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FDA as Setup So Far

Focused on L2([0,1],R), the set of squared-integrable functions
on interval [0,1], with the Hilbert structure give by the inner
product

∫ 1
0 f1(t)f2(t) dt , leading to the distance:

‖f1 − f2‖ =
√
〈f1 − f2, f1 − f2〉 .

We can perform several types of analysis using this structure.
Given several observations, we can compute the mean and the
covariance of the fitted functions.
We can perform fPCA and study the modes of variability.
We can impose some statistical models on the function space
using finite-dimensional approximations.



Problems with this Setup

Most of the FDA literature is centered around the L2 norm. But
there are some major problems with this choice.
Distances (under L2 metric) are larger than they should be.
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Misalignment (or phase variability) can be incorrectly interpreted
as actual (amplitude) variability.



Problems with FDA as Setup So Far

Recall that the average under L2 norm is given by:

f̄ (t) =
1
n

n∑
i=1

fi (t) .

Function averages under the L2 norm are not representative!
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Individual functions are all bimodal and the average is
multimodal!
In f̄ , the geometric features (peaks and valleys) are smoothed
out. They are interpretable attributes in many situations and they
need to be preserved



FPCA: Data With Phase Variability

n = 50 functions, fi (t) = f0(γi (t)), γis are random time warps.
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FPCA: Data With Phase Variability
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Real Issue

L2 norm uses vertical registration:

‖f1 − f2‖2 =

∫ 1

0
(f1(t)− f2(t))2 dt .

For each t , f1(t) is being compared with f2(t).
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The geodesic path (interpreted as the deformation between f1 and f2) is
unnatural as geometric features (peaks and valleys) are lost or created
arbitrarily.



Real Issue

What if the variability is more naturally horizontal:

Registration Geodesic Registration Geodesic

Or, maybe a combination of vertical and horizontal:
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The question is: How can we detect the compute and decompose the
differences into horizontal and vertical components.
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The Registration Problem

The main issue:

One of the most important challenge in functional and
shape data analysis is registration

Several other names: matching/correspondence/alignment/....
Most of the metrics used in data analysis implicitly or explicitly
assume a given registration.
Example: sample mean x̄ = 1

n

∑n
i=1 xi , xi ∈ Rd . This assumes

that the j th elements of xi are matched.
One should solve for optimal registration in the analysis rather
than take the data for granted.



Registration Framework
(For the time being restrict to scalar functions on a unit interval.
D = [0,1], k = 1.

How to perform registration?
For functional objects of the type f : [0,1]→ R, registration is
essentially a diffeomorphic deformation of the domain.
Let γ : [0,1]→ [0,1] be a diffeomorphism. Then, then f1(t) is
said to be registered to f2(γ(t)). Composition by γ is called time
warping.
How to define and find optimal γ? The warping γ should be
chosen so that the geometric features (peaks and valleys) are
well aligned.
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The deformation t 7→ γ(t) is called the phase variability and the
residual f1(t)− f2(γ(t)) is called the amplitude or shape variability.



Desired Properties

Problem Setup:
Let f1, f2 : [0,1]→ R be two functions.
Γ is the group of orientation-preserving diffeomorphisms of [0,1]
to itself. Γ is a group with composition. γid is the identity element.
Question: What should be the objective function: E(f1, f2 ◦ γ), for
defining optimal registration?

Desired Properties of E :
If γ̂ registers f1 to f2, then γ̂−1 should register f2 to f1.
If f2 = cf1 for a positive constant c, then γ̂ = γid . Shapes are
more important than heights.
It will be nice to have minγE(f1, f2 ◦ γ) as a proper metric.



Current Registration Formulation

A natural quantity to define E for optimal registration is the L2

norm, i.e.
γ̂ = arg infγ∈Γ(‖f1 − f2 ◦ γ‖2 ).

However, this choice is degenerate – pinching effect!
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Current Registration Formulation

Common solution – add penalty:

γ̂ = arg infγ∈Γ(‖f1 − f2 ◦ γ‖2 + λR(γ)).

Effectively reducing the search space, not really solving the
problem.
Example: Using the first order penality R =

∫
D |γ̇(t)|2dt .
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One can use other penalty terms instead.



