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Abstract. An important issue in the phylogenetic
analysis of nucleotide sequence data using the maxi-
mum likelihood (ML) method is the underlying evo-
lutionary model employed. We consider the problem
of simultaneously estimating the tree topology and
the parameters in the underlying substitution model
and of obtaining estimates of the standard errors of
these parameter estimates. Given a fixed tree topol-
ogy and corresponding set of branch lengths, the ML
estimates of standard evolutionary model parameters
are asymptotically efficient, in the sense that their
joint distribution is asymptotically normal with the
variance—covariance matrix given by the inverse of
the Fisher information matrix. We propose a new
estimate of this conditional variance based on esti-
mation of the expected information using a Monte
Carlo sampling (MCS) method. Simulations are used
to compare this conditional variance estimate to the
standard technique of using the observed information
under a variety of experimental conditions. In the
case in which one wishes to estimate simultaneously
the tree and parameters, we provide a bootstrapping
approach that can be used in conjunction with the
MCS method to estimate the unconditional standard
error. The methods developed are applied to a real
data set consisting of 30 papillomavirus sequences.
This overall method is easily incorporated into stan-
dard bootstrapping procedures to allow for proper
variance estimation.
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Introduction

The appropriateness of the phylogenetic analysis of a
particular data set is dependent upon the assumptions
made by the method of analysis employed. An im-
portant issue in the analysis of nucleotide sequence
data using maximum likelihood (ML) as the criterion
for phylogenetic reconstruction is the underlying
evolutionary model that is assumed. One advantage
of the ML method is that it has been shown to be
somewhat robust to misspecification of the parame-
ters in this underlying substitution model (see, e.g.,
Gaut and Lewis 1995; Fukami-Kobayashi and Tat-
eno 1991; Kuhner and Felsenstein 1994; Yang et al.
1994).

One particular aspect that has been examined in
these studies is the effect of misspecification of the
transition/transversion ratio on the ability of the ML
method to recover the “true” phylogenetic tree. Es-
timation of this parameter is of interest in itself since
it provides an idea of the rate and mode of evolution
among the nucleotide sequences under consideration.
Also of interest is an estimate of the mean instanta-
neous substitution rate, often abbreviated p in the
substitution models in the literature. For the common
substitution models employed [e.g., the F84 model
(Felsenstein 1984), the HKY85 model (Hasegawa
et al. 1985), and all of their associated submodels], it
is impossible to estimate the parameter pu indepen-



dently of the branch lengths, unless one is willing to
assume a molecular clock model for the evolution of
the species under consideration.

Many methods for estimating the transition/
transversion ratio have been proposed, and several of
these are reviewed by Wakeley (1996). We provide a
short summary of the available methods here. The
classical method of estimating the transition/trans-
version ratio, R, is to consider the ratio of the ob-
served number of transitions to the observed number
of transversions, with the idea that these observed
numbers of transitions and transversions should re-
flect the true rates of transitional and transversional
changes. Various methods can be used to count the
numbers of transitions and transversions. One pos-
sibility is to consider pairs of sequences and to cal-
culate the ratio of the numbers of transitions to
transversions for each pair. However, it is not clear
how to combine each of these pairwise estimates into
an overall estimate of R for the entire data set under
consideration. An alternative method of counting the
numbers of transitions and transversions is to use
parsimony to reconstruct the states at the internal
nodes for a particular tree. For each site in the data
set, the number of transitions and transversions is
then the average of the numbers observed for each
most parsimonious reconstruction of the states at the
internal nodes for that site. We note that this method
requires that the tree topology be specified prior to
the estimation of R. See Wakeley (1996) for examples
of these two methods.

Wakeley (1994, 1996) points out that when the
sequences under consideration are substantially di-
verged from one another, both the pairwise method
and the parsimony method give underestimates of the
transition/transversion ratio. Even when recently di-
verged sequences are considered, the estimate of the
transition/transversion ratio can be biased and quite
variable (Wakeley 1996, 1994). Furthermore, failure
to take rate variation among sites into consideration
can also result in underestimation of the true transi-
tion/transversion ratio (Wakeley 1996, 1994; Yang
1994).

Several authors (Pollock and Goldstein 1995;
Yang and Kumar 1996; Purvis and Bromham 1997;
Ina 1998) have proposed alternative methods of es-
timating the transition/transversion ratio. Pollock
and Goldstein’s (1995) method is a modification of
the pairwise method mentioned above which involves
taking a particular weighted average of the ratios
calculated for all pairs of sequences in the data set.
Ina (1998) also modified the pairwise method, by
using Haldane’s correction for each of the pairwise
ratios obtained from the data. Variances for these
proposed estimates are also given. Purvis and
Bromham (1997) wused iterative-weighted least-
squares regression to estimate the instantancous
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transversion rate for a particular data set, assuming
that the topology and branch lengths of the tree
representing the evolutionary relationships among
the sequences are known. Yang and Kumar (1996)
proposed a modification of the parsimony method
described above to correct the observed numbers of
transitions and transversions for multiple substitu-
tions.

