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Motivation Examples - Human Body

Human biometrics is a fascinating problem area.

Facial Surfaces: 3D face recognition for biometrics

Human bodies: applications – medical (replace BMI), textile design.

Shapes are represented by surfaces in R3



Motivation Examples - Biomolecules

Protein surfaces, anatomical surfaces

Shapes are represented by surfaces in R3

Goal is to cluster and classify proteins, and study structure versus
functionality.



Broad Goals

Assume all the objects have the same topology, as described
below.
They are all maps of the type: f : D → R3, where D is a
two-dimensional compact space. Examples:

D = [0, 1]2: f is called a quadrilateral surface.
D = S2: f is called a spherical surface.
D = S1 × [0, 1]: f is called a disc surface.

We say that f is an immersion if the differential dfs : R2 → R3 is
full ranked. We will assume that all our surfaces are immersions.
We will denote s = (u, v) to be the coordinates in D. Being an
immersion implies that ∂f

∂u is not a multiple of ∂f
∂v . In other words,

the cross product ∂f
∂u ×

∂f
∂v is not zero.



Broad Goals

Metric: A quantification of differences between shapes of given
3D objects. The metric should be invariant to all the desired
shape preserving transformations.

How different are these shapes?
⇐⇒

Geodesic: Optimal deformation of one shape into the other.



Broad Goals

Registration: Given any two objects find a mapping that assigns
each point on an object to a unique point on another object.

Summary: Ability to compute representative shapes (mean,
median), and to study the dominants modes of variability
(covariance, PCA) in a given set of shapes.

-4σ 4σ
0



Broad Goals

Clustering and Classification: Unsupervised and supervised
classification of shapes.

Shape Regression: Use shape as a predictor for predicting
scalar or vector response variables.
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Desired Invariances

Focus on the maps: f : S2 → R3 that are immersions.
Translation group action: f (s) 7→ f (s) + x , x ∈ R3

Rotation group action: f (s) 7→ Of (s), O ∈ SO(3)

Scaling group action: f (s) 7→ af (s), a ∈ R+

Re-parameterization group actions: f (s) 7→ f (γ(s)), γ ∈ Γ.
Here Γ is the group of orientation-preserving diffeomorphisms of
S2. Then, for any γ ∈ Γ, and a surface f , the composition f ◦ γ is
simply a re-parameterization of f . It does not change the shape
of f .

Want a metric such that

ds(f1, f2) = ds(a1O1f1(γ1(s)) + x1,a2O2f2(γ2(s)) + x2) .



Mathematical Representations of Spherical Surfaces

Looking for representing f for the purpose of shape analysis.
f is not invariant to any of the desired transformations.

Gradient Field: The gradient ∇f : S2 → R3×2, is ∇f (s) = [fu, fv ]. It
is a 3× 2 matrix at each point s ∈ S2. Here fu = ∂f

∂u and fv = ∂f
∂v .

∇f is invariant to translation of f but not to rotation, scale, and
re-parametrization. One can reconstruct f from ∇f as it has all
the information about f .

Normal Vector Fields: For s = (u, v) ∈ S2, the normal vector field
is ñ(s) = ∂f

∂u ×
∂f
∂v . The unit normal vector field is n(s) = ñ(s)

|ñ(s)| .

n(s) is invariant to translation of f but not rotation and
re-parametrization. One cannot reconstruct f from n as it does
not have all the information about f .



Mathematical Representations of Spherical Surfaces

Tensor Field: Form a tensor field (induced metric) on S2 is:

g(s) =

(
g11 g12
g12 g22

)
= ∇f (s)T∇f (s) =

(
〈fu, fu〉 〈fu, fv 〉
〈fv , fu〉 〈fv , fv 〉

)
∈ R2×2

It is called the First Fundamental Form of f . g is invariant to
translation and rotation of f but not re-parametrization.

One cannot reconstruct f from g only as it has partial information
about f .

Area Element: The area element r(s) = |ñ(s)| =
√

det(g(s)). It
contains partial information about f .



Closer Look

Metric Tensor Field on S2:
Take a closer look at g(s), s ∈ S2. g is a tensor field on S2.
It specifies a Riemannian metric on S2 – called a pullback metric.
For any spherical curve β : [0, 1]→ S2, we can compute its length:

L[β] =
∫ 1

0

〈
〈β̇(s), β̇(s)

〉
〉β(s)ds =

∫ 1

0
(β̇(s)T g(s)β̇(s))ds

It is the Euclidean length of the corresponding curve f (β(s)), the
corresponding curve on f .
The space of all g’s is the set of all Riemannian metrics on S2, also
denoted by Met(S2).

