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ABSTRACT
Motivation: To identify accurately protein function on a
proteome-wide scale requires integrating data within and
between high-throughput experiments. High-throughput pro-
teomic datasets often have high rates of errors and thus
yield incomplete and contradictory information. In this study,
we develop a simple statistical framework using Bayes’ law
to interpret such data and combine information from differ-
ent high-throughput experiments. In order to illustrate our
approach we apply it to two protein complex purification
datasets.
Results: Our approach shows how to use high-throughput
data to calculate accurately the probability that two proteins are
part of the same complex. Importantly, our approach does not
need a reference set of verified protein interactions to determ-
ine false positive and false negative error rates of protein
association. We also demonstrate how to combine information
from two separate protein purification datasets into a combined
dataset that has greater coverage and accuracy than either
dataset alone. In addition, we also provide a technique for
estimating the total number of proteins which can be detected
using a particular experimental technique.
Availability: A suite of simple programs to accomplish some
of the above tasks is available at www.unm.edu/~compbio/
software/DatasetAssess

INTRODUCTION
Numerous experimental approaches are available to character-
ize protein function on a genome-wide scale. They include
two-hybrid assays which detect direct protein–protein inter-
actions (Itoet al., 2001; Uetzet al., 2000), mass spectroscopy
of purified protein complexes which detect associations of
proteins within a complex (Gavinet al., 2002; Hoet al.,
2002) and gene deletions that assess a proteins impact on
metabolism and fitness (Steinmetzet al., 2002; Allenet al.,
2003). Each of these approaches provides information on a
particular level of biological organization (i.e. direct interac-
tions versus complex composition versus phenotypic effects).
Additional sources of information, each with its own strengths
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and shortcomings, such as gene expression data, evolutionary
comparisons and network topology can provide further insight
into protein function (Tonget al., 2002; Deaneet al., 2002;
Saitoet al., 2002, 2003). This wealth of information, how-
ever, also has its problem. Specifically, each experimental
technique to characterize protein function has its own source
of both random and systematic errors. Such errors can lead
to contradictory results within and between high-throughput
experiments. This problem underscores the need for a cohes-
ive framework to integrate data from multiple sources to
understand a proteins role within a cell.

We believe that this study represents an important step in
the development of such a framework. Below, we develop a
simple Bayesian approach which permits the integration of
information within and between protein interaction datasets.
We illustrate our approach with data on protein complexes,
which allows us to calculate the probability that two proteins
occur within the same complex. Our approach, however, can
just as easily be applied to direct protein–protein interaction
datasets which, in contrast, would permit calculation of the
probability that two proteins interact directly.

Because our framework is Bayesian in nature, we can
integrate information from replicated experiments using one
experimental technique, as well as information from experi-
ments using different experimental techniques. Other recent
studies have also employed Bayesian techniques to evalu-
ate or identify possible protein–protein interactions (Edwards
et al., 2002; Goldberg and Roth, 2003). Our approach is cur-
rently limited in that it can only be applied to datasets which
provide information on the same level of biological organiza-
tion (e.g. direct interactions or protein complexes). Although
our framework permits integration of data from different such
levels, to do so is beyond the scope of this study.

Here, we analyze the results of two recently published
high-throughput experiments that purified hundreds of pro-
tein complexes in the yeastSaccharomyces cerevisiae. The
study by Gavinet al. (2002) used tandem affinity purification
(TAP) while the study by Hoet al. (2002) used high-
throughput mass-spectrometric protein complex identification
(HMS-PCI). We will refer to the datasets from these studies
by the specific purification technique used.
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Both the TAP and the HMS-PCI datasets use techniques
to purify protein complexes in which a focal ‘bait’ protein
is modified by integrating a standard polypeptide ‘hook’ into
the protein via standard recombinant DNA techniques. The
bait protein is then expressed inside a cell where it may carry
out its function as part of one or more protein complexes.
To detect the other proteins in a complex, the complex is
purified from a cell lysate via affinity chromatography using
the hook of the bait protein. The purified proteins retained
on the affinity column are then separated and identified using
mass-spectrometry. These proteins are often referred to as
‘prey’ proteins, a convention we employ here. Because the
prey proteins are thought to associate with the bait within a
protein complex, we define a ‘true’ association as occurring
between proteins which are members of the same complex.

The systematic and random errors encountered in protein
complex characterization fall into two categories, false neg-
ative and false positive errors. False negative errors occur
when an experiment fails to identify all members of a pro-
tein complex. Conversely, false positive errors occur when an
experiment identifies additional proteins that are not part of
the protein complex. Previous work (e.g. Edwardset al., 2002;
von Meringet al., 2002) has shown that the false negative and
false positive error rates for any given technique to identify
protein interactions can be quite high.

Our goal in this study is to build a statistical model, which
takes random errors into account, allowing us to calculate the
probability that two proteins co-occur in the same complex
give the available experimental data. Our statistical model is
based on a mechanistic description of how the data in a single
protein complex characterization experiment is generated. In
addition, our model also allows us to estimate the false positive
and false negative random error rates of a dataset without the
use of a protein complex reference set.

Below, we first illustrate our approach with a simple hypo-
thetical example. We then apply our model to the TAP and
HMS-PCI datasets individually and jointly. This allows us to
combine the TAP and HMS-PCI datasets to increase further
both accuracy and coverage. We then evaluate our models
ability to predict protein–protein associations by comparing
our results to a set of known associations. Our comparison
shows that the model can predict the probability that two pro-
teins are truly associated to a remarkable degree. The model
produces a complete weighted graph of pairwise protein asso-
ciations. We show how this weighted graph can be converted
into an unweighted graph, and that this graph has statistical
properties consistent with that found in other studies of yeast
protein interaction networks.

