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Abstract

The temporal method is used widely to estimate genetic effective population size (Ne), a parameter of fundamental
interest to studies of evolutionary and conservation biology. The statistical properties of temporal-method estimates
have not been explored for highly polymorphic DNA markers that often contain many alleles occurring in very low
frequencies. We used a Monte Carlo simulation approach to assess accuracy and precision of the temporal method
when implemented with haplotypic/allelic data at mitochondrial (mt)DNA and nuclear-encoded microsatellite
DNA loci. Estimates of Ne were between 2%–106% greater than their true values in 48 simulations parameterized
using different demographic scenarios, models of mutation, and sample sizes. Overestimation of Ne results from a
bias in the approximation used by Waples (1989) to derive the relationship between the expected temporal variance
(F) and Ne when allele frequencies are very close to 0 or 1. Our results show that one commonly applied solution
to this problem, binning of low-frequency alleles, results in a trade-off of accuracy and precision in some cases.
We show that both chi-square and normal approximations are appropriate for estimating 95% confidence intervals
of Ne and we develop a power analysis based on the chi-square distribution to estimate sample sizes and allelic
diversity required to evaluate specific hypotheses. For highly polymorphic loci like mtDNA and microsatellites,
the increased precision afforded by the presence of rare alleles outweighs the upward bias in temporal-method
estimates of Ne.

Introduction

The advent of highly polymorphic DNA markers, such
as variable number of tandem repeat (VNTR) loci or
microsatellites, has sparked renewed interest in esti-
mating population genetic parameters from molecular
data. One such parameter, the genetic effective popu-
lation size (Ne), has received considerable theoretical
and empirical attention because it is a fundamental
determinant of genetic diversity in natural populations
(Crow 1986). Ne is also recognized as a critical part
of assessing long-term extinction risks of species or
populations (Frankham 1995).

There are several methods commonly used to
estimate Ne from molecular data. Most recently, atten-

tion has focused on methods that employ coalescent
theory (Donnelly and Tavare 1995). Methods based
on the coalescent evaluate the long-term effective size
(Avise 2000), and can greatly overestimate Ne in
large populations that have experienced a very recent
bottleneck. The temporal method is an alternative
approach that can provide very accurate estimates of
current Ne after a recent bottleneck event (Luikart et
al. 1998). The temporal method is widely used in
studies of managed or conserved species and popu-
lations (Husband and Barrett 1992; Hedgecock et al.
1992; Jorde and Ryman 1996; Miller and Kapuscinski
1997; Laikre et al. 1998; Turner et al. 1999).

The temporal method relates the standardized vari-
ance of allele frequencies across generations to the
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(variance) effective population size (Nei and Tajima
1981; Pollak 1983) The statistical properties of the
method are known for loci with two to twelve alleles
(Nei and Tajima 1981; Pollak 1983; Waples 1989;
Luikart et al. 1999; Williamson and Slatkin 1999).
What is not known is how the temporal method
performs when loci with many alleles (>12) are used
to estimate Ne. This is of more than passing interest,
as many commonly used genetic markers such as
mitochondrial (mt)DNA and microsatellite DNA loci
possess greater than 12 haplotypes or alleles, most
of which occur at frequencies less than 5%. Because
temporal-method estimates of Ne based on di- or trial-
lelic loci can be biased when one or more of the alleles
are rare (Waples 1989), there is good reason to suspect
that highly polymorphic loci also produce significantly
biased estimates of Ne.

In this study, we assessed accuracy and preci-
sion of the temporal method to estimate Ne from
highly polymorphic genetic markers using a Monte
Carlo simulation approach. Two demographic scen-
arios were examined. First, we evaluated performance
of the temporal method under conditions of mutation-
drift equilibrium, by simulating genetic drift of a
rapidly evolving genetic marker in an idealized popu-
lation of constant effective size. Second, we evaluated
temporal shifts in allele frequencies estimated from
mtDNA and microsatellite loci sampled in red drum
(Sciaenops ocellatus) in the Gulf of Mexico. Genetic
effective size of this long-lived and abundant marine
fish species is on the order of Ne = 104 (Gold et al.
1993; Turner et al. 1999), but simulated effective sizes
were not greater than Ne = 5 × 102. Such condi-
tions would be expected in a large population that
has undergone a moderate demographic bottleneck
(severe bottlenecks have been examined by Richards
and Leberg (1996) and Luikart et al. (1999)). In both
demographic scenarios, molecular markers exhibited
high levels of polymorphism and a number of rare
alleles per locus, providing an excellent case study
for evaluating performance of the temporal method to
estimate Ne when employing highly polymorphic loci.

