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Abstract.—The maximum likelihood (ML) method of phylogenetic tree construction is not as widely
used as other tree construction methods (e.g., parsimony, neighbor-joining) because of the prohibitive
amount of time required to �nd the ML tree when the number of sequences under consideration
is large. To overcome this dif�culty, we propose a stochastic search strategy for estimation of the
ML tree that is based on a simulated annealing algorithm. The algorithm works by moving through
tree space by way of a “local rearrangement” strategy so that topologies that improve the likelihood
are always accepted, whereas those that decrease the likelihood are accepted with a probability that
is related to the proportionate decrease in likelihood. Besides greatly reducing the time required to
estimate the ML tree, the stochastic search strategy is less likely to become trapped in local optima
than are existing algorithms for ML tree estimation. We demonstrate the success of the modi�ed
simulated annealing algorithm by comparing it with two existing algorithms (Swofford’s PAUP¤

and Felsenstein’s DNAMLK) for several theoretical and real data examples. [Maximum likelihood;
simulated annealing; stochastic probing; stochastic search.]

A great variety of methods for estimating
phylogenetic trees from DNA or RNA se-
quence data are currently available. Among
these, the maximum likelihood (ML) method
has several advantages, including statisti-
cal consistency (Felsenstein, 1981; Hasegawa
et al., 1991; Yang, 1994; Chang, 1996; Rogers,
1997), robustness to violations in the as-
sumptions of the underlying evolutionary
models (Hasegawa et al., 1991; Yang, 1994),
and the possibility of signi�cance tests that
use the likelihood framework (Kishino and
Hasegawa, 1989; Goldman, 1993). However,
use of the ML method in practice has been
limited by two dif�culties in its implementa-
tion. First, existing algorithms are extremely
time-consuming and therefore are not eas-
ily used when the number of sequences un-
der consideration is large (say, ¸35). Second,
these algorithms can become trapped in tree
topologies that are local maxima when even a
moderately large number of DNA sequences
are considered (see, for example, Olsen et al.,
1994).

The most popular algorithms for estimat-
ing the ML phylogenetic tree are those devel-
oped by Felsenstein (1993) in his programs
DNAML and DNAMLK and by Swofford
(1998) in PAUP¤. In the case of unrooted
trees, Olsen et al. (1994) provided an algo-
rithm (fastDNAML) that is nearly identical
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to Felsenstein’s program DNAML but can
reach an estimate more quickly. These algo-
rithms are similar and involve, �rst, build-
ing an initial tree by stepwise addition of se-
quences to the tree and then moving through
tree space deterministically, trying various
rearrangements of the current tree. If a re-
arrangement that improves the likelihood is
found, then that tree becomes the current
tree. The process continues until no rear-
rangements of the current tree result in a tree
of greater likelihood. Such methods can eas-
ily lead to entrapment in local optima. In-
deed, simply ordering the sequences differ-
ently at the stage of stepwise addition can
result in different estimates of the ML tree
(Felsenstein, 1993).

Considerable recent attention has been
given to stochastic search strategies as a
means of estimating the ML tree. The genetic
algorithms of Lewis (1998) for nucleotide se-
quence data and of Matsuda (1996) for amino
acid sequence data seem promising. Several
Markov Chain Monte Carlo (MCMC) meth-
ods (Mau et al., 1996; Yang and Rannala, 1997;
Li et al., 2000) have been proposed when
an estimate of the posterior distribution of
phylogenetic trees under speci�c prior as-
sumptions is desired. However, when a large
number of sequences is considered, MCMC
methods give poor estimates of the posterior
probability of any individual tree and are
not designed to estimate the ML tree. Here
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we propose a new stochastic search strategy
for estimating the ML tree that is based on
a simulated annealing algorithm. After de-
scribing the general simulated annealing al-
gorithm, we provide a detailed explanation
of our particular implementation of the al-
gorithm. Then we illustrate the application
of the algorithm to theoretical and real data
examples, respectively, and compare the al-
gorithm with the ML algorithms of Swofford
and Felsenstein in both cases. We conclude
with a discussion of these results and some
directions for future research.