ML has also been used previously (Yang 2000,
1994; Rambaut and Grassly 1996; Swofford 1998) to
estimate the transition/transversion ratio. Swofford’s
program PAUP*, Yang’s program PAML, and
Rambaut and Grassly’s program SPOT will calculate
ML estimates (MLEs) of the transition/transversion
ratio and the branch lengths when the tree topology is
fixed. PAUP™ and PAML then incorporate estima-
tion of the transition/transversion ratio into the tree
search procedure by periodically updating the esti-
mate of this parameter for the current tree. Among
the advantages of using the ML method for estima-
tion of evolutionary model parameters such as the
transition/transversion ratio is that the results of
Chang (1996) and Rogers (2001) imply that the
MLEs of the tree topology, branch lengths, and pa-
rameters are all consistent under many commonly
used substitution models.

Here we consider the problem of estimating the
parameters in the underlying evolutionary model
jointly with the tree and of obtaining estimates of
their standard errors. We begin with the case in which
the tree and the branch lengths are known and obtain
the MLEs of the parameters through a Newton—
Raphson method. We then show that the MLEs are
asymptotically efficient, by verifying that Birch’s
conditions (Birch 1964; Bishop et al. 1975) hold in the
case in which the tree and branch lengths are known.
By asymptotic efficiency, we mean that the joint dis-
tribution of the parameters is asymptotically normal
with the variance—covariance matrix given by the
inverse of the Fisher information matrix.

The asymptotic efficiency result suggests two pos-
sible estimators of the conditional variance of the
parameter estimates when the tree and branch lengths
are fixed. The first is to compute the observed Fisher
information, which has been proposed previously by
Yang (1994, 2000) and is implemented in his program
PAML (Yang 2000) (Yang calls this the curvature
method). We propose a second method, which entails
estimating the expected Fisher information using a
Monte Carlo sampling (MCS) approach. Simulations
based on a 14-sequence model tree are used to com-
pare the two methods.

We next consider the parameter estimation prob-
lem in the more realistic case where the tree and
branch lengths are not known in advance. In this
case, both Yang’s method and our MCS method will
underestimate the unconditional variance, since both
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methods assume that the tree and branch lengths are
known and thus fail to account for the additional
variability due to simultaneously estimating these
parameters. To overcome this, we consider several
bootstrapping approaches and use simulations to
compare them in terms of performance and in terms
of computational requirements. Finally, we apply the
methods developed here to a real data set consisting
of 30 papillomavirus sequences.

Asymptotic Efficiency When the Tree Is Known

We begin by supposing that the phylogenetic tree and
the branch lengths are known in advance and that it
is desired to obtain estimates of the parameters in the
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underlying evolutionary model and their standard
errors for this known tree. For the purpose of theo-
retical derivation, we use the following representation
of the data. Consider the 4" unique patterns of nu-
cleotide configurations at a site that are possible for
N sequences, and note that the data can be repre-
sented by the counts of these 4" site patterns under
the assumption that the sites evolve independently.
The data, X, then have a multinomial distribution.
The probability associated with the ith category, p;, is
the probability of the ith site pattern, which is de-
termined by the evolutionary model and the phylo-
genetic tree.

As an example, we first consider Kimura’s (1980)
two-parameter model of evolution (K2P), in which
the probabilities of change along branches are func-
tions of only the mean instantancous substitution
rate, |, and the transition/transversion parameter, K.
We assume a molecular clock so that both of these
parameters may be estimated. Note that for a given
tree topology and set of branch lengths, the proba-
bility associated with any site pattern can be found by
the pruning algorithm (Felsenstein 1981) and, thus,
can be written as a function of p and K. The above
representation of the data then enables one to apply
classical multinomial sampling theory. This theory
states that if the function of the multinomial cell
probabilities of the parameters satisfies certain con-
ditions, it follows that the MLEs of the parameters
are asymptotically efficient; that is, the joint limiting
distribution (as the number of sites goes to oo) of the
MLEs is multivariate normal with the variance—co-
variance matrix given by the inverse of the Fisher
information matrix. One such set of conditions that
can be checked are Birch’s conditions (Birch 1964;

Bishop et al. 1975), which include conditions of
smoothness for the likelihood function, identifiability
of the parameters, and some other regularity condi-
tions. These conditions are indeed satisfied for many
standard site-independent models of evolution, and
so, by applying Birch’s theorem, we have
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where L is the number of sites in the sequences, 0 is
the vector of MLEs of the evolutionary parameters,
and 0 is the vector of true values of the parameters.
For example, in the K2P model, 6 = (u, K). The
matrix A’A is the Fisher information matrix, with the
following elements:
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where f; (1, K) is the likelihood of the data for site
pattern k£ as a function of p and K, given the tree
topology and branch lengths.

To obtain variance estimates based on the ob-
served information, one simply computes the entries
of the above matrix at the MLEs of 1 and K for those
site patterns observed in the data. The variance esti-
mates are thus given by
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where D is the determinant of the matrix in Eq. (2),
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We substitute fi for p and K for K in expressions
(3), (4), and (5), and the sums in these equations are
taken over the L observed sites in the data set.

