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Abstract

Estimation of the ratio of the rates of transitions to transversions (TI:TV ratio) for a collection of aligned nucleotide sequences is

important because it provides insight into the process of molecular evolution and because such estimates may be used to further model

the evolutionary process for the sequences under consideration. In this paper, we compare several methods for estimating the TI:TV

ratio, including the pairwise method [TREE 11 (1996) 158], a modification of the pairwise method due to Ina [J. Mol. Evol. 46 (1998)

521], a method based on parsimony (TREE 11 (1996) 158), a method due to Purvis and Bromham [J. Mol. Evol. 44 (1997) 112] that

uses phylogenetically independent pairs of sequences, the maximum likelihood method, and a Bayesian method [Bioinformatics 17

(2001) 754]. We examine the performance of each estimator under several conditions using both simulated and real data.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is a well-known fact that during DNA sequence
evolution the rate of transitional changes differs from the

rate of transversional changes, with transitions generally

occurring more frequently than transversions. This dif-

ference is often referred to as transition bias, and esti-

mation of the extent of transition bias may be of interest,

since it may vary for different organisms and for different

genes within a collection of organisms. Because knowl-

edge of this quantity may aid in our understanding of the
patterns of molecular evolution, reliable methods of es-

timating the transition bias are needed. Proper estima-

tion is also important because the ratio of the rates of

transitional to transversional changes (often called the

TI:TV ratio) plays a role in evolutionary distance cor-

rection methods and is used in several common evolu-

tionary models (e.g., the F84 model) (Wakeley, 1996).

Several methods have been proposed for estimating
the TI:TV ratio from a collection of N aligned DNA
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sequences. These can be broadly grouped into three

categories: distance-based methods that use only pair-

wise distance measures in forming the estimate, parsi-
mony methods that use a most parsimonious (MP)

reconstruction of the phylogenetic tree to aid in forming

the estimate, and methods that make use of the likeli-

hood function for estimation. We give a brief overview

of several of the available methods here.

Among the available distance methods are the pair-

wise method (Wakeley, 1996) and a method proposed by

Ina (1998, Eq. (11)) (here referred to as Ina�s method).
In the pairwise method, the overall numbers of transi-

tions and transversions are obtained for each pair of

sequences in the data set under consideration, and a

ratio is taken for each pair. Since there are NðN � 1Þ=2
possible pairwise comparisons, the final number of es-

timates is NðN � 1Þ=2. Generally, the average of these

pairwise estimates is used to provide a single estimate for

the entire data set, although this need not be the case.
Pollock and Goldstein (1995) proposed a modification

of the pairwise method in which a particular weighted

average of the pairwise estimates is taken in an attempt

to correct for multiple substitutions. Ina�s method is

similar to the general pairwise method, except that the
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numbers of transitions and transversions are added for
the entire data set first, and a single ratio of the number

of transitions to transversions is obtained.

The first step in estimating the TI:TV ratio in the

parsimony method (Wakeley, 1996) is to find the MP

reconstruction of ancestral states at the internal nodes of

a given (or estimated) phylogenetic tree. The numbers of

transitional and transversional changes are then counted

along each branch of the tree and an estimate of the
TI:TV ratio is obtained by taking the ratio of the total

number of transitions to the total number of transver-

sions.

Because estimates of the TI:TV ratio may depend on

the time since divergence between the sequences (Purvis

and Bromham, 1997; Wakeley, 1996) developed a

method that utilizes time since divergence. Their method

is based on phylogenetically independent comparisons
of sequences (see, e.g., Burt (1989) for a method of se-

lecting phylogenetically independent pairs of sequences),

and requires a known phylogenetic tree with known

divergence times at the internal nodes. For each inde-

pendent pair of sequences, the number of transversional

changes, P , is plotted against time since divergence, t. A
non-linear model of the form

P ¼ aþ ðs� aÞð1� e�ktÞ ð1Þ
is then fitted to the data. Under this model, the pro-

portion of transversional changes will increase from an

initial value, a, and finally reach an asymptote, s, where
s depends on the base frequencies in the sequence

through the expression

s ¼ ðpT þ pCÞðpA þ pGÞ
pA � pG þ pC � pG þ ðpT þ pCÞðpA þ pGÞ

; ð2Þ

where px is the frequency of nucleotide x for x ¼ A, C,

G, T. The parameter k is a measure of the rate at which

the proportion of transversions increases from its initial

value to the point of saturation. Since â is an estimate of

the instantaneous rate of transversional changes, an es-
timate of the TI:TV ratio is given by ð1� âÞ=â.