Gauss Map: The mapping s ∈ S2 7→ n(s) ∈ S2 is called the
Gauss map of f . The set of all Gauss maps is C∞(S2,S2).



Higher-Order Representations

Representations involving second derivatives. They are invariant
to rotation and translation, but not to re-parameterizations. It is
difficult to reconstruct a surface given these representations.
The second fundamental form is given by

Π = L du2 + 2M du dv + Ndv2 ,

where
L = fuu · n, M = fu,v · n, N = fv ,v · n .

We can also write:

Π =

[
L M
M N

]
.

Shape Operator: At each point s ∈ S2, the matrix
S = g−1Π ∈ R2×2 is called the shape operator of f at f (s).
Let λ1, λ2 be the eigenvalues of S. Then,

λ1λ2 = det(S) is the Gaussian curvature of the surface f at f (s).
λ1 + λ2 = trace(S) is the mean curvature of the surface f at f (s).



Chosen Mathematical Representation

We will use the pair (g,n) to represent a surface f for the
purpose of shape analysis.
Let Φ : f 7→ Φ(f ) = (g,n) ∈ Met(S2)× C∞(S2,S2).
Effect of group actions:

Translation: f 7→ f + x , (g, n) 7→ (g, n).
Rotations: f 7→ Of , (g, n) 7→ (g,On).
Scaling: f 7→ af , (g, n) 7→ (a2g, n).
Re-parametrization: f 7→ f ◦ γ, (g, n) 7→ (JT

γ (g ◦ γ)Jγ , n ◦ γ).
If the surface f is perturbed to f + δf , then the corresponding g
and n are changed by the quantities: [Tumpach et al. TPAMI
2017]:

δg = Jac(f )T Jac(δf ) + (Jac(δf ))T Jac(f )

=

(
2fu · δfu fu · δfv + fv · δfu

fu · δfv + fv · δfu 2fv · δfv

)
,

δn = −1
2

Tr(g−1δg) n +
1
|g| 12

(δfu × fv + fu × δfv ) .

This is the differential of Φ.



Elastic Riemannian Metric

Let (δg1, δn1) and (δg2, δn2) represent two tangent vectors of the
representation space at the point (g,n).
Elastic Riemannian Metric: Define the Riemannian metric

〈〈(δg1, δn1), (δg2, δn2)〉〉(g,n) =

a
∫
S2

Tr(g−1δg1g−1δg2)r(s)ds — Term 1

+b
∫
S2

Tr(g−1δg1)Tr(g−1δg2)r(s)ds — Term 2

+c
∫
S2
〈δn1, δn2〉 r(s)ds — Term 1

where a, b, and c are positive weights.



Elastic Riemannian Metric

Elastic Riemannian Metric: One can rearrange the terms to
reach:

〈〈(δg1, δn1), (δg2, δn2)〉〉(g,n) =

a
∫
S2

Tr((g−1δg1)0(g−1δg2)0)r(s)ds — Term 1

+b̃
∫
S2

Tr(g−1δg1)Tr(g−1δg2)r(s)ds — Term 2

+c
∫
S2
〈δn1, δn2〉 r(s)ds — Term 1

where b̃ = a/2 + b.
Here A0 = A− trace(A)I2×2 denotes the traceless part of a
matrix A.



Interpretations of the terms

Stretching Term:
Let A 7→ det(A) be the determinant function, then trace(A−1H) is
the directional derivative of det(·) in the direction of H.
Similarly, trace(g−1δgi) is the derivative of det(·) at g in the
direction of δgi .
Since det(g) is a measure of the area of a small patch at f (s), this
term measures the change in area of this patch.

Bending Term: δn1, δn2 are the changes in the direction normal
to the patch. Thus, the third term measures the change in the
rotation of that patch.

Shape Term: In the first term, we can removed translation,
rotation, and scale. The only information that is left is about the
shape of the patch. Thus, the first term measures a change in
the shape of that patch.



Invariance Properties

Translation Group: (g,n) are invariant to the translation of f .
Scaling Group: The surface area of f equals A =

∫
S2 r(s)ds. We

can rescale the surfaces by f 7→ f/
√

A. Now, the surfaces is
rescaled to unit area and is invariant to scale variability.
Re-Parameterization Group:
This metric is preserved under the action of re-parameterization
group. That is:

〈〈(δg1, δn1), (δg2, δn2)〉〉(g,n)

= 〈〈(δ(g1 ◦ γ), δ(n1 ◦ γ)), (δ(g2 ◦ γ), δ(n2 ◦ γ))〉〉((g◦γ),(n◦γ))

Rotation Group: If Φ(f ) = (g,n), then Φ(Of ) = (g,On) for any
O ∈ SO(3).

