
SSA: Inference of Maximum Likelihood Phylogenetic

Trees Using a Stochastic Search Algorithm

Version 1.0

Laura Salter
Department of Mathematics and Statistics

University of New Mexico
Albuquerque, NM 87131
salter@stat.unm.edu

c 2002 by Laura Salter. This software is provided "as is" without warranty of any kind. In
no event shall the author be held responsible for any damage resulting from the use of this
software. The program package, including source codes, executables, and this documenta-
tion, is distributed free of charge.

If you use this program in a publication, please cite the following reference:

Salter, L.A. and D.K. Pearl (2001) Stochastic Search Strategy for Estimation of Maximum
Likelihood Phylogenetic Trees. Systematic Biology 50(1): 7-17.

About the Program

SSA is a program for inferring maximum likelihood phylogenies from DNA sequences. Two
versions of the program are available: one which assumes a molecular clock and one which
does not make this assumption. The method for searching the space of trees for the maximum
likelihood (ML) tree is based on a simulated-annealing type algorithm and is described in the
reference above. The program implements Felsenstein's F84 model of nucleotide substitution
[1] and associated sub-models (i.e., JC69 [2] and K2P [3]). The program estimates the ML
tree and branch lengths, and can optionally estimate the transversion/transversion ratio.
Upon termination, the program returns the k trees of highest likelihood found during the
search, where k can be set by the user.

1



Program Availability

SSA is written in ANSI C. Executables for SSA are available for free at
www.stat.unm.edu/�salter/software/ssa/ssa.html for several operating systems. The pro-
grams have been successfully compiled using the Gnu C Compiler in Unix (Sun/Sparc) and
Linux, and executables for these operating systems, as well as for the PC, are available.
Anyone who has purchased the book Numerical Recipes in C by Press et al. can request the
source code for the program from the author at salter@stat.unm.edu.

Downloading the Program

A zip �le containing executables, an example, and documentation can be downloaded from
www.stat.unm.edu/�salter/software/ssa/ssa.html. The executables can then be used di-
rectly after unzipping the �le.

Using the Program

Input File

SSA requires DNA sequence data to be placed in an input �le called "in�le" in the directory
from which the program will be run. The format of the input �le is essentially PHYLIP
format, with the exception that �ve additional variables are required to be speci�ed on the
�rst line of the �le. These variables are used to aid in reading in the data when the data
are in interleaved format. Thus the �rst line of the �le consists of the following variables,
separated by spaces:

nseq nsites interleaved? no_leaved length_leaved cont_length last_length

where

nseq = the number of sequences
nsites = the number of sites
interleaved? = 1 if the data are in sequential format, 2 if the data are in interleaved format
no_leaved = number of interleaved groups of data
length_leaved = total length of each interleaved section of data
cont_length = length of each contiguous group of data that is not blank separated
last_length = length of the last section of data

The data then appear following the �rst line. Each taxa must be given a name that is 10
characters or less, and may include any combination of characters, numbers, or symbols.

As an example, consider the data set below consisting of mtDNA with 231 sites for 5 primate
species. The data is shown in sequential format.

2



Example data in sequential format:

5 231 1 0 0 0 0

Gibbon ACTATACCCACCCAACTCGACCTACACCAATCCCCACATAGCACACAGACCAACAACCTCCCAC

CTTCCATACCAAGCCCCGACTTTACCGCCAACGCACCTCATCAAAACATACCTACAACACAAACAAATGCCCCC

CCACCCTCCTTCTTCAGCCCACTAGACCATCCTACCTTCCTAGCACGCCAAGCTCTCTACCATCAAACGCACAA

CTTACACATACAGAACCAC

Orangutan ACCCCACCCGTCTACACCAGCCAACACCAACCCCCACCTACTATACCAACCAATAACCTCTCAA

CCCCTAAACCAAACACTATCCCCAAAACCAACACACTCTACCAAAATACACCCCCAATTCACATCCGCACACCC

CCACCCCCCCTGCCCAGTCCATCCCATCACCCTCTCCTCCCAACACCCTAAGCCACCTTCCTCAAAATCCAAAA

CCCACACAACCGAAACAAC

Gorilla ACCCCATTTATCCATAAAAACCAACACCAACCCCCATCTAACACACAAACTAATGACCCCCCAC

CCTCAAAGCCAAACACCAACCCTATAATCAATACGCCTTATCAAAACACACCCCCAACATAAACCCACGCACCC

CCACCCCTTCCGCCCAGCTCACCACATCATCTCTCCCCTTCAACACCTCAATCCACCTCCCCCCAAATACACAA

TTCACACAAACAATACCAC

Chimp ACCCCATCCACCCATACAAACCAACATTACCCTCCATCCAATATACAAACTAACAACCTCCCAC

TCTTCAGACCGAACACCAATCTCACAACCAACACGCCCCGTCAAAACACCCCTTCAGCACAAATTCATACACCC

CTACCTTTCCTACCCAGTTCACCACATCATCCCCCCCTCTCAACATCTTGACTCGCCTCTCTCCAAACACACAA

TTCACGCAAACAACGCCAC

Human ACCCCACTCACCCATACAAACCAACACCACTCTCCACCTAATATACAAATTAATAACCTCCCAC

CTTCAGAACTGAACGCCAATCTCATAACCAACACACCCCATCAAAGCACCCCTCCAACACAAACCCGCACACCT

CCACCCCCCTCGTCTAGCTTACCACGTCATCCCTCCCTCTCAACACCTTAACTCACCTTCTCCCAAACGCACAA

TTCGCACACACAACGCCAC

3



Settings File

Settings for the program are speci�ed in the "settings" �le. All available user options are
set in this �le, which must be present in the directory from which the program is run. The
parameters must be set in a speci�ed order, which is given in the �le included in the package
and is also described on the next page.

Example settings �le for trees with the molecular clock assumption:

model: 2

include_gaps: 0

burnin: 100

pburnin: 0.05

pbound_un: 0.05

cbound: 10

print_data_ind: 0

print_data_phylip: 0

cbeta: 0.25

abeta: 0.5

percent_mu: 0.25

num_saved_trees: 10

bound_total_iter: 500000

nj_lik: -891.85

est_Kprime: 1

lin_rates: 0

P_accept: 0.90

delta_L_accept: 10.0

length_est: 0

num_boot: 100

seedj: 12345

seedk: 56789

We now discuss the various parameters.

model: Selects the model to be used in the estimation. 1 = HKY85, 2 = F84, 3 = JC69, 4
= K2P (Note: The F84 model should be used over the HKY85 model, as the HKY85 model
is not fully supported).

include_gaps: Speci�es whether or not sites with gaps in the alignment should be included
in the analysis. 0=omit sites with gaps, 1=use sites with gaps

burnin: Number of iterations in the burnin period, which is used to estimate some param-
eters used in the search procedure. For most problems, the default value of 100 iterations
should be adequate.

4



pburnin: To ensure adequate time during the burnin period, this parameter is used to de-
termine the number of iterations needed to guarantee that the probability of not selecting
a node for rearrangement is at most pburnin. The total number of iterations used in the
burnin period is this number plus burnin.

pbound_un: This probability is used in setting the stopping rule for termination of the al-
gorithm. It is used to determine the number of iterations needed to guarantee that the
probability of not selecting a node for rearrangement is at most pbound_un. This is used to
determine the value of x in [5].

cbound: This parameter is also used in setting the stopping rule for termination of the al-
gorithm. It speci�ed the number of iterations that must be exceeded since the proposal of
an uninvestigated topology in order for the algorithm to terminate.

print_data_ind: Print the data to standard output in the format used internally in the
program.

print_data_phylip: Print the data to standard output in PHYLIP format.

cbeta: Used to specify the rate of cooling. In particular, cbeta is the numerator of the
parameter �, which controls the rate at which the probability of accepting a tree with a
lower value of the log likelihood is accepted. It is the parameter c in [5].

