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General Remarks

Even though the some representations are in quotient spaces of
L2 or S∞, we focus on these pre-spaces to model data.
These representation spaces are infinite dimensional. So,
statistical modeling of data on these spaces in not straight
forward.
There are two common approaches in literature for modeling
functions:

Finite-Dimensional Approximation: Choose an orthonormal basis
for the function space, represent functions by a truncated basis,
and impose models on the finite-dimensional vector of coefficients.
Stochastic Process Models: Improvise current models for
stochastic processes such as Gaussian processes, diffusion
processes, Dirichlet process, etc,

I will focus primarily on the first idea. Karthik will touch upon
some ideas from the second approach.
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Outline
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Generative Models for Functional Data

Consider the model:

fi (t) = µ(t) +
∞∑
j=1

ci,jbj (t) ,

where µ, {bj} are deterministic unknown and {ci,j}s are random.

Assume ci,j ∼ N (0, σ2
j ). Then we can estimate: (µ̂, {b̂j}, {σ̂2

j })
using maximum likelihood.
MLE: FPCA as earlier to get µ̂ and {b̂j}. Then, compute the
sample variance of {c,̇j} for each j to get σ̂2

j .
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Generative Models: Example 1
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 2
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 3
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 4
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Modeling of Functional Data

How about modeling functional variables using elastic
representations?

Focus on FPCA based dimension reduction and modeling.

Sequential Approach: First separate the amplitude and phase
components of the daya, then perform FPCA for each
component separately.

Joint Approach: Use a model that performs alignment and FPCA
(of amplitudes) simultaneously.

9/40



Sequential Approach

1 Separate phase and amplitude components. The input data is
{fi} (or {qi}), and the output is the amplitude {f̃i} (or {q̃i}) and
phase {γi}.

2 Perform fPCA of amplitudes {q̃i}.

3 Perform fPCA of phases {γi} after appropriate transformation.

4 Jointly model the coefficients of phase and amplitude
components (and also the starting points {fi (0)}).

5 Generative model: Randomly generate an amplitude q̃ and a
phase γ. Form the function f̃ and compose f̃ ◦ γ. This is a
random realization from the model.
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Separation of Amplitude and Phase

{fi} Amplitude {f̃i} Phase {γi}
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FPCA of the Amplitude Component

One can perform this FPCA in with the aligned functions {f̃i} or
their SRVFs {q̃i}.
More naturally in SRVF space:

q̃i = µ(t) +
∞∑
j=1

ci,jbj (t), ci,j ∼ N (0, σ2
j ) .

Estimate model parameters – µ, {bj}, and {σ2
j } – using FPCA.

One can sample from this imposed model with estimated model
parameters.

12/40



Example: Simulated Data
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Example: Female Growth Data
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FPCA of the Phase Component
The set Γ is not a vector space. Can’t do FPCA directly in this
set. One transforms warping functions to simplify the analysis.
Some people have used the transformation:

γ 7→ ν = log(γ̇), γ(t) = e
∫ t

0 ν(s)ds

and then impose the Hilbert structure on the resulting function ν.
However, the constraint that γ(1) = 1 is difficult to impose.
A more natural solution is to define the SRVF of γ, ψ =

√
γ̇.

Since

‖ψ‖2 =

∫ 1

0
ψ(t)2dt = γ(1)− γ(0) = 1 ,

ψ ∈ S∞. For the identity warping γid (t) = t , the SRVF ψid (t) = 1.
Compute the inverse exponential:

v = exp−1
ψid

(ψ) = (ψ − ψid cos(θ))
θ

sin(θ)
.

(One can also use the mean of {γi} for this pivot point).
This maps the given {γi} into a vector space Tψid (S∞). We can
perform FPCA there.
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Example: FPCA of Warping Functions
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Componentwise Statistical Model for Functional Data

Estimation of Model Parameters from data {fi}:
Separate the data into amplitude and phase components.
Estimate FPCA model parameters for the amplitude components.
Estimate FPCA model parameters for the phase components.
Impose statistical models on the principal coefficients for each of
the two components. Need not be independent models.