Problems: Penalized L2 Alignment

The right balance between alignment and penalty?

f1, f2 f1, f2 ◦ γ2 f1 ◦ γ1, f2 γ1, γ2 γ1 ◦ γ2
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Problems: Penalized L2 Alignment

Asymmetry: Discussed earlier

inf
γ

(‖f1 − f2 ◦ γ‖2 + +λR(γ)) 6= inf
γ

(‖f1 ◦ γ − f2‖2 + +λR(γ)) .

Triangle inequality: The following does not hold –

inf
γ

(‖f1 − f3 ◦ γ‖2 + λR(γ))) ≤ inf
γ

(‖f1 ◦ γ − f2‖2 + λR(γ))

+ infγ(‖f2 ◦ γ − f3‖2 + λR(γ)) .

Most fundamental issue: Not invariant to warping

‖f‖ 6= ‖f ◦ γ‖ .

The norm ‖f ◦ γ‖ can be manipulated to have a large range of
values, from min(|f |) to max(|f |) on [0,1].



Why Invariance to Warping

Registration is preserved under identical warping!
[f1(t), f2(t)] are registered before warping, and [f1(γ(t)), f2(γ(t))]
are registered after warping.
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The metric or objective function for measuring registration should
also be invariant to identical warping.
L2 norm is not invariant to identical warping.



Desired Properties for Objective Function

We want to use a cost function d(f1, f2) for alignment, so that:

Invariance: d(f1, f2) = d(f1 ◦ γ, f2 ◦ γ), for all γ.
Technically, the action of Γ on F is by isometries.
Registration problem can be:

(γ∗1 , γ
∗
2 ) = arginf

γ1,γ2∈Γ̃

d(f1 ◦ γ1, f2 ◦ γ2) .

Γ̃ is a closure of Γ to make orbits closed set.
Symmetry will hold by definition.
Triangle inequality: Let ds(f1, f2) = infγ1,γ2 d(f1 ◦ γ1, f2 ◦ γ2). Then,
we want:

ds(f1, f3) ≤ ds(f1, f2) + ds(f2, f3) .

We want ds to be proper metric so that we can use ds for ensuing
statistical analysis.
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Fisher-Rao Distance

There exists a distance that satisfies all these properties. It is
called the Fisher-Rao Distance:

dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ), for all f1, f2 ∈ F , γ ∈ Γ.

For many years, this nice invariant property was well known in
the literature. The question was: How to compute dFR? The
definition was to difficult to lead to a simple expression.
Klassen introduced the SRVF in 2007. (Has similarities to the
complex square-root of Younes 1999.) Define a new
mathematical representation called square-root velocity function
(SRVF):

q(t) ≡


ḟ (t)√
|ḟ (t)|

|ḟ (t)| 6= 0

0 |ḟ (t)| = 0

(f : [0,1]→ Rn, q : [0,1]→ Rn)

SRVF is invertible up to a constant: f (t) = f (0) +
∫ t

0 |q(s)|q(s)ds.



SRVF Representation

Under SRVF, the Fisher-Rao distance simplifies:
dFR(f1, f2) = ‖q1 − q2‖.
The SRVF of (f ◦ γ) is (q ◦ γ)

√
γ̇. Just by chain rule. We will

denote (q, γ) = (q ◦ γ)
√
γ̇.

Commutative Diagram:

f q

(f ◦ γ) (q, γ)

SRVF

Group action by Γ

SRVF

Different Group action by Γ



SRVF Representation

Lemma: This distance satisfies: dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ)
We need to show that ‖(q1 ◦ γ)

√
γ̇ − (q2 ◦ γ)

√
γ̇‖ = ‖q1 − q2‖.

‖(q1, γ) − (q2, γ)‖2 =

∫ 1

0
(q1(γ(t))

√
γ̇(t) − q2(γ(t))

√
γ̇(t))2dt

=

∫ 1

0
(q1(γ(t)) − q2(γ(t)))2

γ̇(t)dt = ‖q1 − q2‖
2
.�

Corollary: For any q ∈ L2 and γ ∈ ΓI , we have ‖q‖ = ‖(q, γ)‖.
This group action is norm preserving, like a rotation. Can’t have
pinching!
Registration Solution:

(γ∗1 , γ
∗
2 ) = arginfγ1,γ2

‖(q1 ◦ γ1)
√
γ̇1 − (q2 ◦ γ2)

√
γ̇2‖ .