abeta: Used to specify the rate of cooling. In particular, abeta speci�es the precise linear
combination of the number of taxa and the average log likelihood per site that are used in
the denominator of the parameter �. It is the parameter a in [5].

percent_mu: Percentage change in log likelihood after which iterations in the search algo-
rithm will be temporarily suspended so that parameters may be estimated for the current
tree. For most problems, the default value of 0.25 should be adequate.

num_saved_trees: Number of trees retained by the algorithm. For example, if num_saved_trees
is set to 10 (the default) then the 10 trees of highest likelihood encountered during the search
procedure will be written to the output �les.

bound_total_iter: Bound on the total number of iterations that the algorithm will per-
form. This option simply prevents the algorithm from running for an inde�nite period of
time, or may be used to terminate a search after a speci�ed period of time. This bound
should be set to some large number, generally several hundred thousand. In practice, the
algorithm will generally terminate well before this bound is reached.

nj_lik: Value of the log likelihood from the neighbor-joining tree, or some reasonably "good"
tree. This is used to control the rate of cooling in the stochastic search.

5



est_Kprime: Speci�es whether the transition/transversion ratio should be estimated or held
�xed at 2.0 during the tree estimation procedure. 0 = set the transition/transversion ratio
to 2.0, 1 = estimate the transition/transversion ratio

lin_rates: (molecular clock version only) This option is not presently available, and should
be set to 0.

P_accept: If the transition/transversion ratio will be estimated, this option speci�es the
probability of accepting a tree with a log likelihood that is lower by the amount delta_L_accept
(see below) during a second, smaller stochastic search. This option has no e�ect if the tran-
sition/transversion ratio is �xed.

delta_L_accept: If the transition/transversion ratio will be estimated, this is the di�erence
in log likelihood that will be accepted with probability P_accept (see above) during a sec-
ond, smaller stochastic search. This option has no e�ect if the transition/transversion ratio
is �xed.

gamma_par: (Only in non-molecular clock version) Parameter of the gamma distribution used
in modifying the branch lengths of the proposal tree following local rearrangement. Each
a�ected branch length is multiplied by a random observation from a gamma distribution
with mean 1.0 and variance 1/gamma_par. The default value for gamma_par is 350.0.

length_est: Speci�es whether optimal branch lengths should be estimated by SSA for the
num_saved_trees best trees found by the algorithm. The algorithms in SSA that optimize
the branch lengths are very slow, so an alternative to using SSA for the optimization is to
run the �le paupfile.nex in PAUP* to compute optimal branch lengths.

num_boot: Estimates of the variance of the transition/transversion ratio estimate may be
obtained using a bootstrap procedure as described in [6]. If num_boot is > 0, the output �le
paupfile.nex will contain the required PAUP* commands to perform the bootstrap anal-
ysis. Output from PAUP* must then be summarized to obtain the variance estimate (i.e.,
the variance of the transition/transverion parameter estimates from the bootstrap replicates
found in the �le lscores.boot must be computed).

seedj: One of two random number seeds that must be set by the user.

seedk: One of two random number seeds that must be set by the user.

Output Files

The program writes several output �les to the current directory upon completion of the
algorithm. These are described below.

results: The results �le contains summary information concerning the data and the progress
of the algorithm. The �rst section of the results �le summarizes the data. It gives the num-

6



ber of sites in the data set, the number of unique sites, information about whether or not
gaps were included, base frequencies, the initial value of the instantaneous rate parameter
(for rooted trees), and the initial value of the transition/transversion ratio.