Materials and methods

Monte Carlo simulations were parameterized to reflect
the demographic scenarios presented above. For the
first set of simulation studies, our aim was to examine
accuracy and precision of temporal-method estimates
of Ne using allelic frequency data gathered from a

rapidly evolving diploid locus (e.g. a microsatellite
locus) in an idealized population at mutation-drift
equilibrium. We began setting the effective popula-
tion size to Ne = 500 and the mutation rate to µ =
0.001, which yields θ = 4Neµ = 2. The mutation rate
was chosen to reflect values reported for microsatellite
DNA loci in other organisms (Jarne and Lagoda 1996).
An expected allele frequency distribution was gener-
ated assuming an infinite alleles model (IAM) using
the generating function

�(x) = θ(1 − x)θ−1x−1, (1)

(Nei 1987: eq. 13.27), where x is the frequency of a
particular allele in the population. A stepwise muta-
tion model may also be appropriate for microsatellite
loci, so we generated an allele frequency distribution
assuming a stepwise mutation model (SMM) using

�(x) = 
(θ + A+ 1)


(θ)
(A+ 1)
(1 − x)θ−1xA−1, (2)

where A = (1 − θ − √
1 + 2θ)/(

√
1 + 2θ − 1)

(Chakraborty et al. 1980: eq. A1). We then employed
Ewens’ (1972) sampling theorem to find the expected
number of alleles E(k) for θ = 2 for n = 1000 genes
(Ne = 500 for a diploid locus), which is approximately
equal to 13 alleles. For each locus, number of alleles
(rounded to whole numbers) was assigned by drawing
from a normal distribution with E(k) = 13.0 and Var(k)
= 3.6, and frequencies were assigned to each allele by
drawing values at random with replacement from the
IAM and SMM allele frequency distributions. We then
standardized allele frequencies within each locus so
that they summed to one. This procedure was repeated
eight times to create eight loci with a total of approxi-
mately 104 independent alleles. The number of loci
was chosen to facilitate comparison with empirical red
drum microsatellite data.

For the moderate bottleneck case, empirically
derived haplotype/allele frequencies were used to
parameterize simulations. DNA data from two
different classes of highly polymorphic genetic
markers were examined for red drum. MtDNA is
maternally inherited as a single haploid locus, and
often is highly variable because mutation rates are
generally high relative to nuclear-encoded structural
genes such as allozyme loci (Brown 1983). We
assayed a total of 1369 red drum collected from 14
localities in the northern Gulf of Mexico for variation
at 104 mtDNA restriction sites (data published in Gold
et al. 1999).



299

The second class of markers examined was
microsatellites, short simple-sequence repeats
contained in nuclear genomes of most eukaryotes
(Brooker et al. 1994). Microsatellites are inherited in
a codominant, Mendelian fashion, and are thought
to evolve much more rapidly than nuclear-encoded
structural genes (Jarne and Lagoda 1996). As a result,
microsatellite loci generally are highly polymorphic,
have higher heterozygosities, and possess more
alleles per locus than do most other nuclear-encoded
markers. We screened eight consistently resolvable
and polymorphic loci for allelic variation among 409
individuals that were a representative (geographic)
subset of the individuals screened for variation
in mtDNA restriction sites. PCR, screening, and
allele-scoring methods followed Turner et al. (1998).

Haplotype and allele frequencies at each locus
were calculated by pooling individuals across
sampling localities. We took this approach to increase
samples sizes, which provided more robust frequency
estimates. Such an approach is only justified when
levels of spatial genetic variation are very small and
do not appreciably alter estimates of global Ne based
on an assumption of panmixis. Previous studies of
mtDNA variation have indicated weak population
structure in red drum that is consistent with an
isolation-by-distance model of migration (Gold et
al. 1999). To evaluate potential effects of spatial
genetic structure in microsatellites, we conducted
regression of pairwise genetic divergence (RST) and
geographic distance (km) between samples. This
analysis revealed a pattern of isolation by distance,
but the slope of regression was very small (1.65 ×
10−6, P < 0.001). Theoretical studies have shown
that isolation by distance does not significantly alter
global effective size when the slope of regression is
substantially less than one (Chambers 1995).