MODIFIED S IMULATED ANNEALING
FOR ESTIMATING THE ML

PHYLOGENETIC TREE

The method of simulated annealing was
developed through the generalization of an
algorithm proposed by Metropolis et al.
(1953) to simulate the changes in the energy
of a substance as it is being cooled. The goal
of the cooling process is to obtain a solid
that is in its ground state, that is, the state at
which the solid has minimum energy. How-
ever, the cooling process has the property
that if the temperature is lowered too quickly,
the resulting solid can become trapped in a
metastable state that is not its ground state.
Several authors, notably Kirkpatrick et al.
(1983) and Cerny (1985), noticed the anal-
ogy between the cooling of a substance to
its minimum energy state and the minimiza-
tion of a function by using a stochastic search
strategy. In this analogy, the metastable states
represent local minima, the ground state rep-
resents the global minimum, and the rate of
lowering of the temperature corresponds to
some parameter that controls the possible so-
lutions examined by the search procedure.

To describe the annealing algorithm in
general, we suppose that the goal of the al-
gorithm is the maximization of a function.
The algorithm works by moving through the
solution space in such a way that solutions
that increase the value of the objective func-
tion are always accepted whereas those that
decrease the value of the objective function
are accepted with some probability, the value
for which depends on the amount by which
the objective function would be decreased.
The probability of accepting a solution that
lowers the value of the objective function
is decreased as the algorithm proceeds ac-
cording to a sequence of control parameters.

This is analogous to the method of slowly de-
creasing the temperature in the cooling of a
substance in the chemical physics setting de-
scribed above. The idea behind the algorithm
is that accepting poorer solutions with a cer-
tain probability will help the process avoid
becoming trapped in local maxima.

We can formally de�ne the simulated an-
nealing algorithm as follows. Let f (¢) be the
function to be maximized, let xi and x j be ele-
ments of the solution space S, and let c0 be the
initial value of the control parameter. The fol-
lowing steps are repeated until the value of
the control parameter is suf�ciently small or
until the same solution is repeatedly gener-
ated in many consecutive iterations.

Step 1. From the current solution, xi , gener-
ate a potential solution, x j , according
to a speci�c generation scheme.

Step 2. If f (x j ) ¸ f (xi ), then set xiC1 D x j .
Otherwise, set xiC1 D x j with proba-
bility

exp
»

¡( f (xi ) ¡ f (x j ))
ci

¼
:

Step 3. Update the value of the control pa-
rameter, ci , and set i to i C 1. Go to
Step 1.

Because the outcome of an iteration de-
pends only on the outcome of the previ-
ous iteration, the simulated annealing al-
gorithm generates a time-inhomogeneous
Markov chain, the transition probabilities of
which depend on the generation scheme and
on the probability of accepting a new solu-
tion into the chain. By Markov chain theory,
the above algorithm can be shown to con-
verge to a stationary distribution for which
the set of optimal solutions has probability
one, under certain conditions of both the se-
quence of control parameters and the gener-
ation scheme (Lundy and Mees, 1986; Mitra
et al., 1986; Aarts and Korst, 1989; Haario and
Saksman, 1991).

We note that the algorithm requires several
things. First, a method of generating a candi-
date solution from any given solution must
be determined, and this generation scheme
must satisfy the requirement that every state
is reachable from every other state in a �-
nite number of applications of the genera-
tion procedure. Next, an initial value of the
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control parameter and the way that the con-
trol parameter will be updated at each it-
eration of the algorithm must be speci�ed.
This is often called the cooling schedule, in the
spirit of the analogy of the cooling of a sub-
stance, because this sequence of parameters
determines thechange in the probability with
which the solutions that decrease the value
of the objective function are accepted (corre-
sponding to the rate at which the substance is
cooled). Finally, the stopping criteria must be
determined. This is usually done by specify-
ing either a �nal value of the control parame-
ter or a bound on the number of consecutive
unsuccessful moves attempted.

