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Abstract

We introduce a novel geometric framework for separating thephase and the amplitude
variability in functional data of the type frequently studied in growth curve analysis. This
framework uses the Fisher-Rao Riemannian metric to derive aproper distance on the quotient
space of functions modulo the time-warping group. A convenient square-root velocity function
(SRVF) representation transforms the Fisher-Rao metric into the standardL2 metric, simpli-
fying the computations. This distance is then used to define aKarcher mean template and
warp the individual functions to align them with the Karchermean template. The strength of
this framework is demonstrated by deriving a consistent estimator of a signal observed under
random warping, scaling, and vertical translation. These ideas are demonstrated using both
simulated and real data from different application domains: the Berkeley growth study, hand-
written signature curves, neuroscience spike trains, and gene expression signals. The proposed
method is empirically shown to be be superior in performanceto several recently published
methods for functional alignment.

1 Introduction

The problem of statistical analysis in function spaces is important in a wide variety of applications
arising in nearly every branch of science, ranging from speech processing to geology, biology and
chemistry. One can easily encounter a problem where the observations are real-valued functions
on an interval, and the goal is to perform their statistical analysis. By statistical analysis we mean
to compare, align, average, and modela collection of such random observations. These problems
can, in principle, be addressed using tools from functionalanalysis, e.g. using theL2 Hilbert
structure of the function spaces, where one can computeL

2 distances, cross-sectional (i.e. point-
wise) means and variances, and principal components of the observed functions [16]. However, a
serious challenge arises when functions are observed with flexibility or domain warping along the
x axis. This warping may come either from an uncertainty in themeasurement process, or may
simply denote an inherent variability in the underlying process itself that needs to be separated from
the variability along they axis (or the vertical axis), such as variations in maturity in the context
of growth curves. As another possibility, the warping may beintroduced as a tool to horizontally
align the observed functions, reduce their variance and increase parsimony in the resulting model.
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Figure 1: Separation of phase and amplitude variability in function data.

We will call these functionselastic functions, keeping in mind that we allow only thex-axis (the
domain) to be warped and they-values to change only consequentially.

Consider the set of functions shown in the top-left panel of Fig. 1. These functions differ from
each other in both heights and locations of their peaks and valleys. One would like to separate the
variability associated with the heights, called theamplitudevariability, from the variability associ-
ated with the locations, termed thephasevariability. Extracting the amplitude variability implies
temporally aligning the given functions using nonlinear time warping, with the result shown in the
bottom right. The corresponding set of warping functions, shown in the top right, represent the
phase variability. The phase component can also be illustrated by applying these warping func-
tions to the same function, also shown in the top right. The main reason for separating functional
data into these components is to better preserve the structure of the observed data, since a separate
modeling of amplitude and phase variability will be more natural, parsimonious and efficient.

As another, more practical, example we consider the height evolution of subjects in the famous
Berkeley growth data1. Fig. 8 shows the time derivatives of the growth curves, for female and male
subjects, to highlight periods of faster growth. Although the growth rates associated with different
individuals are different, it is of great interest to discover broad common patterns underlying the
growth data, particularly after aligning functions using time warping. Thus, one would like an
automated technique for alignment of functions. Section 5 shows examples of data sets from the
other applications studied in this paper, including handwriting curves, gene expression signals, and
neuroscience spike trains.

In some applications it may be relatively easy to decide how to warp functions for a proper
alignments. For instance, there may be some temporal landmarks that have to be aligned across
observations. In that case the warping functions can be piecewise smooth (e.g. linear) functions
that ensure that the landmarks are strictly aligned. This situation requires a manual specification
of landmarks which can be a cumbersome process, especially for large datasets. In some other
cases there may be some natural models that can be adopted forthe warping functions. However,

1http://www.psych.mcgill.ca/faculty/ramsay/datasets.html
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in general, one does not have such landmarks or natural warping functions, and needs a compre-
hensive framework where the alignment of observed functions is performed automatically in an
unsupervised fashion. We seek a principled framework that will automatically estimate domain
warpings of the observed functions in order to optimally align them. The two main goals of this
paper are:

1. Joint Alignment and Comparison (Section 3): There are two distinct steps in the analysis
of elastic functions: (1) warpings or registration of functions and (2) their comparison. An
important requirement in our framework is that these two processes, warping and compar-
ison, are performed in a single, unified framework, i.e. under a single objective function,
as for example was done in [11]. A fundamental idea is to avoidtreating warping as apre-
processingstep where the individual functions are warped according toan objective function
that is different from the metric used to compare them.

