
Species Tree Inference

Laura Kubatko
Departments of Statistics and

Evolution, Ecology, and Organismal Biology
The Ohio State University

kubatko.2@osu.edu

July 30, 2013

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 1 / 113



Relationship between population genetics and phylogenetics

Population genetics: Study of genetic variation within a population

Phylogenetics: Use genetic variation between taxa (species, populations) to
infer evolutionary relationships

Previously:

I Each taxon is represented by a single sequence – “exemplar sampling”

I We have data for a single gene and wish to estimate the evolutionary history
for that gene (the gene tree or gene phylogeny)
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Relationship between population genetics and phylogenetics

Given current technology, we can do much more:

I Sample many individuals within each taxon (species, population, etc.)
I Sequence many genes for all individuals

Need models at two levels:

I Model what happens within each population
[population genetics – coalescent model]

I Link each within-population model on a phylogeny
[phylogenetics]
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Recall several facts from Peter’s lecture

Under the Wright-Fisher model, the number of generations back into the past
until two lineages coalesce ∼ Geometric( 1

2N )

Kingman’s approximation: consider continuous time and a sample of k
lineages. Then, the time back into the past until two lineages coalesce, U, is
exponentially distributed with rate

(
k
2

)
1
2N .

I The probability density function is g(u) =
(
k
2

)
1
2N

e−(k2)
u
2N , for u > 0.

I The mean is 4N
k(k−1)

.

Peter showed us how to use this model to compute the probability density of
a “population tree”
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Fitting population trees into a phylogeny

→

Focus first on just one speciation interval and a sample of k = 2 lineages.

Then,
(
k
2

)
= 1 and we have an exponential distribution with rate 1

2N and
mean 2N.

Suppose N = 5, 000. Let’s find the probability that the two lineages coalesce
in an interval of a particular length.
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Fitting population trees into a phylogeny

N = 5, 000, and consider the times: 12,000, 20,000, and 40,000 generations
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Fitting population trees into a phylogeny

What happens if we change the population size, N?

Recall we have an exponential distribution with rate 1
2N and mean 2N.

Now suppose N = 3, 000 and look at the same speciation interval lengths
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Fitting population trees into a phylogeny

N = 5, 000

N = 3, 000
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Fitting population trees into a phylogeny

What about the effect of sample size, k?

Consider N = 5, 000 again, but now use k = 5.

I Rate is
(
5
2

)
1
2N

= 10
2N

(was 1
2N

)

I Mean is 4N
k(k−1)

= 2N
10

(was 2N)
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Fitting population trees into a phylogeny

Define a common unit of time: coalescent unit, t = u
2N

Examples:

I k = 2 — exponential distribution with rate 1 and mean 1

I k = 5 — exponential distribution with rate 10 and mean 0.1

t “large“ is now relative to population size, but the trends are the same:

I Longer time intervals lead to a higher probability of coalescence occurring.

I Coalescent events happen more quickly when the population size is smaller.

I Coalescent events happen more quickly when the sample size is larger.

What does this mean for species tree estimation????
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Fitting population trees into a phylogeny

Recall our goal to integrate the population process with the phylogeny:

→

Can use our previous results to get the following:
I The probability that u lineages coalesce into v lineages in time t is given by

(Tavare, 1984; Watterson, 1984; Takahata and Nei, 1985; Rosenberg, 2002)

Puv (t) =
u∑

j=v

e−j(j−1)t/2
(2j − 1)(−1)j−v

v !(j − v)!(v + j − 1)

j−1∏
y=0

(v + y)(u − y)

u + y
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Fitting population trees into a phylogeny

When u and v are small, these are easy to compute. For example,

P21(t) = probability that 2 lineages coalescence to 1 lineage in time t

= probability of 1 coalescent event in time t when k=2

= P(T ≤ t),where T ∼ Exp(µ = 1)

=

∫ t

0

e−xdx = 1− e−t

[Note: this is the formula for the gray area in the graphs]

Similarly,

P22(t) = prob. of no coalescence in time t for 2 lineages

= P(T > t)

=

∫ ∞
t

e−xdx = e−t
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Putting it together . . . the coalescent model along a species tree

Assumptions:

I Events that occur in one population are independent of what happens in other
populations within the phylogeny.

I More specifically, given the number of lineages entering and leaving a
population, coalescent events within populations are independent of other
populations.

I It is also important to recall an assumption we “inherit” from our population
genetics model: all pairs of lineages are equally likely to coalesce within a
population.

I No gene flow occurs following speciation.

I No other evolutionary processes (e.g., horizontal gene flow, duplication, . . .)
have led to incongruence between gene trees and the species tree.
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Putting it together . . . the coalescent model along a species tree

When talking about gene tree distributions, there are two cases of interest:

I The gene tree topology distribution

I The joint distribution of topologies and branch lengths

Start with the simple case of 3 species with 1 lineage sampled in each and
look at the gene tree topology distribution
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Example: computation of gene tree topology probabilities for the 3-taxon case

Example of gene tree probability computation:

(a) Prob = 1− e−t ; ( b), (c), (d) Prob = 1
3
e−t
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Example: computation of gene tree topology probabilities for the 3-taxon case

Thus, we have the following probabilities:

I Gene tree (A,(B,C)): prob = 1− e−t + 1
3
e−t = 1− 2

3
e−t

I Gene tree (B,(A,C)): prob = 1
3
e−t

I Gene tree (C,(A,B)): prob = 1
3
e−t

Note: There are two ways to get the first gene tree. We call these histories.

The probability associated with a gene tree topology will be the sum over all
histories that have that topology.
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Example: computation of gene tree topology probabilities for the 3-taxon case

What are these probabilities like as a function of t, the length of time
between speciation events?

B C A

(b)

prob = 1−exp(−t)

B C A

prob = (1/3)exp(−t)

B A C

prob = (1/3)exp(−t)

B C A

prob = (1/3)exp(−t) 0.0 0.5 1.0 1.5 2.0
0.
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Example: a slightly larger case

Consider 4 taxa – the human-chimp-gorilla problem
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Coalescent histories for the 4-taxon example

There are 5 possibilities for this example:
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Computing the topology distribution by enumerating histories

In the general case, we have the following:

The probability of gene tree g given species tree S is given by

P{G = g |S} =
∑

histories

P{G = g , history |S}

Implemented in the software COAL (Degnan and Salter, Evolution, 2005)

A more efficient method has been proposed (Wu, Evolution, 2012)
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Applications of the topology distribution - example 1

Motivation: Paper by Ebersberger et al. 2007. Mol. Biol. Evol.
24:2266-2276

Examined 23,210 distinct alignments for 5 primate taxa: Human, Chimp,
Gorilla, Orangutan, Rhesus

Looked at distribution of gene trees among these taxa - observed strongly
supported incongruence only among the Human-Chimp-Gorilla clade.
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Applications of the topology distribution - example 1

76.6% 11.4% 11.5%

Observed proportions of each
gene tree among ML phylogenies
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Applications of the topology distribution - example 1

76.6% 11.4% 11.5%

Observed proportions of each
gene tree among ML phylogenies
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Applications of the topology distribution - example 1

76.6% 11.4% 11.5%

79.1% 9.9% 9.9%

Observed proportions of each gene tree
among ML phylogenies

Predicted proportions using parameters
from Rannala & Yang, 2003.
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Applications of the topology distribution - example 2

In the previous example, one topology is clearly preferred

Must the distribution always look this way?