We propose an alternative method of estimating
the variances, which involves the use of a MCS pro-
cedure to estimate the matrix in expression (2). The
method works by generating a large number, Q, of




site patterns according to the tree, branch lengths,
and evolutionary model with parameters set at the
MLEs. For each generated site, derivatives are eval-
uated at the MLEs of the parameters, and the sums in
matrix (2) are formed. Variances are then estimated
by using the same expressions as in (3), (4), and (5),
except that the sums are taken over the Q sites gen-
erated by the MCS procedure, rather than over the L
observed sites.

One technical point is that the true underlying
variance of the parameters when the tree is known
is infinite. This is because there is always some
positive probability, albeit low, that the observed
data will result in an estimate of the parameter that
is infinite. Thus, the methods proposed here esti-
mate an approximate asymptotic variance, namely,
the variance of the limiting distribution of the pa-
rameter estimates. In what follows, when we refer
to the variance or the asymptotic variance, we are
referring to this approximate variance. Later, when
we no longer condition on a known tree, we are
referring to the analogous approximate asymptotic
variance.

To evaluate our MCS estimator, we performed
several simulation studies. We have chosen as the
model tree for these studies the ML tree estimated
from a real data set of mtDNA sequences for 14
species containing 231 sites (Hayasaka et al. 1988).
The model tree is shown in Fig. 1. We next considered
two values for each of the parameters of interest, re-
sulting in four possible parameter combinations. The
values selected were u = 0.1 and 0.5and K = 0.5and
10.0. For all of the simulations described here, MCS
samples were generated using the program Seq-Gen
(Rambaut and Grassly 1997).

Our first simulation involves determining the num-
ber of MCS samples that need to be taken to obtain
good estimates of the Fisher information matrix. For
the model tree with known branch lengths and with
each parameter set at one of the four combinations
described above, we generated 40,000 sites in sets of
2000. For each of the sets of 2000, variances were es-
timated and compared to the overall estimate obtained
from all 40,000 sites. To assess the accuracy of the es-
timates based on 2000 sites, we computed absolute
differences between these estimates and the overall
estimate. In estimating the parameter 1, the mean ab-
solute difference ranged from 1.9 x 107 for p = 0.1
and K = 0.5t03.7x 10*forp = 0.5and K = 0.5
(the median ranged from 1.8 x 107 to 2.8 x 107 for
the same parameter combinations). For estimation of
the transition/transversion parameter, K, the mean
absolute difference ranged from 0.001 for p = 0.5 and
K = 0.5t00.019 for p = 0.1 and K = 10.0 (the me-
dian ranged from 0.001 to 0.017 for the same param-
eter combinations). Figure 2 shows each of the
estimates based on 2000 sites, with a horizontal line
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Fig. 1. Model tree used to perform the simulations.

drawn at the value of the estimate based on 40,000 sites
for the two-parameter combinations described above.
Results are similar for the other two-parameter com-
binations. Based on these plots and our examination of
the errors above, we concluded that using 2000 sites
would provide a good approximation of the condi-
tional variance in this example. We give a recommen-
dation for choosing the number of randomly generated
sites in the general case in the Discussion.

Our next simulation involves assessing the vari-
ability in estimating the parameters and the variances
when the tree and branch lengths are known. We
generated simulated data sets containing 231 sites for
the model tree in Fig. 1 for each of the four parameter
combinations. For each simulated data set, we ob-
tained the MLEs of pand K and the estimates of their
variances using both Yang’s method and our MCS
method. For each combination of parameter settings,
500 such simulations were performed. To assess the
accuracy of the two methods of estimating the vari-
ance, we compared them to the results of the first
simulation and to the empirical standard deviation of
the 500 parameter estimates. The results are shown in
the middle columns in Table 1.

Examination of these results shows that for the case
in which the tree and branch lengths are assumed to be
known (simulation 2), Yang’s method based on the
observed information generally gives underestimates
of the standard errors. The problem is most severe for
the lower value of p. The MCS method, on the other
hand, appears to provide reasonable estimates of the
standard error for the case in which the tree and branch
lengths are known. The only exception appears to be
for the estimation of the standard error of K for the
case in which both pand K are at their ““high” settings,
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point represents an individual estimate based on 2000 sites.

where both estimators provide estimates that are lower
than the observed standard deviation (note, however,
that both estimates are near the Simulation 1 value).
Histograms of the parameter estimates from the 500
data sets verify that the distribution of the parameter
estimates is approximately normal (results not shown).
Our third simulation evaluates the performance of
the conditional variance estimators when the under-
lying tree is unknown and must be simultaneously es-
timated. Again, we simulated data sets of the same size
as the real data for each of the four parameter combi-
nations. For each simulated data set, we obtained si-
multaneous estimates of the tree and parameters using
a modification of the SSA method (Salter and Pearl
2001; Salter 1999). SSA is an algorithm for simulta-
neous estimation of the ML tree and substitution
model parameters that utilizes a stochastic search
strategy based on a simulated annealing-type algo-
rithm. SSA has previously been shown to be compu-
tationally more efficient than existing methods for ML
tree estimation and is less likely to provide estimates
that are only locally optimal (Salter and Pearl 2001).
The program 1is available for download at:
www.stat.unm.edu/~salter/software/ssa/ssa.html
Following estimation of the tree and parameters
using SSA, estimates of the variances using both
Yang’s method and our MCS method were obtained.
We again compared the two methods to the results
obtained in the first simulation and to the empirical

mu=0.1, K=10.0
5 10 15 20
Sets of 2,000 Sites
mu=0.5, K=0.5
_____ ® ___1___._:_-___f______t_________
5 10 15 20
Sets of 2,000 Sites

