifica-
in both datasets, our approach permits combining informations of a bait protein may change its conformation. They may
tion from multiple experiments within and between different thus interfere with some of the bait’s native protein interac-
high-throughput datasets. This results in identification of protions and they may generate other, spurious interactions. Put
tein associations with high statistical confidence. We validatedlifferently, such modifications could generate false negative
our approach by showing that the protein association posteria@nd false positive errors that occur in every experiment testing
probabilities calculated for angt,s) value are remarkably the same association.
similar to the observed association probabilities for proteins While we cannot currently estimate systematic error rates,
in MIPS Complex Catalog, a reference set of manually curthese rates are likely to be much smaller than random error
ated protein complexes. When representing all moderate tates for the available TAP and HMS-PCl data. Thisis because
high-confidence protein associations as an unweighted grapthe interaction probabilities predicted with our approach are
we find the graph topology is consistent with that emergingn very good agreement with those derived from the MIPS
from other studies of protein networks (Jeogical., 2001; Complex Catalog, where protein interactions are derived from
Wagner, 2001; Het al., 2002). a wide variety of techniques. If this agreement was poor, then
In order to evaluate the quality of proteomic data, previoudt would suggest that systematic errors may be an important
researchers have used reference sets of ‘known’ interactiors®urce of error in the protein complex purification techniques
(e.g. Edward=t al., 2002; von Meringet al., 2002). Our used. Nonetheless, it will be important to distinguish between
approach does not require the use of such reference sets whittfese types of errors in the future and it is possible to expand
is a great advantage, because such reference sets have vauir statistical framework to take such errors into account.
ous shortcomings. First, they include, by their very nature, Further, we note that our ability to estimate random error
a small number of protein interactions. Second, they may beates suggests that a similar approach may allow the estimation
biased towards particular types of intensely studied proteif systematic error rates. This would require high-throughput
complexes. Third, despite manual curation of protein interdata on protein associations derived from different exper-
actions, they may contain false positive errors as well. Ouimental techniques that are subject to different kinds of
maximum-likelihood estimation of experimental error ratessystematic errors. For example, imagine that we have three
permits examination of the self-consistency of data withinlarge datasets each of which uses the same bait protein in sev-
a dataset. In other words, information on the random erroeral replicate trials. When two of the datasets indicate a very
rates of an experimental technique is contained within éigh probability for a particular bait—prey association, while
high-throughput dataset itself. the third indicates a low probability, the third observation
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is best explained as a false negative error. A maximumthan any one technique by itself. For instance, if two proteins
likelihood approach similar to the one we used here may theare shown to be part of a purified complex, they may be in
help to estimate the systematic error rates for each of the datphysical contact if a two-hybrid assay indicates their direct
sets. However, the importance of using maximally diversenteraction. Conversely, if two proteins are shown to be part
experimental techniques must be emphasized. For examplef the same complex, but an assay of direct interactions does
it is likely that the TAP and HMS-PCI approach to detectingnot indicate their association, then the proteins may not be
protein interactions generate similar systematic false negagdjacent in the complex. The amount of support that each
ive errors because both techniques modify bait proteins in &/pe of observation provides will be a function of the quality
similar manner. and amount of experimental data available.

Several recent studies complementary to ours attempt to One of the advantages of the probabilistic approach pur-
validate protein interaction data. Some of these studies alssued by us and others (Edwaretsal., 2002; Goldberg and
use a Bayesian approach. For example, Edwetrdls (2002)  Roth, 2003) is that it moves away from the ‘all or nothing’
showed that although the error rates of most high-throughptterpretation of interactions in molecular networks. Instead,
datasets are large, they are of similar magnitude as thi attaches a probability or statistical confidence to every
error rates of smaller-scale experiments. Using data fronpossible protein interaction. Although the resulting network
small-scale experiments, they calculated an odds-ratio abf interactions is more difficult to analyze than a simpler,
protein—protein interactions from a number of different dataunweighted network, it also contains a much greater amount
sources. However, this approach did not incorporate erroofinformation. Another advantage of the Bayesian framework
rates associated with different experiments and techniquess that it lends itself naturally to integrating data from various
In another Bayesian analysis, Goldberg and Roth (2003) usdifferent experimental sources into a cohesive and expli-
global properties of protein interaction networks, such as theicitly quantitative framework. Such integration will become
high ‘clustering coefficients’ (Watts and Strogatz, 1998) toincreasingly importantas more and more sources of functional
increase statistical confidence in individual protein interacgenomic information become available.
tions. Non-Bayesian approaches include one by Sait.
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