Maximum likelihood (ML) can also be used to esti-

mate the TI:TV ratio. For a fixed tree and set of branch

lengths, many programs (e.g., PAUP � (Swofford, 1998)

and PAML (Yang, 2000)) can provide ML estimates of

the parameters in a specified evolutionary model. Using

a model that includes a parameter for the TI:TV ratio,

such as the F84 model (Felsenstein, 1984) or the HKY85
model (Hasegawa et al., 1985), allows an estimate of the

TI:TV ratio to be obtained. Bayesian techniques

(Huelsenbeck and Ronquist, 2001; Li et al., 2000; Mau

et al., 1999; Yang and Rannala, 1997) also allow for the

estimation of parameters in a specified evolutionary

model, and hence an estimate of the TI:TV ratio can be

obtained through Bayesian inference as well.

Several authors have compared the performance of
various estimators of the TI:TV ratio (Pollock and
Goldstein, 1995; Purvis and Bromham, 1997; Wakeley,
1994, 1996; Yang and Yoder, 1999). Wakeley (1994)

examined the effect of rate variation among sites ana-

lytically, and showed that the presence of rate variation

causes underestimation of the TI:TV ratio. Pollock and

Goldstein (1995) showed that their estimate based on a

weighted average of the pairwise ratios performed well

on simulated data in terms of mean squared error.

Wakeley (1996) reviewed several of the commonly used
methods for estimating the TI:TV ratio, and compared

the performance of ‘‘classical’’ estimates (e.g., the pair-

wise and parsimony methods) with the best available

estimate for four real data sets. Purvis and Bromham

(1997) compared their independent pairs method (de-

scribed above) to the pairwise method, a modified

pairwise method that corrected for multiple substitu-

tions at a site, and the maximum likelihood method for
two real data sets. They found that their method gave

larger values than ML estimates, and that the pairwise

methods both tended to be lower than these estimates.

Yang and Yoder (1999) compared the corrected pair-

wise method and the ML method for both real and

simulated data. For their simulated data, they found

that both the pairwise and ML methods overestimated

the TI:TV ratio, most significantly when sequence di-
vergence was low. They attributed this to a tendency to

over-correct for multiple substitutions.

Our goal is to evaluate and compare several of the

available methods for estimating the TI:TV ratio. In

particular, we examine the (uncorrected) pairwise

method, Ina�s modification of the pairwise method, the

parsimony method, the independent pairs method of

Purvis and Bromham, the ML method, and a Bayesian
technique. For each of these methods, we consider both

simulated and real data for varying numbers of taxa,

and examine the effect of varying levels of rate hetero-

geneity among sites. We anticipate that methods that do

not account for either multiple substitutions or time

since divergence (e.g., the pairwise methods and the

parsimony method) will underestimate the TI:TV ratio;

however, these methods are included because they are
computationally more tractable than methods which do

account for such phenomena, and it is thus interesting to

quantify the extent of their bias. To our knowledge, this

is the first study to compare a wide range of methods for

estimating the TI:TV ratio using data simulated so that

the actual TI:TV ratio is known, and it is the first to

assess the performance of Bayesian methods for esti-

mating this parameter.
2. Methods

Data sets were simulated using Seq-Gen Version

1.2.5 (Rambaut and Grassly, 1997). Seq-Gen is a

program that generates DNA sequences of a specified



Fig. 2. Model phylogenetic tree used to generate the 30-sequence

simulated data sets.

A.K.K. Strandberg, L.A. Salter / Molecular Phylogenetics and Evolution 32 (2004) 495–503 497
length according to a Markov model for a given phy-
logeny with fixed branch lengths. In this study, we

consider three fixed trees, with N ¼ 14, 30, and 57 taxa,

with specified parameter values (described in detail

below) to generate the sequences. All trees were de-

termined by obtaining ML estimates of the topology

and branch lengths for a corresponding real data set:

the 14-sequence tree is one estimated for a commonly

used mammal data set consisting of mtDNA (Haya-
saka et al., 1988), the 30-sequence tree is the estimate

obtained using the L1 gene for papillomaviruses (Chan

et al., 1992, 1995; Ong et al., 1997), and the 57-se-

quence tree is the estimate obtained using the 12S

mitochondrial ribosomal gene for several species of

damselfishes (Jang-Liaw et al., 2002). The trees are

shown in Figs. 1–3, respectively.