We assessed accuracy and precision of the
temporal method separately for each demographic
scenario and each class of genetic markers by
extending the Monte Carlo simulation approach
developed by Waples (1989). Briefly, simulations
entailed constructing initial gamete pools containing
allele frequencies generated under an equilibrium
model (described above), or observed in red drum.
From initial pools, gametes were drawn at random
with replacement to comprise generation t(0) of size
Ne. A second generation, t(1), of size Ne, was
drawn at random with replacement from generation
t(0). A recently developed model for estimating Ne
from species with overlapping generations focuses on

evaluating temporal shifts in allele frequency over
temporally adjacent year classes and then applying
a correction factor based on demographic informa-
tion (Jorde and Ryman 1996). The time interval for
estimation of temporal variance in allele frequencies
across adjacent cohorts is short (≤ 1 generation), and
so we were particularly interested in the performance
of the temporal method over short time spans (i.e. one
generation).

Individuals were sampled with replacement from
generations t(0) and t(1) (following sampling plan
II of Waples (1989)), yielding sample sizes St (0) =
St (1) (S = 50 and S = 200 were used in simula-
tions). Haplotype/allele frequencies were tabulated
for St (0) and St (1), respectively Within each marker
class, separate simulations were conducted for three
different effective sizes: Ne = 50, 100, and 500.

Simulations were conducted to assess accuracy of
estimates of the quantity F, the standardized genetic
variance attributable to gene frequency changes across
generations t(0) and t(1). For each marker class,
we examined two computational methods for esti-
mating F: the first, F̂C (the carat denotes an estimate
throughout the manuscript), was developed by Nei
and Tajima (1981); the second, F̂K , was developed
by Pollak (1983). Waples (1989) provides a detailed
account of each computational method. Means and
distributions of F̂C and F̂K were estimated from 10000
randomized replicates.

The value F is inversely related to Ne in an ideal-
ized, diploid population by

Ne ≈ t

2
(
F − 1

2S0
− 1

2St

) , (3)

where t is the number of generations separating the
two samples, and St (0) and St (1) are sample sizes at
generations t(0) and t(1), respectively (Waples 1989).
Equation 3 was adjusted for mtDNA data to account
for haploid inheritance to give

Nef ≈ t(
F − 1

S0
− 1

St

) , (4)

which yields the effective female population size, Nef .
We multiplied Nef by 2 for comparison to Ne values
based on microsatellites. By substituting F̂C , F̂K ,
and S values into Equations 3 and 4, we solved for
N̂e. We then evaluated accuracy of these estimates by
computing the percentage difference between N̂e and
Ne.
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Figure 1. Equilibrium allele frequency distributions expected under infinite alleles (IAM) and stepwise mutation models (SMM) for a diploid
locus segregating in a population of effective size Ne = 500 and a mutation rate µ = 0.001 (yielding θ = 4Neµ = 2.0). Observed frequencies
of haplotypes/alleles for mtDNA-RFLPs and eight microsatellite loci surveyed from red drum are included for comparison (Gold et al. 1999).
MtDNA has the highest proportion of rare alleles (< 0.01). SMM is expected to have the fewest rare alleles.

A second goal of the study was to compare preci-
sion of F̂ (and thus N̂e) between marker classes. The
theoretical distribution of F (the variance of a vari-
ance) is not known but has been approximated both
by chi-square (Pollak 1983; Waples 1989) and normal
distributions (Nei and Tajima 1981, Jorde and Ryman
1996). We asked whether the distribution of 10000
randomized replicates of F̂ (obtained from simulation)
was best described by a chi-square or a normal distri-
bution. Expected values at a given probability under a
chi square distribution were determined by

F ′
α =

(
kF̂

χ2[α,k]

)
− 1

2S0
− 1

2St
, (5)

where F′
α is the expected value of F̂ (minus sampling

error) at a given probability ranging from α = 0.001
to α = 0.999, k is the number of independent haplo-
types/alleles, F̂ is the mean of 10000 randomized
replicates, and χ2[α,k] is the value of chi-square at prob-
ability α with degrees of freedom equal to k. Equation
5 was adjusted for mtDNA using the formula

F ′
α =

(
kF̂

χ2[α,k]

)
− 1

S0
− 1

St
. (6)

Expected values under the normal distribution were
determined by evaluating F′

α using the inverse normal
density function with mean and standard deviation
of F̂ (minus sampling error) determined from 10000
randomized replicates. Goodness of fit was deter-
mined qualitatively by plotting the simulated F̂ distri-
bution to the expected F′ distribution and examining
departures from equality.