The next section gives details of the algorithm's progress, including quantities such as the
user parameters set to control the algorithm, the number of iterations used by the algo-
rithm, and the number of trees accepted by the algorithm. Final estimates of parameters
are also given. For rooted trees, the total length of the tree is initially set to 1.0, and the
instantaneous rate parameter is estimated during the algorithm. Upon completion of the
algorithm, the total length of the tree is recomputed based on the estimate of the instan-
taneous rate parameter, and all tree results are printed with this adjustment. This makes
the tree parameterization the same as that used in PAUP* and PHYLIP. For unrooted
trees, such an estimate is not needed. If the corresponding option is selected, the estimate of
the transition/transversion rate and the transition/transversion parameter will also be given.

besttree: This �le gives information concerning the k best trees found by the algorithm.
The trees themselves are not printed here; rather, information such as the value of the
maximized log likelihood, the value of the maximum likelihood estimate of the transi-
tion/transversion ratio (if estimated), the iteration at which the tree was �rst encountered,
and the number of times the tree was encountered by the algorithm is given.

treefile: This �le contains a list of the k best trees found by the algorithm in Newick
format. Each tree is preceded by the estimate of the transition/transversion ratio in brack-
ets. Additionally, the best tree found by the algorithm (which will be one of the trees in
the list) is printed again at the bottom of the �le. The treefile is useful for input into
other programs, such as PAUP*, PHYLIP, and tree-drawing programs (the brackets and the
transition/transversion ratio estimate preceding each tree will �rst need to be removed).

paupfile.nex: This is a Nexus-formatted �le that is ready to be used in PAUP*. Speci�-
cally, it gives the data, the num_saved_trees best trees found by SSA, and the commands
necessary to compute optimal branch lengths and parameter values with PAUP* using what-
ever substitution model was selected for use in SSA. Additionally, if num_boot > 0, the
PAUP* commands required to perform a bootstrap analysis with num_boot samples are in-
cluded so that estimates of the variance of the transition/transversion parameter estimate
may be obtained. See [6] for details. The �le can also be easily modi�ed to run other analyses
in PAUP*.

Examples of all four �les for the example data set are given in the Appendix.

Running the Program

There are several steps involved in running the program, which are outlined below. Details
of the implementation are given in the next section.

1. Use a program such as PAUP* or PHYLIP to obtain the log likelihood of the neighbor-

7



joining tree, or some other "reasonably good" tree. Modify the nj_lik option in the
settings �le to include this log likelihood. Change any other options of interest in the
settings �le, and set the two random number seeds.

2. Format the data as speci�ed above and place them in a �le called "in�le" in the
directory from which the program will be run.

3. Run the program (ssa_mc for the molecular clock version, or ssa_nmc for the non-
molecular clock version).

4. Upon termination of the program, examine the contents of the three output �les (re-
sults, besttree, tree�le) to check that the program has completed successfully.

5. The k trees listed in �le tree�le should be optimized in PAUP* or PHYLIP to obtain
optimal branch lengths. The branch length optimization routines implemented in SSA
perform reasonably well, but slight increases in log likelihood values (generally less
than 1.0) were sometimes obtained using the routines in PAUP*, and it is therefore
recommended that users check results there.

Details of the Implementation

The details of the SSA algorithm are fully described in [5] and will only be briey reviewed
here so that implementation issues may be discussed. The algorithm is based on a simulated
annealing algorithm which has been modi�ed for use with phylogenies. The algorithm works
by considering at each iteration a current phylogeny from the set of all possibilities phyloge-
nies for nseq taxa. From each current phylogeny, a new phylogeny is proposed, by modifying
the topology (branching pattern) of the tree and the lengths of the branches within that tree.
Following generation of the proposal tree, the log likelihoods of the two trees (the current
tree and the proposal tree) are compared. If the proposal tree has a higher log likelihood,
then it will become the current tree for the next iteration. If the proposal tree has a lower log
likelihood, then it becomes the current tree with probability proportional to the di�erence in
log likelihood between the two trees. The idea behind the algorithm is that since a tree with
a lower log likelihood always has some probability of being accepted by the algorithm, the
search should be less likely to become trapped in locally optimal portions of the tree space
than are existing uphill search strategies, such as those implemented in PAUP* and PHYLIP.