MODEL AND RESULTS
A hypothetical dataset
From a sampling perspective, each experiment using one
bait protein provides an opportunity or ‘trial’ to gather

Fig. 1. Illustration of our statistical approach with a hypothetical
dataset. (a) Two proteins are connected by an edge if they are part
of the same protein complex. The panel illustrates the initial lack of
confidence in any such association. (b) The results from three sep-
arate hypothetical experimental trials in which proteinv was used
twice as a bait protein and proteinw was used once. (c) Representa-
tion of the experimental data from the trials in (b) through their(t , s)
values. The symbolt represents the number of opportunities (trials)
we had to observe an association whiles represents the number of
times such an association was experimentally observed. (d) The pos-
terior probability of each possible protein–protein association based
on the data summarized in (b) and a hypothetical false positive error
rate,φ, false negative error rate,ν, and the prior probability of an
association,ρ. The specific values shown for these error rates are
arbitrarily chosen and merely serve to illustrate the principle behind
our approach.

information on which proteins associate with that bait protein.
For example, imagine a scenario involving only four proteins
v, w, x andy (Fig. 1). If we were to conduct an experiment
using proteinv as a bait, we can view this experiment as an
opportunity to observe a possible association between protein
v and the proteinsw, x andy. In repeating this experiment,
we would have a second chance to observe associations ofv

with w, x andy. A third experiment, now using proteinw as
a bait, can be viewed as a third opportunity to observe a pos-
sible association between proteinsv andw, as well as a first
opportunity to observe a possible association between protein
w and proteinsx or y. At the end of these three experiments,
we have had three trials for observing an association between
v andw, two trials for observing an association betweenv

andx, one trial for observing an association betweenw and
x and no trials for observing an association betweenx andy.
We definet as the number of trials we have for observing an
association between two particular proteins. For example, in
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the above scenario,t is equal to 3, 2, 1 and 0 for the protein
pairs(v,w), (v,x), (w,x) and(x,y), respectively.

However, just because we have the opportunity to observe
an experimental association does not mean we will neces-
sarily do so. Consequently, we defines (‘success’) as the
number of experimental observations that two proteins asso-
ciate (0≤ s ≤ t). Imagine that we carry out the above three
experiments and that we get the following results: our first
experiment using proteinv as a bait identifies proteinsw andy,
our second experiment usingv identifiesw andx, and our
single experiment usingw identified v and x (Fig. 1b). In
Figure 1c we illustrate how these experimental results can be
summarized as a set of(t , s) values for each possible associ-
ation. As we shall show, the number of trialst to observe an
association and the number of timess such an association is
experimentally observed will affect our confidence that such
an association truly occurs.

A statistical model for analyzing protein
association data
As we have just shown, we can categorize experimental
information on any particular protein–protein association by
the number of experimental trials and successes in a dataset,
i.e. byt ands, respectively. Our goal in this section is to build
a statistical model using Bayes’ law that allows us to interpret
this information in a quantitative manner. After building this
statistical model, we will first illustrate its use by applying it
to the above hypothetical dataset. Then, we will apply it to the
high-throughput datasets mentioned above.

We begin by defining two alternative and complementary
hypotheses. The first hypothesis,H1, is that two proteinsi
andj associate by occurring within the same protein com-
plex. The second hypothesis,H2, is that proteinsi andj do not
associate, i.e. they do not occur within the same protein com-
plex. We emphasize that the protein complex data we analyze
does not permit inference of direct physical contact between
proteins, which motivates our definition of association as
adherence to the same complex.

The principal idea behind Bayesian statistics is to improve
an estimate of the probability that a hypothesis is correct
by weighting information from an experiment with a prior
probability, i.e. a probability that the hypothesis is correct
in the absence of any such data. This improved estimate is
generally referred to as a posterior probability. The goal of
our statistical approach is to calculate the posterior probab-
ility of H1, Pr(H1), based on available experimental data.
[BecauseH1 andH2 are complementary hypotheses, by defin-
ition Pr(H1) = 1 − Pr(H2).] We reach this goal in two steps.
First, we calculate the probability of observings successes in
t trials under each of the hypothesesH1 andH2. We then use
Bayes’ law to calculate the posterior probability forH1.

In order to calculate the probability of observings suc-
cesses underH1 andH2, we need to define two terms: the
false negative error rateν and the false positive error rateφ.

Each of these rates is specific to a particular experimental
technique and represents the random errors associated with
such a technique. Non-random errors, i.e. systematic errors
which repeatedly occur due to the inherent nature of an exper-
imental technique, can also occur. However, at this point we
will ignore such errors because, as we shall later show, they
appear to be much lower than the random error ratesν andφ.

The false negative error rate,ν, is equal to the probability
that, for any given trial, we will fail to observe an association
between two proteins that occur within the same complex.
Conversely, the false positive error rate,φ, is equal to the prob-
ability that, for any given trial, we will observe an association
between two proteins that do not occur within the same com-
plex. Using our hypothetical example, if proteinsv, w andx

associate with one another to form a single complex, then
our first experiment withv had one false negative observation
because an association betweenv andx was not observed. This
experiment also had one false positive observation because an
association betweenv andy was observed. In contrast, our
second and third experiments had no false negative or false
positive observations.

If we assume that the random experimental errors are inde-
pendent of each other, then the probability of observings

associations out oft trials follows a binomial distribution.
UnderH1, the two proteinsi and j occur within the same
protein complex. The probability that we will successfully
observe an association betweeni andj is equal to 1−ν. Thus
if H1 is true, the probability of observings associations out
of t trials for proteinsi andj is,

Pr(s|H1, t ,ν) =
(

t

s

)
νt−s(1 − ν)s . (1)

In contrast, under the complementary hypothesisH2, the two
proteinsi andj do not occur within the same protein com-
plex. The probability that we will observe a false association
betweeni andj underH2 is equal toφ. Thus, ifH2 is true,
the probability of observings associations out oft trials is

Pr(s|H2, t ,φ) =
(

t

s

)
(1 − φ)t−sφs . (2)