One approximates this solution with:

γ∗ = arginf
γ
‖q1 − (q2 ◦ γ)

√
γ̇‖ .

This is solved using dynamic programming.



Background Story

Where does SRVF come from?
Fisher-Rao Riemannian Metric: For functions, there is a F-R
metric

〈〈δf1, δf2〉〉f =

∫ 1

0
δ̇f 1(t) ˙δf2(t)

1
ḟ (t)

dt .

Under F-R metric, the time warping action is by Isometry:

〈〈δf1, δf2〉〉f = 〈〈δf1 ◦ γ, δf2 ◦ γ〉〉f◦γ .

(Note this is different from the F-R metric for pdfs, but same as
the F-R for cdfa.)
Under the mapping f 7→ q, Fisher-Rao metric transforms to the
L2 metric:

〈〈δf1, δf2〉〉f = 〈δq1, δq2〉
Fisher-Rao metric L2 inner product



SRVF Mapping
Nice isometric, bijective mapping from F to L2

Function Space F SRVF Space L2

Absolutely continuous functions Square-integrable functions
1 Functions and tangents Functions and tangents

f , and δf1, δf2 ∈ Tf (F) q, δq1, δq2 ∈ L2

2 Fisher-Rao Inner Product L2 inner product∫ 1
0 δ̇f 1(t) ˙δf2(t) 1

ḟ (t)
dt

∫ 1
0 δq1(t)δq2(t) dt

3 Fisher-Rao Distance L2 norm
dFR(f1, f2) =??? L2 norm: ‖q1 − q2‖

4 Geodesic Under Fisher-Rao Straight line
?? τ 7→ ((1− τ)q1 + τq2)

5 Mean of functions under dFR Cross-Section Mean
?? 1

n

∑n
i=1 qi

6. Registration under dFR Registration under L2

infγ dFR(f1, f2 ◦ γ) infγ ‖q1 − (q2 ◦ γ)
√
γ̇)‖

7 FPCA analysis under dFR FPCA analysis under L2 norm

Any item on the left can be accomplished by computing the
corresponding item on the right and bringing back the results.



Pairwise Registration: Examples
Liquid chromatography - Mass spectrometry data
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Multiple Registration
Align each function to a template. The template can be the
sample mean but under what metric?
Mean under the quotient space metric:

q̄ = arginf
q∈L2

(
inf
γi
‖q − (qi , γi )‖2

)
.

Iterative procedure:

1 Initialize the mean µ.
2 Align each qis to the mean using pairwise alignment to obtain
γ̂i = arginfγi

‖q − (qi , γi)‖2, and set q̃i = (qi , γ̂i).
3 Update mean using µ = 1

n

∑n
i=1 q̃i .

4 Check for convergence. If not converged, go to step 2.



Multiple Registration: Examples

{fi} Amplitude {f̃i} Phase {γi}

One can view this separation fi = (f̃i , γi ), as being analogous to
polar coordinates of a vector v = (r , θ).
In most cases, one of the two components is more useful than
the other. So, separation helps put different weights on these
components.



Multiple Registration: Examples

Matlab Code – Demo



Alignment After Transformation

Sometimes it is useful to transform the data before applying
alignment procedure. Some of these transformations are: |fi (t)|, ḟi (t),
log |fi (t)|, etc.

Absolute Value: When optimal points are to be aligned
(irrespective of them being peaks or valleys).

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

{fi} {fi ◦ γi} {γi}

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

{|fi |} {|fi ◦ γ̃i |} {γ̃i} {fi ◦ γ̃i}



Alignment After Transformation

Derivatives: When aligning montonoic functions
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Penalized Elastic Alignment

If we want to control the elasticity, we can also add a roughness
penalty. infγ∈Γ

(
‖q1 − (q2, γ)‖2 + λR(γ)

)1/2

For example, using a first order penalty: R(γ) = ‖1−
√
γ̇‖2.
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We loose some nice mathematical properties - no longer have a
metric in the quotient space.
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Modeling of Functional Data

How about modeling functional variables using elastic
representations?

Focus on FPCA based dimension reduction and modeling.

Sequential Approach: First separate the amplitude and phase
components of the daya, then perform FPCA for each
component separately.

Joint Approach: Use a model that performs alignment and FPCA
(of amplitudes) simultaneously.