Results of the first simulation. The dashed line in each plot indicates the standard error (SE) estimate based on 40,000 sites. Each

variance of the 500 parameter estimates. The results
are shown in the right-hand columns in Table 1. In
the case in which the tree and branch lengths are
unknown, the observed standard deviation of the
parameter estimates increases, as is expected due to
the additional variability associated with simulta-
neously estimating the phylogenetic tree. Both Yang’s
method and our MCS method give underestimates of
the standard error in this case, since both fail to ac-
count for this additional variability. In the next sec-
tion, we propose a bootstrapping method to deal with
this issue.

Note that the results of simulations 2 and 3 show
that there is additional variability contributed by es-
timating the branch lengths and topology, without
examining the relative proportion that each contri-
butes to this variability. Of course, the two compo-
nents are heavily intertwined, and indeed changes in
topology can be viewed as changes in the lengths of
the branches which lead to placement of a branch on
the opposite side of an internal node.

Bootstrap Estimates of the Variance When
the Tree Is Unknown

The results of the third simulation in the last section
demonstrate that both Yang’s method and the MCS
method give underestimates of the unconditional
variance of the parameter estimates when the tree must
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Table 1.  Results of the first three simulations®
Simulation 1 Simulation 2 Simulation 3
SE(w) SE(W)

n K SE(n) SD(p) Observed info MCS SD(p) Observed info MCS

0.1 0.5 0.0110 0.0108 0.0087 £0.0007 0.0110+0.0007 0.0145 0.0086+0.0011 0.0109 +0.0013
0.1 10.0 0.0110 0.0109 0.0083+£0.0011 0.0110£0.0007 0.0148 0.0079 £0.0013 0.0110+£0.0012
0.5 0.5 0.0288 0.0290 0.0268 £0.0016 0.0288 £0.0012 0.0492 0.0262 £0.0026 0.0283 +0.0026
0.5 10.0 0.0289 0.0290 0.0289+£0.0012 0.0289 +£0.0012 0.0573 0.0289 +£0.0032 0.0289 £0.0032
0.1 0.5 0.1591 0.1591 0.1269+£0.0169 0.1617+0.0263 0.1702 0.1320+£0.0182 0.1688 +0.0284
0.1 10.0 1.2818 1.2885 0.9897+£0.1724 1.3210+£0.2134 1.4143 0.9584+0.1748 1.3370+£0.2392
0.5 0.5 0.0900 0.0874 0.0848 £0.0067 0.0910+£0.0074 0.0885 0.0829 £0.0067 0.0895+£0.0074
0.5 10.0 1.2188 1.3204 1.2500+£0.2281 1.2500 +£0.2201 2.5078 1.5320+0.5646 1.5340+£0.5474

# Simulation 1 investigates the number of MCS samples that should
be taken for estimation of the SE. The results shown are the standard
errors estimated using all 40,000 MCS sites. Simulation 2 compares
the SE estimates obtained using both the observed information and
the MCS method when the tree and branch lengths are assumed
known. This is compared with the simulation 1 result and with the

be simultaneously estimated. Bootstrapping has been
widely used in estimating the variance of statistics
whose distribution is not tractable (Efron 1982; Efron
and Tibshirani 1993). Bootstrap estimates are appro-
priate for many common statistics, including smooth
functions of solutions to smooth estimating equations,
including most ML estimators (Davison and Hinkley
1997). The bootstrap was introduced into phylogenetic
analysis by Felsenstein (1985) as a means of assessing
the confidence at internal nodes of the tree. Since its
introduction, bootstrapping has become widely used in
phylogenetic analysis, and the proper interpretation of
bootstrap values on trees has been discussed (Efron et
al. 1996; Hillis and Bull 1993). This motivates a direct
bootstrap (DB) method for our example as follows:
suppose that the data set has N sequences, each of
which is L nucleotides long. We sample columns of the
data matrix x with replacement L times to form a new
data set, x;. Using x7, we find the MLEs of p and K,
which we denote {if and K*, simultaneously with the
tree topology and branch lengths. We repeat the above
procedure B times and then use the empirical variances
of the {if and 1%;‘ to give the bootstrap estimates of the
variance of the parameters. The method is easily
adapted to parameters in other substitution models by
simply estimating all parameters of interest simulta-
neously with the tree for each bootstrap data set and
then computing the variance of the bootstrap estimates
of each parameter.