〈〈(δg1, δn1), (δg2, δn2)〉〉(g,n) = 〈〈(δg1,Oδn1), (δg2,Oδn2)〉〉(g,On)

This metric is preserved under the action of the rotation group.
Challenge: Metric is too complex to work with directly.



Square-Root Normal Field

The SRNF of f ◦ γ is given by (q, γ) ≡ (q ◦ γ)Jγ , where Jγ is the
determinant of the Jacobian of γ.
This representation satisfies the isometry condition:

‖q1 − q2‖ = ‖(q1, γ)− (q2, γ)‖, ∀q1,q2 ∈ L2, γ ∈ Γ .

The shape metric is given by:

ds([q1], [q2]) = inf
(O,γ)∈SO(n)×Γ

‖q1 −O(q2, γ)‖ .

This include rotational alignment and non-rigid registration of
surfaces.



Potential Representations of Surfaces

Represent. 1 Represent. 2 Represent. 3 Represent. 4
Surface Gradient Tensor + Normal SRNF

Symbol f ∇f (g = ∇f T∇f , n = ∇f⊥) q =
√

rn

Invariance None Translation Translation (Rotation) Translation

Elastic Metric Complicated Complicated Relat. Simple Simple

Geodesic Complicated Complicated Relat. Simple Simple

Registration Complicated Complicated Relat. Simple Simple

Reconstruction - Trivial Relat. Difficult Difficult



Potential Representations of Surfaces
The elastic metric is defined in the Representation 3 space (g,n).

Representation 1 – f : One can use a pullback metric in the
original surface space F to define and compute geodesics.

Pros: No need to reconstruct.
Cons: Operations (geodesic, registration, etc) are computationally
expensive.

Representation 2 – ∇f : One can use a pullback metric in the
space of vector fields to define and compute geodesics.

Pros: Reconstruction is trivial.
Cons: Operations (geodesic, registration, etc) are somewhat
expensive. Not all vector fields are gradient vector fields.

Representation 3 – (g,n): Metric is defined on this space
directly.

Pros: Geodesic are available analytically.
Cons: Registration is still a challenge. Reconstruction is difficult
now. Not all tensor fields are forward maps of surfaces.

Representation 4 – q: Partial elastic metric is L2

Pros: Geodesics are trivial. Registration under the L2 norm is the
simplest.
Cons: Reconstruction is most difficult now. Not all normal fields are
forward maps of surfaces.
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SRNF Inversion: A Numerical Approach

Similar to curves, all the analysis takes place in the SRNF space.
Final solutions need to be inverted back to the original space.
Don’t know enough about the properties of the map Q : f → q. Q
is not injective, and not surjective. (Perhaps locally injective up to
certain transformations.)
We take a numerical approach to solve the inverse problem.

f̂ = arginf
f∈F

‖Q(f )− q0‖2

Even if the inverse does not exist, we find a surface whose SRNF
is as close as possible to the given q0.

If there exists an f such that Q(f ) = q0, then the procedure will find
it.
If there exist several fs such that Q(f ) = q0 for each of these
surfaces, then the procedure will find one such f .
If there does not exist any f such that Q(f ) = q0, then the
procedure will find an f that minimizes this cost function. In other
words, a surface whose SRNF comes as close to the given q0 as
possible.



SRNF Inversion: A Numerical Approach
Modify the cost function to:

f̂ = arginf
f∈F

E [w ; q0, f0], E [w ; q0, f0] = ‖Q(f0 + w)− q0‖2

where f0 is an initial guess and w is the deformation.
Let B = {b1,b2, . . . } represents an orthogonal basis for
representing surfaces w , f . Then, the directional derivative of E
in the direction of a basis element b is given by:

∇bj E(w ; f0,q0) =
d
dε
‖Q(f0 + w + εbj )− q‖2

= 2
〈
Q(f0 + w)− q,dQf0+w (bj )

〉
Here dQf0+w (bj ) = 1√

|n|

(
ñb − n·ñb

2 n
)

, ñb = (fu × bj,v ) + (bj,u × fv ).

The full gradient for optimization over w is given by:

∇E =
J∑

j=1

(∇bj E(w ; f0,q0))bj .



SRNF Inversion: A Numerical Approach
Solution at the highest resolution:

Q
-1

q

Ini�aliza�on

Reconstructed surface

Developed a multi-resolution approach to solve this optimization
problem.
Deform a unit sphere (f0) using smaller and then higher
resolution.