Results and discussion

Rare haplotypes/alleles (frequencies lower than 0.01)
were present in initial gamete pools of equilibrium
models (IAM and SMM) and in empirical red drum
data (Figure 1). Eighty-eight percent of haplotypes
observed in the mtDNA data were rare by this
criterion, as were approximately 66% of expected
alleles under IAM at equilibrium. Microsatellites
had proportionally fewer rare alleles (40%) and
possessed more moderately frequent and common
alleles (Figure 1), as did the SMM case with 26%
of alleles expected to be rare. Our mtDNA data set
was highly polymorphic and contained numerous rare
alleles because of the large number of restriction
enzymes (13) used to characterize molecular variation.
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Table 1. Accuracy of estimates of Ne (denoted by the carat) as determined from Monte
Carlo simulations for a population at migration/drift equilibrium (IAM, SMM), and a
population that has experienced a moderate bottleneck (mtDNA, microsatellites). Three
initial effective population sizes (Ne), two sample sizes (S), and two computational
methods (F̂K (Pollak 1983) and F̂C (Nei and Tajima 1981)) were examined. Percent
deviation is calculated as the difference of N̂e and Ne divided by Ne multiplied by 100

Simulation Ne S N̂e % N̂e %

Case (Pollak) deviation (Nei-Tajima) deviation

IAM 50 50 71 42 69 38

100 50 146 46 142 42

500 50 1031 106 993 99

50 200 61 22 60 20

100 200 121 21 118 18

500 200 630 26 596 19

SMM 50 50 59 18 62 24

100 50 119 19 129 29

500 50 567 13 596 19

50 200 56 12 56 12

100 200 108 8 109 9

500 200 503 1 516 3

mtDNA 50 50 67 34 73 46

100 50 139 39 160 60

500 50 689 38 983 97

50 200 54 8 55 10

100 200 118 18 121 21

500 200 643 29 725 45

Microsatellites 50 50 64 27 63 26

100 50 131 31 129 29

500 50 778 56 767 53

50 200 59 19 58 17

100 200 118 18 115 15

500 200 603 21 568 14

Microsatellite loci exhibited patterns similar to those
observed in other marine teleost fishes (Broughton
and Gold 1997; DeWoody and Avise 2000). Given
the same total number of alleles in the data set,
microsatellites are expected to have proportionally
fewer rare alleles than mtDNA because many inde-
pendent loci (with relatively few alleles per locus) can
be employed. Increasing polymorphism in mtDNA
surveys requires identifying alleles from a single
locus, so any new alleles identified (by increasing the
number of restriction enzymes assayed) are likely to
be rare.

Regardless of initial conditions, Monte Carlo
simulations indicated that the temporal method

consistently underestimated F, and thus overestimated
Ne, in all cases. N̂e exceeded true values by as
little as 2% or as much as 106%, depending on the
kind of genetic marker evaluated, whether an equi-
librium or moderate bottleneck case was examined,
and the initial size of the population under simulation
(Table 1). The magnitude of bias appears to be slight
in nearly all cases (except mtDNA and IAM, Ne =
500, S = 50) and similar to that observed by Waples
(1989) for triallelic loci with one rare allele (frequency
= 0.01). The magnitude of bias did not appear to differ
in a systematic fashion between Pollak’s (1983) and
Nei and Tajima’s (1981) methods for estimation of F̂,
and thus N̂e (Table 1).
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Figure 2. Graph of negative bias in the Waples (1989) approximation of the expectation of F as a function of the allele frequency when Ne =
50, S = 50 and S = 200 based on Equation 7 in the text. Note that bias decreases as the sample size S increases.

At least two factors appear to cause the temporal-
method to overestimate Ne when employing highly
polymorphic loci: (i) the proportion of rare alleles
in the data set and; (ii) the number of individuals
sampled (S) which determines the sampling variance
of alleles. We further examined how these two factors
might be affecting bias by considering the approxima-
tion used by Waples (1989) to derive the relationship
between the expected value of F and Ne. Waples used a
first-order Taylor Series Expansion to approximate the
expected value of F, and found the relationship given
in Equation 3, with F replaced by its expectation. To
study the adequacy of this approximation, we used a
second-order Taylor Series Expansion to approximate
the expected value of F, and we examined the differ-
ence between our approximation and that given by
Waples. We call this difference the bias, and denote
it by Bias(S0, St , Ne, P, t) since it is a function of the
sample sizes at generations 0 and t, the effective popu-
lation size, the allele frequency, P, and the number of
generations, t. When Sampling Plan II of Waples is
used, Bias(S0, St , Ne, P, t) can be computed. In this
case, Equation 3 becomes

Ne ≈ t

2
(
F− 1

2S0
− 1

2St
−Bias(S0,St ,Ne,P ,t)

), (7)

(see Appendix for details). Thus, if bias is positive,
Ne will be underestimated by Equation 3, and if bias
is negative, Ne will be overestimated by Equation 3.

