Stat 882: Statistical Phylogenetics – Lecture 3

Laura S. Kubatko lkubatko@stat.osu.edu

Contents

1	Intr	roduction: Optimality Criteria	2			
2	Met	thods for Finding Optimal Trees: Exact Methods	2			
	2.1	Exhaustive Search	3			
	2.2	Branch and Bound	3			
3	Methods for Finding Optimal Trees: Heuristic Methods					
	3.1	Divide-and-conquer Methods	5			
	3.2	Stepwise Addition and Branch Swapping	6			
	3.3	Ratchet	7			
4	Methods for Finding Optimal Trees: Stochastic Methods					
	4.1	Simulated Annealing	8			
	4.2	Genetic Algorithms	9			

1 Introduction: Optimality Criteria

Optimality Criteria

- Thus far, we have described two criteria for evaluating phylogenetic trees
 - Parsimony: Prefer the tree(s) that minimize evolutionary change
 - * Compute a score for each tree based on a cost associated with each type of change
 - Maximum likelihood: Prefer the tree(s) that have the highest likelihood
 - * Compute the likelihood of each tree under a particular substitution model
- Using these criteria, we have a method for comparing different phylogenies

Optimality Criteria - Inference

- Recall that our goal is to infer a phylogeny
- To do this, we must search the set of possible phylogenies for the tree(s) that gives the best value of the selected criterion
- \bullet Recall that the space of phylogenies is very large consider an unrooted tree with T taxa. There are
 - -T-2 internal nodes
 - -2T-3 branches
 - Number of possible trees is $\prod_{i=1}^{T-2} (2i-1)$

Number of	Number of	Number of
Taxa	Rooted Trees	Unrooted Trees
5	105	15
10	$34,\!459,\!425$	2,027,025
20	8.2×10^{21}	2.21×10^{20}
50	2.75×10^{76}	2.83×10^{74}

2 Methods for Finding Optimal Trees: Exact Methods

Methods for Finding Optimal Trees

- Exact Methods
 - Exhaustive search
 - Branch and bound methods
- Heuristic methods
 - Divide-and-conquer
 - Stepwise addition and branch swapping
 - Parsimony ratchet
 - Numerous other possibilities
- Stochastic searches
 - Simulated annealing
 - Genetic algorithms

2.1 Exhaustive Search

Exhaustive Search

- Enumerate all possible trees
- Evaluate the criterion of interest on all trees
- Pick the tree that gives the optimal value of the criterion
- Advantage: Complete information about the problem
- Disadvantage: Not computationally feasible for large numbers of taxa

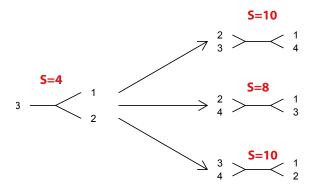
2.2 Branch and Bound

Branch and Bound

- Can be used with any criterion whose values are non-decreasing as taxa are added to the tree
- Basic idea: Eliminate portions of the tree space that do not contain the optimal tree, so that the criterion need never be evaluated for these trees
- Advantage: Guaranteed to find optimal tree

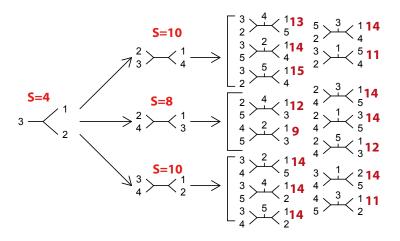
- Disadvantages:
 - Don't necessarily give info about near-optimal trees
 - May still be very time consuming
 - Limited to approx. 20 taxa or less

Branch and Bound - An Example


• Consider the following data simple set:

Taxon	Site Pattern						
Name	1	2	3	4	5	6	7
1	Α	Α	С	С	Α	С	A
2	A	\mathbf{T}	$^{\rm C}$	G	\mathbf{T}	G	$^{\rm C}$
3	A	\mathbf{T}	$^{\rm C}$	G	A	\mathbf{C}	A
4	$^{\rm C}$	${\rm T}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	$^{\rm C}$	\mathbf{C}
5	$^{\rm C}$	G	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{C}	\mathbf{C}