Because our false positive error rate is defined from a sampling
perspective of the prey population, it should be noted that it
differs from the false positive error rates estimated by other
researchers (e.g. Mrowkaet al., 2001; Edwardset al., 2002).
These researchers define a false positive error rate, FP, as
the probability that an observed association does not actually
occur. In contrast, our false positive error rate,φ, measures
the probability that any given prey protein will be erroneously
purified in an experimental trial. The false positive rate FP
is useful for interpreting results of a specific experimental
trial in a high-throughput dataset. However, it is not only a
function of the false positive sampling error rate,φ, but also
the false negative sampling error rate,ν. We will discuss more
explicitly howν andφ relate to FP in the Results section.
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Equations (1) and (2) allow us to calculate the probability
of s observations out oft trials under the assumption that
eitherH1 or H2 is true, respectively. Bayes’ law allows us to
combine these probabilities in order to calculate the posterior
probability thatH1 is true. The use of Bayes’ law requires that
we introduce the prior probabilities that eitherH1 or H2 are
true. Prior probabilities represent our knowledge of a system
before the incorporation of additional information such as our
values oft ands (Hilborn and Mangel, 1997). Letρ denote the
prior probability forH1, i.e.ρ is equal to the probability that
two proteins selected at random from a proteome are found
within the same protein complex. It follows that the prior
probability forH2 is simply 1− ρ. Applying Bayes’ law to
our system, it follows that the posterior probability ofH1 given
t experimental trials ands experimental observations is,

Pr(H1|t , s,ν,φ,ρ) = Pr(s|H1, t ,ν)ρ

Pr(s|H1, t ,ν)ρ + Pr(s|H2, t ,φ)(1 − ρ)
.

(3)

Bayes’ law, as applied in Equation (3), simply states that
the posterior probability ofH1 is equal to the probability of
observing the data,(t , s), under the hypothesisH1 weighted
by the prior probability ofH1, divided by the total probability
of observing(t , s). In the absence of any experimental data
(i.e. t = 0), the right-hand side of Equation (3) simplifies to
the prior probability forH1, ρ. As the number of trials,t ,
increases, the posterior probability of an association diverges
from the prior probability,ρ.

Figure 1d illustrates the application of this approach to
our hypothetical example. Given a false positive error rate
a false negative error rate, and a prior probability,ρ, that
two proteins occur within the same complex, Equations (1)
and (2) serve to calculate the posterior probability for any of
the possible associations in our hypothetical example. Fur-
thermore, we can represent all the possible protein–protein
associations using a complete (fully connected) graph whose
nodes correspond to proteins, and whose edges have weights
that correspond to the probability that two proteins are part of
the same complex (Fig. 1d). The properties of this weighted
graph can either be analyzed directly, or one can convert the
graph into an unweighted graph by choosing a probability
threshold and including only edges with weights above this
threshold.

For applications to real data, it is of course important to
estimate model parameters such as the false positive and neg-
ative error rates. Before showing how to do this, we note that
Bayes’ law allows us to incorporate information from mul-
tiple data sources. Indeed, Equation (3) can be generalized to
incorporate information on protein interactions or associations
from different experimental techniques, or global network
properties such as clustering coefficients (Goldberg and Roth,
2003). For example, if�t and�s represent sets of trialst and
observationss generated with different experimental tech-
niques and�ν and �φ represent vectors of mean false negative

and false positive error rates associated with each of these
techniques, then it follows that,

Pr(H1|�t , �s, �ν, �φ) = Pr(�s|H1, �t , �ν)ρ

Pr(�s|H1, �t , �ν)ρ + Pr(�s|H2, �t , �φ)(1 − ρ)
,

(4)

where,

Pr(�s|H1, �t , �ν) =
n∏

i=1

Pr(si |H1, ti ,νi) ,

Pr(�s|H2, �t , �φ) =
n∏

i=1

Pr(si |H2, ti ,φi) .

In our current analysis we have assumed that the underly-
ing processes follow a binomial model as in Equations (1)
and (2). Other datasets, such as the two hybrid datasets, may
require more complex models since they give information on
direct protein–protein interactions rather than protein associ-
ations within a complex. Furthermore, Equation (4) could be
generalized further to allow for other forms of data, such as
mRNA expression correlation coefficients or functional data.

Applying our model
In this section we move from a hypothetical dataset to the
TAP and HMS-PCI datasets created by Gavinet al. (2002) and
Ho et al. (2002), respectively. The false positive error rateν,
false negative error rateφ and prior association probabilityρ
associated with each of these datasets are unknown. Thus, we
must first estimate these parameters. As we will show now, it
is possible to do so by studying the distribution of(t , s) values
in a high-throughput dataset.

Estimating model parameters
We begin our estimation by noting that Equations (1)–(3)
allow us to calculate the probability of observings experi-
mental associations givent observations and the parameters,
ν, φ andρ. From these equations it follows that the likelihood
L of observing a set of parameter valuesν, φ andρ given a
single(t , s) value is given by

L(ν,φ,ρ|t , s) = (1 − ν)sνt−sρ + φs(1 − φ)t−s(1 − ρ).
(5)

Any one observed(t , s) value does not contain very much
information on the parameters,ν, φ andρ. However, because
high-throughput datasets contain many experimental trials,
the amount of information contained in the distribution of
(t , s) values for an entire dataset can be appreciable. We find
it convenient to tabulate this distribution in a matrix Z, whose
entrieszt ,s correspond to the number of times a particular
pair of values(t , s) occurred in a high-throughput experiment.
Assuming independence between associations, the total like-
lihood, L, of a set of valuesν, φ andρ given this matrix Z
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can be calculated from Equation (5) as

L(ν,φ,ρ|Z) =
tmax∏
t=1

t∏
s=0

[
(1 − ν)sνt−sρ + φs(1 − φ)t−s (1 − ρ)

]zt ,s ,

(6)

wheretmax is the maximum number of times any one asso-
ciation has been used in the high-throughput experiment. By
finding the parameter values that maximizeL of Equation (6)
for a given set of experimental data(t , s), we can obtain
maximum likelihood estimates ofν, φ andρ.

