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Different Brain Connectomes

Ø Structural Connectivity Ø Functional Connectivity
• A pattern of anatomical links, dMRI • Statistical Dependencies, fMRI, EEG, MEG

Ø Effective Connectivity
• Causal interactions,

fMRI, EEG, MEG



The Human Connectome Project
Ø The HCP is to elucidate the neural pathways that underlie brain 
function and behavior.  

The Heavily Connected Brain
Peter Stern, “Connection, connection, connection…”, 
Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

• High quality brain images: functional MRI (fMRI), diffusion
MRI, structural MRI, Magnetoencephalography (MEG)
and electroencephalography (EEG) 

• Rich demographic and behavioral data: cognition, 
perception, substance use and personality measurements.

Ø Diffusion MRI now is routinely collected in all brain studies

• UK Biobank

• The Adolescent Brain Cognitive Development (ABCD) Study

• …



Ø Reconstruction: Reliably and accurately recover white matter tracts

Ø Statistical analysis: Find systematic variation (with traits) in normal/disease subjects

• 1 HCP Subject

• ~ 10^6 curves

• ~ 3 Gbs

• Research problems: reconstruction, representation and statistical analysis

Ø Representation: Represent in forms that can facilitate population-based analysis



Outline

Ø Introduction to diffusion MRI

Ø Geometric representations of connectomes

Ø Construction of geometric connectomes

Ø Statistical analysis of connectomes

Ø Software demonstration



Diffusion Imaging

Ø Axons have  ~μm diameters 

(From UMD website) 

Ø Axons group together in 
bundles that traverse the white
matter in brain

Ø We can not image individual
axon, but we can image bundles
with diffusion MRI technique



Diffusion in Brain Tissue
Ø Water molecules in different tissues have different diffusion properties.

• Gray matter:  Diffusion is unrestricted          isotropy 

• White matter: Diffusion is restricted              anisotropy

Ø Diffusion MRI measures the water diffusion movement inside brain

No diffusion encoding Diffusion in 
direction g1

g2 g3

…



Reconstruction of White Matter Bundles
Ø At each voxel, we want to infer:
• The orientation and the magnitude of the diffusion

(2) High angular resolution diffusion imaging (HARDI)
§ Orientation distribution function (ODF) [Tuch et al. 04]
§ Fiber ODF [Descoteaux et al. 09]
§ … 

Low anisotropy High anisotropy 

Ø Fiber reconstruction: use local diffusion info to recover fibers

(1) Diffusion tensor image (DTI) 

fODF
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where               represents the estimated local fiber orientation.  

Current Tractography Approach

Ø Most of the existing (Tractography) methods are based on an 
ordinary differential equation to grow fiber    from a seed point:

Ø There are many techniques / algorithms to improve estimation

§ Fiber ODF [Descoteaux et al. 2009]§ Mixture of tensors [Wong et al. 2016]

§ Incorporate spatial information  [Raoa et al. 2016]

• Sparsity [Daducci et al. 2014]

Ø Here, we proposed two novel procedures to improve the fiber curve
construction process 

(1) A Bayesian active contour approach

(2) A multiscale approach



Method 1: Active Contour Tractography 
Ø Main idea: prior + data to reduce false positives fibers

Ø Geometric prior (shape) is learned from atlas data (e.g., Yeh et al. 2018)

Ø Bayesian active contour methods to recover long fiber curves

• Given two fixed points, we seek parameterized 
curve connecting the two fixed points that
minimizes

where

(1) Data-Likelihood term:

(2) Smoothness:

(3) Shape prior: normal distribution in shape space (square-root velocity function)



Some Simulation Results
Ø Data term:

Ø Smoothness:

Ø Shape term:
• Black: initial curve

• Red: final curve



Method 2: A Multiscale Approach
Ø Main idea: (1) local white matter (WM) configurations are much easier to 
handle comparing with the global one; 
(2) multiscale approach is used to bridge local and global WM config. 