Although the algorithm can be shown to
converge under appropriate conditions, the
number of iterations required to �nd a so-
lution arbitrarily close to the optimal so-
lution can be quite large for some choices
of the cooling schedule and stopping rule.
Therefore, several cooling schedules that
seem to provide near-optimal results in rea-
sonable time have been proposed (Lundy,
1985; Lundy and Mees, 1986; Kirkpatrick
et al., 1983; Mitra et al., 1986; Aarts and Van
Laarhoven, 1985). Here, we adopt the ap-
proach of Lundy (1985) and Lundy and Mees
(1986).

Simulated annealing has previously been
applied to the phylogenetic tree problem
under the parsimony criteria. Barker (1997)
implemented a simulated annealing algo-
rithm for estimating parsimonious phyloge-
netic trees in his program LVB. Several other
authors (Lundy, 1985; Dress and Kruger,
1987) have applied simulated annealing to
the Steiner tree problem.

A modi�ed version of the simulated an-
nealing algorithm will be used here to esti-
mate the ML phylogenetic tree, so that the
function f we are trying to optimize is the log
likelihood of the tree. We begin with the prob-
lem of �nding a rooted tree for which the
times for the internal nodes of the tree will be
estimated. The length of the branch connect-
ing two nodes is then the difference between
the times for the two nodes. We assign a time
of 0 to the root node and let the time for each
of the external nodes be equal to the total time
represented by the tree, which is a parame-
ter to be estimated. Times are then assigned
to the internal nodes according to their dis-
tance from the root node. The units of time
are the expected number of nucleotide sub-
stitutions per site. A computer program was

written to carry out all of the details of the
method proposed here. The program is gen-
eral enough to include the most popular sub-
stitution models in the calculations: the F84
model (Felsenstein, 1993), the HKY85 model
(Hasegawa et al., 1985), and all of their asso-
ciated submodels. The choices we have made
for the various components of the annealing
algorithm are described below.

The Candidate Tree

To specify the simulated annealing proce-
dure, we must �rst determine the genera-
tion scheme, that is, the method by which
a new candidate solution will be generated
from an existing solution. The generation
scheme proposed here is a stochastic modi-
�cation of the Nearest Neighbor Interchange
(NNI) strategy, used by the PAUP¤ software
(also called the “local rearrangement” strat-
egy in the stochastic search methods used by
Kuhner et al. [1995] and Li et al., [2000]). This
generation scheme satis�es the requirement
that any tree be accessible from any other tree
in a �nite number of applications of the pro-
cess (Li et al., 2000). The steps involved in
the local rearrangement strategy in this set-
ting for a tree that includes n sequences are
as follows (see Fig. 1 for an illustration):

Step 1. From the set of n ¡ 2 internal nodes
(excluding the root), select one of
the internal nodes at random (each
equally likely). Call this node the tar-
get node.

Step 2. From the set containing the two chil-
dren nodes of the target node and the
sibling of the target node, randomly
select two of the three members of the
set to become the new children of the
target node. The subtrees descending
from these children are carried along
in the rearrangement process.

Step 3. Generate a new time for the target
node.

Note that the time of the target node is
constrained to fall between the time of the
target’s parent node and the time of the closer
of the two new children. To assign a time to
the target node after local rearrangement, we
draw a random number from a beta distri-
bution for which the mean is suggested by a
single-step Newton-Raphson (NR1) estimate
of the time. The actual value of the mean is
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FIGURE 1. Illustration of the local rearrangement strategy. First, a target node is chosen from the set of internal
nodes, and the children, sibling, and parent of the target node are identi�ed (a). Two new children of the target node
are then selected, resulting in trees (b) or (c), in which the topology has changed, or in tree (d), in which the topology
remains the same. The time of the target node is changed regardless of which new tree topology is produced.

set to be two-thirds of the distance from the
current time of the target node to the NR1 es-
timate, if this estimate falls within the allow-
able interval, or two-thirds of the distance to
the endpoint of the interval in the direction
of the NR1 estimate otherwise. For computa-
tional speed, the NR1 estimate is based only
on the subtree descending from the target
node. This simpli�es the computation enor-
mously, because by the pruning algorithm
of Felsenstein (1981), the likelihood of the
subtree depends only on the likelihoods of
the two children, which have already been
calculated. The �rst and second derivatives
of the likelihood of the subtree are thus
easily calculable. The variance of the beta
distribution used to place the time within
the allowable interval is decreased as the
algorithm proceeds according to the formula