We note that this procedure corresponds to a
nonparametric bootstrapping approach, since it in-
volves simply resampling from the columns of the
original data matrix. It is also possible to use a
parametric bootstrapping approach by using the
MLEs of the tree, branch lengths, and parameters
along with the substitution model to simulate B data
sets each consisting of L sites [parametric boot-

standard deviation (SD) of the parameter estimates from each trial in
simulation 2. The design of simulation 3 is the same as that of sim-
ulation 2, except that the tree and branch lengths are not assumed to
be known and are estimated simultaneously with the tree. For
simulations 2 and 3, the numbers listed are the means + standard
deviations (for the SE estimates) of the 500 independent simulations.

strapping in the context of phylogenetic trees has
been discussed by Hillis et al. (1996), among others].
Determination of the variance estimates then pro-
ceeds in exactly the same manner as described above.
We note that parametric bootstrapping is similar to
drawing MCS samples, as discussed in the previous
section. The primary distinction between the two is
that in bootstrapping, the size of each resampled data
set is equal to L, the number of observations in the
original data set, since our goal is to use the empirical
c.d.f. as an estimate of the underlying c.d.f. that gives
rise to the data. In contrast, MCS involves generating
a large sample of sites from the assumed distribution
with the goal of estimating an expectation, and hence
the number of sites generated in our MCS procedure
is generally much larger than L.

The direct bootstrap approach proposed above is
very computationally expensive, since the procedure
of finding the MLEs of the substitution model pa-
rameters entails simultaneously optimizing the tree
topology, branch lengths, and parameters. We ob-
serve that the time required to find the ML tree given
the parameters and to find the MLEs of the para-
meters given the tree is substantially less than the time
required for simultaneously optimizing all of these
parameters. This leads to the proposal of another
bootstrapping approach. R

In our example using the K2P model, let 6 and 7
denote the MLEs of the parameters, 6 = (u, K), and
the tree, 7 (both topology and branch lengths), for the
observed data set x. Let 6;(x) denote the MLE of 0 for
data set x given tree 7. By the conditioning principle,

var(8) = E(var(8;(x)|1) + var(E(@;(x)|))  (6)

Applying standard bootstrap techniques, we ob-
tain an estimate of the variance of 6 by using
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var(0) =Ep(var(0; (x*)|7))
+ varﬁ(E(é;* (x")|7%)) (7)

where F denotes the empirical c.d.f. of the multino-
mial distribution of the data x, x* denotes a random
bootstrap sample (formed by drawing from the col-
umns of x with replacement L times or by applying a
parametric resampling method as described above),
and 7* denotes the ML tree estimated from the
bootstrap sample x*.

To obtain a practical algorithm, we use the MCS
method for the variance of the MLEs of the para-
meters described in the last section to approximate
the conditional variance in the first term on the right-
hand side of Eq. (7) for each bootstrap data set and
then average over all B of the bootstrap samples to
estimate the expectation. We approximate the con-
ditional expectation in the second term on the right-
hand side of Eq. (7) for each bootstrap data set using
a Monte Carlo estimate of the mean, and the variance
is taken over all B of the bootstrap samples. The
details of the algorithm are as follows.

1. From the data set x, obtain the global MLEs of
the tree, 7, and the parameters, 0.

2. Generate B nonparametric or parametric boot-
strap samples, either by resampling the columns of
x with replacement L times or by generating L
sites according to the tree, parameter estimates,
and substitution model from Step 1.

3. For each of the bootstrap samples x; obtained in
Step 2, find the ML tree 77 with the parameters
fixed at their ML values from Step 1, as is com-
mon in bootstrap analysis.

4. For each ML tree 7} in Step 3, generate nL sites (n
an integer) using the MCS procedure.

Using these nl sites, two quantities will be
estimated.

(a) Conditional on the tree 7}, estimates of p and
K are found for each group of L of the nL
sites. The averages of these n estimates of p
and K are then an approximation to the
conditional expectation in the second term of
F:g. (7). These averages are denoted [ and

(b) For all of the nL sites combined, the con-

ditional variances in the first term of Eq.

(7) are estimated using Eqgs. (3) and (4)

(where the sums are taken over the nL

MCS samples, as described in the previous

section). These conditional variances are
denoted ¥;(p) and ¥;(K).

5. The averages of the ¥ (p) and the ¥} (K) are com-

puted to get the first term in Eq. (7), and the

sample variances of the [ii and the K, are com-

puted to get the second term in Eq. (7). The esti-
mate of the variance of [i is then the sum of these
two quantities for p, and the estimate of the vari-
ance of K is the sum of these two quantities for K.

Implementation of the bootstrap procedure pro-
posed above for other site-independent substitution
models is straightforward, as the steps above are
simply modified to deal with all parameters of interest
in the substitution model under consideration.

Further simulations were used to evaluate each of
these two bootstrap approaches [the direct approach
(DB) and the conditional variance approach (CVB)]
using both nonparametric and parametric boot-
strapping. The simulations involved first generating
10 data sets for the model tree shown in Fig. 1 with
the four combinations of parameter settings for p and
K. For each simulated data set, variances were esti-
mated using both the DB and CVB approaches. In
each case, 50 bootstrap replicates were used. Results
using the parametric bootstrap are shown in Table 2
and results using the nonparametric bootstrap are
shown in Table 3.

We note that when generating the MCS samples in
step 4 above, there are several choices for the pa-
rameter values used. For real examples, we could ei-
ther let the parameters take on the values of their
global MLEs, 0, or use the parameter estimates spe-
cifically obtained for bootstrap replicate i with tree ;.
In our simulated examples, we have the additional
choice of using the true parameter values that were
used to generate the initial simulated data set. We
denote these three options for choosing parameter
values SP (simulated data parameters), BP (bootstrap
parameters), and TP (true parameters) in Tables 2
and 3. We note that when using either the parameters
from the simulated data or the true parameters, fixed
values of the parameters are used in generating the
MCS data in step 4. In contrast, different values of
the parameters are used for each bootstrap replicate
when the bootstrap parameters are used. For this
reason, we expect that using the bootstrap parameters
will lead to larger estimates of the variance, since the
second term in Eq. (7) is expected to be larger.