The probability of accepting a tree of lower log likelihood than the current tree is decreased
as the algorithm proceeds, with the idea that eventually the search should settle on the
optimal tree as moves to trees of lower log likelihood become less likely to be accepted.
The manner in which this probability is lower is called the cooling schedule in the simulated
annealing literature. The parameters controlling the rate of cooling are abeta and cbeta,
which the user may specify in the settings �le. cbeta must be a number between 0 and
1, where values closer to 0 represent slower cooling (increased search time but less chance
of returning a locally optimal solution) and values closer to 1 result in more rapid cooling
(shorter search time but trees found are more likely to be only locally optimal). abeta is
also between 0 and 1, and speci�es the relative weighting given to the number of sequences

8



and the average log likelihood per site in specifying the diÆculty of the problem. Values
closer to 0 put more weight on the number of sequences. The default values given in the
settings �les have been thoroughly tested and should be adequate for most problems, and
thus the user will not generally need to change these setting.

The algorithm terminates when one of two conditions are satis�ed: (1) a suÆcient number
of trees have been proposed from the current tree without any of them resulting in accep-
tance, or (2) the search is alternating between a collection of high-likelihood trees that are
separated from one another by a single rearrangement, and a suÆcient number of iterations
have passed since any alternative trees have been accepted. The parameters which specify
the exact conditions for termination of the algorithm are pbound_un and cbound. See [5] for
details. These parameters should not need to be modi�ed by most users.

The code used to implement the algorithm is elementary, and is not optimized for either speed
or memory eÆciency. However, in comparisons with PAUP* and PHYLIP, the performance
of the algorithm has been favorable (see [5]). Random number generation is accomplished by
inclusion of the "randlib" package. Branch length optimization is performed using routines
from "Numerical Recipes in C" by Press et al. [4]. The PC executables were compiled us-
ing Visual C++ 6.0. Thanks to graduate student Wenbin Luo for providing these and some
related necessary debugging. Unix/Linux versions have been tested with the Gnu C compiler.

Additionally, it is worth mentioning that the most time-consuming portion of the algorithm
is the optimization of branch lengths for the k best trees (due to ineÆcient programming).
Hence setting k to be relatively low will decrease the required run time. However, it is the
author's philosophy that it is important to gain information not only about the maximum
likelihood tree, but about other trees of high likelihood, since it is often the case that there
will be many trees with likelihoods nearly as high as the ML tree. For this reason, it is not
recommended to use k less than 5.

While the stochastic nature of SSA should help to avoid many of the diÆculties associated
with locally optimal trees, there is no guarantee that the ML tree found on any particular
run of the algorithm is the true globally optimal tree. Thus it is advised that the program
be run several times with di�erent random number seeds provided by the user in the settings
�le, and that the estimate of the ML tree be taken as the tree of maximum likelihood found
in any of these runs.

I would greatly appreciate hearing about any successes and/or bugs associated with use of
the program. I can't promise that I will be able to respond quickly to reported bugs. How-
ever, please e-mail me the �les infile, results, besttree, and treefile, as well as any
error messages you get from the program, for the run in which the problem occurred, and I
will eventually respond to your query. Please e-mail all comments to salter@stat.unm.edu.

9



Acknowledgments

The majority of this work was completed under the direction of Professor Dennis Pearl at
The Ohio State University as part of the completion of my Ph.D. research. Two students
at the University of New Mexico, James Degnan and Wenbin Luo, subsequently contributed
to the development of this software. James Degnan contributed to the development of the
program for non-molecular clock trees, and was supported by an RAC grant from the Uni-
versity of New Mexico. Wenbin Luo developed the PC executables, and assisted with testing
and debugging of both the molecular clock and non-molecular clock versions.