1

w C 1
n

p
i
,

where i is the number of iterations in the
annealing algorithm, and w must be ¸51
to ensure that a unimodal beta distribution
is obtained. The rationale behind decreas-
ing the variance of the beta distribution is
that we rely more and more on the infor-
mation from the NR1 calculation as the al-
gorithm proceeds. Note that in this step we
have generalized the simulated annealing al-
gorithm somewhat, because most instances
of the algorithm have generation probabili-
ties that depend only on the current solution.
Because our generation probabilities depend

also on the iteration number, our stochastic
optimization algorithm shares some of the
features of the stochastic probing algorithm
described by Laud et al. (1992).

For several reasons, we do not spend too
much effort on the estimation of the node
times and have chosen to estimate only one
node time at each iteration. First, the topol-
ogy of the tree contributes more to the overall
log likelihood than do the node times within
the tree. In addition, having a tree with node
times that have been chosen to maximize
the likelihood could result in the rejection of
moves that would eventually be bene�cial,
because the probability of accepting a move
depends on the difference in log likelihood
between the candidate tree and the proposed
tree. Finally, optimization of node times is
computationally intensive and would slow
the algorithm, making it less applicable to
large data sets (Olsen et al., 1994). Despite
placing only a limited effort on the estimation
of optimal node times, the algorithm gener-
ally moves toward the optimal estimates as
it proceeds, because of both the decreasing
variance of the beta distribution used to gen-
erate the new node times and the positive se-
lective pressure placed on “good” node times
by the annealing algorithm. The �nal trees re-
ported by the algorithm will typically have
node times that are close to the optimal val-
ues, though they will not be exact because of
the stochastic nature of the algorithm.

A tree on which to start the local rear-
rangement procedure must also be speci�ed.
Given that convergence of the annealing al-
gorithm occurs independently of the starting
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point, we choose to start with a tree topology
that is randomly generated from the distribu-
tion of topologies created by the Yule model
with n external nodes (Aldous, 1996). The
total time represented by the tree is initially
set to 1.0, and initial node times are spaced
evenly throughout the tree. That the conver-
gence of the algorithm as implemented here
is independent of the starting point will be
examined with several examples in the next
section.

The Cooling Schedule

The next component of the annealing al-
gorithm that must be speci�ed is the cooling
schedule. In this setting, the cooling schedule
of Lundy (1985) and Lundy and Mees (1986)
is adopted. The updating of the control pa-
rameter is accomplished by setting

ciC1 D
U

1 C i¯

where U is an upper bound on the change in
the likelihood in one application of the gen-
eration scheme, and ¯ is the parameter that
controls the rate of cooling; its value is <1.
Values of ¯ close to 1 will result in faster cool-
ing but will increase the chance of becoming
trapped in local maxima, whereas values of
¯ ¿1 will result in slower cooling, which can
lead to longer run times.

To set reasonable values of ¯ and U, we
run the algorithm for an initial “burn-in” pe-
riod. Once this period has been completed,
we set U to the maximum change in the log
likelihood observed during the burn-in. The
initial value of the control parameter, c0, is
set to U , and ¯ is determined by

¯ D
c

(1 ¡ ®)n C (®)¡ ln l
m

,

where n is the number of sequences, m is the
number of sites, c and ® are between 0 and 1,
and ln l is the log likelihood of the UPGMA
tree (Li, 1997). We note that the term ln l

m rep-
resents, on average, the log likelihood of each
site in the sequence for a tree that will gener-
ally have a log likelihood close to that of the
ML tree. The motivation for setting ¯ in this
manner is that the dif�culty of the problem
is affected by both the number of sequences
in the tree and the magnitude of the log like-
lihood attributed to each site (lower likeli-

hoods imply less phylogenetic information).
Because lower values of ¯ provide for slower
cooling, which is desirable in more dif�cult
problems, ¯ is related to the reciprocal of a
linear combination of these two factors. The
constant c in the numerator allows the user
to alter the rate of cooling without changing
the particular linear combination selected in
the denominator. For most problems, includ-
ing those considered here, c D ® D 0:5 seems
to work well.