1) Local clustering (within patches) of diffusion direction field
2) WM reconstruction (with patches)

3) Clustering of local WM tracts in a bigger scale

4) Global WM bundle reconstruction



Some Simulation Results
Ø Fiber

Reconstruction

Ø Evaluation:

MSMT: Multi-shell multi-tissue global tracking method (Christiaens et al. 2015)

DMDT: Our method - deep multiscale diffusion tracking



Future Directions
Ø A few key factors affecting tractography:

• Image resolution

• Prior ground truth knowledge
• Local WM fiber configuration estimation (e.g., fODF estimation)

• Supervised / semi-supervised methods to incorporate priors

Ø Our working directions�
• Collaborating with radiologists (e.g. Dr. Allen Song at Duke) to obtain high
resolution dMRI data

• Better methods to estimate fODF / diffusion tensors by borrowing geometric
information inside the brain (e.g., spatial location, brain tissue type)

• Better prior geometric knowledge from experts / animal data

• Novel tractography methods that can incorporate priors + data



Outline

Ø Introduction to diffusion MRI

Ø Geometric representations of connectomes

Ø Construction of geometric connectomes

Ø Statistical analysis of connectomes

Ø Software demonstration



Diffusion MRI to Connectome
Ø Traditional pipelines reduce the rich information into a matrix

• How to define meaningful values in the connectivity matrix

• Information loss

• Not reproducible because of the noise in the data



A New Connectome Mapping Framework



Structural Connectome Mapping
Ø We developed a new population-based structural connectomes (PSC) 

mapping framework

(2) Preserves more
information  

(1) Provides multiscale
representations

T1dMRI

Input
(data collection)

Subject 1

Subject 2

T1dMRI

……

T1 processing

tissue segmentation

parcellation

dMRI processing

DTI / HARDI

tractography

Module 1:
Identifying connection

(1) GM ROI dilation 

cut

(2) fiber cutting

(3) outliers removing

(1) + (2) + (3)

ROI i+1 ROI i+2

ROI j+1

ROI j+2

Module 2:
PSC Template Training

Subject 1

…...
Subject n

PSC Representation

{Translations,
Rotations,
Shapes}

encoding

decoding

~ 90% dimension reduction

Module 3
Brain Connectome

streamline CM

feature
extraction

weighted CM

threshold

binary CM

(3) Improves robustness and
reproducibility



Streamline Connectivity 
Cell Matrix (SCCM)

Tractography
+

Parcellation
Streamline level Weighted network level

Scalar Matrices

Multi-Scale Connectome Representation

Binary network level

Binary Matrix

Z. Zhang, M. Descoteaux, A. Srivastava, D. Dunson, H. Zhu� et al.
Mapping Population-based Structural Connectomes, Neuroimaging

Ø Connectome analysis at different levels

R O I1

R O I2

ROI1 RO I2

RO I1

RO I2

RO I3

RO I3R O I3

finer resolution

Complex Simple



Ø PSC extracts different features reflecting different aspects about one 
connection

New Features for Connectome Analysis

• Diffusion-related features
ü DTI metrics, such as Fractional Anisotropy 

(FA), Mean Diffusivity (MD), et al. 

ü ODF metrics,  such as Generalized Fractional 
Anisotropy (GFA), Apparent Fiber Density (AFD), et al. 

AFD-Max

2.0

0.0

FA

1.0

0.0

• Geometry-related features
ü Average fiber length
ü Average deviation from the mean fiber

ü # of clusters

ü Topological features – Persistent homology

• Endpoint-related features

Connected surface area

FA

Geometry

ü Fiber count

ü Connected surface area

ü Weighted connected surface area



Examples of Weighted Networks



Test-Retest Dataset to Improve Reproducibility

Ø Sherbrooke Test-Retest Dataset (clinical-like acquisition):  
• 11 subjects, and 3 scans per subject – with 1 month interval
• 1.5 Tesla, 2 mm isotropic resolution, single shell, 64 diffusion weighting directions

Ø Human Connectome Project (HCP) Test-Retest Dataset:  
• 44 subjects, and 2 scans per subject

• 3 Tesla, 1.25 mm isotropic resolution, 3 shells, 270 diffusion weighting directions

Ø Quantitative evaluation of the reproducibility 
• Distance-based intraclass correlation coefficient (dICC) 

-- average distance between subjects

-- average distance within subjects (multiple scans)

• Distance is obtained based on L2 norm before network adjacency matrices  



PSC Parameter Optimization
Ø DICC helps to select the optimal parameters
(1) Dilation parameter

(2) Remove short fibers?