Q
-1

q1

Q
-1

Q
-1

Q
-1

Q
-1

q2 q3 q4 q5

Ini�aliza�on

Reconstructed surface



SRNF Inversion

Some examples:

Original Shapes

Reconstructed from SRNFs

Reconstruction Errors



SRNF Inversion

(a) The target surfaces fo.

(b) The reconstructed surfaces f ∗.

(c) Reconstruction errors |f ∗(s)− fo(s)|.

In these examples we used 3642 spherical harmonic basis elements.



Shape Registration

Registration optimization:

inf
(O,γ)∈SO(n)×Γ

‖q1 −O(q2, γ)‖

Optimization using: Procrustes rotation (for O) and Lie algebra of
Γ (for γ).
Γ is an infinite-dimensional, nonlinear manifold. To optimize a
cost function over it is complicated.



Shape Registration: Rotation

Procrustes rotation assuming a given registration (γ). Let f̃2 = f2 ◦ γ.
1 Compute the SRNFs q1 = Q(f1) and q̃2 = Q(f̃2).
2 Compute the 3× 3 matrix A =

∫
S2 q1(s)q̃2(s)T ds.

3 Compute the singular value decomposition A = UΣV T .
4 Compute the optimal rotation as O∗ = UV T . (If the determinant

of A is negative, the last column of V changes sign.)
5 Compute the optimally rotated surface f̃ ∗2 = O∗ f̃2.



Shape Registration: Re-parameterization

Divide the search for optimal γ into a number of smaller γs.
Define the cost function at the k th iteration to be:

H(γ) = ‖q1 − ((q2, γk ), γ)‖2 ,

where γk is the total diffeomorphism at that stage for registration.
We know that: Tγid (Γ) = {w is a smooth vector field on S2}. We
can compute an orthonormal basis of this set; Call it
B = {b1,b2, . . . }. γ is assumed to be a small diffeo (close to
identity).

Then, for any functional H : Γ→ R, we can express:
∇γid H =

∑
j cjbj , where cj is the directional derivative of H in the

direction of bj .



Shape Registration: Re-parameterization

We compute the directional derivative using:

cj =
1
ε

(H(γid + εbj )− H(γid )) .

Compute the incremental diffeomorphism: γk+1 = exps(w(s)),
w(s) =

∑
j cjbj (s) and the exponenital map is on S2.

Compute the cumulative diffeomorphism: γk+1 = γk ◦ γk+1.
Example:

50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

f1 f2 O∗(f2 ◦ γ∗) γ∗ E



Registration Example

Registration movie:



Registration Example

0 10 20 30 40 50
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Registration movie:
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Shape Geodesics

Given two surfaces f1 and f2.
Compute their SRNFs q1 and 22.
Solve for the optimal registration
(O∗, γ∗) = inf(O,γ) ‖q1 −O(q1.γ)‖.
Draw a straight line between q1 and q∗2 = O∗(q2, γ

∗). Take each
point along this path and use SRNF inversion to find the
corresponding surface.

(a) Linear path, (1− t)f1 + tf ∗2 . (b) Geodesic path by SRNF inversion.



Shape Registration and Geodesics

Without Reg.

With Reg.

Without Reg.

With Reg.

Geodesics are computed in the SRNF space and then each point
along the path is inverted back numerically.



Elastic Geodesic Examples

(a) Linear path, (1− t)f1 + tf ∗2 . The registration has been computed using
SRNFs.

(b) Geodesic path after registration using SRNF inversion.

(a) The linear path, (1− t)f1 + tf ∗2 . The registration has been computed using
SRNFs.

(b) Geodesic path after registration using SRNF inversion.



Elastic Geodesic Examples



Elastic Geodesic Examples



Deformation Transfer Using Parallel Transport

Goal: Compute the deformation between two given surfaces, and
apply them to a third surface.
Approach:

Compute the deformation vector field v from f1 to h1 by computing
a geodesic path between their shapes.
Transfer v at f1 to f2 using parallel transport resulting in v ||.
Deform f2 into h2 using the exponential map of v ||.

f1 → h1 f2 → h2



Deformation Transfer

f1 h1 f2 h2 f2 h2
(a) Source (b) Deformation transfer by linear (c) Deformation transfer by
deformation extrapolation SRNF inversion

Figure: Examples of deformation transfer using geodesic shooting in the
space of SRNFs. The middle shapes, in gray, are intermediate shapes along
the deformation paths.



Shape Clustering

Use elastic shape metric for clustering.