Examine entire distribution when the number of taxa is small
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Applications of the topology distribution - example 2

Consider 4 taxa: A, B, C, and D

Species tree:

A B C D

z

y
x

A Species
Phylogeny

A B C D

B

Matching Tree (MT)

B A C D

Swapped Tree (ST)

A B C D

Symmetric

Tree 1 (S1)

A C B D

Symmetric

Tree 2 (S2)

A D B C

Symmetric

Tree 3 (S3)

Look at probabilities of all 15 tree topologies for values of x, y, and z
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Applications of the topology distribution - example 2
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Applications of the topology distribution - example 2
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Applications of the topology distribution - example 2
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Applications of the topology distribution - example 2

 

Degnan & Rosenberg, PLoS Genetics, 2006

Rosenberg & Tao, Systematic Biology, 2008

The existence of anomalous gene
trees has implications for the
inference of species trees
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Applications of the topology distribution - example 3

What about mutation? How does this affect data analysis?

The coalescent gives a model for determining gene tree probabilities for each
gene.

View DNA sequence data as the result of a two-stage process:

I Coalescent process generates a gene tree topology.

I Given this gene tree topology, DNA sequences evolve along the tree.
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Applications of the topology distribution - example 3

Given this model, how should inference be carried out?

Hypothesis: As more data (genes) are added, the process of estimating
species trees from concatenated data can be statistically inconsistent

May fail to converge to any single tree topology if there are many equally
likely trees.

May converge to the wrong tree when a gene tree that is topologically
incongruent with the species tree has the highest probability.
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Applications of the topology distribution - example 3

A B C D

Species Tree

Generate gene 
trees in COAL

Generate sequence
data in Seq-Gen

Estimate tree
using concatenation

Repeat 100 times
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Applications of the topology distribution - example 3

Simulation Study 1
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Applications of the topology distribution - example 3

Simulation Study 2
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Applications of the topology distribution - example 3

Performance of the Concatenation Approach:

I Can be statistically inconsistent when branch lengths in the species phylogeny
are sufficiently small

I May perform poorly even when branch lengths are only moderately short

I Bootstrap procedure can be positively misled in this situation

Question: How does the bootstrap perform in these cases?
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The concatenation approach – performance of the bootstrap

Hypothesis: The bootstrap may provide strong support for the incorrect tree
when gene trees that are incongruent with the species tree are fairly probable

Simulation study to examine the performance of the bootstrap:

I n=100 loci
I x=0.01, y=1.0
I θ = 0.001
I B=200 bootstrap samples per repetition
I Repeated 500 times
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The concatenation approach – performance of the bootstrap
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FIGURE 6. Bootstrap support for various clades in the simulated data. (A) Support for the (A,B) clade. (B) Support for a clade containing taxa
B, C, and D.

and discuss both how frequently they can be expected to
be met for real data and how changes in these conditions
might affect phylogenetic performance.

We first address the issue of widespread incomplete
lineage sorting, the most severe instance of which oc-
curs when an AGT exists. Degnan and Rosenberg (2006)
thoroughly characterize the conditions required for exis-
tence of four-taxon AGTs and show that for three taxa, no
gene tree can be anomalous for any species tree. For four
taxa, the asymmetric tree used here produces AGTs when
branch lengths are in the regions delineated in Figure 2,
which correspond to either one or both internal branches
in the species phylogeny being “short.” We return to a
discussion of what constitutes a “short” branch below.
Degnan and Rosenberg further demonstrate that there
are no AGTs for the symmetric four-taxon species phy-
logeny, but that any species tree topology with five or
more taxa has at least one AGT, regardless of the level
of symmetry (Degnan and Rosenberg, 2006, proposition
2). In addition, we note that, even when species tree
branches are not short enough to produce AGTs, mod-
erately short branches in the species tree can still lead
to poor performance of standard phylogenetic inference

procedures applied to concatenated data. For example,
the species phylogeny is estimated correctly less than
80% of the time for 10 genes when both internal branches
on the species tree are 1.0 coalescent units (Fig. 5).

Although it is possible for any species tree topology
with more than four taxa to have an AGT, the existence
of an AGT requires that one or more branch lengths
within the species phylogeny are short. Short species tree
branches indicate a small number of generations relative
to the effective population size. For example, a branch
of length 0.01 coalescent units (used several times in
our simulations) might correspond to 1000 generations
in a population with effective size 50,000 or to 10,000
generations in a population with effective size 500,000.
The largest branch length used in our simulation study
was 1.0 coalescent units, which, for example, could cor-
respond to 1,000,000 generations for a population with
effective size 500,000. It is therefore helpful to consider
scenarios under which such short branches are likely to
arise.

First, short branches in species-level phylogenies can
result from adaptive radiation or rapid diversification, as
has been hypothesized for several species of birds (Poe
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The concatenation approach – performance of the bootstrap

The bootstrap can be positively misleading – show strong support for an
incorrect clade

Important note: This is NOT a failing of the bootstrap methodology; the
observed “poor” performance is due to the use of an incorrect model
(concatenation)

Question: Is there a better way to estimate species phylogenies?

Explicitly model the coalescent process!
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Coalescent-based methods for species tree inference

Summary statistic methods: Start with estimated gene trees

I Using estimated branch lengths:

F STEM (Kubatko et al. 2009)

F STEAC (Liu et al. 2009)

I Using topology information only:

F STAR (Liu et al. 2009)

F Minimize Deep Coalescences (PhyloNet; Than & Nakhleh 2009)

F MP-EST (Liu et al. 2010)

F ST-ABC (Fan and Kubatko 2011)

F STELLS (Wu 2011)
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Coalescent-based methods for species tree inference

Methods that utilize the full data: Input is aligned sequences

I BEST (Liu and Pearl 2007)

I *BEAST (Heled and Drummond 2010)

I SNAPP (Bryant et al. 2012)

I SVDquartets (Chifman and Kubatko 2013)
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Coalescent-based methods for species tree inference

Comparison of approaches:

I Summary statistic methods

F Advantage: Quick

F Disadvantage: Ignore information in data

F Most current implementations do not easily allow for assessment of uncertainty

I Full data methods

F Advantage: Fully model-based framework

F Disadvantage: Computationally intensive, sometimes prohibitively so

F BEST, *BEAST, and SNAPP utilize a Bayesian framework and involve MCMC

Give overview of “representative” subset of methods:

I STEM, BEST, *BEAST, SNAPP, SVDquartets + BUCKy

I Scott – MP-EST, Phybase
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Likelihood function

Suppose that we have available alignments for N genes, denoted by
D1,D2, ...DN

We would like to find the likelihood of the species phylogeny given these N
alignments, assuming that

I individual gene trees are randomly generated according to the coalescent
model

I evolution of sequences along fixed gene trees occurs following a standard
nucleotide-based Markov model

I the data for the genes are independent given the species tree and associated
parameters
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Likelihood function

Recall the Felsenstein equation from Peter’s lecture, except now we replace θ with
S , the species tree. Use this to form the species tree likelihood for a multi-locus
data set:

L(S |D1,D2, ...DN) =
N∏
i=1

P(Di |S) [loci conditionally independent]

=
N∏
i=1

G∑
j=1

P(Di |gj)f (gj |S)

where S is the species tree (topology and branch lengths) and gj represents a gene
tree

This likelihood is difficult to evaluate directly, because of the dimension of the inner
sum (which is really an integral) [recall Peter’s “galaxy slide”]

To deal with this, either assume gene trees are known (summary statistics), use

Bayesian techniques (full data approaches), or think about small problems .
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STEM: The gene tree-species tree likelihood function

A simpler problem is to suppose that our data consist of a set of gene trees

Let g1, g2, . . . gN be a set of N gene trees with branch lengths

Consider a species tree, S (topology and branch lengths)

The likelihood function is

L(S |g1, g2, . . . gN) =
N∏
j=1

f (gj |S)

where f (g |S) is given by Rannala and Yang (2003).
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Maximum likelihood estimate of the species tree

Liu et al. (2009) showed that the ML estimate of the species tree can be computed
by sequentially clustering minimum observed divergence times between pairs of
species across genes.