The Stopping Rule

Although many different stopping criteria
are possible, the rule used here speci�es that
the algorithm terminates when reaching the
bound placed on the number of iterations
made since the proposal of an “uninvesti-
gated” topology. An uninvestigated topol-
ogy is a topology that either has never been
previously proposed or has not been eligible
for local rearrangement an adequate num-
ber of times. The number of times a topology
must be eligible for local rearrangement to
be classi�ed as “investigated” is determined
by setting a bound on the probability that an
internal node would not have been selected
as the target node in the local rearrangement.
For a tree with n sequences, there are n ¡ 2 in-
ternal nodes eligible for local rearrangement;
thus, the probability that an arbitrary inter-
nal node is not selected for local rearrange-
ment in xn trials is (1 ¡ 1

n¡2 )xn. Specifying this
probability will therefore determine x. The
default in our implementation is to set this
probability to 0.05. The bound on the num-
ber of iterations made since the proposal of
an uninvestigated topology is also taken to
be a multiple of n. The default we have set in
this case is 10n iterations.

To use this stochastic search method for in-
ference of the ML tree, the likelihood must be
recalculated after every local rearrangement
and compared with the previous likelihood.
However, this does not require complete re-
calculation of the likelihood from the tips of
the tree. Because of the pruning algorithm
(Felsenstein, 1981), the only nodes for which
likelihoods will change after rearrangement
are the target and the target’s ancestors; the
likelihood of the rest of the nodes in the tree
will not be affected. Therefore, storing the
likelihoods for all the nodes in the tree at
each step in the algorithm and recalculating
only likelihoods for nodes affected by a local
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rearrangement presents a considerable econ-
omy in terms of computation time.

Additionally, the program has an option
that allows for the k best trees encountered
by the algorithm to be saved and printed
to a �le in Newick format, where k can
be set by the user. This allows the pro-
gram to obtain information about compet-
ing trees of high likelihood, which is an ad-
ditional advantage over existing algorithms
that typically provide only a single estimate
of the ML tree. (Although PAUP¤ has the op-
tion to save the k best trees found, this
option is not currently available when the
“addseq D random” option is used.) As men-
tioned previously, estimates of the node
times for these k trees will generally be close
to optimal, though they will not be exact.
Therefore, node times for these trees should
be subsequently optimized.

To summarize, our stochastic search algo-
rithm (SSA) for the ML phylogenetic tree re-
construction problem consists of the follow-
ing steps (where L(¢) is the log likelihood
function):

Step 1. From tree ¿i , generate candidate tree
¿ ¤, using the local rearrangement
strategy.

Step 2. If L(¿ ¤) ¸ L(¿i ), set ¿i to ¿ ¤. Other-
wise, set ¿i to ¿ ¤ with probability

exp
»

L(¿ ¤) ¡ L(¿i )
ci

¼
:

Step 3. Set ciC1 D U
1Ci¯ , ¿iC1 D ¿i , and i D

i C 1. If the stopping criteria are satis-
�ed, then return the k best trees found
by the algorithm and proceed to Step
4. If the stopping criteria are not sat-
is�ed, return to Step 1.

Step 4. Optimize node times for the k best
trees found by the algorithm, and de-
termine the ML estimate.