00.10.20.30.40.50.6

s71p0
s72p0
s69p0
s70p0
s107p0
s2p0
s48p0
s20p0
s37p0
s106p0
s111p0
s5p0
s31p0
s24p0
s67p0
s11p0
s14p0
s27p0
s57p0
s38p0
s17p0
s68p0
s100p0
s1p0
s15p0
s13p0
s4p0
s6p0
s18p0
s19p0
s59p0
s12p0
s23p0
s66p0
s26p0
s101p0
s56p0
s110p0
s3p0
s36p0
s43p0
s39p0
s42p0
s51p0
s47p0
s63p0
s28p0
s49p0
s109p0
s30p0
s62p0
s34p0
s58p0
s103p0
s41p0
s52p0
s46p0
s45p0
s40p0
s35p0
s44p0
s104p0
s108p0
s21p0
s54p0
s25p0
s60p0
s22p0
s64p0
s50p0
s61p0
s53p0
s55p0
s65p0
s102p0
s105p0

Female

Male



Shape Clustering
Use elastic shape metric for clustering.
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Shape-Based Classification

Use MRI scans of human brains to extract certain subcortical
structures of interest.
Scan data is available for subjects that have ADHD and that are
normal subjects.
Want to use the shapes of these structures to classify subjects in
ADHD and normal class.

CaudatePallidum PutamenThalamus

Figure: Left subcortical structures in the brain.



Shape-Based Classification

Table: Classification performance, in %, for six different techniques, namely
the Gaussian classifier on the (1) SRNF and (2) SRM spaces, and the
Nearest Neighbor (NN) classifier using the (3) SRM space, (4) Harmonic
method, (5) ICP algorithm, and (6) SPHARM-PDM.

SRNF Gauss SRM Gauss SRM NN SPHARM ICP SPHARM-PDM

L. Caudate 67.7 - 41.2 64.7 32.4 61.8
L. Pallidus 85.3 88.2 76.5 79.4 67.7 44.1
L. Putamen 94.1 82.4 82.4 70.6 61.8 50.0
L. Thalamus 67.7 - 58.8 67.7 35.5 52.9

R. Caudate 55.9 - 50.0 44.1 50.0 70.6
R. Pallidus 76.5 67.6 61.8 67.7 55.9 52.9
R. Putamen 67.7 82.4 67.7 55.9 47.2 55.9
R. Thalamus 67.7 - 58.8 52.9 64.7 64.7



Shape Summaries

Sample mean:

µq = argmin
[q]∈S

n∑
i=1

ds([q], [qi ])
2

Then, µq 7→ µf (SRNF Inversion).

Mean shape



Shape PCA and Modeling

Use the tangent bundle of shape spaces to perform PCA and wrap it
back on the shape space to study principal directions.

-4σ 4σ
0

-2σ 2σ
0

(a) Mean shape and its first (b) Mean pose and its first (c) Random samples from the PCA

three modes of variation. three modes of variation. model on S.



Random Shape Models

Figure: Ten arbitrary 3D human body shapes automatically synthesized by
sampling from a Gaussian distribution fitted, in the SRNF shape space S, to
a collection of human body shapes belonging to different subjects in different
poses.
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Quantify Reflection Symmetry

Let v ∈ R3 be a vector orthogonal to a plane. Then:

f̃ = H(v)f , where H(v) =
(

I − 2
vvT

vT v

)
. (1)

H(v) is the reflection matrix for the plane perpendicular to the vector v . f is
the original surface and f̃ is its reflection under the chosen plane. Let α be a
geodesic in between f and f̃ in the shape space.

First, its length gives a formal measure of asymmetry of f .

Second, the halfway point along this geodesic, i.e. α(0.5), is symmetric.

Lastly, if this geodesic path is unique, then amongst all symmetric
shapes, α(0.5) is the nearest to f in F under the shape metric. The path
from α(0) to α(0.5) is precisely the smallest deformation needed to
symmetrize f . Thus, as already stated, half of the length of this path is
also a measure of asymmetry of the shape.



Quantify Reflection Symmetry

Figure: Symmetrizing complex surfaces. Each example shows the geodesic
between a surface and its reflection. The highlighted midpoint of the
geodesic is the nearest symmetric shape.



Summary: Shape Analysis of Surfaces

For registration of points across surfaces one needs an invariant
Riemannian metric, leading to an invariant distance.
This metric is too complex to be useful in practical situations. A
square-root transformation, SRNF, converts this metric into a
simpler L2 metric.
We define quotient spaces of L2 under shape-preserving
transformations, such as the rotation and re-parameterizations.
All the operations – registration, geodesics, statistical analysis,
etc. – take place in the SRNF space. Final solutions are
converted back to surface space by inverting SRNFs.
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