10



Appendix

Example: Estimation of the ML tree under the assumption of a molecular clock for 5 primate
mtDNA sequences.

infile used in the example:

5 231 1 0 0 0 0

Gibbon ACTATACCCACCCAACTCGACCTACACCAATCCCCACATAGCACACAGACCAACAACCTCCCAC

CTTCCATACCAAGCCCCGACTTTACCGCCAACGCACCTCATCAAAACATACCTACAACACAAACAAATGCCCCC

CCACCCTCCTTCTTCAGCCCACTAGACCATCCTACCTTCCTAGCACGCCAAGCTCTCTACCATCAAACGCACAA

CTTACACATACAGAACCAC

Orangutan ACCCCACCCGTCTACACCAGCCAACACCAACCCCCACCTACTATACCAACCAATAACCTCTCAA

CCCCTAAACCAAACACTATCCCCAAAACCAACACACTCTACCAAAATACACCCCCAATTCACATCCGCACACCC

CCACCCCCCCTGCCCAGTCCATCCCATCACCCTCTCCTCCCAACACCCTAAGCCACCTTCCTCAAAATCCAAAA

CCCACACAACCGAAACAAC

Gorilla ACCCCATTTATCCATAAAAACCAACACCAACCCCCATCTAACACACAAACTAATGACCCCCCAC

CCTCAAAGCCAAACACCAACCCTATAATCAATACGCCTTATCAAAACACACCCCCAACATAAACCCACGCACCC

CCACCCCTTCCGCCCAGCTCACCACATCATCTCTCCCCTTCAACACCTCAATCCACCTCCCCCCAAATACACAA

TTCACACAAACAATACCAC

Chimp ACCCCATCCACCCATACAAACCAACATTACCCTCCATCCAATATACAAACTAACAACCTCCCAC

TCTTCAGACCGAACACCAATCTCACAACCAACACGCCCCGTCAAAACACCCCTTCAGCACAAATTCATACACCC

CTACCTTTCCTACCCAGTTCACCACATCATCCCCCCCTCTCAACATCTTGACTCGCCTCTCTCCAAACACACAA

TTCACGCAAACAACGCCAC

Human ACCCCACTCACCCATACAAACCAACACCACTCTCCACCTAATATACAAATTAATAACCTCCCAC

CTTCAGAACTGAACGCCAATCTCATAACCAACACACCCCATCAAAGCACCCCTCCAACACAAACCCGCACACCT

CCACCCCCCTCGTCTAGCTTACCACGTCATCCCTCCCTCTCAACACCTTAACTCACCTTCTCCCAAACGCACAA

TTCGCACACACAACGCCAC

settings �le used in the example:

model: 2

include_gaps: 0

burnin: 100

pburnin: 0.05

pbound_un: 0.05

cbound: 10

print_data_ind: 0

print_data_phylip: 0

cbeta: 0.25

abeta: 0.5

percent_mu: 0.25

num_saved_trees: 10

bound_total_iter: 500000

nj_lik: -891.85

est_Kprime: 1

lin_rates: 0

P_accept: 0.90

delta_L_accept: 10.0

length_est: 0

num_boot: 100

seedj: 12345

seedk: 56789

11



results �le output by the program:

MAXIMUM LIKELIHOOD ESTIMATION USING SIMULATED ANNEALING

UNDER THE ASSUMPTION OF A MOLECULAR CLOCK

----------------------------------------------------------------

The number of unique site patterns is 62

Sites with a gap in at least one taxa have been excluded - the

total number of sites used in the computations is 231

Empirical Base Frequencies:

A 0.337662

G 0.042424

C 0.465801

T 0.154113

The F84 Model will be used

Transition/transversion ratio = 2.000000

Transition/transversion parameter = 2.509181

The scaling factor for the branch lengths is 0.707351

The likelihood of the initial tree is -1024.100910

-----------------------------------------------------------------

Information about the simulated annealing procedure:

The likelihood at end of burnin is -1067.412451

Total iterations in first anneal is 1050,

total iterations in second anneal is 572

Time to perform annealing is 39.810000

Time to perform tree optimization is 88.700000

(continued on next page)

12



(continued from previous page)