THEORETICAL EXAMPLES

To test our stochastic optimization method
and to compare the method with the two
most popular existing ML programs (Swof-
ford’s PAUP¤ and Felsenstein’s DNAMLK),
we deemed it desirable to create a data set
with a known ML. To do this, we speci�ed
data when the number of sequences, n, is
2l , l D 2, 3, : : : , 7, so that a completely sym-
metric tree must be the ML tree under the

Jukes–Cantor (JC) model (Jukes and Cantor,
1969). For each n, the number of sites in the
data set was 128. Ten trials for each data
set were performed by PAUP¤, DNAMLK,
and our SSA, with different starting points.
For PAUP¤ and DNAMLK, the use of differ-
ent starting points meant that different or-
derings of the sequences were used (i.e., the
“jumble” option was used in PHYLIP, and
the option “addseq D random” was used in
PAUP¤), whereas SSA was started from dif-
ferent random trees as described above. For
DNAMLK, the global rearrangement option
was off. PAUP¤ was tested with use of both
NNI and TBR branch-swapping. SSA was
run with two different cooling schedules: ® D
c D 0:50, which is the recommended cooling
schedule, and ® D 0:50 and c D 0:25, which
will result in longer run times than the rec-
ommended schedule, but allows for a more
extensive search. SSA was also modi�ed to
provide a “stochastic uphill search” by ac-
cepting only trees that increased the log like-
lihood. Examination of the search results ob-
tained by using this modi�cation allowed
us to separate the effect of randomly per-
forming local rearrangements from the ef-
fect of the probabilistic acceptance of trees
with lower log likelihoods. The number of
times the ML topology was recovered for
each value of n was recorded for each of
the methods, as well as the cpu time re-
quired for each trial (Table 1). All compu-
tations were performed on a Sun Ultra10
running Solaris 7.0 (SPECfp95 D 22.7; see
http://www.spec.org for more information
on SPEC benchmarks).

The cpu time (averaged over the runs)
used by the programs for each value of
n is shown in Table 1. We observe that
SSA is faster than PAUP¤ for n ¸ 32 and
faster than DNAMLK for n ¸ 8. The dif-
ference is especially notable for the largest
example attempted, n D 128, where SSA
took an average of »3 min for the recom-
mended cooling schedule, compared with
»40 min for PAUP¤ using NNI branch-
swapping and »1.9 hr for DNAMLK.
Figure 2 plots the log of the cpu times in
seconds against the log of the number of
sequences for each of the methods. Felsen-
stein (1993) states that the time required
by DNAMLK is proportional to the cube
of the number of sequences, which is sup-
ported by the fact that the slope of the
line representing the times for DNAMLK

http://www.spec.org
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FIGURE 2. Plot of the log of the cpu time in seconds against the log of the number of sequences for SSA with
® D c D 0:50 (SSA-1), SSA with ® D 0:50 and c D 0:25 (SSA-2), PAUP¤ with NNI branch-swapping (PAUP¤-NNI),
PAUP¤ with TBR branch-swapping (PAUP¤-TBR), and DNAMLK from the PHYLIP package (DNAMLK) for the
theoretical data. The slopes of the lines, as estimated by least-squares regression, are 2.19 for SSA-1; 2.37 for SSA-2;
3.57 for PAUP¤-NNI; 4.30 for PAUP¤-TBR; and 3.45 for DNAMLK.

in Figure 2 is »3. The slope of the line
for PAUP¤ using NNI branch-swapping is
also »3, though the intercept is smaller.
For PAUP¤ using TBR branch-swapping, the
slope is »4. The lines representing the times
for SSA under the two cooling schedules that
permit probabilistic acceptance of a tree that
decreases the log likelihood appear to have
slopes of »2. That is, the time required by SSA
is approximately proportional to the square
of the number of sequences for the cool-
ing schedule and stopping rule considered
here.

We also compared the methods in terms of
their ability to recover the ML tree (Table 1).
SSA usingbothcoolingschedulesand PAUP¤

using both NNI and TBR branch-swapping
recovered the ML tree for all values of
n, whereas DNAMLK found nonoptimal
topologies for n D 64 and n D 128. This in-
dicates that SSA and PAUP¤ are better able
to avoid entrapment in local maxima than is
DNAMLK. Moreover, for SSA, convergence
of the algorithm occurs independently of the
initial tree.

REAL EXAMPLES

Mitochondrial DNA Sequences

To test the ability of SSA in a real data ex-
ample, a data set consisting of mitochondrial
DNA sequences with 231 sites for 14 species
(see Hayasaka et al., 1988; Salter, 1999) was
analyzed by using the F84 model with a
transition/transversion ratio of 2.0. Ten tri-
als were performed for SSA, PAUP¤, and
DNAMLK under the same conditions as de-
scribed above.