We computed the bias term as a function of P for
the combinations of Ne and S used in our simulations.
Bias in these cases is in fact negative and quite small,
except for values of P which are very close to 0 or to
1. Figure 2 shows the negative of the bias as a function
of P when Ne = 50, S = 50, and t = 1. Graphs in the
other cases are similar, except that bias is smaller when
S is larger, as expected (Figure 2). Thus, the temporal
method is nearly unbiased, but bias increases as allele
frequencies get close to 0 or to 1, and decreases as the
sample size increases.

Simulations are generally consistent with this
result. Accuracy of N̂e decreases as the proportion
of rare alleles increase in a particular data set: on
average, IAM and mtDNA estimates are most biased
(and contain the highest proportion of rare alleles),
followed by microsatellites, and then SMM (Table 1).
Bias decreases with increasing S in nearly all cases.
We note also that bias due to low allele frequency
alleles increases with increasing t (t = 2 and t = 3
cases evaluated but not shown). Such an increase in
bias might be expected since low frequency alleles are
constrained in how far they can drift downward, i.e.
low frequency alleles can go extinct in very short time
periods via genetic drift.

To examine whether the bias term above accounted
for overestimation of Ne in our simulation studies, we
applied Equation 7 to the mtDNA simulation case (Ne
= 500, S = 200, F̂C). We started by finding the mean
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bias term for the first 50 replicates from simulation and
subtracting that value from the estimate of F̂C across
10,000 replicates. The resulting corrected value of N̂e
= 480 was much closer to the true value (Ne = 500)
than uncorrected N̂e = 725 (from Table 1), suggesting
that the bias term largely accounts for overestimation
of N̂e in this case.

Another potential solution to bias introduced by
numerous rare alleles is to bin rare alleles, thereby
reducing the number of rare alleles and increasing the
number of moderately frequent alleles. We examined
the efficacy of this approach by summing alleles that
were less than or equal to a prescribed frequency
in initial gamete pools to create a single new allele
(Figure 3). Binning alleles in this fashion, however,
results in a trade-off of accuracy and precision in
the case where S = 200 (Figure 3a). When S = 50,
accuracy did not increase substantially when alleles
were binned, but precision decreased at a rate similar
to the case where S = 200 (Figure 3b). Given that bias
is relatively small in most cases, binning alleles at the
expense of precision is probably not warranted. It is
worth noting that increased sample sizes resulted in an
increase of both accuracy and precision of temporal
method estimates of Ne (Table 1, Figures 3a, b).

Bivariate plots of observed and expected values
suggested that F′ is approximated closely by both chi-
square and normal distributions (Figure 4). There were
differences between chi-square and normal approxi-
mations: values of F′ under a chi-square distribution
were larger (in all simulation cases) than values gener-
ated from a normal distribution and from observed
values (Figure 4). Confidence intervals of N̂e calcu-
lated from the chi-square distribution tended to be
slightly wider than those computed from the normal
distribution, and are thus more conservative for hypo-
thesis testing. However, the normal approximation
produced confidence intervals that were more similar
to those obtained from simulation analysis (Figure 4).
In practice, a normal approximation would not be
applicable to mtDNA because variance of F across
independent loci cannot be computed.

Determining a close approximation for the distri-
bution of F is important for two reasons. First, appro-
priate confidence intervals can be computed for F̂ and
N̂e without resampling; and second, rough estimates
of statistical power to test hypotheses can be produced
rapidly and conducted with preliminary data. For
example, a researcher could compare statistical power
of different marker classes to test the hypothesis that
lower bound N̂e values differ from benchmark Ne

Figure 3. Effects of binning alleles on accuracy and precision of
N̂e for the mtDNA data set with Ne = 500, (A) S = 200, and (B)
S = 50 using Nei and Tajima’s (1981) computational method for F̂.
The number of independent alleles was reduced from the original
mtDNA data set by summing (binning) haplotypes with frequencies
less than or equal to the frequency depicted on the x-axis (Binning
criterion) to make a single new allele in the initial gamete pool. Zero
indicates that no alleles were summed. The dashed line indicates the
true value of Ne in the simulation. Accuracy is the deviation of N̂e
(squares) from Ne (dashed line); precision is the width of the lower
bound 95% CI (y-error bar), such that more precise estimates have
narrower CIs. The upper bound 95% CI in all cases was infinity.