In order to arrive at such estimates, it is necessary to know
approximately how many different prey proteins a particular
experimental technique can detect. For our likelihood func-
tion in Equation (6), the values ofzt ,s for s = 0 will be a
function of both the total number of trials and the number of
different detectable prey protein. For instance, if an experi-
mental technique can only detect interactions between 1000
of all 6000 yeast proteins, then each bait protein experiment
effectively conducts a trial for 1000 possible associations. In
this case, a single bait experiment that detects three interact-
ing proteins generates three instances of(t , s) = (1, 1) and
997 instances of(t , s) = (1, 0). If, however, an experimental
technique can potentially detect 2000 prey proteins, then the
same single bait experiment would generate three instances
of (t , s) = (1, 1) and 1997 instances of(t , s) = (1, 0). In the
Appendix, we use a randomization approach to estimate the
number of detectable prey proteins. Our results indicate that,
on average, the TAP and HMS-PCI datasets sample from a
population of approximately 2500 prey proteins. A compu-
tational analysis (data not shown) of yeast codon usage bias,
and experimental analyses of protein expression data (Gygi
et al., 2000) suggest a reason for this low prey population
size: mass-spectroscopy techniques that rely on previous elec-
trophoretic separation are poor at detecting proteins at low
abundances. Such proteins constitute a large fraction of the
yeast proteome.

Having estimated the number of detectable prey proteins
allows us to maximize Equation (6), and thus to obtain max-
imum likelihood estimates of̂ν, φ̂ and ρ̂ without having
to refer to a protein reference set. Because both the TAP
and HMS-PCI datasets can detect similar types of protein–
protein associations, and because our estimates (Appendix A)
for the number of prey proteins they can detect are sim-
ilar, we constrained the interaction priorρ to be the same
for both high-throughput datasets. A stand-alone software
program which estimates these parameters given a Z mat-
rix and the number of detectable prey proteins is available at
http://www.unm.edu/~compbio/software/DatasetAssess.

In addition to increasing our confidence that an associ-
ation does or does not exist between two proteins, our ability
to combine datasets also increases the number of protein–
protein associations on which we have any information.
For example, of the 2.45× 106 possible protein–protein

Table 1. Maximum-likelihood estimates of false negative error rate,ν, false
positive error rate,φ and global association prior,ρ for the TAP (Gavinet al.,
2002) and HMS-PCI (Hoet al., 2002) datasets

Dataset Parameter
ν̂ φ̂ ρ̂

TAP 0.346∗ 1.07× 10−3∗ 1.88× 10−3

HMS-PCI 0.539∗ 1.30× 10−3∗ 1.88× 10−3

The asterisk (∗) indicates parameters which differ between datasets at theP � 0.0001
level using likelihood ratio tests. As explained in the text, we assumed both datasets had
the same prior probability,̂ρ.

associations detectable with these techniques, the TAP and
HMS-PCI datasets provide information on approximately 25
and 20% of them, respectively. In contrast, the combined
dataset provides information on 39% of all possible protein–
protein associations, thus illustrating a great advantage of
being able to combine information from separate datasets.

Comparing the global performance of TAP and
HMS-PCI
Table 1 contains maximum likelihood estimates ofν̂, φ̂ and
ρ̂ as well as the results of a likelihood ratio test (Hilborn and
Mangel, 1997) comparing these parameters between datasets.
The estimated false negative ratesν are high for both data-
sets, but the TAP approach is significantly better at detecting
true protein–protein association than HMS-PCI. Specifically,
our estimates forν imply that each TAP experimental trial
will miss one out of three true protein–protein associations
(ν̂ = 0.346), whereas the HMS-PCI data will miss one out of
two true protein–protein associations (ν̂ = 0.539). In addition
to having a lower false negative error rate, the TAP dataset also
has a significantly lower estimated false positive error rate than
the HMS-PCI dataset (φ̂ = 1.07× 10−3 versus 1.30× 10−3).
Although the false positive error rates are more than two orders
of magnitude less than the false negative error rates, the num-
ber of false positive errors in an experimental trial scales with
the total number of detectable prey proteins. Specifically, if
each bait experiment samples from an estimated population
of 2500 experimentally detectable prey proteins, on average
we would expect to see 1.07×10−3 ×2500= 2.66 false pos-
itive protein interactions in each TAP experiment, and 1.30×
10−3 × 2500= 3.25 false positive interactions in each HMS-
PCI experimental trial. Taken together with the association
prior,ρ, of 1.88× 10−3, these estimates imply that we would
expect to see 3.08 and 2.17 true positive interactors for the
average TAP and HMS-PCI experimental trial, respectively.

As mentioned previously, our false positive error rate is
defined from a sampling perspective of the prey population
and differs from the FP false positive error rate used by other
researchers (e.g. Mrowkaet al., 2001; Edwardset al., 2002).
We can estimate FP from our parameter estimates dividing
the expected number of observed false positive associations
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by the sum of the expected number of observed true and false
positive associations, i.e.

FP= φ(1 − ρ)

φ(1 − ρ) + (1 − ν)ρ
. (7)

Note that the FP is independent of the size of the pro-
tein population detectable with a particular technique. Using
Equation (7) yields FP values of 0.46 and 0.60 for the TAP and
HMS-PCI datasets, respectively. These values are consistent
with those estimated by Edwardset al. (2002) and the general
findings of von Meringet al. (2002).

Posterior probabilities of protein associations
The above error rate estimates not only allow a crude global
comparison of high-throughput protein complex data, they can
also be used to extract more fine-grained information on the
likelihood of observing individual interactions, information
that depends on the number of trials and observations(t , s)
for any particular protein–protein association. To begin with,
we note that there are multiple differences among the TAP and
HMS-PCI datasets that the above global error analysis does
not reveal. For instance, although the TAP dataset consists
of fewer experimental trials than the HMS-PCI dataset, the
TAP dataset has greater breadth in that it used 588 different
bait proteins as opposed to the 490 different bait proteins of
the HMS-PCI dataset. Conversely, the HMS-PCI dataset has
greater depth in that approximately 33% of the bait proteins
were used more than once. Thus even though the error rates
associated with the HMS-PCI dataset is greater than the TAP
dataset, these additional trials can give us greater confidence
in the presence or absence of specific individual associations.
Furthermore, we can use Equation (4) to combine the inform-
ation from both datasets so that we may take advantage of both
the breadth of the TAP dataset with the depth of the HMS-PCI
dataset. This combined dataset consists of 1325 experimental
trials with 984 different prey proteins.