In examining Tables 2 and 3, we first note that
there is reasonably close agreement between the
parametric and the nonparametric results, with no
clear trend toward over- or underestimation of vari-
ances for either method, although the mean squared
error is more often lower for the parametric method
(results not shown). In comparing the direct boot-
strapping method (DB) with the conditional variance
bootstrap approaches (CVB), we note that the DB
method generally gives the values closest to the values
from simulation 3 but that the DB method sometimes
underestimates the variance. The CVB method which
uses the parameter values from the bootstrap sample
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Table 2.  Results of the parametric bootstrapping simulations®

n K Simulation 3 SD DB CVB(BP) CVB(SP) CVB(TP)
Results for p

0.1 0.5 0.0145 0.0146 + 0.0037 0.0192 £+ 0.0037 0.0123 + 0.0015 0.0121 + 0.0005

0.1 10.0 0.0148 0.0148 £+ 0.0030 0.0194 £+ 0.0026 0.0128 + 0.0015 0.0119 £+ 0.0005

0.5 0.5 0.0492 0.0421 £ 0.0120 0.0501 £ 0.0094 0.0305 + 0.0027 0.0304 + 0.0011

0.5 10.0 0.0573 0.0530 £+ 0.0129 0.0593 £ 0.0093 0.0388 + 0.0166 0.0355 £+ 0.0099
Results for K

0.1 0.5 0.1702 0.1644 £+ 0.0242 0.2495 £ 0.0364 0.1813 £ 0.0309 0.1781 & 0.0097

0.1 10.0 1.4143 1.2937 + 0.3344 1.9272 + 0.4162 1.4363 £+ 0.2606 1.4596 + 0.0777

0.5 0.5 0.0885 0.0901 £ 0.0097 0.1309 £ 0.0134 0.0934 £+ 0.0091 0.0945 + 0.0028

0.5 10.0 2.5078 2.2132 £+ 1.0082 2.9827 + 1.2708 1.7749 + 0.9557 1.5780 + 0.1722

% Ten independent simulations were performed, with 50 bootstrap
replicates in each simulation. The entries are the means + standard
deviations of the estimates obtained in the 10 simulations. The DB
column gives the results of the direct bootstrap method, while the
CVB columns give the bootstrapping results using the conditional
variance bootstrap. The three CVB bootstrap methods differ in the

manner in which the parameters are set in generating the MCS
samples: BP refers to using the parameters from the particular
bootstrap replicate, SP refers to using the parameters from the
simulated data set that generated the bootstrap samples, and TP
refers to using the true values of the parameters that generated the
simulated data sets.

Table 3.  Results of the nonparametric bootstrapping simulations®

n K Simulation 3 SD DB CVB(BP) CVB(SP) CVB(TP)
Results for p

0.1 0.5 0.0145 0.0153 + 0.0021 0.0198 + 0.0023 0.0124 + 0.0014 0.0122 + 0.0005

0.1 10.0 0.0148 0.0135 + 0.0030 0.0182 + 0.0033 0.0120 + 0.0015 0.0120 + 0.0005

0.5 0.5 0.0492 0.0454 + 0.0114 0.0520 + 0.0102 0.0315 £+ 0.0030 0.0314 + 0.0020

0.5 10.0 0.0573 0.0621 + 0.0109 0.0640 + 0.0076 0.0355 + 0.0075 0.0372 + 0.0083
Results for K

0.1 0.5 0.1702 0.1638 + 0.0429 0.2478 + 0.0511 0.1815 + 0.0293 0.1790 £ 0.0088

0.1 10.0 1.4143 1.5019 + 0.3145 2.1335 + 0.4029 1.5444 + 0.2946 1.4134 + 0.0927

0.5 0.5 0.0885 0.1031 + 0.0487 0.1514 + 0.0697 0.0947 + 0.0096 0.0967 + 0.0056

0.5 10.0 2.5078 2.9305 £+ 1.5593 3.5386 + 1.5741 1.7453 + 0.6363 1.6747 + 0.3759

% Ten independent simulations were performed, with 50 bootstrap
replicates in each simulation. The entries are the means + standard
deviations of the estimates obtained in the 10 simulations. The DB
column gives the results of the direct bootstrap method, while the
CVB columns give the bootstrapping results using the conditional
variance bootstrap. The three CVB bootstrap methods differ in the

also appears to be a reasonably good estimator but
always gives values larger than the simulation 3 val-
ues. The CVB methods which use either the simulated
data parameters (SP) or the true parameters (TP)
generally give values lower than the CVB(BP) values,
as expected, and often underestimate the variance.
Based on these observations, we recommend using
either the DB or the CVB(BP) approach for esti-
mating the variance. Since estimation using the DB
method is computationally intensive due to the need
to estimate the tree and parameters simultaneously,
we suggest the use of the CVB(BP) estimate as a
conservative approximation of the standard error. In
addition, the time savings experienced using the CVB
method compared to the DB method will increase as
the number of sequences increases, making CVB the
preferable method for data sets with a large number

manner in which the parameters are set in generating the MCS
samples: BP refers to using the parameters from the particular
bootstrap replicate, SP refers to using the parameters from the
simulated data set that generated the bootstrap samples, and TP
refers to using the true values of the parameters that generated the
simulated data sets.

of sequences. We next apply the methods developed
here to a real data set.