They have shown that when gene trees are known without error, the ML species
tree is a consistent estimator.

A similar result was obtained by Roch & Mossel (2010) – they call their estimator
the GLASS tree (an acronym for Global LAteSt Split, based on the algorithm they
developed to compute it).

STEM computes the ML estimate of the species tree this way.
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STEM/STEM-hy uses

Five main functions of STEM-hy version 1.0
I Estimate a species tree given a set of gene trees using maximum likelihood

run=1

I Search species tree space for trees of high likelihood
run=2

I Compute the likelihood of a user-specified tree
run=0

I Carry out a bootstrap analysis (bootstrapping is on sites within genes)
run=4

I Assess fit of trees subject to hybridization in the presence of lineage sorting
run=3
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STEM: Strengths and weaknesses

STEM makes some strong assumptions:

I Error in estimating gene trees and branch lengths is not incorporated
(but the bootstrap helps with this).

I Information in the sequence data is not used directly; it is only used as
summarized by estimated gene divergence times.

I There is a single value of θ for the entire tree.

There are trade-offs involved, and STEM does some things well:

I It is quick (even the tree search does not take long).

I It can handle missing data easily and intuitively.

I Simulations demonstrate reasonable performance (unlikely to be misleading;
may be uninformative).
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Full data methods (1): BEST and *BEAST

Model the entire process of data generation:

Species tree → gene trees [coalescent process]

Gene trees → sequence data [standard nucleotide substitution models]

Goal of both methods is to estimate the posterior distribution of the species
tree and associated model parameters

BEST and *BEAST use slightly different algorithms – we will briefly discuss
the main ideas of each
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BEST: Overview of Method
Bayesian Estimation of Species Trees 

(BEST) 

Species trees 

Gene trees 

Sequence Data 

Prob(S) 

Prob(G|S) 

Prob(D|G) 

Uniform Distribution 

Coalescent Theory 

Markovian substitution model 

Hierarchical model"

Source: Lecture 7, Stat 882 Spring 2010, Dennis Pearl
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BEST: Overview of Method

Assumptions:

I Given the species tree, the gene trees are conditionally independent.

I Given the gene tree, the DNA sequences are conditionally independent of the
species tree.

I Random mating in each population.

I No gene flow after species divergence.

I No recombination within a locus.

Source: Lecture 7, Stat 882 Spring 2010, Dennis Pearl
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BEST: Overview of Method

BEST uses MCMC to sample from the joint posterior distribution of the gene
trees and the species tree:

f (S ,G|D) =
f (D|G)F (G|S)f (S)

f (D)

Source: Lecture 7, Stat 882 Spring 2010, Dennis Pearl
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BEST: Overview of Method

Implementation: MrBayes with BEST

I Step 1: Use MrBayes to propose vectors of joint gene trees (unlinked).

I Step 2: Given those gene trees: propose a compatible species tree.

I Step 3: Implement the chain fully within MrBayes using the usual properties of
the MCMC as proposed by the user.

Source: Lecture 7, Stat 882 Spring 2010, Dennis Pearl
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BEST: Overview of Method

BEST algorithm:

The Algorithm"

DNA sequences 

MrBayes (prset best=1) 

Unrestricted gene tree moves 

Restricted species tree moves 

Posterior of G,S 

 annealing step to speed convergence 

 neighborhood of MT  

to increase acceptance rate 

Source: Lecture 7, Stat 882 Spring 2010, Dennis Pearl
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*BEAST: Overview of Method

The MCMC algorithm in *BEAST also samples both gene trees and the
species tree at each step of the algorithm =⇒ same goal as BEST (to get
posterior distribution of species tree).

The method of moving in gene trees is one reason that *BEAST works more
quickly than BEST.

Authors have pointed out substantial increases in speed [we’ll discuss an
empirical example a little later].
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Full Data Methods: BEST and *BEAST

Both methods use MCMC, which means:

I Need to think carefully about setting prior distributions.

I Need to check carefully for convergence, in all parameters

I Need to choose methods of summarizing the estimated posterior distribution
carefully, and interpret these summaries correctly

I etc., .......
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Comparison of STEM with *BEAST (Knowles et al. 2012)

Total tree depth 10N

of diversification itself, specifically, the timing of divergence
(Fig. 3), and the sampling design (Figs. 4 and 5), have a greater
influence on the accuracy of species-tree estimates. The greatest
improvement on the accuracy of species-tree estimates are
achieved for very recent divergences with large sampling efforts
when gene-tree uncertainty is fully modeled (i.e., analyses from
!BEAST) relative to summarizing gene-tree uncertainty (i.e., analyses
with consensus-GT in STEM). However, applying computationally

demanding methods does not necessarily mean that an accurate
species-tree estimate is achieved (Fig. 4 and 5). That is, although
the species-tree estimates from !BEAST are more accurate than those
from STEM (see also Leache and Rannala, 2010), the species-tree
estimates are nonetheless still inaccurate for very recent species
divergence.

Below we discuss in detail the determinants of species-tree
accuracy. We discuss the tradeoffs in implementing complex
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Putting it all together: An empirical example

North American Rattlesnakes - Joint work with Dr. Lisle Gibbs (EEOB at
OSU)

Of interest evolutionarily because of the diversity of venoms present in the
various species and subspecies.

Of conservation interest because population sizes in the eastern subspecies
are very small.

Pictures by Jimmy Chiucchi and Brian Fedorko

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 58 / 113



Geographic distribution of snake populations

Smm

Smb

Sms

Sce

Sct

Scc
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Sistrurus rattlesnakes

Data: 7 (sub)species, 26 individuals, 19 genes

Species Location No. of individuals per gene

S. catenatus catenatus Eastern U.S. and Canada 9

S. c. edwardsii Western U.S. 4

S. c. tergeminus Western and Central U.S. 5

S. miliarius miliarius Southeastern U.S. 1

S. m. barbouri Southeastern U.S. 3

S. m. streckerii Southeastern U.S. 2

Agkistrodon sp. (outgroup) U.S. 2
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Individual gene tree estimates

Some are very informative:

Agp
Agc

Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL2
Scc−IL1
Scc−MI
Scc−ON2
Scc−ON1

Sce−NM2
Sce−AZ
Sce−NM1
Sce−CO
Sct−KS1
Sct−KS2
Sct−KS3
Sct−MO1
Sct−MO2

Smb−FL1
Smb−FL2
Smb−FL3
Smm−NC
Sms−OK1
Sms−OK2

100

97

10099

100

71

99

98

95

100

89

0.01

Agp
Agc

Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL1
Scc−MI
Scc−ON2
Scc−ON1
Scc−IL2