The number of iterations during the burnin period is 115

The number of iterations after last unique tree proposed is

at least 50

The number of trials within each tree must be at least 45

The value of beta is 0.056428

The estimated value of co is 100.267913

The number of iterations was 1622

The final value of ci was 3.013137

The overall number of topology changes was 564

The total number of trees accepted was 1009

The final estimate of mu is 0.104225

The estimate of mu associated with the best tree is 0.151537

The estimate of the transition/transversion parameter associated

with the best tree is 54.465444

The estimate of the transition/transversion ratio associated

with the best trees is 35.845467

The final estimate of the transition/transversion parameter is

10.925629

The corresponding estimate of the transition/transversion ratio is

7.482662

The scaled estimate of mu depending on the transition/transversion

ratio is 0.250164

The maximum unconstrained likelihood is -773.651103

================================================================

13



besttree �le output by the program (only the �rst 5 trees are shown - for this example 10
total trees would be printed in the �le):

MAXIMUM LIKELIHOOD ESTIMATION USING SIMULATED ANNEALING

UNDER THE ASSUMPTION OF A MOLECULAR CLOCK

The 10 trees with the best likelihoods were:

Tree Number 1

First hit: 681

Max ln L for tree: -862.066831

Transition/transversion ratio: 22.454550

Number of times hit: 26

Hit in first annealing pass: 1

Tree Number 2

First hit: 399

Max ln L for tree: -866.167269

Transition/transversion ratio: 21.639693

Number of times hit: 30

Hit in first annealing pass: 1

Tree Number 3

First hit: 683

Max ln L for tree: -862.504565

Transition/transversion ratio: 10.601938

Number of times hit: 125

Hit in first annealing pass: 1

Tree Number 4

First hit: 343

Max ln L for tree: -866.393094

Transition/transversion ratio: 9.892350

Number of times hit: 69

Hit in first annealing pass: 1

Tree Number 5

First hit: 346

Max ln L for tree: -871.101365

Transition/transversion ratio: 7.365176

Number of times hit: 39

Hit in first annealing pass: 1

14



treefile output by the program:

[22.454550] ((Orangutan,Gibbon),(Gorilla,(Chimp,Human)));

[21.639693] ((Chimp,(Human,Gorilla)),(Gibbon,Orangutan));

[10.601938] (Orangutan,(Gibbon,(Gorilla,(Human,Chimp))));

[9.892350] (Orangutan,(Gibbon,(Chimp,(Gorilla,Human))));

[7.365176] (Orangutan,(Gibbon,(Human,(Chimp,Gorilla))));

[12.145771] (Gibbon,(Orangutan,(Gorilla,(Human,Chimp))));

[11.022469] (Gibbon,(Orangutan,(Chimp,(Gorilla,Human))));

[7.347838] (Gibbon,(Orangutan,(Human,(Gorilla,Chimp))));

[11.958220] (Gibbon,(Orangutan,(Chimp,(Gorilla,Human))));

[11.069885] (Gibbon,((Chimp,Human),(Orangutan,Gorilla)));

The best tree and branch lengths found by the algorithm:

(Gibbon:1.000000,(Orangutan:0.556750,(Gorilla:0.276440,

(Human:0.184168,Chimp:0.184168):0.092272):0.280310):0.443250);

15



paupfile.nex output by the program:

#NEXUS

Begin data;

Dimensions ntax=5 nchar=231;

Format datatype=nucleotide gap=- missing=? matchchar=.;