Application to the HPV Data Set

Aligned DNA sequences for 30 papillomaviruses (28
human papillomaviruses (HPVs), a rhesus papillo-
mavirus, and a pygmy chimpanzee papillomavirus)
were obtained from the Los Alamos National Data-
base web site (http://hpv-web.lanl.gov). A data set
containing 1382 base pairs was obtained for the L1
gene after removal of all sites in which an insertion or
deletion occurred in any of the sequences. The se-
quences used here have been considered in similar
studies of the evolutionary relationships among pap-
illomaviruses by Chan et al. (1992, 1995) and Ong
et al. (1997). In particular, Ong et al. (1997) found that
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Estimates of the phylogenetic tree for the papillomavirus data set. The tree in a, which has log likelihood —27,864.73 when

K = 0.6606, is the MLE when the transition/transversion parameter is fixed at 1.5691 during the search for the ML tree. The tree in b, which
has log likelihood —27,864.11 when K = 0.6578, is the MLE when the substitution model parameters and the tree are estimated simul-

taneously.

the molecular clock model is appropriate for these
sequences. Here we consider the problem of simulta-
neously estimating the tree and the parameters p and
K in the context of the F84 model (Felsenstein 1984).

We first suppose that the ML tree has been esti-
mated assuming that the transition/transversion ratio
R, which is a function of K, is 2.0, which is the default
value in PHYLIP and PAUP". In this example we
consider the F84 model (Felsenstein 1984) with base
frequencies fixed at their empirical values, and thus
R = 2.0 corresponds to K = 1.5691. From the ML
tree estimated for K fixed at 1.5691 (which is shown in
Fig. 3a), we can find the MLE of K, K = 0.6606.
Using the methodology in the previous section, we
can then obtain an estimate of the standard error of K
and use this to construct a confidence interval for K.
Fifteen parametric bootstrap samples were used to
estimate the standard error. In the MCS procedure,
parameters were set at their estimates for each
bootstrap sample (BP), and n» = 10 was used. In this
case, we have SE(K) = 0.0413, and so the 95% con-
fidence interval for K is (0.5797, 0.7415) (see Table 4).
We note that this interval does not contain 1.5691,
which suggests that estimation of the transition/
transversion parameter simultancously with the tree
may be important in this case.

Therefore, we next consider the problem of si-
multaneous estimation of the parameters and the tree
for this data set. The same procedure as described
above was used to estimate the standard error, and
the results are shown in Table 4. The resulting MLE

of the phylogenetic tree is shown in Fig. 3b. We note
that this tree, which was obtained by simultaneously
estimating the tree and the parameters, differs from
that in Fig. 3a, which was obtained by holding the
transition/transversion parameter fixed, in the place-
ment of the HPV34 sequence. In both trees, se-
quences shown in boldface are those which are
known to be associated with human cancers (Burk
1999). Examination of the two trees shows that in the
first case (transition/transversion ratio fixed; Fig. 3a),
HPV34 clusters with a group of oncogenic HPV
strains, while in the second case (transition/trans-
version ratio estimated simultaneously; Fig. 3b),
HPV34 is more closely related to the two nononco-
genic HPV sequences in that clade. However, the two
trees are close to one another, in the sense that they
are separated by only a single NNI (nearest-neighbor
interchange) branch swap. The log likelihoods of the
two trees with parameter values optimized are quite
close (—27,864.73 for the tree in Fig. 3a vs —27,864.11
for the tree in Fig. 3b). The MLE of K is K = 0.6578.
The estimated standard error of K is 0.0577, which
gives a 95% confidence interval of (0.5447, 0.7709).
It is also of interest to compare not only the ML
trees in each of the two cases described above (K fixed
at 1.5691 and K estimated simultaneously with the
tree), but also other trees of high likelithood. More
detailed study of the problem shows that when the
transition/transversion parameter K is fixed at 1.5691,
the trees in Fig. 3 have log likelihoods of —28,083.67
and —28,084.42, respectively. There exists a group of



Table 4.  Estimates of p and K and their standard errors for the
papillomavirus data set

Tree estimated assuming [ SE(1) K SE(K)
R fixed 0.3010  0.0125 0.6606  0.0413
R estimated 0.3014 0.0142 0.6578  0.0577

three trees having log likelihoods ranging from
—28,086.23 to —28,086.26, which are distinct from the
trees in Fig. 3 in that more than a single NNI rear-
rangement is required to convert either tree in Fig. 3
to one of these three. When the transition/transver-
sion parameter K is simultaneously estimated, how-
ever, the distinction between these two groups of trees
becomes more clear, since the log likelihoods of these
other trees are then all near —27,871.83, which is
much farther from the optimized log likelihoods for
the trees in Fig. 3 (a difference in log likelihood be-
tween the two groups of trees of about 7, compared
to a difference in log likelihood of about 3 or 4). Thus
simultaneous estimation of the transition/transver-
sion parameter is also beneficial in evaluating and
comparing trees other than the ML tree.