Sct−KS1
Sct−KS2
Sct−MO1

Sct−MO2
Sct−KS3

Sce−NM2
Sce−AZ
Sce−NM1

Sce−CO
Smb−FL1

Smb−FL2
Sms−OK1
Sms−OK2

Smm−NC
Smb−FL3

100

81

99

97

53

100
84
53

59

52
60

99
100

0.001
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Individual gene tree estimates

Some are a little informative:

Agp
Agc

Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL1
Scc−ON2
Scc−ON1
Scc−IL2
Sct−KS2

Scc−MI
Sce−NM2
Sce−NM1
Sce−CO
Sct−MO1
Sct−MO2
Sct−KS3

Smb−FL1
Smb−FL2
Smb−FL3

Smm−NC
Sms−OK1
Sms−OK2

Sce−AZ
Sct−KS1

100

94

52

89

97

51

0.01

Agp
Agc

Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL1
Scc−MI
Scc−ON2
Scc−ON1
Scc−IL2

Smb−FL1
Smb−FL2
Smb−FL3
Smm−NC

Sms−OK1
Sms−OK2

Sce−NM2
Sce−AZ
Sce−NM1
Sce−CO
Sct−KS1
Sct−KS2
Sct−MO1
Sct−MO2
Sct−KS3

95

62

61

98

99

0.01
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Individual gene tree estimates

And then there are others .....

Agp
Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL1
Scc−MI
Scc−ON2
Scc−ON1
Scc−IL2
Sce−NM2
Sce−AZ

Sce−NM1
Sce−CO
Sct−KS1
Sct−MO1
Sct−MO2
Smb−FL1

Smb−FL2
Smb−FL3
Smm−NC
Sms−OK1
Sms−OK2

Sct−KS2
Sct−KS3

Agc67
55

0.001

Agp
Scc−PA
Scc−NY
Scc−OH
Scc−WI
Scc−IL1
Scc−MI
Scc−ON2
Scc−ON1
Scc−IL2
Sce−NM2
Sce−AZ
Sce−NM1

Sce−CO
Sct−KS1
Sct−KS2
Sct−MO1
Sct−MO2
Sct−KS3

Smb−FL1
Smb−FL2
Smb−FL3

Smm−NC
Sms−OK1
Sms−OK2
Agc

0.001
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Example: Sistrurus rattlesnakes ... species tree estimation

STEM, STEAC

Agkistrodon sp.

S. c. catenatus

S. c. edwardsii

S. c. tergeminus

S. m. miliarius

S. m. streckeri

S. m. barbouri

BEST, Parsimony & MrBayes

(concatenated data)

Agkistrodon sp.
S. c. catenatus

S. c. edwardsii

S. c. tergeminus
S. m. streckeri

S. m. barbouri

S. m. miliarius

BEAST (concatenated data), *BEAST

Agkistrodon sp.
S. c. catenatus
S. c. edwardsii

S. c. tergeminus
S. m. barbouri
S. m. streckeri
S. m. miliarius

PhyloNet, STAR

Agkistrodon sp.
S. c. catenatus
S. c. edwardsii

S. c. tergeminus
S. m. miliarius
S. m. streckeri
S. m. barbouri
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Example: Sistrurus rattlesnakes ... species tree estimation

Some observations:

I Estimate from PhyloNet places S. c. catenatus as sister to the entire clade – it
turns out this is due to only two gene trees. If those genes are removed, the
estimate agrees with STEM

I The portion of the tree that differs between STEM, *BEAST, and BEST is
the arrangement of the S. miliarius subspecies – all three arrangements are
observed

I Both BEST and *BEAST have trouble converging: BEST did not converge in
the branch length parameters, while *BEAST did not converge in the effective
population size parameters, especially for the tip species (same problem?)

I *BEAST was much faster than BEST (days vs. months for ∼ 350 million
iterations) – but with an older version of BEST.
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Full data methods (2): SNAPP

SNAPP is a recently-proposed method that bypasses the need to have gene
trees explicitly specified at any stage in the algorithm.

Recall again the Felsenstein equation:

L(S |D1,D2, ...DN) =
N∏
i=1

G∑
j=1

P(Di |gj)f (gj |S)

SNAPP uses a clever two-step peeling algorithm to carry out the integration
over gene trees.

Notes:
I Use MCMC for inference, but gains efficiency due to using only the space of

species trees.

I Currently limited to biallelic SNP data – necessary to make the algorithm for
computing the likelihood via integration over gene trees feasible.

I Can also handle AFLP data.
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Full data methods (3): SVDquartets

Motivation: Recall “cartoon time” from Mark’s talk yesterday. He noted the
connection between trees and the pattern frequency space.

Data: DNA sequences for gene i

Example:

Taxon Sequence
(A) Human GCCGATGCCGATGCCGAA
(B) Chimp GCCGTTGCCGTTGCCGTT
(C ) Gorilla GCGGAAGCGGAAGCGGAA
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SVDquartets: A new method based on algebraic statistics

Data: DNA sequences for gene i , Di

Example:

Taxon Sequence
(A) Human GCCG A TGCCGATGCCGAA
(B) Chimp GCCG T TGCCGTTGCCGTT
(C )Gorilla GCGG A AGCGGAAGCGGAA

Assume each site in the sequence evolves independently of other sites

Data are assumed to be an iid sample of sites:
(Di )j = data at the tips of the tree for site j in gene i

Consider site pattern probabilities – for example, pATA

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 68 / 113



SVDquartets: A new method based on algebraic statistics

A B C

M2 M3

M1
M4

r

s

i j k

Let T be an n-leaf, rooted, binary tree with
distribution of states Π = (π1, π2, · · ·πk) at the root

Edges e of T are labeled by k × k transition
probability matrices Me that give the probabilities of
changes in state from a node to its child

Let XH be the state of taxon H

Together (T , {Me},Π) define the joint distribution at the leaves of tree:

pijk = P(XA = i ,XB = j ,XC = k)

=
∑
r

∑
s

πrM1(r , s)M2(s, i)M3(s, j)M4(r , k)
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SVDquartets: A new method based on algebraic statistics

This gives site pattern probability distribution on a gene tree.

We want the site pattern probability distribution on a species tree under the
coalescent model.

Used Mathematica to get the entire site pattern probability distribution for 4
taxa under the Jukes-Cantor model.
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Definition: splits

Definition: A split of a set is a bipartition of the set of taxa into two groups.
A split A|B of the leaves of a tree T is valid for T if the induced tree T |A
and T |B do not intersect.

1 2 3 4

Valid: 12|34

Not valid: 13|24

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 71 / 113



Definition: flattenings

pijkl = P(X1 = i ,X2 = j ,X3 = k ,X4 = l)

Flat12|34(P) =


pAAAA pAAAC pAAAG pAAAT pAACA · · ·
pACAA pACAC pACAG pACAT pACCA · · ·
pAGAA pAGAC pAGAG pAGAT pAGCA · · ·
pATAA pATAC pATAG pATAT pATCA · · ·
pCAAA pCAAC pCAAG pCAAT pCACA · · ·



Theorem (Chifman and Kubatko 2012):

If A|B is a valid split for T , the rank(FlatA|B(P)) ≤ 10.

If C |D is not a valid split for T , then generically rank(FlatC |D(P)) = 16.
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What does this mean?