Matrix

Gibbon ACTATACCCACCCAACTCGACCTACACCAATCCCCACATAGCACACAGACCAACAACCTCCCAC

CTTCCATACCAAGCCCCGACTTTACCGCCAACGCACCTCATCAAAACATACCTACAACACAAACAAATGCCCCC

CCACCCTCCTTCTTCAGCCCACTAGACCATCCTACCTTCCTAGCACGCCAAGCTCTCTACCATCAAACGCACAA

CTTACACATACAGAACCAC

Orangutan ACCCCACCCGTCTACACCAGCCAACACCAACCCCCACCTACTATACCAACCAATAACCTCTCAA

CCCCTAAACCAAACACTATCCCCAAAACCAACACACTCTACCAAAATACACCCCCAATTCACATCCGCACACCC

CCACCCCCCCTGCCCAGTCCATCCCATCACCCTCTCCTCCCAACACCCTAAGCCACCTTCCTCAAAATCCAAAA

CCCACACAACCGAAACAAC

Gorilla ACCCCATTTATCCATAAAAACCAACACCAACCCCCATCTAACACACAAACTAATGACCCCCCAC

CCTCAAAGCCAAACACCAACCCTATAATCAATACGCCTTATCAAAACACACCCCCAACATAAACCCACGCACCC

CCACCCCTTCCGCCCAGCTCACCACATCATCTCTCCCCTTCAACACCTCAATCCACCTCCCCCCAAATACACAA

TTCACACAAACAATACCAC

Chimp ACCCCATCCACCCATACAAACCAACATTACCCTCCATCCAATATACAAACTAACAACCTCCCAC

TCTTCAGACCGAACACCAATCTCACAACCAACACGCCCCGTCAAAACACCCCTTCAGCACAAATTCATACACCC

CTACCTTTCCTACCCAGTTCACCACATCATCCCCCCCTCTCAACATCTTGACTCGCCTCTCTCCAAACACACAA

TTCACGCAAACAACGCCAC

Human ACCCCACTCACCCATACAAACCAACACCACTCTCCACCTAATATACAAATTAATAACCTCCCAC

CTTCAGAACTGAACGCCAATCTCATAACCAACACACCCCATCAAAGCACCCCTCCAACACAAACCCGCACACCT

CCACCCCCCTCGTCTAGCTTACCACGTCATCCCTCCCTCTCAACACCTTAACTCACCTTCTCCCAAACGCACAA

TTCGCACACACAACGCCAC

;

End;

Begin trees;

tree mytree=[&R]((Orangutan,Gibbon),(Gorilla,(Chimp,Human)));

tree mytree=[&R]((Chimp,(Human,Gorilla)),(Gibbon,Orangutan));

tree mytree=[&R](Orangutan,(Gibbon,(Gorilla,(Human,Chimp))));

tree mytree=[&R](Orangutan,(Gibbon,(Chimp,(Gorilla,Human))));

tree mytree=[&R](Orangutan,(Gibbon,(Human,(Chimp,Gorilla))));

(continued on next page)

16



(continued from previous page)

tree mytree=[&R](Gibbon,(Orangutan,(Gorilla,(Human,Chimp))));

tree mytree=[&R](Gibbon,(Orangutan,(Chimp,(Gorilla,Human))));

tree mytree=[&R](Gibbon,(Orangutan,(Human,(Gorilla,Chimp))));

tree mytree=[&R](Gibbon,(Orangutan,(Chimp,(Gorilla,Human))));

tree mytree=[&R](Gibbon,((Chimp,Human),(Orangutan,Gorilla)));

End;

Begin paup;

set criterion=likelihood;

lset nst=2 basefreq=empirical tratio=estimate variant=F84 clock=yes;

lscores;

End;

17



References

[1] J. Felsenstein. Distance methods for inferring phylogenies: A justi�cation. Evolution,
38:16{24, 1984.

[2] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor,
Mammalian Protein Metabolism, pages 21{132. Academic Press, New York, 1969.

[3] M. Kimura. A simple method for estimating evolutionary rate of base substitutions
through comparative studies of nucleotide sequences. J Mol Evol, 16:111{120, 1980.

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambride University Press, Second edition, 1992.

[5] L. Salter and D. Pearl. Stochastic search strategy for estimation of maximum likelihood
phylogenetic trees. Syst Biol, 50(1):7{17, 2001.

[6] Q. Wang, L. Salter, and D. Pearl. Estimation of evolutionary parameters with phyloge-
netic trees. J Mol Evol, in revision, 2002.

18