values ostensibly important for conservation and/or
management of a species (Turner et al. 1999). To
illustrate, we evaluated the statistical power to distin-
guish an estimated effective population size of 500
from a benchmark value of Ne of 100 using red drum
mtDNA and microsatellite data. This benchmark value
was selected because at Ne < 100 genetic drift is
expected to remove significant amounts of genetic
diversity each generation (Frankel and Soulé 1981)
and spontaneous deleterious mutations are expected to
increase risk of population extinction via ‘mutational
meltdown’ (Schultz and Lynch 1997). By calculating
F with Equations 3 or 4 (depending on marker class)
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Figure 4. Bivariate plots of F’ expected under chi-square and normal distributions (y-axis), and the distribution of F̂ (minus sampling error)
observed in 10,000 simulation replicates (x-axis). Initial conditions of simulation were Ne = 500, S = 200, and the computational method of
Nei and Tajima (1981) was used. Similar results were obtained for initial population sizes of Ne = 50 and Ne = 100, for S = 50, and using
the method of Pollak (1983). The diagonal line represents equality of expected and observed results. Note departures of chi-square and normal
approximations at the tails of the distribution. Chi-square values tend to produce slightly wider 95% CIs around estimates of F̂ and N̂e in all
cases examined in this study.

for Ne = 500, and then evaluating Equations 5 or 6 at
α = 0.025, it is possible to evaluate the lower bound
95% CI of F̂. Holding either n or S constant allows a
determination of the minimum number of independent
alleles or sample size needed for the lower bound 95%
CI to exceed the benchmark Ne value of 100.

This exercise revealed expected differences in
precision and statistical power between mtDNA and
microsatellite markers. For the red drum data set,
microsatellite markers required twice the sample size
of mtDNA markers to have the same power to distin-
guish the estimated Ne from benchmark effective

size when the number of independent alleles is held
constant. Likewise, when sample sizes were held
constant (S = 200), mtDNA required 19 haplotypes to
distinguish estimated from benchmark effective size,
whereas microsatellites required approximately four
independent loci with ten alleles each. In this case,
mtDNA markers offered more power for hypothesis
testing than microsatellites because the effective size
of a haploid, uniparentally inherited marker is one-
fourth that of a diploid, biparentally inherited marker.
Provided assumptions (Waples 1989) of temporal-
method estimation are met, and sample sizes and



305

the number of alleles are equal, mitochondrial DNA
appears to provide more precise, but less accurate
estimates of Ne than microsatellites. However, there
are drawbacks to exclusive use of mtDNA data. An
important assumption of temporal-method estimation
is that allele frequencies have not been influenced by
natural selection. Because mtDNA is inherited as a
single locus, it is difficult to evaluate whether F̂ based
on mtDNA data has been influenced by natural selec-
tion. Estimates of F based on several independent
loci may permit evaluation of the action of natural
selection by comparing F̂ values among loci using
the test proposed by Lewontin and Krakauer (1973).
Although this test has been criticized for geographi-
cally structured populations (Robertson 1975a, b), it
is applicable to variance in F across loci within a
population. Finally, given the same number of total
alleles, mtDNA markers are expected to yield less
accurate estimates of Ne because they have a higher
proportion of rare alleles than microsatellites. Adding
more independent loci in a microsatellite study
increases precision without necessarily decreasing
accuracy.

Overall, the temporal method of estimating Ne
appeared to perform reasonably well when vari-
ance in shifts of allele frequencies were calculated
from highly polymorphic loci with large numbers
of rare alleles. Examination of the approximation
method employed by Waples (1989) to derive the
temporal method estimate demonstrates that bias in
the approximation is small, unless allele frequen-
cies are very close to 0 or to 1. Equation 7
provides a correction factor to reduce bias when
numerous low-frequency alleles are present. Both
chi-square and normal approximations appeared suit-
able for confidence interval estimation and hypothesis
testing, although chi-square produced more conser-
vative estimates of 95% CIs. The magnitude of bias is
slight, or can be corrected in the cases we examined;
thus, the benefit to precision may outweigh the cost to
accuracy when employing highly polymorphic loci for
temporal-method estimation of Ne.
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Appendix

We give here the details concerning the computation of
bias in Equation 7 under Sampling Plan II in Waples
(1989). Following the notation in Waples (1989), let
x and y be the allele frequencies in samples of sizes
S0 and St drawn at generations 0 and t, respectively.
Nei and Tajima (1981) proposed estimation of the
temporal variance F using