0 50 100 150 200 250
0

0.02

0.04

0.06

(3) Threshold to get a
binary network

• Dilation 2 mm
• Lower bound of 

fiber length:  20 
mm

Threshold vs dICC
Threshold
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CC
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V=148
V=68

• Threshold 
between 10 
and 20

Fiber length distribution



Comparison with Traditional Framework
Ø PSC V.S. traditional pipeline (MIGRAINE [Roncal et al., 2013] ) using count feature

dICC = 0.79
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PSC Traditional method
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Structural Connectome Statistical Analysis

Simple ComplexData



Ongoing Studies

• Statistical models of fiber curves connecting brain regions 

• Tensor network factorizations:  Relationships 
between brain structural connectomes and traits

• Discovering brain subgraphs related to human traits

• Parcellation of brain cortical surface based on fiber geometry

• Heritability of structural and functional connectomes 

• Common and Individual Structure of Multiple Networks
With Lu Wang and David Dunson

With Ben Risk and Hongtu Zhu

With Lu Wang and David Dunson

With Genevera Allen and David Dunson

With Maxime Descoteaux and David Dunson

With David Dunson

Simple

Complex



Tensor network factorizations:  
Relationships between brain structural 

connectomes and traits
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Dataset Description

Ø Dataset: Human Connectome Project (HCP)

• Image data: 1065 subjects with diffusion MRI and
structural MRI. All are preprocessed with our PSC
pipeline.

• Traits: Rich demographic and behavioral traits,
including cognition, motion, personality measurements
substance use and so on.

The HCP dataset contains:

We extracted 175 different trait measures for each subject

Example Traits: 
Cognition: NIH Toolbox Oral Reading Recognition Test, Penn Word Memory Test,…
Substance use: Drinks per day in heaviest 12-month period, Max drinks in a single 
day in past 12 months,… 
Sensory: Odor Identification, Regional Taste Intensity, … 



Tensor Representation

Ø For each subject, if we stack their different weighted networks together, 
we obtain a 3-way tensor with dimensionality of !×!×#

Ø Similarly, if we stack n subjects’ data together, we get a 4-way tensor with 
dimension !×!×#×$

Ø Each tensor is semi-symmetric because of the symmetry of connection. 



- is called subject mode

Ø Semi-symmetric tensor decomposition for three way-tensor (or higher):

- v # of nodes, n subjects

- is called network mode

- Enforcing orthogonality for s
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Tensor Principle Component Analysis



Ø We solve the decomposition through the following optimization:

• It is non-convex but is instead bi-convex in v and u
• We utilize a block coordinate descent method

• Because of the additional orthogonality constraint, we use a greedy 
one-at-a-time strategy that sequentially solves a rank-one problem

where with

Tensor Principle Component Analysis



Exploratory Analysis 

Ø Embedding of 200 CSA (connected surface area) networks in the HCP dataset 
(100 subjects with high scores, 100 with low scores):
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Connectomes vs. Traits 
Ø Hypothesis testing - whether connectomes are associated with traits

• For each weighted connectivity matrix – embed to a low dimensional vector 
space (K = 3)
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• Maximum Mean 
Discrepancy (MMD) 
is used to perform 
hypothesis testing. 

[Gretton et al. 2012 A Kernel 
Two-Sample Test, JMIV]



Connectomes vs. Traits 
Ø Hypothesis testing - whether connectomes are associated with traits (K=30)
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Connectomes vs. Traits 
Ø Prediction - whether connectomes can predict traits?

• Baseline model: !"#$ ~ &([age, gender])

• Comparison: !"# ~ &([age, gender, connectomes])

Various machine learning methods

Ø Evaluate the prediction improvement with structural connectomes.

Various trait scores

• Prediction improvement ratio:

• The root-mean-square error (RMSE) is used to evaluate the prediction accuracy

(RMSE_baseline - RMSE_connectomes) / RMSE_baseline

Ø Various machine learning methods are used to fit the data, the best model
is selected based the validation dataset.