For each model tree, eight groups of data sets were
generated. The 14-sequence data sets were specified to a

length of 231 sites, the 30-sequence data sets were

specified to a length of 1382 sites, and the 57-sequence

data sets were specified to a length of 1053 sites (each

chosen to reflect the length of the corresponding real

data). The sequences were generated under the F84

model (Felsenstein, 1984) with varying parameter set-

tings. For each model tree, the TI:TV ratio was set to be
either low or high. For the 14-sequence data sets, the

ratios were 1.31 and 29.21, where the lower value is an

estimate achieved for a subset of the data, and the higher

value is the maximum likelihood estimate (MLE) for the

real data. For the 30-sequence and 57-sequence data

sets, the ratios were set to 1.12 and 10.0, and 2.07 and

10.0, respectively. The lower value in each case is the

MLE for the real data, while the higher value is a rea-
sonable upper bound. Base frequencies were fixed at
Fig. 1. Model phylogenetic tree used to generate the 14-sequence

simulated data sets.
different values for each group of data sets, corre-
sponding to empirical estimates for the real data. The

frequencies were: pA ¼ 0:3760, pC ¼ 0:4007, pG ¼
0:0393, and pT ¼ 0:1840 for the 14-sequence data sets;

pA ¼ 0:2856, pC ¼ 0:1926, pG ¼ 0:2187, pT ¼ 0:3032 for

the 30-sequence data sets; and pA ¼ 0:3062, pC ¼
0:2591, pG ¼ 0:2214, pT ¼ 0:2133 for the 57-sequence

data sets. The nucleotide substitution rates were either

fixed or allowed to vary between sites. When rates var-
ied, they were selected from a gamma distribution with

mean 1 and shape parameter a. Three values of a were

selected to allow for different types of rate variation. The

lowest a value selected was 0.2335, which corresponds to

a situation in which the majority of sites have very low

rates of evolution while a few sites experience high rates

of evolution (this value was selected so that approxi-

mately 25% of sites have a rate >1). Our second setting,
a ¼ 1:0, represents moderate rate variation so that many

sites have low rates of evolution, but many have high

rates as well (in this case, approximately 37% of sites

have a rate >1). Our final setting, a ¼ 20:0, represents a
scenario in which the majority of sites have intermediate

rates of evolution, while a few sites evolve more quickly

and a few evolve more slowly (here, approximately 47%

of sites have a rate >1). We note that a ¼ 1 represents a
constant rate of evolution for all sites, while a < 1:0
represents a highly skewed distribution of rates across

sites (Yang and Kumar, 1996).

For each combination of TI:TV ratio and rate vari-

ation, 100 sub-data sets were generated. An estimate of

the TI:TV ratio was obtained for all data sets using each

of the methods described below. For each method (with

the exception of the Bayesian technique), all parameters
except for the TI:TV ratio were assumed to be fixed and

known. This was done so that the performance of each



Fig. 3. Model phylogenetic tree used to generate the 57-sequence simulated data sets.
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estimator could be assessed under the most favorable
conditions. We address the more realistic case where

other parameters, including the tree itself, are unknown

in the Discussion. To examine the bias and variability of

each of the estimators, we report the mean and the

variance of these 100 estimates. To get an overall sum-

mary, the mean squared error (MSE) is reported

(MSE ¼ bias2 + variance).

For the pairwise method and Ina�s method, the
number of transitional and transversional changes were

tallied using PAUP � (Swofford, 1998). Ratios between

them could then easily be obtained. A problem with the
pairwise method is that when the transition bias is high,
it is possible that no transversions will be observed in

some pairs of sequences. This would lead to division by

zero in forming the pairwise estimate. Fortunately, no

pairwise comparisons resulted in zero transversions in

this simulation, and hence a valid estimate could always

be obtained. Ina�s method almost surely takes care of

this, since it is very unlikely that there are no transver-

sions in the whole data set.
For the parsimony method, the phylogenetic tree that

generated the sequences was assumed. A MP recon-

struction was obtained using a program written by one
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of the authors (L.A.S.). The transitional and transver-
sional changes were then added over the entire tree, and

an estimate of the TI:TV ratio was obtained for each of

the sub-data sets.