Using Equation (3) and our maximum likelihood estimates
(MLEs) of the false negative error rate,ν̂, false positive error
rate, φ̂ and interaction prior,ρ̂, we created tables of pos-
terior probability values for the TAP and HMS-PCI datasets
(Tables 2 and 3). Because these tables are organized by the
number of experimental trials to observe an association,t , and
the number of times,s, an association was observed, we will
refer to them ast–s posterior probability tables. We also cal-
culated at–s posterior probability table from Equation (4) for
the(t , s) data from the combined TAP and HMS-PCI datasets
(Table 4).

Examining thet–s posterior probability tables (Tables 2–4),
we find that the probability that an observed association truly
occurs changes with the number of experimental trials,t , and
observations,s, in a straightforward manner. For example,
with only one experimental trial and an observed association,
i.e. (t , s) = (1, 1), we can only have moderate confidence

Table 2. Thet–s posterior probability table for the TAP (Gavinet al., 2002)
dataset

Trials, t Observations,s
0 1 2

0 0.00188 — —
1 0.000652 0.537 —
2 0.000226 0.286 0.999

Each cell in the table represents the posterior probability that two proteins associate
given t trials ands experimental observations of an association. Posterior probability
values were generated using Equation (3) and the MLEs of the false negative error rate,
false positive error rate and the association prior,ν̂, φ̂ andρ̂, respectively.

Table 3. The t–s posterior probability table for the HMS-PCI (Hoet al.,
2002) dataset

Trials, t Observations,s
0 1 2 3 ≥4

0 0.00188 — — — —
1 0.00102 0.401 — — —
2 0.000549 0.265 0.996 — —
3 0.000296 0.163 0.992 1.00 —
4 0.00016 0.0951 0.986 1.00 1.00
5 8.62e−05 0.0537 0.974 1.00 1.00
6 4.65e−05 0.0297 0.953 1.00 1.00
7 2.51e−05 0.0162 0.916 1.00 1.00
8 1.35e−05 0.00883 0.854 1.00 1.00
9 7.3e−06 0.00478 0.76 1.00 1.00

10 3.94e−06 0.00258 0.63 0.999 1.00
11 2.13e−06 0.0014 0.479 0.998 1.00
12 1.15e−06 0.000754 0.332 0.997 1.00
13 6.19e−07 0.000407 0.211 0.994 1.00
14 3.34e−07 0.00022 0.126 0.99 1.00

Each cell in the table represents the posterior probability that two proteins associate,
given t trials ands experimental observations of an association. Posterior probability
values were generated using Equation (3) and the MLEs of the false negative error rate
false positive error rate and the association prior,ν̂, φ̂ andρ̂, respectively. This dataset
differs from the TAP dataset in that multiple experiments were carried out with the same
bait protein.

that the association really exists [Pr(H1) = 0.537 in Table 2].
This lack of strong confidence is due to the fact that both
the false positive error rate,φ, and the association prior,
ρ, are of similar magnitude. If we carry out two trials and
observe an association with a particular prey protein in one
trial, and no association in the other trial, the posterior probab-
ility that the observed association truly occurs is even lower
[Pr(H1) = 0.286 in Table 2]. However, if two trials detect
the same association (s = 2), then the likelihood that this
association truly occurs attains a value of Pr(H1) = 0.999.
In general, with only one experimental trial, it is unclear
whether an observed association reflects a true association
or a false positive error. However, for any given number
of trials, t , the likelihood that an association truly occurs
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Table 4. A subset of thet–s posterior probability table based on both the
TAP (Gavinet al., 2002) and HMS-PCI (Hoet al., 2002) datasets

HMS-PCI trials,t HMS-PCI successes,s

0 1 2 3 ≥4

(a) TAP(t , s) = (2, 0)
0 0.000226 — — — —
1 0.000122 0.0742 — — —
2 6.57e−05 0.0414 0.966 — —
3 3.55e−05 0.0228 0.939 1.00 —
4 1.91e−05 0.0124 0.892 1.00 1.00
5 1.03e−05 0.00674 0.817 1.00 1.00
6 5.57e−06 0.00365 0.707 0.999 1.00
7 3e−06 0.00197 0.565 0.999 1.00
8 1.62e−06 0.00106 0.412 0.998 1.00
9 8.74e−07 0.000575 0.274 0.996 1.00

10 4.72e−07 0.00031 0.169 0.993 1.00
11 2.54e−07 0.000167 0.0992 0.986 1.00
12 1.37e−07 9.03e−05 0.0561 0.975 1.00
13 7.41e−08 4.87e−05 0.0311 0.955 1.00
14 4e−08 2.63e−05 0.017 0.919 1.00

(b) TAP (t , s) = (2, 1)
0 1 2 ≥3

0 0.286 — — —
1 0.178 0.993 — —
2 0.105 0.987 1.00 —
3 0.0592 0.976 1.00 1.00
4 0.0329 0.957 1.00 1.00
5 0.018 0.923 1.00 1.00
6 0.00979 0.867 1.00 1.00
7 0.00531 0.778 1.00 1.00
8 0.00287 0.654 0.999 1.00
9 0.00155 0.505 0.999 1.00

10 0.000837 0.355 0.997 1.00
11 0.000452 0.229 0.995 1.00
12 0.000244 0.138 0.991 1.00
13 0.000132 0.0796 0.983 1.00
14 7.1e−05 0.0446 0.968 1.00

(c) TAP (t , s) = (2, 2)
0 1 ≥2

0 0.999 — —
1 0.997 1.00 —
2 0.995 1.00 1.00
3 0.991 1.00 1.00
4 0.984 1.00 1.00
5 0.97 1.00 1.00
6 0.946 1.00 1.00
7 0.905 1.00 1.00
8 0.836 1.00 1.00
9 0.734 0.999 1.00