Test models by generating random samples:
Randomly generate an amplitude q̃ and a phase γ.
Form the function f̃ and compose f̃ ◦ γ. This is a random realization
from the model.
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Example 1
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Example 2
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Statistical Model for Elastic FPCA

Assuming that the observations follow the model:

qi = SRVF (fi ),

(qi , γi ) ≡ qi (γi (t))
√
γ̇i (t) = µ(t) +

∞∑
j=1

ci,jbj (t)

where:
µ(t) is the expected value of qi (t),
{γi} are unknown time warpings,
{bj} form an orthonormal basis of L2, and
ci,j ∈ R are coefficients of qi with respect to {bj}. In order to
ensure that µ is the mean of (qi , γi ), we impose the condition that
the sample mean of {c·,j} is zero.
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Elastic FPCA

Solution:

(µ̂, b̂) = argmin
µ,{bj}

 n∑
i=1

argmin
γ∈Γ

‖(qi , γ)− µ−
J∑

j=1

ci,jbj‖2

 ,

where ci,j =
〈
(qi , γ

∗
i )− µ,bj

〉
.

Estimate µ using sample mean:

µ̂ =
1
n

n∑
i=1

(qi , γ
∗
i ) .

Estimate {bj} using FPCA.
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Elastic FPCA: Example
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Shape Clustering
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Figure: A set of 20 shapes of the left have been clustered using different
linkage criterion: average (top-right), nearest distance (bottom left), and
compete or furthest distance (bottom-right).
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Shape Clustering
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Figure: A set of 20 shapes of the left have been clustered using different
linkage criterion: average (top-right), nearest distance (bottom left), and
compete or furthest distance (bottom-right).
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Shape Clustering
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3D Shape Clustering
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Shape Statistics

Sample mean:

µq = argmin
[q]∈S

n∑
i=1

ds([q], [qi ])
2 ,

and then, µq 7→ µ.
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Elastic Averaging of Multiple Shape Sequences

Four of Six Sequences Used in Experiment

Pre-Alignment Mean

Post-Alignment Mean
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Shape Statistics

PCA in the tangent space at the mean
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Leaves Shapes
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Leaves Classification
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PCA of Curves in R3

(a) A collection of 20 spiral curves used in this experiment
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(b) the decrease in the norm of the gradient of Karcher variance
function during mean estimation, (c) the estimated Karcher mean and
(d) the estimated singular values of the covariance matrix.
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Truncated Wrapped Normal Distribution
What kind of statistical models can be imposed on shape spaces of
curves?
The preshape shape for curves is S∞. If we use a truncated
representation, using a truncated orthonormal basis, we get a
finite-dimensional space Sk . What are potential statistical models on unit
spheres?
In terms of parametric models, there several analogs of Gaussian
models on unit spheres – von Mises Fisher density and its variation, and
truncated wrapped normal distributions.
Truncated Wrapped Normal (TWN): Define a truncated normal
distribution in the tangent space of SJ at a mean point. Wrap this
distribution on Sk using the exponential map.
One can compute the Jacobian of the exponential map and hence write
the resulting density function on SJ analytically:

π(p;µ,K ) =
1
Zk

(
θ

sin(θ)

)(k−1)

e(− 1
2 xT K−1x)1θ≤π/2 ,

where θ = |x | = cos−1(〈p, µ〉) , {xj =
〈

bj , exp−1
µ (p)

〉
.

If K = σ2Ik , then the induced density reduces to
1

Zk
(θ/ sin(θ))(k−1)e−(θ2/2σ2)1θ≤π/2.
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Example: Shapes of Planar Curves

Some examples of random samples from a wrapped normal model.

For the first row we used n = 9 with the coefficients
xi ∼ TN(0, 0.2e−0.3i , π/2),

For the second row we had n = 19 with xi ∼ TN(0, 0.1e−0.3i , π/2), and

For the third row n = 39 with xi ∼ TN(0, 0.1e−0.3i , π/2).

Mean Random Samples
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Random Samples of Shapes in R3
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Random samples from the estimated wrapped-normal density in the
shape space.
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Two Sample Test

Testing equality of shape populations across time frames: Truncated
Wrapped Normal Distributions

p values (left) and binary decisions (right)

The nanoparticle shape populations across frames are increasing
different as the frames are further apart in time.
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Shape PCA and Modeling

Use the tangent bundle of shape spaces to perform PCA and wrap it
back on the shape space to study principal directions.

-4σ 4σ
0

-2σ 2σ
0

(a) Mean shape and its first (b) Mean pose and its first (c) Random samples from the PCA

three modes of variation. three modes of variation. model on S.
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Random Shape Models

Figure: Ten arbitrary 3D human body shapes automatically synthesized by
sampling from a Gaussian distribution fitted, in the SRNF shape space S, to
a collection of human body shapes belonging to different subjects in different
poses.
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