The divergence times used for the 14-sequence data

sets when applying Purvis and Bromham�s method were

derived by Hayasaka and colleagues while working with

this common set of species (Hayasaka et al., 1988). For

the 30- and 57-sequence data sets, we used the fact that a
tree satisfying the molecular clock assumption was used

when generating the data. This can be done since the

final model does not depend on an exact measure of

time, only on the proportional differences in divergence

times between the species. Using the generating phy-

logeny, pairs of species that could be considered inde-

pendent were derived using Burt�s method (Burt, 1989).

For the 14-sequence data sets, seven independent pairs
were derived; for the 30-sequence data sets, 14 pairs

were derived; and for the 57-sequence data sets, 28

pairs were derived. The NLIN procedure in SAS

Version 8 (SAS Institute Inc, 2002) was then used to fit

the regression model.

The maximum likelihood analyses were carried out in

PAUP � (Swofford, 1998). MLEs of the TI:TV ratio were

obtained by using the generating tree and branch
lengths. The K2P and F84 models were each used for

estimation. We note that the data were generated under

the same model (F84) as was used to obtain the maxi-

mum likelihood method estimates. Of course this gives

an advantage to the ML estimates in the evaluation of

the methods, which is why the K2P model was also used

in the estimation process. Additionally, our simulations

allow examination of the data sets with varying substi-
tution rates over sites when estimated under constant

rate models, which might be useful in identifying how

sensitive ML estimates are to correct specification of the

underlying model.

Bayesian analysis was carried out using the program

MrBayes (Huelsenbeck and Ronquist, 2001). Because an
Table 1

Simulation results for the data sets with N ¼ 14 and TI:TV ¼ 1.31a

Method No rate variation a ¼ 0:2335

Mean Variance MSE Mean Variance MSE

Pairwise 0.4185 0.0005 0.7953 0.4823 0.0012 0.6862

Ina 0.3872 0.0004 0.8520 0.4608 0.0011 0.7222

Parsimony 0.4165 0.0007 0.7991 0.4044 0.0012 0.8213

Indep Pairs 0.8145 0.0390 0.2846 0.6356 0.0148 0.4697

MLE K2P 0.4301 0.0043 0.7785 0.4636 0.0033 0.7196

MLE F84 1.3292 0.0495 0.0498 0.5956 0.0042 0.5146

Bayes 0.7854 0.0056 0.2808 0.6146 0.0039 0.4876

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the H

senbeck and Ronquist, 2001). ‘‘No rate variation’’ corresponds to the assump

that the rate of evolution among sites was allowed to vary according to a c
option for specifying a fixed tree on which to estimate
parameters is unavailable, simultaneous estimates of the

tree and substitution model parameters were obtained.

Four chains were run for 100,000 generations, and

samples were collected each 100 generations. Estimates

for each sub-data set were calculated according to the

HKY85 model using the posterior means of the j pa-

rameter and the nucleotide frequency parameters.
3. Results

The results for the simulation are found in Tables 1–

6. The value reported for each data set is the mean of the

100 sub-data sets, and the variance is the sample vari-

ance of these 100 estimates. The MSE is computed for

an easy overall comparison of the methods.
Looking at the results in the tables, we see that the

distance-based methods and the parsimony method

significantly underestimate the true value of the TI:TV

ratio under all simulation conditions. Each of these

methods additionally shows a general trend for in-

creased underestimation in cases where rate variation

among sites is more pronounced (i.e., a ¼ 0:2335). This
trend is consistent for the varying tree sizes examined
here.

Purvis and Bromham�s regression-based method (la-

beled as ‘‘Indep Pairs’’ in the tables) performs well for

all data sets, which supports the theory that an adjust-

ment for time since divergence is needed. The estimates

are close to the true values, and the MSEs are lower than

for the distance-based methods for N ¼ 14 and N ¼ 30.

For N ¼ 57, the method shows little bias, but the vari-
ability in the estimates is large, resulting in large MSEs.

We examine possible causes for this in the Discussion.