F̂C = 1

K

K∑
i=1

(xi − yi)
2

(xi + yi)/2 − xiyi
, (A1)

where K is the number of alleles in the samples. By
approximating the expectation of F̂C , Waples (1989)
showed that

E(F̂C) ≈ 1

2S0
+ 1

2St
+ t

2Ne
, (A2)

when t/(2Ne) is small, which then allows the effective
population size to be estimated by replacing the
expectation of F̂C with the observed value, as shown
in Equation 3 in the text. Waples (1989) obtained the
result in Equation A2 using a first order Taylor Series
approximation for the expectation of the summand in
Equation A1,

E

(
(x − y)2

(x + y)/2 − xy

)
≈ E

(
(x − y)2

)
E ((x − y)/2 − xy)

. (A3)

It is worth noting that the above expression is not a
function of the allele frequencies, which allows for
a simple estimator of effective population size. We
consider approximating the expectation of the ratio on
the left hand side of Equation A3 using the second
order Taylor Series expansion to determine the effect
of allele frequency on the adequacy of the first order
approximation. To do this, we note that a second order
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approximation of the expectation of the ratio of two
random variables R and S is given by

E

(
R

S

)
≈ µR

µS
+ σ 2

S

µR

µ3
S

− σRS

µ2
S

, (A4)

where µR is the mean of R, µS is the mean of S, σ 2
S is

the variance of S, and σRS is the covariance of R and S
(Rice 1995). Letting R = (x - y)2 and S = x+y

2 −xy and
substituting the appropriate expressions into Equation
A4, we have the following general expression for the
second order approximation of the expectation,

E

(
(x − y)2

(x + y)/2 − xy

)
≈ E

(
(x − y)2

)
E ((x + y)/2 − xy)

+ V ar ((x + y)/2 − xy)
E
(
(x − y)2

)
[E ((x + y)/2 − xy)]3

− cov
(
(x − y)2, (x + y)/2 − xy

)
[E ((x + y)/2 − xy)]2

. (A5)

We next evaluate the expectation and variance terms in
Equation A5 to develop an expression for the expecta-
tion as a function of S0, St , Ne, P, and t. Note that under
Sampling Plan II of Waples (1989) allele frequencies
x and y are independent (since sampling is before
reproduction). Thus, samples at times 0 and t can be
considered to be independent Binomial samples from
the pool of gametes preceding generation 0. Under
these conditions, several of the necessary expressions
have already been obtained by Waples (1989). In
particular, Waples showed that
a)E

(
(x − y)2

) = V ar(x − y) =
P(1 − P)

[
1

2S0
+ 1 −

(
1 − 1

2Ne

)t (
1 − 1

2St

)]
b)E

( x+y
2 − xy

) = P(1 − P)

c) V ar(x) = P(1−P)
2S0

d) V ar(y) = P(1−P)
[

1 −
(

1 − 1
2Ne

)t (
1 − 1

2St

)]
Expressions (a) and (b) allow for calculation of most
of the terms in Equation A5. In addition, it is straight-
forward to show that

V ar

(
x + y

2
− xy

)
=

(
P − 1

2

)2

(V ar(x)+ V ar(y))

+ V ar(x)V ar(y). (A6)

The remaining term to be computed is the covariance
term in Equation A5. After some simplification, this
term can be shown to be

Cov

(
(x − y)2,

x + y

2
− xy

)
=

(
1

2
− P

)(
E(x3)+ E(y3)

)

+
(

3P 2 − 3

2
P

)
(V ar(x)+ V ar(y))

+2V ar(x)V ar(y)− P 3 + 2P 4. (A7)

The variance terms in Equations A6 and A7 can be
evaluated using (c) and (d) above. To complete the
computation of the covariance, we provide expres-
sions for the expectation of the cubes of the allele
frequencies. First, note that under Sampling Plan II,
the 2S0 genes sampled at time 0 follow a Binomial
distribution, and hence

E(x3) = 1
8S3

0
[2S0(2S0 − 1)(2S0 − 2)P 3

+ 6S0(2S0 − 1)P 2 + 2S0P ]. (A8)

Finding the expectation of y3 is more difficult because
we must take into account genetic drift between gener-
ations. If we let Pt be the allele frequency in the
gamete pool from which the sample at generation t is
drawn, the expectation of y3 given Pt is

E(y3|Pt ) = 1

8S3
t

[2St (2St − 1)(2St − 2)P 3
t

+ 6St (2St − 1)P 2
t + 2StPt ]. (A9)

Taking the expectation of Equation A9 with respect to
Pt will then give the unconditional expectation of y3,
i.e.