When the Flat matrix is constructed for a true tree, some columns will be
“duplicates” of the others in some sense.

When the Flat matrix is constructed for a false tree, all column are
independent of the others.

We do not have the pijkl directly (they come from the true underlying tree
with its branch lengths and substitution model parameters), but we can
estimate them with data.

Idea: Construct an estimate of the Flat matrix, ˆFlat(P), and use a measure
of whether all columns are independent. We use singular value decomposition
(SVD).
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Species tree inference

Would like to use these ideas to estimate a species tree when given
multi-locus data for L genes, D1,D2, . . .DL

Issue 1:

I The model assumes each site has its own gene tree, i.e.,
(D1)1 arises from gene tree (G1)1, (D1)2 arises from (G1)2, etc. . . .
(D2)1 arises from gene tree (G2)1, (D2)2 arises from (G2)2, etc. . . .
. . .
(DL)1 arises from gene tree (GL)1, (DL)2 arises from (GL)2, etc. . . .

I Multilocus phylogenetics generally assumes that each gene has a single
underlying tree, i.e.,
(D1)1, (D1)2, . . . arise as iid observations from G1

(D2)1, (D2)2, . . . arise as iid observations from G2

. . .
(DL)1, (DL)2, . . . arise as iid observations from GL

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 74 / 113



Goal 2: Species tree inference

Issue 2:

I Appropriate for SNPs

I May need to worry about acertainment – SNP data commonly include only
variable sites

I For our example data:

Taxon Sequence

(A) Human GCCGATGCCGATGCCGAA
(B) Chimp GCCGTTGCCGTTGCCGTT
(C ) Gorilla GCGGAAGCGGAAGCGGAA

this would be

Taxon Sequence

(A) Human CATCATCAA
(B) Chimp CTTCTTCTT
(C ) Gorilla GAAGAAGAA
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Simulation study – can we detect the correct split?

Simulate data from the Jukes-Cantor model for a 4-taxon tree and examine split scoresChifman and Kubatko
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Fig. 2. Simulation results for the JC model. The top row gives results for
5,000 SNP sites and the bottom row gives the results for 10 genes with 500
sites each. The columns correspond to differing branch lengths in the model
species tree.
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Fig. 3. Simulation results for the GTR+I+� model. The top row gives results
for 5,000 SNP sites and the bottom row gives the results for 10 genes with
500 sites each. The columns correspond to differing branch lengths in the
model species tree.

Prior to our method we run BEAGLE Genetic Analysis
(Browning and Browning, 2009) to increase the accuracy of the
inference.(Laura should we write some more reasons why?). To
prepare files for phasing in BEAGLE, genotype calls (AA, AB, or
BB) for each sample were separated into two columns. Next, using
Affymetrix annotation file we have linked each SNP ID with its
chromosomal location and position, and A/B allele coding. Files
where created for each chromosome and sorted by chromosomal
location.

3 IMPLEMENTATION
We have written a program in the C language, SVDquartets, which
will compute SV D(A|B) for the three possible splits in a sample
of four taxa. The program takes as its input an alignment of four
taxa in PHYLIP format, and produces a file that contains a list of
the three splits and their associated scores. The program is available
from http://www.stat.osu.edu/ lkubatko/software/SVDquartets.
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Fig. 4. Simulation results for

4 RESULTS AND DISCUSSION
4.1 Simulation Study
Figures 2 and 3 show boxplots of the SVD scores for each of
the three possible splits among four taxa under various simulation
conditions. In each sub-figure, the first boxplot gives scores for the
valid split 12|34, and the second two boxplots are for the SVD
scores for the non-valid splits 13|24 and 14|23. Figure 2 gives
results for data simulated under the JC69 model and Figure 3 gives
results when the data are simulated under GTR+I+�. The first row
in both figures corresponds to 5,000 SNP sites, while the second
row corresponds to a multi-locus data set with 10 genes, each of
length 500bp. The columns in each figure correspond to model
species trees with differing branch lengths (branch lengths are given
in coalescent units).

It is immediately clear that in all cases, the SVD score can easily
differentiate between the valid and non-valid splits, with the boxplot
corresponding to the valid split displaying scores that are uniformly
lower than the scores for the non-valid splits. The separation of
scores for valid vs. non-valid splits becomes more pronounced as the
branch lengths in the species tree increase, as expected. Similarly,
the separation of scores is, in general, greater for the SNP data than
for the multi-locus data, although the separation is very clear even
for the multi-locus data. Similarly, the JC69 model with no invariant
sites and no rate variation across sites provides the best separation
of scores between valid and non-valid splits. The worst performance
observed was for the simulation conditions in which the data were
simulated under GTR+I+� in the multi-locus setting, which is not
unexpected as this violates the theoretical conditions in two ways
(the invariant sites and variable rates across sites AND the multi-
locus rather than SNP data). However, even in this, the separation in
scores is clear, and with sufficiently long species tree branch lengths,
there is essentially no overlap in scores in valid vs. non-valid splits.

Figure 4 examines the performance of the method for SNP with
varying numbers of sites. In particular, SNP data sets were generated
with either 500, 1,000, or 5,000 total sites under model species
trees with branch lengths of 0.5 coalescent units or 2.0 coalescent
units. The red lines in the figure correspond to the SVD score
(mean over 1,000 replicates) associated with the valid split 12|34,
while the green and blue lines correspond to the mean SVD score

4
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Simulation study – can we detect the correct split?

Simulate data from the GTR+I+Γ model for a 4-taxon tree and examine split scores

Chifman and Kubatko
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Fig. 2. Simulation results for the JC model. The top row gives results for
5,000 SNP sites and the bottom row gives the results for 10 genes with 500
sites each. The columns correspond to differing branch lengths in the model
species tree.
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Fig. 3. Simulation results for the GTR+I+� model. The top row gives results
for 5,000 SNP sites and the bottom row gives the results for 10 genes with
500 sites each. The columns correspond to differing branch lengths in the
model species tree.

Prior to our method we run BEAGLE Genetic Analysis
(Browning and Browning, 2009) to increase the accuracy of the
inference.(Laura should we write some more reasons why?). To
prepare files for phasing in BEAGLE, genotype calls (AA, AB, or
BB) for each sample were separated into two columns. Next, using
Affymetrix annotation file we have linked each SNP ID with its
chromosomal location and position, and A/B allele coding. Files
where created for each chromosome and sorted by chromosomal
location.

3 IMPLEMENTATION
We have written a program in the C language, SVDquartets, which
will compute SV D(A|B) for the three possible splits in a sample
of four taxa. The program takes as its input an alignment of four
taxa in PHYLIP format, and produces a file that contains a list of
the three splits and their associated scores. The program is available
from http://www.stat.osu.edu/ lkubatko/software/SVDquartets.
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Fig. 4. Simulation results for

4 RESULTS AND DISCUSSION
4.1 Simulation Study
Figures 2 and 3 show boxplots of the SVD scores for each of
the three possible splits among four taxa under various simulation
conditions. In each sub-figure, the first boxplot gives scores for the
valid split 12|34, and the second two boxplots are for the SVD
scores for the non-valid splits 13|24 and 14|23. Figure 2 gives
results for data simulated under the JC69 model and Figure 3 gives
results when the data are simulated under GTR+I+�. The first row
in both figures corresponds to 5,000 SNP sites, while the second
row corresponds to a multi-locus data set with 10 genes, each of
length 500bp. The columns in each figure correspond to model
species trees with differing branch lengths (branch lengths are given
in coalescent units).