• 2/3 for training (> 690 subjects), 1/3 for validation (>330), 1/3 for testing (>330)



Connectomes vs. Traits 
Ø Prediction results (top 10 traits that can be predicted better by structural 

connectomes):

• 5 of them are related to substance use

• 5 of them are related to cognition



w

Connectomes vs. Traits 
Ø For a particular weighted network (e.g. CSA), how does the network

change with increasing of a trait?
• Find a unit direction w in such that correlation between the trait scores                         

and and projection

• Bring w back to the network representation



Connectomes vs. Traits 
Ø More results

Times used 
Marijuana 
(classification
rate = 59.68%)

Max drinks in 
single day 
(classification
rate = 80.99%)



Corresponding WM Tracts
Ø We display the corresponding tracts using selected subjects



Symmetric Bilinear Regression for Signal 
Subgraph Estimation



Ø To identify subnetworks that related to traits, a supervised one-step
method might work better (than the unsupervised tensor decomposition)

Supervised Subnetwork Identification

Ø Individuals over- or under-expressing a subnetwork have higher or
lower values of trait y" on average

Ø We start with a Symmetric Bilinear Regression (SBR):

• network for i-th subject

• Large p, small n problem (# of parameters to estimate:1 + v(v-1)/2; e.g.,
V = 68 à p = 2279, n = 1000)



Optimization Problem

Ø Suppose admits a rank-K CP decomposition
with sparsity penalty on , we have

• Reduce parameters from 1 + v*(v-1)/2 to 1 + v + Kv

• Maintain flexibility: if set K = v(v-1)/2 and , the problem
becomes unstructured linear model

• Interpretation: nonzero entries in each identify a clique
subgraph



Optimization Problem

Ø Our objective function now becomes:

• Avoid scaling problems between and compared to simply 
penalizing à sufficient to identify each matrix

• Efficient coordinate descent algorithm (Friedman et al. 2010 ) can be derived 
having analytic updates & with active set speed up

• Can choose K as an upper bound & zero out unnecessary components

Ø Suppose admits a rank-K CP decomposition
with sparsity penalty on , we have



Simulation

Ø Considered a variety of data generating processes for

Ø is generated via individual-specific weights on common
subnetworks + Gaussian noise

Ø A subset of these subnetworks are related to the response

Ø Different signal-to-noise scenarios + compared with LASSO
Tensor PCA



Low Noise

Coefficients and selected subgraphs of SBLCoefficients of LASSO



High Noise

Coefficients of LASSO Coefficients and selected subgraphs of SBL



Real Data Analysis

Ø Age-adjusted picture vocabulary (PV) score from 1065 HCP subjects
• presented with an audio recording of a word and 4 images
• select the picture that most closely matches the word

Ø Weighted brain network of between counts among 68 regions were
used; 565 subject for training and 500 for testing.

Ø Estimated coefficients from LASSO



Real Data Analysis

Ø Results from SBL

27L, 27R (left and right
superior frontal gyrus), 7L (left
inferior parietal gyrus) and 29L
(left superior temporal gyrus)
are among activated regions
when shifting from listening to
meaningless pseudo sentences
to listening to meaningful
sentences (Saur et al., 2008;
Dronkers, 2011).



Statistical models of fiber curves 
connecting brain regions 

Sub 1 Sub 2 Sub 3 Sub 4 

right-putamen  

right-putamen  

ctx_rh_S_ 
parieto_occipital 

ctx_rh_G_ 
occipital_sup 



Ongoing Studies
Ø Fiber curves connecting two brain regions contain rich information

• Functional data
• Clear clustering pattern
• Heterogeneity
• Big data

Ø We are interested to:
• utilize the geometric information to model the brain connectome 

Ø However, the challenges are:
• The complexity of the data form: 

• Big data issue: hundreds ~ thousands of fibers connecting two regions 

• Miss alignment issue: different subjects have different coordinate system
Z. Zhang, M. Descoteaux, D. Dunson
Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions,
Revision at JASA 2017+



Variation Decomposition
Ø To more efficiently represent fibers in connection          , we perform a 

variation decomposition w.r.t. a template fiber:

• Translations

• scaling

• re-parameterizations

• Shapes
• Rotations

Elastic shape 
analysis 
[Srivastava et al. 
2011]

Shapes:

Rotations:

Translations:
Ø How to represent the shape part? 