As for the distance and parsimony methods, there does

appear to be an indication of larger underestimation for

data sets with varying substitution rates, though this

effect is less pronounced for the larger data sets.
a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE

0.4484 0.0005 0.7429 0.4177 0.0003 0.7965

0.4189 0.0005 0.7945 0.3879 0.0002 0.8505

0.3916 0.0011 0.8446 0.3769 0.0012 0.8718

0.7535 0.0172 0.3269 0.8009 0.0266 0.2858

0.4606 0.0037 0.7252 0.4243 0.0037 0.7880

0.9199 0.0194 0.1715 1.2741 0.0514 0.0527

0.7315 0.0050 0.3400 0.7634 0.2988 0.3034

’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

K2P model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

KY85 model (see text for details) using the program MrBayes (Huel-

tion of equal rates of evolution among sites, while the a values indicate

distribution with mean 1 and shape parameter a.



Table 2

Simulation results for the data sets with N ¼ 14 and TI:TV ¼ 29.21a

Method No rate variation a ¼ 0:2335 a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE Mean Variance MSE Mean Variance MSE

Pairwise 2.5634 0.2887 710.3292 2.0841 0.1082 735.9206 2.4570 0.2227 715.9458 2.5513 0.2048 710.8903

Ina 1.0167 0.0066 794.8670 1.3724 0.0264 774.9606 1.2623 0.0133 781.0855 1.0272 0.0073 794.2778

Parsimony 1.5130 0.0153 767.1419 0.3754 0.0010 831.4371 0.8855 0.0518 802.3308 0.9520 0.0785 798.5932

Indep Pairs 12.1128 29.3114 321.6267 5.6164 3.2376 559.8959 8.5692 13.7572 439.8006 12.5471 41.0737 318.7249

MLE K2P 2.2738 0.0851 725.6414 1.9812 0.0630 741.4707 2.3570 0.0777 721.1635 2.3218 0.0902 723.0655

MLE F84 34.0502 152.8578 176.2855 2.6755 0.1608 704.2431 15.3863 25.6288 216.7229 31.9493 99.4364 106.9400

Bayes 4.7922 0.1399 596.3680 2.7818 0.1174 698.5647 4.5160 0.1379 609.9337 4.7515 0.0836 598.3035

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the F81 model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the HKY85 model (see text for details) using the program MrBayes (Huel-

senbeck and Ronquist, 2001). ‘‘No rate variation’’ corresponds to the assumption of equal rates of evolution among sites, while the a values indicate

that the rate of evolution among sites was allowed to vary according to a c distribution with mean 1 and shape parameter a.

Table 4

Simulation results for the data sets with N ¼ 30 and TI:TV ¼ 10.0a

Method No rate variation a ¼ 0:2335 a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE Mean Variance MSE Mean Variance MSE

Pairwise 6.1875 0.0950 14.6304 3.5346 0.0412 41.7429 5.0129 0.0778 24.9489 6.1251 0.1009 15.1159

Ina 5.9891 0.0965 16.1839 3.3893 0.0390 43.7409 4.8340 0.0783 26.7662 5.9333 0.0987 16.6365

Parsimony 7.6600 0.1181 5.5935 1.9150 0.4965 65.8642 2.6926 1.1280 54.5258 3.1856 1.6348 48.0710

Indep Pairs 10.2347 3.2114 3.2665 9.2839 6.8453 7.3581 10.2104 3.1070 3.1513 10.3137 3.5768 3.6752

MLE K2P 9.9219 0.1857 0.1918 5.4216 0.0856 21.0475 7.9666 0.1278 4.2625 9.7980 0.2222 0.2630

MLE F84 10.0442 0.1888 0.1908 5.4756 0.0866 20.5572 8.0665 0.1285 3.8668 9.9214 0.2279 0.2341

Bayes 10.1745 0.2341 0.2646 5.5247 0.0917 20.1195 8.1425 0.1429 3.5932 10.0227 0.2606 0.2611

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the K2P model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the HKY85 model (see text for details) using the program MrBayes (Huel-

senbeck and Ronquist, 2001). ‘‘No rate variation’’ corresponds to the assumption of equal rates of evolution among sites, while the a values indicate

that the rate of evolution among sites was allowed to vary according to a c distribution with mean 1 and shape parameter a.