It is immediately clear that in all cases, the SVD score can easily
differentiate between the valid and non-valid splits, with the boxplot
corresponding to the valid split displaying scores that are uniformly
lower than the scores for the non-valid splits. The separation of
scores for valid vs. non-valid splits becomes more pronounced as the
branch lengths in the species tree increase, as expected. Similarly,
the separation of scores is, in general, greater for the SNP data than
for the multi-locus data, although the separation is very clear even
for the multi-locus data. Similarly, the JC69 model with no invariant
sites and no rate variation across sites provides the best separation
of scores between valid and non-valid splits. The worst performance
observed was for the simulation conditions in which the data were
simulated under GTR+I+� in the multi-locus setting, which is not
unexpected as this violates the theoretical conditions in two ways
(the invariant sites and variable rates across sites AND the multi-
locus rather than SNP data). However, even in this, the separation in
scores is clear, and with sufficiently long species tree branch lengths,
there is essentially no overlap in scores in valid vs. non-valid splits.

Figure 4 examines the performance of the method for SNP with
varying numbers of sites. In particular, SNP data sets were generated
with either 500, 1,000, or 5,000 total sites under model species
trees with branch lengths of 0.5 coalescent units or 2.0 coalescent
units. The red lines in the figure correspond to the SVD score
(mean over 1,000 replicates) associated with the valid split 12|34,
while the green and blue lines correspond to the mean SVD score
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Simulation study – can we detect the correct split?

Change in scores as amount of data increases

Chifman and Kubatko
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Fig. 2. Simulation results for the JC model. The top row gives results for
5,000 SNP sites and the bottom row gives the results for 10 genes with 500
sites each. The columns correspond to differing branch lengths in the model
species tree.
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Fig. 3. Simulation results for the GTR+I+� model. The top row gives results
for 5,000 SNP sites and the bottom row gives the results for 10 genes with
500 sites each. The columns correspond to differing branch lengths in the
model species tree.

Prior to our method we run BEAGLE Genetic Analysis
(Browning and Browning, 2009) to increase the accuracy of the
inference.(Laura should we write some more reasons why?). To
prepare files for phasing in BEAGLE, genotype calls (AA, AB, or
BB) for each sample were separated into two columns. Next, using
Affymetrix annotation file we have linked each SNP ID with its
chromosomal location and position, and A/B allele coding. Files
where created for each chromosome and sorted by chromosomal
location.

3 IMPLEMENTATION
We have written a program in the C language, SVDquartets, which
will compute SV D(A|B) for the three possible splits in a sample
of four taxa. The program takes as its input an alignment of four
taxa in PHYLIP format, and produces a file that contains a list of
the three splits and their associated scores. The program is available
from http://www.stat.osu.edu/ lkubatko/software/SVDquartets.
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Fig. 4. Simulation results for

4 RESULTS AND DISCUSSION
4.1 Simulation Study
Figures 2 and 3 show boxplots of the SVD scores for each of
the three possible splits among four taxa under various simulation
conditions. In each sub-figure, the first boxplot gives scores for the
valid split 12|34, and the second two boxplots are for the SVD
scores for the non-valid splits 13|24 and 14|23. Figure 2 gives
results for data simulated under the JC69 model and Figure 3 gives
results when the data are simulated under GTR+I+�. The first row
in both figures corresponds to 5,000 SNP sites, while the second
row corresponds to a multi-locus data set with 10 genes, each of
length 500bp. The columns in each figure correspond to model
species trees with differing branch lengths (branch lengths are given
in coalescent units).

It is immediately clear that in all cases, the SVD score can easily
differentiate between the valid and non-valid splits, with the boxplot
corresponding to the valid split displaying scores that are uniformly
lower than the scores for the non-valid splits. The separation of
scores for valid vs. non-valid splits becomes more pronounced as the
branch lengths in the species tree increase, as expected. Similarly,
the separation of scores is, in general, greater for the SNP data than
for the multi-locus data, although the separation is very clear even
for the multi-locus data. Similarly, the JC69 model with no invariant
sites and no rate variation across sites provides the best separation
of scores between valid and non-valid splits. The worst performance
observed was for the simulation conditions in which the data were
simulated under GTR+I+� in the multi-locus setting, which is not
unexpected as this violates the theoretical conditions in two ways
(the invariant sites and variable rates across sites AND the multi-
locus rather than SNP data). However, even in this, the separation in
scores is clear, and with sufficiently long species tree branch lengths,
there is essentially no overlap in scores in valid vs. non-valid splits.

Figure 4 examines the performance of the method for SNP with
varying numbers of sites. In particular, SNP data sets were generated
with either 500, 1,000, or 5,000 total sites under model species
trees with branch lengths of 0.5 coalescent units or 2.0 coalescent
units. The red lines in the figure correspond to the SVD score
(mean over 1,000 replicates) associated with the valid split 12|34,
while the green and blue lines correspond to the mean SVD score
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Apply the method to the rattlesnake example

19 genes, ∼8500 bp

Scc Sce Sms Smm

SVD score = 3.84 x 10^-14

Scc Sms Sce Smm

SVD score = 5.395

Sce Sms Scc Smm

SVD score = 5.396
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Extending beyond 4 taxa

The only theoretical results thus far are for 4 taxa, but the use of flattenings
in the single gene case extends beyond 4 taxa.

A straightforward method is to consider all (or a sample of) quartets, and use
a quartet-method to reconstruct the species tree.

Use more simulation studies to see how it works.

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 80 / 113



Simulation study

Simulation design:

1 Generate gene trees from a model species tree [Using COAL]

2 Generate sequence data from each gene tree under the GTR+I+Γ model
[Using Seq-Gen]

3 Sample K sets of 4 taxa at random, and compute the score based on the
flattening matrix for the three possible splits of these 4 taxa for each sample
[Easy to code]

4 Use the inferred quartet relationships to construct the tree [Quartet MaxCut
(Snir and Rao, 2010)]

For a 10-taxon species tree and K = 500, it takes ≈ 8 seconds to obtain the
species tree estimate.
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Simulation study results - percent of time correct topology is estimated

9
10
7
8
5
6
3
4
2
1

black = 500 bp / gene
red = 2,000 bp / gene
blue = No. genes × 500 SNPs

10 genes 20 genes 50 genes 100 genes
Short 13 16 60 81
(0.5) 16 30 100 100

17 44 87 92
Medium 42 69 91 92

(1.0) 68 86 100 100
70 92 96 93

Long 82 95 92 94
(2.0) 93 90 100 100

86 91 94 94
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Empirical example: Sistrurus rattlesnakes

Using 3,000 quartets
Quartet MaxCut (Snir and Rao, 2010)

≈ 10 minutes
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SVDquartets

Software:

I Currently, the program to estimate quartet relationships is freely available:
http://www.stat.osu.edu/∼lkubatko/software/SVDquartets/

I Output from this program can be used with any quartet assembly software to
produce species trees. We’ll try an example in the lab tonight.

Pros and cons:

I Quick!!

I Intuitive way of handling missing data, with possible extensions.

I Estimates topology only — no branch lengths, population parameters, etc.
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BCA: Overview of Method

What about methods that do not assume the coalescent process?