Sequential Approach

1 Separate phase and amplitude components. The input data is
{fi} of {qi}, and the output is the amplitude {q̃i} and phase {γi}.

2 Perform fPCA of amplitudes {q̃i}. Obtain the dominant basis
function B = {b1,b2, . . . }.

3 Perform fPCA of phases: Convert phases into tangent vectors:
vi = exp−1

1 (
√
γ̇i ). Perform fPCA of {vi} and obtain the dominant

basis H = {h1,h2, . . . , }.

4 Jointly model the coefficients of phase and amplitude
components (and also the starting points {fi (0)}).

5 Generative model: Randomly generate an amplitude [q] and a
phase γ. Form the function f and compose f ◦ γ. This is a
random realization from the model.
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Example 2
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Statistical Model for Elastic FPCA

Assuming that the observations follow the model:

qi = SRVF (fi ),

(qi , γi ) ≡ qi (γi (t))
√
γ̇i (t) = µ(t) +

∞∑
j=1

ci,jbj (t)

where:
µ(t) is the expected value of qi (t),
{γi} are unknown time warpings,
{bj} form an orthonormal basis of L2, and
ci,j ∈ R are coefficients of qi with respect to {bj}. In order to
ensure that µ is the mean of (qi , γi ), we impose the condition that
the sample mean of {c·,j} is zero.



Elastic FPCA

Solution:

(µ̂, b̂) = argmin
µ,{bj}

 n∑
i=1

argmin
γ∈Γ

‖(qi , γ)− µ−
J∑

j=1

ci,jbj‖2

 ,

and set ĉi,j =
〈

(qi , γ
∗
i )− µ, b̂j

〉
.

Estimate µ using sample mean:

µ̂ =
1
n

n∑
i=1

(qi , γ
∗
i ) .

Estimate {bj} using PCA.



Elastic FPCA: Example
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Dynamic Programming Algorithm

An exact algorithm for solving some types of optimization problems.

Idea: Simplify a complicated problem by breaking it down into a
sequence of simpler sub-problems in a recursive manner. Can only be
done if the cost function is additive over the search space.

Principle of DP:
If the shortest path from Boston to LA passes through Chicago, then the
shortest path from Chicago to LA will be a piece of that shortest path.

Let f , g : [0, 1]→ R be two given functions and we want to solve for:

γ̂ = argmin
γ∈Γ

(∫ 1

0
|f (t)− g(γ(t))|2dt

)
. (1)

To decompose the large problem into several subproblems, define a
partial cost function:

E(s, t ; γ) =
∫ t

s
|f (τ)− g(γ(τ))|2dτ

so that our original cost function is simply E(0, 1; γ).



Dynamic Programming Algorithm

Define a uniform partition Gn = {1/n, 2/n, . . . , (n − 1)/n, 1} of [0, 1] and
form a grid Gn ×Gn on [0, 1]2. We will search over all piecewise linear
γs passing through the nodes of this grid.

Denote a point on the grid (i/n, j/n) by (i , j). denote by Nij be the set of
nodes that are allowed to go to (i , j). For instance:

Nij = {(k , l)|0 < k < i , 0 < l < j} .

Let L(k , l ; i , j) denote a straight line joining the nodes (k , l) and (i , j); for
(k , l) ∈ Nij this is a line with slope strictly between 0 and 90 degrees.
This sets up the iterative optimization problem:

(k̂ , l̂) = argmin
(k,l)∈Nij

E(k/n, l/n; L(k , l ; i , j)) , (2)



Dynamic Programming Algorithm

(Dynamic Programming Algorithm)
E = zeros(n, n); E(1, :) =∞; E(:, 1) =∞; E(1, 1) = 0;

for i = 2 : n
for j = 2 : n

for Num = 1:size(N,1)
k = i - N(Num,1);
l = j - N(Num,2);
if (k> 0 & l > 0)

Hc(Num) = H(k,l) + FunctionE(f,g,k,i,l,j);
else

Hc(Num) =∞;
end
H(i,j) = min(Hc);
end

end
end



Example
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Figure: Matching of functions using dynamic programming. In each row the
left panel shows two function f and g. The middle row shows the optimal γ̂
that minimizes the cost function in Eqn. 1, drawn over the partial cost function
H. The right panel shows the functions f and g(γ̂) with the resulting
correspondences.
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