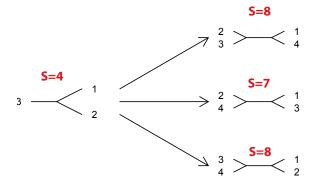
ullet Suppose we want to find the tree with the lowest score, S, under Fitch parsimony


Branch and Bound - An Example

- Use an initial, quick search to find a tree whose length is 9
- Begin with three taxa, then add the fourth in all possible locations; evaluate all scores

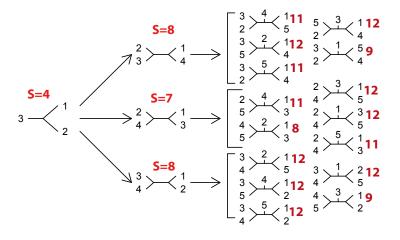
Branch and Bound - An Example

• Then add the fifth taxon


Branch and Bound - Worst Case

• Suppose instead our data were only the first 6 sites:

Taxon	Site Pattern					
Name	1	2	3	4	5	6
1	Α	A	С	С	Α	С
2	A	\mathbf{T}	$^{\rm C}$	G	${\rm T}$	G
3	A	T	С	G	A	С
4	\mathbf{C}	\mathbf{T}	Τ	\mathbf{T}	\mathbf{T}	$^{\rm C}$
5	\mathbf{C}	G	Τ	\mathbf{T}	\mathbf{T}	$^{\rm C}$


Branch and Bound - An Example

- \bullet Use an initial, quick search to find a tree whose length is 8
- \bullet Begin with three taxa, then add the fourth in all possible locations; evaluate all scores

Branch and Bound - An Example

• Then add the fifth taxon – note that now all trees must be evaluated

3 Methods for Finding Optimal Trees: Heuristic Methods

3.1 Divide-and-conquer Methods

Divide-and-Conquer Methods

- Divide the collection of taxa into subgroups
- Infer optimal phylogenetic trees for each of the subgroups
- Reassemble the subtrees into an overall supertree that includes all of the taxa
- Advantage: Quick
- Disadvantages:
 - How do we divide the taxa into subgroups?
 - How do we create supertrees from subtrees, especially if there is incongruence?

Divide-and-Conquer Methods

- Some of the most widely-used methods in this class are:
 - Disk-covering methods Tandy Warnow's group Reference: U. Roshan,
 B. M. E. Moret, T. L. Williams, T. Warnow, Rec-I-DCM3: A Fast Algorithmic Technique for Reconstructing Large Phylogenetic Trees, Proceedings of the IEEE Computational Systems Bioinformatics (CSB04) Stanford (CA), USA, 2004
 - Quartet puzzling implemented in PAUP* Reference: Strimmer, K. and A. von Haeseler. 1996. Quartet Puzzling: A Quartet Maximum-Likelihood Method for Reconstructing Tree Topologies. Molecular Biology and Evolution, Vol 13(7): 964-969.

3.2 Stepwise Addition and Branch Swapping

Stepwise Addition and Branch Swapping

- Most commonly used estimation method (PHYLIP, PAUP*, fastDNAML)
- Form an initial tree by stepwise addition of taxa

- At each step, perform rearrangements of the tree until no improvement in optimality criterion can be made
- Several strategies for performing rearrangements
 - Nearest Neighbor Interchagnes (NNI)
 - Subtree pruning and regrafting (SPR)
 - Tree bisection and reconnectin (TBR)

Stepwise Addition and Branch Swapping

- Advantages:
 - Easy to understand
 - Implemented in software
 - Works well for small sample sizes e.g., < 50 taxon
- Disadvantages:
 - No guarantee of finding optimal tree (order of addition of taxa matters)
 - One proposed solution: Perform the search from several starting points (orderings of the taxa)
 - Computationally intensive