E(y3) = E(E(y3|Pt )) =
1

8S3
t

[2St (2St − 1)(2St − 2)E(P 3
t )

+ 6St (2St − 1)E(P 2
t )+ 2StE(Pt )]. (A10)

To evaluate Equation A10, we note that conditional
expectation can be further used to show that E(Pt ) =
P, and

E(P 2
t ) =

(
1 − 1

2Ne

)t
P 2 +

[
1 −

(
1 − 1

2Ne

)t]
P, (A11)



307

and finally that

E(P 3
t ) = (2Ne − 1)t (2Ne − 2)t

(2Ne)2t
P 3

+


∑t
j=1

(
(2Ne−1)j−1(2Ne−2)j−1

(2Ne)2(j−1)

)(
6Ne(2Ne−1)

8N3
e

)
(

1 − 1
2Ne

)t−j

P 2

+




1
4N2

e

(∑t
j=1

(2Ne−1)j−1(2Ne−2)j−1

(2Ne)2(j−1)

)

+I (t > 1)
∑t
j=2

(
(2Ne−1)j−2(2Ne−2)j−2

(2Ne)2(j−2)

)
(

6Ne(2Ne−1)
8N3

e

)(
1 −

(
1 − 1

2Ne

)t−j+1
)


P, (A12)

where I(t>1) is an indicator function that is 1 when
t>1 and 0 otherwise. Using Equations A6 through
A12, it is possible to write a general expression for
the expectation as a function of S0, St , Ne, P, and
t. Since the expression for E(y3) is cumbersome, we
have left this term in the expression for the expectation
below,

E

(
(x − y)2

(x + y)/2 − xy

)
≈ 1

2S0
+ 1 −

[(
1 − 1

2Ne

)t (
1 − 1

2St

)]

+
(

1

P(1 − P)

)(
P − 1

2

)2
[

1

2S0
+ 1 −

(
1 − 1

2Ne

)t (
1 − 1

2St

)]2

−
(

1

P(1 − P)

)(
3P 2 − 3

2
P

)[
1

2S0
+ 1 −

(
1 − 1

2Ne

)t (
1 − 1

2St

)]

+
(

1

2S0

)[
1 −

(
1 − 1

2Ne

)t (
1 − 1

2St

)]

(
1

2S0
−
[

1 −
(

1 − 1

2Ne

)t (
1 − 1

2St

)])

− (1/2 − P)

P 2(1 − P)2

(
1

8S3
0

[
2S0(2S0 − 1)(2S0 − 2)P 3

+6S0(2S0 − 1)P 2 + 2S0P

]
+ E(y3)

)

− 2P 4 − P 3

P 2(1 − P)2
, (A13)

where the expectation of y3 is given in Equation A8.
Equation A13 appears to be quite complex, but it is a
relatively simple matter to evaluate it for known S0, St ,
Ne, P, and t, which allows for examination of the bias
in our simulation studies.

To relate Equation A13 to the temporal method
estimate of Ne, we note that this expression gives
the expectation for each term i in the summand of
Equation A1. We then use the approximation Waples
(1989) used for the first three terms (first line) in
Equation A13, and call the rest of the terms in Equa-
tion A13 (the last five lines) the bias for term i. This

yields the following second order approximation for
the expectation of F̂c,

E(F̂c) ≈ 1

2S0
+ 1

2St
+ t

2Ne

+ 1

K

K∑
i=1

Biasi(S0, St , Ne, Pi, t). (A14)

Finally, letting

Bias(S0, St , Ne, P, t) =
1

K

K∑
i=1

Biasi(S0, St , Ne, Pi, t), (A15)

and solving Equation A13 for Ne gives the expression
in Equation 7 in the text. It is worth noting that the
true bias term should include third- through nth-order
terms in the expansion, plus any remainder. However,
these terms are likely to be very small. Finally, a more
general expression for bias would also include the
component that is due to approximating the first three
terms in Equation A13 with 1/(2S0)+1/(2St)+t/(2Ne).
While this would not be difficult to do (one simply
needs to add to the bias expression the difference
between the approximation and the actual term), we
have chosen not to include it here for several reasons.
The first is that, for the majority of studies, the term
t/(2Ne) will be sufficiently small so that bias due to
this approximation will be negligible. Second, our
purpose here is to examine bias as a function of
allele frequency. Bias introduced by this portion of
the approximation is independent of allele frequency,
and will not affect the analysis presented here. For
example, in the case where Ne=50, S=50, and t=1,
the bias due to this part of the approximation is 0.0001
for all values of P.
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