Connection              of different subjects

Learn a low 
dimensional 
structure  

Alignment
Mean Basis functions

(shared by all subjects)



Ø Any shape of streamline in             can be represented as: 

Coefficient
Basis function

Ø A streamline is represented by components: shape + translation + rotation

Variation Decomposition

Shape: Translation: Rotation:

• Recovery of a streamline:



Ø Any shape of streamline in             can be represented as: 

Coefficient
Basis function
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Ø A streamline is represented by components: shape + translation + rotation



• is a parametric probability measure on    

Ø We try to model fiber curves from a single subject in connection 

Model for One Individual

Ø Each component         of a fiber has a Euclidean or manifold support

Ø We use a product kernel mixture model to characterize the ! components 
of fibers in a connection 

• has a support of 

• " is a parametric probability measure over 

• A nonparametric approach realized by choosing " as a
random probability measure and assigning an appropriate prior



Experimental Results
Ø Consider the connection between right paracentral lobule (r_pl) and left postcentral 

gyrus (l_pg) in HCP one subject (with 95 fibers)
Ø We use the defined mixture models to cluster

fibers based on each component / all
components together

Posterior on K: Pairwise prob. Matrix: Final voting result:

All components:

Comparison with manual 
clustering results: 

RI – rand index

ARI – adjust rand index



Ø We model fiber curves from a set of subjects in connection 
Model for a Set of Individuals

Ø Miss alignment between subjects is a challenge  

Ø Our goal is to:
(1). model connections across different subjects
(2). cluster subjects and cluster fibers within each subject

Ø We apply a nested Dirichlet Process (NDP) ([Rodriguez et. al. 2008])  to model

where 

• NDP allows clustering fibers within each subject, and also produces clusters 
between subjects

Ø Posterior MCMC sampling can be easily developed



Geometry of Fiber Curves

Connection between 2nd ROI and 61st ROI

Commonly used count of fibers!

§ RI – Rand Index, calculates the ratio of agreement between the inferred and ground truth

§ ARI – Adjusted Rand Index, the corrected-for-chance version of the Rand index

• Discriminative analysis: applied to the test-retest



Geometry v.s. Traits

• Discriminative analysis: applied to the test-retest

• Can geometry infer cognitive difference? Seems yes…

• Pairwise probability of clustering 20 HCP subjects with high and low 
reading scores
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Software Development
Ø Preprocessing and connectome reconstruction are complicated processes
Ø Skills and knowledge from different disciplines are required - steep

learning curves for beginners
Ø Our goal is to build a user-friendly and extendable software (platform) for

people who do not want to know details of the preprocessing and
reconstruction

• Usage: input data folder + one command to run the PSC

• Utilize two open source software: Singularity + Nextflow

Singularity containers Pipeline

nextflow run main.nf --subject 1848/ -with-singularity SCIL_Singularity.img



Software Development
Ø Singularity containers can pack the entire scientific workflows, 

software, libraries, and data
• Enclosed all necessary software, no need additional software installation

or tedious version control

• OS independent

Ø Nextflow enables scalable and reproducible scientific workflows using 
software containers (e.g., singularity).

• Compatible with Singularity container

• Simplifies the implementation and the deployment of complex parallel and 
reactive workflows on clouds and clusters

• Easy to install

• Especially useful when there are many small steps in the workflow +
some steps can be run parallelly



Software Development
Ø Current version:

Ø Thanks to Maxime Descoteaux and his SCIL (Sherbrooke 
Connectivity Imaging Lab)

Ø Will be released soon in GitHub.

Singularity container:
Freesurfer, FSL, ANTs, Dipy,
Mrtrix, our code and so on.

PSC pipeline: 
parallelly run multiple 
subjects’ data

T1dMRI

Input
(raw data)

Subject 1

…
Subject 2



Summary & Discussion

Ø We have developed a robust structural connectome extraction framework

Ø New statistical methods for various connectome data:

• Reproducible

• Invertible

• Preserves the geometry
and diffusion information

# of nodes

connectome representation

• To understand the normal connectome variation in healthy subjects

• To relate connectome to covariates of interest and traits

Ø A lot of more interesting work can be done…

Ø We are trying to incorporate more geometry elements in structural brain
connectome analysis



Thank You