Table 3

Simulation results for the data sets with N ¼ 30 and TI:TV ¼ 1.12a

Method No rate variation a ¼ 0:2335 a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE Mean Variance MSE Mean Variance MSE

Pairwise 0.8863 0.0006 0.0551 0.7377 0.0005 0.1466 0.8246 0.0004 0.0877 0.8833 0.0006 0.0566

Ina 0.8773 0.0006 0.0595 0.7298 0.0005 0.1528 0.8161 0.0004 0.0928 0.8741 0.0006 0.0611

Parsimony 0.9885 0.0006 0.0245 0.6774 0.0022 0.1981 0.7672 0.0032 0.1277 0.8224 0.0035 0.0921

Indep Pairs 1.1355 0.0117 0.0120 0.9957 0.0149 0.0303 1.0798 0.0139 0.0155 1.1316 0.0160 0.0161

MLE K2P 1.1105 0.0009 0 0010 0.8678 0.0008 0.0644 1.0174 0.0010 0.0115 1.1080 0.0011 0.0013

MLE F84 1.1189 0.0009 0.0009 0.8775 0.0008 0.0596 1.0265 0.0010 0.0097 1.1162 0.0011 0.0011

Bayes 1.1195 0.0009 0.0009 0.8803 0.0009 0.0583 1.0274 0.0010 0.0096 1.1164 0.0010 0.0011

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the K2P model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the HKY85 model (see text for details) using the program MrBayes (Huel-

senbeck and Ronquist, 2001). ‘‘No rate variation’’ corresponds to the assumption of equal rates of evolution among sites, while the a values indicate

that the rate of evolution among sites was allowed to vary according to a c distribution with mean 1 and shape parameter a.
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The results for the maximum likelihood and Bayesian

methods are uniformly the best. The estimates are close

to the true values and the MSEs are generally lower than

for the other methods. As with the other methods, the

results indicate that varying substitution rates lead to

larger underestimation. For the ML method, it appears

that misspecification of the model impacts the estima-
tion of the TI:TV ratio. The estimates obtained under

the K2P model show larger bias than those obtained

using the F84 model, with the most substantial differ-

ences being observed for the N ¼ 14 data sets.

The results from the analysis of the real data,

shown in Table 7, are consistent with the results for

the simulation. As seen in the table, the distance-based



Table 5

Simulation results for the data sets with N ¼ 57 and TI:TV ¼ 2.07a

Method No rate variation a ¼ 0:2335 a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE Mean Variance MSE Mean Variance MSE

Pairwise 1.8677 0.0172 0.0582 1.4847 0.0121 0.3547 1.7350 0.0116 0.1238 1.8636 0.0167 0.0593

Ina 1.8056 0.0174 0.0872 1.4063 0.0116 0.4521 1.6651 0.0121 0.1761 1.8010 0.0176 0.0899

Parsimony 0.8114 0.0784 1.6624 0.6961 0.0392 1.9267 0.7665 0.0590 1.7582 0.8041 0.0773 1.6798

Indep Pairs 2.0807 0.3134 0.3135 2.2229 0.4272 0.4506 2.2484 0.4196 0.4515 2.1771 0.4927 0.5041

MLE K2P 2.0682 0.0102 0.0102 1.7750 0.0087 0.0958 1.9793 0.0082 0.0165 2.0698 0.0089 0.0089

MLE F84 2.0705 0.0102 0.0102 1.7767 0.0085 0.0946 1.9816 0.0082 0.0161 2.0722 0.00878 0.0088

Bayes 2.0856 0.0104 0.0107 1.7847 0.0091 0.0905 1.9931 0.0085 0.0144 2.0881 0.0093 0.0096

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the K2P model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the HKY85 model (see text for details) using the program MrBayes (Huel-

senbeck and Ronquist, 2001). ‘‘No rate variation’’ corresponds to the assumption of equal rates of evolution among sites, while the a values indicate

that the rate of evolution among sites was allowed to vary according to a c distribution with mean 1 and shape parameter a.