Bayesian Concordance Analysis (BCA) – implemented in BUCKy (Bayesian
Untangling of Concordance Knots)

Idea: Estimate the proportion of the genome that has a certain clade

Build a tree that consists of those clades that are inferred to be true for a
high proportion of the genome
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BCA: Overview of Method

First step: Run MrBayes to get estimated posterior distribution for each
gene.

Run BCA, a second MCMC step which utilizes the individual gene posterior
distributions as input.

The BCA method clusters genes into a number of groups, so that genes in
the same group are assumed to share the same gene tree.
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BCA: Overview of Method

The user specifies a prior distribution on the number of groups. This controls
how much discordance among gene trees is expected.

I At one extreme, all gene trees are assumed to be the same, and the method
mimics concatenation.

I At the other, all gene trees are assumed to be completely independent, and
the method mimics a consensus method.

Goal is to estimate concordance factors for all possible clades – percent of
genes for which that clade is true. These are often displayed in a primary
concordance tree.
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BCA: Overview of Method

Results using the Ebersberger et al. data we looked at earlier:

informative loci to influence the number of clusters, the common topology for 
each cluster of genes, and the proportion of genes in each cluster. The 
uncertainty from low-quality loci is not confounded with discordance, because 
these loci are combined with highly informative loci in clusters with robustly 
estimated trees. 
 

Gorilla
Chimpanzee
Human0.760

(.753, .767) Gorilla
Chimpanzee

(.117, .128)
0.122

Human
(.111, .121) Gorilla

0.116

Rhesus
Orangutan

0.992
(.990, .993)

 
Figure 1: Bayesian concordance analysis of the great ape data (30,040 
alignments from Ebersberger et al. (2007)) with D=1. Genome-wide concordance 
factors of clades (above branches) measure genomic support. Statistical support 
is provided by 95% credibility intervals for concordance factors (below branches). 
Left: concordance tree, 1.0 posterior probability. Right: concordance factors of 
conflicting clades. The concordance factors of the chimp-gorilla and human-
gorilla clades are not significantly different (their credibility intervals overlap) as 
expected when incomplete lineage sorting is the only cause of gene tree 
discordance. 
 
To apply a consensus approach to the full set of 30,040 loci and obtain credibility 
intervals for concordance factors, the highest a priori level of discordance can be 
used in BCA (D infinite: no sharing of information across genes). With this value, 
gene trees are assumed to be independent so that information is not shared 
across alignments, just like in a consensus approach. Given the high number of 
low-informative alignments in the data set, the consensus prior level D infinity is 
expected to overestimate discordance. Not surprisingly, a much higher proportion 
of the genome is inferred to have tracked a tree different from the species tree 
with this choice of D. The concordance factor of clades with high genomic 
support is underestimated: 0.545 (.542, .549) for human-chimp and 0.848 (.846, 
.851) for the human-chimp-gorilla clade. As expected, the concordance factor of 
clades with low genomic support is overestimated: 0.200 (.197, .203) for chimp-
gorilla and 0.197 (.194, .201) for human-gorilla. However, this discordance-
biased analysis still infers a higher concordance factor for the human-chimp and 
for the human-chimp-gorilla clades than for any other clades. Therefore, the 
species tree is still inferred with a 1.0 posterior probability with D infinite. 
 
Statistical support such as bootstrap values, posterior probabilities and standard 
errors for CF all reflect the amount of sampling error. Therefore, they heavily 
depend on the amount of data: the larger the sample size, the lower the sampling 
error. For instance, if the same gene or same set of genes is replicated several 
times, bootstrap values and posterior probabilities for clades in the estimated tree 
will increase up to 100% or 1.0. Standard errors and confidence intervals will 
shrink to a width of zero as more and more (identical) data sets are used. In 

From Ane (2011)

Numbers above nodes are genome-wide concordance factors

Intervals below nodes are 95% credibility intervals.

Laura Kubatko () Molecular Evolution Workshop 2013 July 30, 2013 88 / 113



BCA: Application to Rattlesnakes

The Primary
Concordance Tree
from BUCKy
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Sce−CO
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Sct−MO1
Sct−MO2
Smb−FL1
Smb−FL3
Smb−FL2
Smm−NC
Sms−OK1
Sms−OK2
Agc
Agp

80.4

19.0

30.2
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15.5

14.6
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37.7

13.6
14.7
17.6

36.3
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Species tree inference summary

Failure to incorporate the coalescent model in estimation of the species tree
can lead to statistical inconsistency, even when a method that is statistically
consistent is applied.

Many new methods for inferring species trees are being developed – each has
its advantages and disadvantages

In addition, we should continue to think about other ways of using
multi-locus data to its full advantage .... and we should be thinking beyond
estimation of the species tree.

Lots of areas emerging: species delimitation, incorporating horizontal events
along the phylogeny, etc. – get involved and have fun!

Find me and tell me about your data!
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Species tree inference

What next?

Options:

I Questions and discussion

I STEM/STEM-hy demo and lab warm-up
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STEM Data Preparation - Gene Trees

STEM takes as its input one gene tree for each locus.

Thus, a first step in an analysis using STEM is to estimate gene trees with
branch lengths for each locus.

Any method can be used to do this, but note a couple requirements:
I Branch lengths are assumed to be in units of expected number of substitutions

per site per unit time.
I Branch lengths must be estimated subject to a molecular clock. This is not

checked by the program.
I Gene trees must be fully resolved; however, polytomies can be included by

setting branch lengths to 0 for an arbitrary resolution of the polytomy.
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STEM Data Preparation - Population Genetics Parameters

A value of the parameter θ = 4Nµ must be provided. Note that this is the
“per-site θ”, not a “per-locus” value as used by other population genetics
programs.

This will be used to convert gene tree branch lengths to coalescent units by
dividing all gene tree branch lengths by θ.

Estimates of θ could be obtained by standard methods. Typical values of θ
will be between 0.001 and 0.1.

The species tree estimate is returned with branch lengths in coalescent units.
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STEM Data Preparation - Population Genetics Parameters

Each locus can also be given a rate multiplier.

These can adjust for

I Variation in mutation rate across loci.

I Ploidy (e.g., haploid loci – mtDNA – should be given a rate of 0.5).

At the least, one should estimate rate variation from the data by something
like the following:

I Compute average pairwise sequence divergence of each sequence to the
outgroup.

I Divide all of these values by their overall mean, and assign that number as the
rate multiplier for each gene.