Discussion

Here we have considered the problem of estimation
of the standard errors of the parameter estimates in
nucleotide substitution models used in phylogenetic
analysis. As an example, this paper considered the
transition/transversion parameter, K, and the mean
instantaneous substitution rate parameter, p, which
can be estimated when a molecular clock is assumed.
Although we initially assumed the K2P model, more
general models are commonly used in practice. Per-
haps the most commonly employed models are the
HKYS85 model and the F84 model, each of which
allows the generalization of the K2P model to in-
corporate different base frequencies. We note that if
the base frequencies are estimated empirically and
then held fixed through the tree and parameter esti-
mation process, as is commonly done in practice, the
results shown here for K are directly applicable. This
strategy was used in the analysis of the papillomavi-
rus data above. In addition, the results derived here
are general enough that they are easily applied to the
situation in which a molecular clock is not assumed
(though then the parameter p cannot be estimated, so
primary interest will be in estimating K) and that they
may be extended to include additional parameters in
more general substitution models [e.g., the TrN
model of Tamura and Nei (1993)].

In the fortunate situation in which the tree and
branch lengths can be considered known, parameters
and estimates of their variability can be simply
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computed. We have compared two possible estimates
of the standard error, one based on the observed in-
formation and one based on the expected informa-
tion, and found in simulations that the expected
information outperforms the observed information,
in the sense that the observed information tends to
underestimate the standard error. This result is in
contrast to the work of Efron and Hinkley (1978),
who found that the use of the observed information
was superior to the use of the expected information in
the simpler one-parameter setting. When the tree is
unknown, both the observed information and the
expected information provide underestimates of the
variability, because both fail to account for the ad-
ditional variability introduced by estimating the tree
simultaneously.

To deal with this problem, we propose the use of
the bootstrap to estimate the standard error and
demonstrate through simulation that bootstrapping
provides reasonable estimates of the standard error.
However, bootstrap estimation is computationally
intensive, since it involves simultaneous estimation of
the tree and the parameters for each bootstrap data
set. We have thus proposed a more computationally
tractable bootstrap procedure through use of the
“conditional variance formula.” We demonstrate
through simulation that this method provides rea-
sonable estimates of the standard error. The time
savings associated with this approach will increase as
the number of taxa increases, since for larger prob-
lems simultaneous estimation of the tree and pa-
rameters becomes more computationally expensive.

To implement practically the methods proposed
here, we recommend that each MCS sample contain
at least 10 times the number of sites in the original
data set (i.e., n > 10). We of course also recommend
the use of as many bootstrap samples as is compu-
tationally feasible, though for large data sets it will be
difficult to obtain a large number of bootstrap repli-
cates. Since both parametric and nonparametric
bootstrap sampling performed well, we suggest that
the choice of method used to generate the bootstrap
samples be left to the investigator, whose decision
may be guided by other uses for the bootstrap sam-
ples generated.

For example, we note that computation of stan-
dard error estimates as proposed here is easily incor-
porated into the standard bootstrap analysis that is
commonly performed following ML estimation. In
particular, either the DB or the CVB(BP) method of
standard error estimation may be easily added to the
traditional bootstrap analysis performed to assess
support for the internal nodes of the ML tree in the
following way. If bootstrap analysis is to be per-
formed with parameter estimates fixed at their ML
values from the original data set, then such an analysis
will result in the generation of B bootstrap samples,
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each of which will be used to estimate an ML tree with
fixed parameter values. Once this tree has been esti-
mated, little computational expense is added by per-
forming step 4 of the CVB method for each bootstrap
sample and then summarizing the results over all
bootstrap samples as in step 5. Moreover, such a
procedure is easily implemented with currently avail-
able software [for example, PAUP" (Swofford 1998)
and PHYLIP (Felsenstein 1993) will generate boot-
strap samples, the Seq-Gen program (Rambaut and
Grassly 1997) can be used to generate the required
MCS samples, and PAUP” can be used for parameter
estimation for given trees]. If, on the other hand, pa-
rameters are to be estimated simultaneously with the
tree for each of B bootstrap replicates, then it is
straightforward to store the values of these parameter
estimates for each bootstrap sample and compute
their empirical standard deviation, which amounts to
carrying out the DB method (this approach may be
even more readily accessible with currently available
software such as PAUP” since all that is required is
output of the analysis of each bootstrap sample).
Hence, the methods we propose may be easily imple-
mented in a standard bootstrap analysis with little
additional computational expense and may provide
important information concerning the ML tree esti-
mate and other trees of high likelihood.

We note, finally, that another potential approach
to assessing variability in parameter estimates is to
perform a Bayesian analysis using available MCMC
methods (e.g., Mau et al. 1999; Larget and Simon
1999; Yang and Rannala 1997; Li et al. 2000, Huel-
senbeck and Ronquist 2001). Such an analysis will
yield the posterior distribution of the tree and pa-
rameters in the evolutionary model. This approach is
more informative if the focus is not on only the MLE
or posterior mode but, instead, on the entire posterior
distribution.
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