Table 6

Simulation results for the data sets with N ¼ 57 and TI:TV ¼ 10.0a

Method No rate variation a ¼ 0:2335 a ¼ 1:0 a ¼ 20:0

Mean Variance MSE Mean Variance MSE Mean Variance MSE Mean Variance MSE

Pairwise 0.9012 0.7960 1.7723 6.1537 0.4592 15.2531 8.0655 0.8246 4.5670 9.0859 0.9794 1.8150

Ina 8.3146 0.6327 3.4731 5.4617 0.4017 20.9983 7.3608 0.7237 7.6892 8.3511 0.8660 3.5849

Parsimony 1.3721 1.9624 76.4033 1.0483 0.6946 80.8267 1.2582 1.5622 77.9812 1.3652 0.0017 74.5612

Indep Pairs 11.3401 19.8301 21.6261 10.7522 27.1681 27.7339 10.1484 15.8265 15.8485 12.0617 32.4128 36.6632

MLE K2P 9.9946 0.4234 0.4234 7.6477 0.3476 5.8811 9.3108 0.4831 0.9581 9.9558 0.3946 0.3965

MLE F84 10.0128 0.4241 0.4243 7.6644 0.3481 5.8031 9.3284 0.4838 0.9348 9.9621 0.3994 0.4009

Bayes 11.7482 104.7358 107.7920 7.8629 0.4495 5.0169 9.6356 0.5245 0.6573 10.4514 1.5692 1.7730

a The mean, variance, and MSE of the 100 replicates are given. ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to the method of

Purvis and Bromham, ‘‘MLE K2P’’ is the MLE of the TI:TV ratio under the K2P model, ‘‘MLE F84’’ is the MLE of the TI:TV ratio under the F84

model, and ‘‘Bayes’’ is the mean of the 100 estimates obtained under the HKY85 model (see text for details) using the program MrBayes (Huel-

senbeck and Ronquist, 2001).‘‘No rate variation’’ corresponds to the assumption of equal rates of evolution among sites, while the a values indicate

that the rate of evolution among sites was allowed to vary according to a c distribution with mean 1 and shape parameter a.

Table 7

Results from the analysis of the real data setsa

Method Mammal Papillomaviruses Damselfishes

Pairwise 2.72 0.81 1.84

Ina 1.02 0.80 1.68

Parsimony 1.37 0.98 0.87

Indep Pairs 11.14 1.31 3.31

MLE 29.21 1.12 2.07

Bayes 3.73 1.10 2.14

a ‘‘Pairwise’’ refers to the pairwise method, ‘‘Indep Pairs’’ refers to

the method of Purvis and Bromham, ‘‘MLE’’ is the MLE of the TI:TV

under the F84 model, and ‘‘Bayes’’ is the estimate computed under the

HKY model using the program MrBayes (Huelsenbeck and Ronquist,

2001).
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methods and the parsimony method yield estimates

much lower than the values obtained by the remaining

methods.
4. Discussion

The distance-based methods and the parsimony
method significantly underestimate the true TI:TV ratio
for all data sets. This is expected since these methods

merely count the number of differences between se-

quences, and thus fail to take into account multiple

substitutions at a site over time. Overall, the estimates

for the N ¼ 14 data sets are more biased than the esti-

mates for the N ¼ 30 and N ¼ 57 data sets. This is likely

because these data sets are larger, both in the number of
sites and in the number of sequences, and thus poten-

tially contain more information. The estimates for the

N ¼ 14 data set with a true TI:TV ratio of 29.21 are

highly variable. It should be pointed out that a TI:TV

ratio as high as 29.21 is rarely seen in real data sets.

When the ratio is that high, few transversions may be

observed between some sequences in the simulation,

while between others there may be several transversions.
This results in substantial differences between the esti-

mates from data set to data set.

The methods that do account for divergence times

perform significantly better than the methods that do

not. Purvis and Bromham�s independent pairs method

gives very accurate estimates when the number of se-

quences is sufficiently large. As noted in the Results, the

variance associated with this method can be large. This
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is likely due to the fact that, even with a large data set,
the number of observations (i.e., number of independent

pairs) used to fit the non-linear regression model is ra-

ther small (e.g., for N ¼ 57, the number of pairs is 28).

Thus, even one observation that doesn�t fit the general

form of the model in Eq. (1) could result in an unusual

estimate of the TI:TV ratio. The choice of which pairs of

taxa to use is also somewhat subjective, and thus some

selections might result in more robust estimates than
others. In addition, the dependency on a known phy-

logenetic tree and good estimates of divergence times is a

drawback to this method, since this information may

not always be readily available.