3.3 Ratchet

Ratchet

- Originally proposed for parsimony (Kevin Nixon, 1999, Cladistics)
- Extended to likelihood (Rutger Vos, 2003, Systematic Biology)
- Alogrithm:
 - Generate a starting tree by some quick method
 - Reweight a randomly selected subset of characters (e.g., give a weight of 2 to 50% of the characters and a weight of 1 to the other 50%)
 - Search on the current tree using any strategy (e.g., branch swapping)
 - Set all characters back to their original weights and search again for the current tree
 - Repeat these steps for many iterations

Ratchet

- Advantages:
 - Reweighting of characters allows the algorithm to explore more of the tree space than standard heuristics
 - Gain information about locally optimal trees
 - Easily implemented in PAUP* Sikes and Lewis, PAUPRat
- Disadvantages:
 - Need to decide how many iterations to use and how weights should be selected
 - No guarantee of finding optimal tree

4 Methods for Finding Optimal Trees: Stochastic Methods

4.1 Simulated Annealing

Simulated Annealing

- A general method of function optimization
- Basic idea:
 - Move through the space of all trees by randomly rearranging a current tree to form a new tree.
 - The criterion of interest is evaluated on the new tree, and a decision is made about whether the new tree should be accepted as the current tree.
 - The key is that even new trees with worse values of the optimality criterion can be accepted - hopefully, this helps avoid finding only local optima.

Simulated Annealing

- Three steps
 - 1. From tree τ_i , generate candidate tree τ^* via a randomly-selected NNI move.

- 2. If $L(\tau^*) \ge L(\tau_i)$, set $\tau_i = \tau^*$. Otherwise, set $\tau_i = \tau^*$ with probability $\exp\{\frac{L(\tau^*) L(\tau_i)}{c_i}\}$.
- 3. Update the value of the control parameter, c_i , and set i to i+1. Go to step 1.

Simulated Annealing

- Advantages:
 - Quick, and can handle large data sets
 - Increased ability to find globally optimal tree
 - Easy to implement
 - Gives information about many trees
- Disadvantages:
 - Many parameters must be specified
 - No guarantee of finding optimal trees

4.2 Genetic Algorithms

Genetic Algorithms

- A general method of function optimization
- Basic idea:
 - Model the search for the optimal phylogenetic tree after the process of natural selection. Natural selection allows differential survival rates of individuals based upon their fitness.
 - This is applied to the tree search problem by letting a particular trees fitness be represented by its value of the optimality criterion. Trees with better values of the criteria are more likely to proceed to the next generation.
 - After many generations are simulated, we will hopefully have found the optimal tree.

Genetic Algorithms

- Some details:
 - Begin with a population of trees
 - Compute values of the optimality criterion for each tree

- Mutation, natural selection, recombination, etc., act on each generation of the population to produce the next generation
 - * Examples: Branch lengths may be mutated by multiplication by a factor selected from a gamma distribution Topology might be mutated by performing an SPR rearrangement
- The tree with the highest value of the criterion is automatically placed in the next generation
- Repeat the process for many generations

Genetic Algorithms

- Advantages:
 - Quick
 - Increased ability to find globally optimal trees
 - Potential information about many other trees
 - Implemented in the user-friendly program GARLI (Zwickl, 2006)
- Disadvantages:
 - Many parameters must be specified
 - No guarantee of finding optimal trees

A few other programs to mention

- RAxML Randomly Axelerated Maximum Likelihood
 - Author: Alexandros Stamatakis
 - Website: http://icwww.epfl.ch/~stamatak/index-Dateien/Page443.htm
- TNT Tree analysis using New Technology
 - Author: Pablo Goloboff, James Farris, Kevin Nixon
 - Website: http://www.cladistics.org/tnt.html