For the cooling schedule with ® D c D
0:50, SSA performed an average of 3,598 iter-
ations, and took an average of 110.50 sec. In
all of the 10 trials, a tree with a log likelihood
of ¡2,677.22, which is presumed to be the
ML tree, was listed in the top 10 trees found
by the algorithm. Three trees with log likeli-
hoods nearly as high (¡2,677.88, ¡2,677.98,
and ¡2,677.98) were found in the 10 best trees
in 9, 10, and 10 of the trials, respectively. Ten
other trees appeared in the top 10 trees in
more than one trial, with �ve of these occur-
ring more than �ve times. In all, 22 unique
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trees were listed in the 10 best trees over the
10 trials performed.

For the cooling schedule with ® D 0:50 and
c D 0:25, SSA performed an average of 4,577
iterations and took an average of 156.12 sec.
In all 10 trials, the tree with a log likelihood
of ¡2,677.22, which is presumed to be the
ML tree, was listed in the top 10 trees found
by the algorithm. The three trees mentioned
above with log likelihoods nearly as high
were found in the 10 best trees in 7, 10, and 10
of the trials, respectively. Twelve other trees
appeared in the top 10 trees on more than
one trial, with �ve of these occurring more
than �ve times. In all, 24 unique trees were
listed in the 10 best trees over the 10 trials
performed.

Using NNI branch-swapping, PAUP¤ took
an average of 87.38 sec to estimate the ML
tree; using TBR branch-swapping, it took an
average of 433.16 sec. In both cases, PAUP¤

always found the ML tree (Fig. 3). DNAMLK
took an average of 235.06 sec to estimate the
ML tree, and always returned the ML tree
(Fig. 3). The three programs always returned
the same estimate of the ML tree. PAUP¤ with
NNI branch-swapping is the fastest, which
was expected, based on the theoretical data
results.

SSA with the recommended cooling sched-
ule takes only about one-fourth of the
time required by PAUP¤ with TBR branch-
swapping and about half of the time required
by DNAMLK. In addition, SSA gives valu-

FIGURE 3. Maximum likelihood topology for the 14
sequence mtDNA data set under the F84 model with the
transition/transversion ratio at 2.0. The log likelihood of
this tree is ¡2,677.22.

able information about other trees of high
likelihood. For example, the tree with a log
likelihood of ¡2,677.88 differs from the ML
tree only in reversal of the locations of Bovine
and Tarsier.

Group A9 HPV Sequences

To test SSA for a larger real data set,
we obtained aligned DNA sequences for
30 papillomaviruses (28 human papillo-
maviruses [HPVs], a rhesus papillomavirus,
and a pygmy chimpanzee papillomvirus)
from the Los Alamos National Database
website (http://hpv-web.lanl.gov) and used
a 1,379-nucleotide-long portion of the L1
gene from which all insertion and deletion
sites in the sequences had been removed.
Similar studies of the evolutionary relation-
ships among papillomaviruses have been
conducted by Chan et al. (1992, 1995) and
Ong et al. (1997). SSA, PAUP¤, and DNAMLK
were used to estimate the ML phylogenetic
tree under the F84 model with a transi-
tion/transversion ratio of 2.0. Ten trials were
performed with each algorithm under the
conditions previously described.

For the cooling schedule with ® D c D 0.50,
SSA performed an average of 15,261 itera-
tions, which took an average of 2,233.43 sec
(»37 min). The highest log likelihood found
by the algorithm was a tree with a log likeli-
hood of ¡27,976.52, which was listed in the
top 10 trees found in 9 of the 10 trials. This tree
is shown in Figure 4. Two other trees of high
likelihood, ¡27,976.62 and ¡27,977.67, were
often listed in the 10 best trees found by SSA
(in 9 and 6 of the 10 trials, respectively). Four-
teen other trees were found more than once,
of which 5 appeared in 5 or more trials; in all,
28 unique trees were found in the 10 trials.