The maximum likelihood and Bayesian methods

generally perform the best, with the least bias and

smallest variability. When the K2P model is assumed in

the likelihood framework, the estimates are generally
biased downward. When Purvis and Bromham�s inde-

pendent pairs method was applied assuming equal base

frequencies, the same problems were encountered (re-

sults not shown), which leads us to believe that an es-

timate of the base frequencies is important for proper

estimation of the TI:TV ratio. It is interesting that the

results for the Bayesian method are not very good for

the N ¼ 14 data sets, but are very accurate for the
N ¼ 30 and N ¼ 57 data sets. Since the pattern is the

same for Purvis and Bromham�s independent pairs

method, we find it likely that this is due to more infor-

mation in the larger data sets. We also note that the

variance for several of the Bayesian analyses is larger

than for the corresponding ML analysis, even though

the Bayesian estimate of the TI:TV ratio is similar. This

is in part expected, since the Bayesian analyses involved
simultaneous estimation of the TI:TV ratio with the tree

and other substitution model parameters. This intro-

duces additional variability into the estimates of the

TI:TV ratio.

However, two of the Bayesian analyses show variances

that appear to be larger than expected based on other

similar runs. This occurs forN ¼ 57withTI:TV ratio 10.0

in the case of no rate variation and in the case where
a ¼ 20:0.Examination of the individual results for the 100

sub-data sets shows that in these cases, one or two of the

100 replicates had an extreme value estimated for the

parameter j in the HKY85 model. If these replicates are

removed and the remaining sub-data sets are summarized

as before we obtain the following results: mean-

¼ 10.4388, variance ¼ 1.2012, and MSE ¼ 1.3937 for

the case of no rate variation; and mean ¼ 10.3503, vari-
ance ¼ 0.5525, and MSE ¼ 0.6752 for the case in which

a ¼ 20:0.We are unsure about the cause of the high values

for the estimate of j. Repeating the Bayesian analysis for

these three sub-data sets resulted in valuesmore similar to

the other replicates, suggesting that the MCMC algo-

rithm showed some undesirable behavior for these cases

in our first analysis.
The results from this study support the findings of
Wakeley (1996). Distance-based methods and the par-

simony methods do substantially underestimate the true

TI:TV ratio. The fact that the methods that account for

divergence times perform so well supports the theory

that the underestimation is due to multiple substitutions.

Additionally, our simulations support Wakeley�s finding
that substitution rate variation among sites leads to

further underestimation. Across all estimation methods
and all data sets, the most biased estimates are those for

which rate variation is the most extreme (a ¼ 0:2335).
As the extent of rate variation decreases (i.e., as a in-

creases), the bias decreases, with estimates in the case of

a ¼ 20:0 fairly similar to those for which there is no rate

variation.

It is important to remember that two of the meth-

ods that perform the best, the ML method under the
F84 model and the Bayesian method, incorporate the

model used to generate the data (or one very similar

to it) as part of the analysis. This, of course, provides

an unfair advantage to these methods, and makes a

comparison to the other methods biased. However, the

results for Purvis and Bromham�s independent pairs

method, which performs almost as well as the ML

method, are heavily dependent on correct estimates of
the tree and the divergence times. Because of this

limitation, the ML or Bayesian methods are preferred,

since they require only the choice of an evolutionary

model that incorporates a parameter for the TI:TV

ratio.

Although our application of several of the available

methods (namely, the parsimony, independent pairs,

and ML methods) here assumed that the phylogenetic
tree was known, in practice this tree would need to be

estimated along with the TI:TV ratio. Fortunately, it

appears that the estimate of the TI:TV ratio is rather

robust to misspecification of the tree, provided that a

reasonably realistic evolutionary model is used (Yang

et al., 1994), and thus the results as described here are

likely to be fairly generally applicable. We do point

out, however, that estimation of the tree may be de-
pendent on correct specification of the TI:TV ratio

(Wang et al., 2002), which underscores the importance

of obtaining an accurate estimate of this parameter.

Finally, we note that the observed estimates for all

three real data sets follow the same pattern as for the

simulated data. We thus conclude that the results de-

scribed here are likely to be generally applicable to many

currently-used data sets.
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