10 0.598 0.999 1.00
11 0.445 0.998 1.00
12 0.302 0.997 1.00
13 0.189 0.994 1.00
14 0.112 0.988 1.00

Each cell in a table represents the posterior probability that two proteins associate given
t trials ands associations for the HMS-PCI dataset. Posterior probability values were
generated using Equation (3) and the MLEs of the false negative error rate, false positive
error rate and the association prior,ν̂, φ̂ andρ̂, respectively. (a) when(t , s) = (2, 0) in
the TAP dataset, (b) when(t , s) = (2, 1) in the TAP dataset and (c) when(t , s) = (2, 2)
in the TAP dataset.

increases dramatically as the number of observed associations
s increases. This is less obvious from Table 2, because the
TAP data does not contain more thant = 2 trials for any pro-
tein. It is more strikingly demonstrated by Table 3, because
the HMS-PCI data contains up tot = 14 trials for some
associations. Table 3 also shows the confidence that any one
association truly occurs decreases for a constant number of
association observations,s, in an increasing number of tri-
als, t . For instance, for low and moderate values oft (i.e.
t ≤ 7) two or more observations of an association (s ≥ 2)
leads to a posterior association probability greater than 0.9.
However, ift increases to eight trials the posterior association
probability decreases to 0.854 fors = 2. Fort = 10 it further
decreases to 0.63. The reason for this decrease in the posterior
probability is that the chance of observing the same false pos-
itive association multiple times increases with the number of
trials.

Incorporating data from different datasets has the same qual-
itative effect as conducting additional trials. For example, if
a particular association has(t , s) values equal to(2, 0) and
(6, 2) for the TAP and HMS-PCI data, respectively, the pos-
terior probability that this association truly exists is 0.707. A
similar value of 0.854 for this posterior probability would
result if the TAP data contained no trials for this associ-
ation but the HMS-PCI dataset contained eight trials and
two observations, i.e.(t , s) = (0, 0) and (8, 2), respect-
ively. The discrepancies between these values comes from
the differences in error rates between the datasets. The com-
plete tables for the combined dataset as well as a database of
trial, success and posterior probability values are available at
http://www.unm.edu/~compbio/software/DatasetAssess.

Model validation
For evaluating the predictive ability of our posterior probab-
ilities, we used the MIPS Complex Catalog as a reference set.
The MIPS Complex Catalog (http://mips.gsf.de/proj/yeast/
catalogues/complexes/) is a hand-curated database created in
1998 in which the composition of protein complexes was
confirmed by a variety of experimental techniques but does
not include information from high-throughput datasets. The
information in this catalog is at the protein complex level and
not the level of direct protein–protein interactions, thus allow-
ing us to compare our posterior probability values to the actual
frequency at which an association between two proteins with
a given(t , s) value occurs according to this database.

Overall, the MIPS Complex Catalog contains 1045 unique
open reading frames (ORFs) which implies more than 5×105

possible pairwise protein–protein associations. Out of these
5 × 105 possible associations, only 8711 are documented
as actually occurring in the MIPS Complex Catalog. We
can classify each of the 5× 105 possible protein–protein
associations by the corresponding number of trials,t , and
observations,s, in the TAP and HMS-PCI data. Doing so
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Fig. 2. Observed frequency of protein–protein associations in the MIPS dataset versus the expected frequency for the (a) TAP (Gavinet al.,
2002), (b) HMS-PCI (Hoet al., 2002) and (c) combined datasets. Expected frequency values are based on Equations (3) and (4) and the
correspondinĝν, φ̂ andρ̂, values. The dashed line illustrates the expected 1 : 1 correlation between observed and expected frequencies. Data
has been binned in 5% intervals.

allows us to calculate the frequency at which a true association
occurs for a given set of(t , s) values in a given dataset.
For example, in the TAP dataset, there are 707 possible
protein–protein associations where(t , s) = (1, 1). Of these
707 possible associations, 459 correspond to a true associ-
ation according to the MIPS Complex Catalog. Therefore, the
observed frequency of a true protein–protein association given
(t , s) = (1, 1) is 0.649 for the TAP data. The corresponding
posterior probability value in Table 2 is 0.537. The results
of applying this approach to all values of(t , s) are summar-
ized in Figure 2, which illustrates that despite having used no
information from the MIPS Complex Catalog, we can use our
statistical model to predict the probability of a true association
in this reference dataset to a remarkable degree. For example,
fitting a linear function to the weighted data explains more
than 90% of the variance and results in a highly significant
model fit (P < 0.001) in all three cases with slopes ranging
from 0.92 to 0.95.

Comparing global protein network statistics
among different data sources
We can represent all possible protein–protein associations
in a graph whose nodes correspond to proteins and whose
edges have weights that correspond to the probability that
two proteins are part of the same complex (Fig. 1d). As
described below, we converted the weighted graphs that res-
ult from our analysis of protein complexes into unweighted
graphs, in order to compare their global structure with those

of protein interaction networks derived from other inter-
action data. While one loses information when converting
the weighted posterior probability graph into an unweighted
graph, unweighted graphs are the most common means of
representing association networks and, consequently, one can
draw on a wide variety of tools for their analysis (Harary, 1969;
Bollobás, 1985). In addition, previous analyses of proteomic
datasets all utilize unweighted graphs, providing a baseline
for comparison. It is important to note that in graphs based on
binary, two-hybrid interaction data (Wagner, 2001), an edge
between two proteins represents a direct interaction. In con-
trast, in the protein complex data we analyze here, an edge
represents an association between two proteins on the level
of the complex. As a consequence, we do not expect a con-
gruence between the statistics for these two different types of
graphs.