For the cooling schedule with ® D 0:50
and c D 0:25, SSA performed an average
of 27,977 iterations, which took an average
of 4,004.68 sec (»1.1 hr). The tree with log
likelihood ¡27,976.52 (Fig. 4) was found in
all 10 trials. The two trees of high likelihood
mentioned above were found in nine and
eight of the trials, respectively. Fifteen other
trees were found more than once, of which
6 appeared in 5 or more trials, and a total of
30 unique trees were found in the 10 trials.

Using NNI branch-swapping, PAUP¤ took
an average of 6,616.40 sec (»1.8 hr) and found
the ML tree in 2 of the 10 trials. On six of
the remaining trials, a tree with a log likeli-
hood nearly as high as that for the ML tree

http://hpv-web.lanl.gov
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FIGURE 4. Maximum likelihood topology for the
HPV data set under the F84 model with the transi-
tion/transversion ratio at 2.0. The log likelihood of this
tree is ¡27,976.52.

(¡27,977.13) was found. Further study ver-
i�ed that this tree is a local maxima in tree
space when NNI moves are used. However,
this tree was never listed in the top 10 trees
found by SSA. Using TBR branch-swapping,
PAUP¤ took an average of 78,745.60 sec
(»21.9 hr) and always found the ML tree.
PAUP¤ with TBR branch-swapping appar-
ently performs well for this problem but at
the expense of increased computing time.

DNAMLK took an average of 11,402.38 sec
(»3.2 hr) to estimate the ML tree, and it re-
turned the ML tree in only 1 of the 10 tri-
als. DNAMLK found the tree with the second
largest log likelihood (¡27,976.62) on four of
the trials, and two trees of reasonably high
log likelihood (¡27,977.15 and ¡27,977.24)
on two trials each.

SSA is the fastest of the algorithms consid-
ered here for this problem and shows good
ability to locate the ML tree. In comparison
with PAUP¤ using TBR branch-swapping,
which also does a good job of estimating the
ML tree, SSA reduced the time required to

perform a single estimation from »22 hr to
»1 hr.

DISCUSSION

Both the theoretical and real data exam-
ples in the previous sections demonstrate the
usefulness of the SSA proposed here. The
method is able to estimate the ML phylo-
genetic tree much more quickly than PAUP¤

and DNAMLK for large problems and gen-
erally returns an estimate with a likelihood
as high as or higher than that returned by
PAUP¤ and DNAMLK. In addition, the algo-
rithm provides some information about al-
ternative trees that also have high likelihood.
The advantages of the SSA are expected to be
even more substantial as larger data sets are
considered. Thus the stochastic search strat-
egy in its present form should be a useful
contribution to the collection of algorithms
for construction of ML phylogenetic trees.

Comparing the SSA modi�ed to perform
an uphill search with SSA under the two
cooling schedules that permit probabilistic
acceptance of trees with lower values of the
log likelihood provides some interesting re-
sults. The uphill random search does surpris-
ingly well, even in the case of the n D 30 data
set, where it outperforms PAUP¤ with NNI
branch-swapping. However, the success of
SSA clearly depends on its ability to accept
trees that have lower log likelihoods. The
fact that the ML tree is found only 3 of 10
times when using the uphill random search
demonstrates that failure to permit accep-
tance of trees with lower log likelihoods will
often result in the estimation of trees that are
not globally optimal.

The SSA also has the potential to assist in
other estimation problems associated with
ML trees. For example, SSA as presented here
can be easily modi�ed to handle the case of
unrooted trees. The only necessary change is
that during the application of the local rear-
rangement strategy to generate new candi-
date trees, branch lengths, rather than node
times, must be generated. Further, the SSA
provides a framework within which simulta-
neousestimation of the tree and of theparam-
eters in the substitution models, such as the
transition/transversion parameter and the
nucleotide frequency parameters, would be
possible. Adapting the annealing algorithm
to handle models that allow for site-to-site
rate variation or models that incorporate a
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process of insertion and deletion would also
be interesting.
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