I Adjust specific genes for ploidy, if necessary.
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STEM example

Example: Heliconius butterflies

H. melpomene H. heurippa H. cydno

2

1

3

H. hecale

ABCD

BCD

CDBD
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STEM example

Example genetrees.tre file:

[0.37137]((Hheurippa:0.005989,(Hcydno:0.001322,Hmelpomene:0.001322):0.004667):0.022778,Hhecale:0.028767);
[1.17059]((Hmelpomene:0.049843,(Hcydno:0.000001,Hheurippa:0.000001):0.049843):0.001,Hhecale:0.049943);
[0.11434](((Hcydno:0.021024,Hheurippa:0.021024):0.020051,Hmelpomene:0.041076):0.002610,Hhecale:0.043685);
[1.35454](((Hheurippa:0.010740,Hcydno:0.010740):0.003498,Hmelpomene:0.014238):0.037654,Hhecale:0.051892);
[0.39096](((Hheurippa:0.008764,Hmelpomene:0.008764):0.001686,Hcydno:0.010450):0.003969,Hhecale:0.014419);
[1.22683](((Hheurippa:0.002431,Hcydno:0.002431):0.062919,Hmelpomene:0.065350):0.0000001,Hhecale:0.065351);
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STEM/STEM-hy uses

Five main functions of STEM-hy version 1.0
I Estimate a species tree given a set of gene trees using maximum

likelihood
run=1

I Search species tree space for trees of high likelihood
run=2

I Compute the likelihood of a user-specified tree
run=0

I Carry out a bootstrap analysis (bootstrapping is on sites within genes)
run=4

I Assess fit of trees subject to hybridization in the presence of lineage
sorting
run=3
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STEM example

Example settings file:

properties:
run: 1
theta: 0.001
beta: 0.0005
burnin: 100
seed: 3435893
bound total iter: 20
num saved trees: 10
hybrid species: H. heurippa
hybrid tree: user-heliconius.tre

species:
H. melpomene: Hmelpomene
H. hecale: Hhecale
H. cydno: Hcydno
H. heurippa: Hheurippa
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STEM example

To run STEM-hy:

java -jar STEM-hy.jar
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STEM example

****************Results*****************

D AB Matrix:

[ 0.00000 1.05113 3.68810 0.35598]
[ 0.00000 0.00000 3.68810 0.00009]
[ 0.00000 0.00000 0.00000 3.68810]
[ 0.00000 0.00000 0.00000 0.00000]

Maximum Likelihood Species Tree (Newick format):
(H. hecale:3.68810,(H. melpomene:0.35598,(H. heurippa:0.00009,H. cydno:0.00009):0.35589):3.33212);

log likelihood for tree: -349.9185707499209

****************** Done ****************
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STEM example

STEM’s hybridization model

A B C

ττ

γγ

1−γγ

A B C

P(C(AB)) = 1−(2/3)exp(−ττ)
P(A(BC))=(1/3)exp(−ττ)
P(B(AC))=(1/3)exp(−ττ)

Mutation
Process

ττ

A B C

P(C(AB))=(1/3)exp(−ττ)
P(A(BC))=1−(2/3)exp(−ττ)
P(B(AC))=(1/3)exp(−ττ)

Mutation
Process

ττ
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STEM example

Assumptions:

Hybridization results in a mosaic genome, so that a sampled gene has a
probability distribution that its history originated from one of several parental
species trees

Genes in the sample are independent given the species tree

Hybridization events happen only between sister taxa

No factors other than coalescence and hybridization lead to incongruence
between gene trees and the species tree
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A bigger example

Motivating example:

A B C D E F A B C D E F

A B C D E F A B C D E F

Consider the hybrid species tree:

A C E FDB
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The likelihood function

A C E FDB

→
A B C D E F

γγ1γγ2

S1

A B C D E F
(1−γγ1)γγ2

S3

A B C D E F
γγ11−γγ2)

S2

A B C D E F
(1−γγ1)(1−γγ2)

S4

∏N
i=1 {γ1γ2f (gi |S1) + γ1(1− γ2)f (gi |S2)

+(1− γ1)γ2f (gi |S3) + (1− γ1)(1− γ2)f (gi |S4)}
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Comments on computation

Parameters in the likelihood function: γ1, γ2, branch lengths

For a given hybrid species tree and sample of gene trees with divergence
times, maximum likelihood branch lengths can be analytically determined

Fitting the likelihood model for a hypothesized hybrid species tree only
requires optimization of γ parameters
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Selecting the best hybrid species tree

For the example hybrid species tree, pick the best hybrid model from among
possible models using the AIC:

Model Tree γ1 γ2 Number of Parameters

1 A B C D E F 0 0 5

2 A B C D E F 0 1 5

3 A B C D E F 1 0 5

4 A B C D E F 1 1 5
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Selecting the best hybrid species tree

Model Tree γ1 γ2 Number of Parameters

5 A B C E FD 0 (0,1) 6

6 A B C E FD 1 (0,1) 6

7 A C D E FB (0,1) 0 6

8 A C D E FB (0,1) 1 6

9 A C E FDB (0,1) (0,1) 7
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STEM-hy

Important point: STEM-hy looks for evidence of hybridization in the presence
of incomplete lineage sorting.

By using the model from STEM to compute likelihoods, the coalescent
process is incorporated.

The AIC is used to compare models:

I AIC = −2lnL(M|D) + 2k

where M is the model and D is the data. LnL(M|D) is the likelihood from
STEM-hy for the hybridization model under consideration.
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STEM example

Changes to settings file:

properties:
run: 3
theta: 0.001
beta: 0.0005
burnin: 100
seed: 3435893
bound total iter: 20
num saved trees: 10
hybrid species: H. heurippa
hybrid tree: user-heliconius.tre

species:
H. melpomene: Hmelpomene
H. hecale: Hhecale
H. cydno: Hcydno
H. heurippa: Hheurippa
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Example: Hybridization in Heliconius

****************Results*****************
....

Parental trees:

gamma(H. heurippa) = 1
((H. cydno:0.00009,(H. heurippa:0.00009,H. melpomene:0.00009):0.00000):3.68801,H. hecale:3.68810);
Lik: -357.4325907499209
AIC: 720.8651814998418
k: 3

gamma(H. heurippa) = 0
(((H. heurippa:0.00009,H. cydno:0.00009):0.35589,H. melpomene:0.35598):3.33212,H. hecale:3.68810);
Lik: -349.9185707499209
AIC: 705.8371414998418
k: 3

Hybrid trees:

(((H. heurippa:0.00009,H. cydno:0.00009):0.35589,H. melpomene:0.35598):3.33212,H. hecale:3.68810);
Lik: -349.5409832924012
gamma(H. heurippa): 0.6600000000000004
AIC: 707.0819665848024
k: 4

****************** Done ****************
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What hybrid species can be considered?

Care must be taken in selecting hybrid species:

I Both members of a sister group cannot be selected as hybrid taxa in a single
analysis. However, two analyses can be run (one with each of the sister group
identified as the hybrid) and results will be comparable across runs.

I The outgroup cannot be selected as a hybrid.

I Both of these restrictions result from the fact that for now hybridization is
only considered between sister taxa.

More general hybridization relationships can be considered “by hand” using
the user-specified tree feature of STEM-hy.
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STEM-hy: Strengths and Weaknesses

STEM-hy makes some fairly strong assumptions:

I Error in estimating gene trees and branch lengths is not incorporated!!!! But
the possibility of carrying out bootstrap analysis helps.

I Information in the sequence data is not used directly; it is only used as
summarized by estimated gene divergence times.

I There is a single value of θ for the entire tree.

There are trade-offs involved, and STEM-hy does some things well:

I It is quick (even the tree search does not take long).
I It can handle missing data easily and intuitively.
I Simulations demonstrate reasonable performance (unlikely to be misleading;

may be uninformative).
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Challenge Datasets

I’ve created four datasets under varying conditions:

M1 No hybridization, long intervals between speciation events.

M2 No hybridization, short intervals between speciation events.

M3 Low-levels of hybridization - B is a hybrid of A and C (species tree as in M1
and M2).

M4 Extensive hybridization - B is a hybrid of A and C (species tree as in M1 and
M2).

All data sets have 6 species, 2 individuals/species, and 10 loci.

GOAL: match the data set to the condition listed above
Solutions are linked to on my course wiki page.
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