We converted our weighted graphs into unweighted graphs
by retaining all edges with posterior probability values greater
than or equal to 0.5 and by disregarding all edges with a
posterior value less than 0.5. A cutoff value of 0.5 may
seem arbitrary, but this choice is motivated by the fact that
it minimizes the total number of mismatch errors between
the simple graph we construct and the graph one can con-
struct based on the information in the MIPS Complex Catalog
discussed above (Fig. 3). For each unweighted graph we
calculated the number of connected components, the average
degree of a node, as well as the distribution of node degrees.
For the nodes in the largest components in each graph we
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Fig. 3. The fractional error for an unweighted protein interaction subgraph whose nodes are all contained in the MIPS Complex Catalog,
as a function of the probability threshold value for retaining edges between nodes. Errors were computed by comparing the subgraph to a
reference graph of known protein–protein associations derived from the MIPS Complex Catalog. An error is defined as a discrepancy between
the experimentally derived subgraph and this reference graph. The fractional error is equal to the total number of errors divided by the total
number of possible associations in the graph.

Table 5. Statistics for unweighted graphs derived from TAP, HMS-PCI and
combined datasets

TAP HMS-PCI Combined

All components
Nodes 1322 350 1371
Components 51 66 77
Mean degree 3.99 (4.31) 1.78 (1.85) 3.48 (3.79)
Degree exponent 1.45 2.26 1.54

Largest component
Nodes 1169 86 1136
Mean clustering 0.11 (0.23) 0.01 (0.05) 0.10 (0.26)
coefficient

Mean path length 5.63 (0.86) 5.88 (1.65) 5.87 (1.05)

Isolated, i.e. disconnected, nodes were ignored for these calculations. Values in
parentheses represent SD.

calculated the mean clustering coefficient and the charac-
teristic path length. Finally, we compared the clustering
coefficients for the entire graph to the node degree to look
for evidence of hierarchical structure in the graph (Ravasz
et al., 2002). The results are summarized in Table 5 and
representative distributions are presented in Figure 4.

For the TAP and combined dataset, the average protein
degree was greater than that observed earlier for binary protein
interactions (Wagner, 2001). Such a higher value is expected
given that we are studying complex level associations which
include direct and indirect interactions, rather than just direct

interactions. For all three datasets the degree distribution can
be approximated by a power function where the frequency of
a protein of degreey is proportional tod−a (Fig. 4a). Similar
to other studies, we do find that the tail of the distribution falls
off faster than expected under a power law. The exponentsa

are within the range found in several previous studies that first
suggested a power-law degree distribution in protein interac-
tion networks (Jeonget al., 2001; Wagner, 2001; Hoet al.,
2002).

The average clustering coefficient in the largest graph
components were orders of magnitude greater and the
characteristic path lengths were considerably smaller than
those observed earlier (Wagner, 2001). Again, these differ-
ences are not surprising. For example, one would expect a
lower path length between proteins in our graphs because
each protein has, on average, more associations than direct
interactions. Finally, we note that the clustering coefficient
of a protein appears to decline inversely with protein degree
(Fig. 4b). Ravaszet al. (2002) argue that such a relationship
is evidence of a graph’s hierarchical structure.

DISCUSSION
The approach we presented here rests on a representation of
high-throughput protein association data in the form of(t , s)
values, wheret indicates the number of trials or opportunities
to observe an association between a bait and a prey protein, and
s indicates the number of times the association was actually
observed. We showed how to use this information, together
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Fig. 4. (a) Degree distribution and (b) mean clustering coefficient,̄C(k), versus degree,k, for data combined from the TAP and HMS-PCI
experiments (Gavinet al., 2002; Hoet al., 2002). The solid line in (a) represents expected frequencies of proteins with degreey, based on a
power law distribution where Pr(d) ∝ d−â . â is the MLE for the exponent of the distribution. The solid line in (b) represents the expected
relationshipC̄(k) ∝ k−1 given hierarchical structuring.

with a binomial model of protein sampling, Bayes’ law, and
a maximum-likelihood estimation of error probabilities, to
calculate a posterior probability that any two proteins are
associated within the same protein complex. We applied this
approach to the publicly available TAP and HMS-PCI high-
throughput datasets (Gavinet al., 2002; Hoet al., 2002). In
applying our approach we were also able to estimate inde-
pendently the random false positive and false negative error
rates for each dataset. In spite of the high random error rates
in both datasets, our approach permits combining informa-
tion from multiple experiments within and between different
high-throughput datasets. This results in identification of pro-
tein associations with high statistical confidence. We validated
our approach by showing that the protein association posterior
probabilities calculated for any(t , s) value are remarkably
similar to the observed association probabilities for proteins
in MIPS Complex Catalog, a reference set of manually cur-
ated protein complexes. When representing all moderate to
high-confidence protein associations as an unweighted graph,
we find the graph topology is consistent with that emerging
from other studies of protein networks (Jeonget al., 2001;
Wagner, 2001; Hoet al., 2002).

In order to evaluate the quality of proteomic data, previous
researchers have used reference sets of ‘known’ interactions
(e.g. Edwardset al., 2002; von Meringet al., 2002). Our
approach does not require the use of such reference sets which
is a great advantage, because such reference sets have vari-
ous shortcomings. First, they include, by their very nature,
a small number of protein interactions. Second, they may be
biased towards particular types of intensely studied protein
complexes. Third, despite manual curation of protein inter-
actions, they may contain false positive errors as well. Our
maximum-likelihood estimation of experimental error rates
permits examination of the self-consistency of data within
a dataset. In other words, information on the random error
rates of an experimental technique is contained within a
high-throughput dataset itself.

Our approach does not allow us to detect systematic errors
and it would be difficult to do so for the given available data.
To illustrate the nature of systematic errors, imagine that it
was possible to control laboratory conditions such that each
replicate experiment using the same bait protein identifies the
same prey proteins. Using our likelihood technique, we would
estimate the random false positive and false negative error
rates to be zero. This, however, would not mean our dataset
was error free. For example, the required chemical modifica-
tions of a bait protein may change its conformation. They may
thus interfere with some of the bait’s native protein interac-
tions and they may generate other, spurious interactions. Put
differently, such modifications could generate false negative
and false positive errors that occur in every experiment testing
the same association.

While we cannot currently estimate systematic error rates,
these rates are likely to be much smaller than random error
rates for the available TAP and HMS-PCI data. This is because
the interaction probabilities predicted with our approach are
in very good agreement with those derived from the MIPS
Complex Catalog, where protein interactions are derived from
a wide variety of techniques. If this agreement was poor, then
it would suggest that systematic errors may be an important
source of error in the protein complex purification techniques
used. Nonetheless, it will be important to distinguish between
these types of errors in the future and it is possible to expand
our statistical framework to take such errors into account.

Further, we note that our ability to estimate random error
rates suggests that a similar approach may allow the estimation
of systematic error rates. This would require high-throughput
data on protein associations derived from different exper-
imental techniques that are subject to different kinds of
systematic errors. For example, imagine that we have three
large datasets each of which uses the same bait protein in sev-
eral replicate trials. When two of the datasets indicate a very
high probability for a particular bait–prey association, while
the third indicates a low probability, the third observation
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is best explained as a false negative error. A maximum-
likelihood approach similar to the one we used here may then
help to estimate the systematic error rates for each of the data-
sets. However, the importance of using maximally diverse
experimental techniques must be emphasized. For example,
it is likely that the TAP and HMS-PCI approach to detecting
protein interactions generate similar systematic false negat-
ive errors because both techniques modify bait proteins in a
similar manner.

Several recent studies complementary to ours attempt to
validate protein interaction data. Some of these studies also
use a Bayesian approach. For example, Edwardset al. (2002)
showed that although the error rates of most high-throughput
datasets are large, they are of similar magnitude as the
error rates of smaller-scale experiments. Using data from
small-scale experiments, they calculated an odds-ratio of
protein–protein interactions from a number of different data
sources. However, this approach did not incorporate error
rates associated with different experiments and techniques.
In another Bayesian analysis, Goldberg and Roth (2003) use
global properties of protein interaction networks, such as their
high ‘clustering coefficients’ (Watts and Strogatz, 1998) to
increase statistical confidence in individual protein interac-
tions. Non-Bayesian approaches include one by Saitoet al.
(2002, 2003), which is conceptually similar to the one taken
by Goldberg and Roth (2003). It uses local network topology
to come up with ‘interaction generality’ metrics. Such met-
rics are not as immediately interpretable as Bayesian based
posterior probabilities.

Perhaps the simplest non-Bayesian approach to integrate
information within one dataset is exemplified by the com-
monly used ‘core’ dataset of Itoet al. (2001), which consists
of interactions observed at least three times in a larger high-
throughput experiment. Similarly, von Meringet al. (2002)
combined interaction data consistently observed in a num-
ber of experiments, including TAP and HMS-PCI datasets, as
well as protein interaction data generated with the two-hybrid
technique (Uetzet al., 2000; Itoet al., 2001). Such approaches
can greatly reduce the number of false positive errors due to
random sources. However, they do so at the cost of increas-
ing the number of false negative errors. In contrast, Bayesian
approaches like ours permit combining data from different
sources so that we may increase our confidence that an asso-
ciation does or does not occur increase while, simultaneously,
increasing the number of associations examined.

In this study we focused on high-throughput protein com-
plex purification techniques. Such techniques only indicate
whether two proteins are part of the same protein complex.
This stands in contrast to other techniques, most notable
among them the yeast-two-hybrid assay (Fields and Song,
1989), which identify direct interactions among proteins.
Information from both types of techniques, which can be
integrated by extending our approach, can provide more
detailed information on protein interactions and associations

than any one technique by itself. For instance, if two proteins
are shown to be part of a purified complex, they may be in
physical contact if a two-hybrid assay indicates their direct
interaction. Conversely, if two proteins are shown to be part
of the same complex, but an assay of direct interactions does
not indicate their association, then the proteins may not be
adjacent in the complex. The amount of support that each
type of observation provides will be a function of the quality
and amount of experimental data available.

One of the advantages of the probabilistic approach pur-
sued by us and others (Edwardset al., 2002; Goldberg and
Roth, 2003) is that it moves away from the ‘all or nothing’
interpretation of interactions in molecular networks. Instead,
it attaches a probability or statistical confidence to every
possible protein interaction. Although the resulting network
of interactions is more difficult to analyze than a simpler,
unweighted network, it also contains a much greater amount
of information. Another advantage of the Bayesian framework
is that it lends itself naturally to integrating data from various
different experimental sources into a cohesive and expli-
citly quantitative framework. Such integration will become
increasingly important as more and more sources of functional
genomic information become available.
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APPENDIX
Estimating the number of detectable prey
proteins
In order to estimate the number of prey proteins that can be
observed experimentally with any given technique, we take
a statistical approach that asks how the number of unique
detected prey proteins changes with each experimental trial.
Because the number of proteins in the proteome is finite,
the number of experimentally detectable prey proteins is also
finite. It follows that the total number of observed prey pro-
teins will approach an asymptotic value as the number of
experimental trials becomes very large. This asymptotic value
corresponds to the size of the population of prey proteins
which can be observed experimentally (the prey population
size, for short).

In order to estimate this asymptotic value, we first ran-
domized the order of experimental trials in a high-throughput
experimental dataset. We then calculated the total number
of unique prey proteins,F , observed afterz trials. We
repeated this randomization procedure 300 times, averaging
the number of unique prey proteins observed after each trial
to calculateF̄ (z). We found that the following Hill function
provides an excellent fit tōF(z),

f (z) = k1
zk2

k3 + zk2
.

In this function,f (z) represents the number of unique prey
proteins observed inz experimental trials.f (z) is a general
univariate function of three parameters,k1, k2 andk3, of which
k1 is the asymptotic value forf (z) asz goes to infinity. The
estimated value ofk1 thus represents our estimate of the prey
population size. For both the TAP and HMS-PCI datasets
we were able to find extremely close fits (explaining more
than 99% of the error) for both datasets off (z) to the mean
randomized datāF(z). We did so by minimizing the mean
squared distance between the data andf (z). This procedure
yielded estimates of the prey protein population size as 2212
(±10.8 SE) and 2782 (±10.7 SE) for the TAP and HMS-PCI
datasets, respectively.
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