2. Signal Estimation Under Random Scales, Translations, and Warpings (Section 4): An
application of this framework is in estimation of a signal under the following observation
model. Letfi be an observation of a functiong under random scaling, random vertical
translation, and random warping, and we seek an estimator for g using{fi, i = 1, 2, . . . , n}.
We will use this estimator for performing the alignment mentioned in the previous item.

Before we introduce our framework that achieves these goals, we present a brief summary of some
past methods, and their strengths and limitations.

1.1 Past Techniques

There exists a large literature on statistical analysis of functions, in part due to the pioneering
efforts of Ramsay and Silverman [16], Kneip and Gasser [10],and several others [14, 22]. When
restricting to the analysis of elastic functions, the literature is relatively recent and limited [15, 5,
14, 22, 11]. There are basically two categories of the past papers on this subject. One set treats the
problem of functional alignment or registration as a pre-processing step. Once the functions are
aligned, they are analyzed using the standard tools from functional analysis, e.g the cross-sectional
mean and covariance computation and PCA. The second set of papers study both comparison and
analysis jointly, using energy-minimization procedures.Although the latter generally provides
better results due to a joint solution, the choice of the energy function deserves careful scrutiny.

As an example for the first set, in [14], the authors use warping functions that are convex com-

binations of functions of the type:γi(t) =

(

∫ t

0
|f(ν)

i (s)|pds
∫ 1

0
|f(ν)

i (s)|pds

)1/p

, whereν andp are two parameters,

with the recommended values beingν = 0 andp = 1. Then, the warped functions{fi ◦ γi} are
analyzed using standard statistical techniques under the Hilbert structure of square-intergable func-
tions. Similarly, James [6] uses moment-based matching foraligning functions, followed up by the
standard FPCA. The main problem with this approach is that the objective function for alignment
is unrelated to the metric for comparing aligned functions.The two steps are conceptually disjoint
and a change in the objective function for alignment may change the subsequent results.

We introduce some additional notation. LetΓ be the set of orientation-preserving diffeomor-
phisms of the unit interval[0, 1]: Γ = {γ : [0, 1] → [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeo}.
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Elements ofΓ form a group, i.e. (1) for anyγ1, γ2 ∈ Γ, their compositionγ1 ◦ γ2 ∈ Γ; and (2) for
anyγ ∈ Γ, its inverseγ−1 ∈ Γ, where the identity is the self-mappingγid(t) = t. The role ofΓ
in elastic function analysis is paramount. Why? For a function f ∈ F , whereF is an appropriate
space of functions on[0, 1] (defined later), the compositionf ◦ γ denotes there-parameterization
or a domain warpingof f usingγ. Therefore,Γ is also referred to as the re-parameterization or
the warping group. In this paper we will use‖f‖ to denote(

∫ 1
0 |f(t)|2dt)1/2, i.e., the standardL2

norm on the space of real-valued functions on[0, 1]. A majority of past methods study the problem
of registration and comparisons of functions, either separately or jointly, by solving:

inf
γ∈Γ

‖f1 − (f2 ◦ γ)‖ (1)

The use of this quantity is problematic because it is not symmetric. The optimal alignment off1

to f2 gives a different minimum, in general, when compared to the optimal alignment off2 to f1.
One can enforce a symmetry in Eqn. 1 using a double optimization, i.e. by seeking a solution to
the probleminf(γ1,γ2)∈Γ×Γ ‖(f1 ◦ γ1) − (f2 ◦ γ2)‖. However, this is a degenerate problem. Another
way of ensuring symmetry is to solve:infγ∈Γ ‖f1 − (f2 ◦ γ)‖ + infγ∈Γ ‖f2 − (f1 ◦ γ)‖. While this
is symmetric, it still does not lead to a proper distance on the space of functions.

The basic quantity in Eqn. 1 is commonly used to form objective functions of the type:

Eλ,i[ν] = inf
γi∈Γ

(

‖(fi ◦ γi) − ν‖2 + λ R(γi)
)

, i = 1, 2, . . . , n , (2)

whereR is a smoothness penalty on theγis to keep them close toγid(t) = t. The optimalγ∗
i are

then used to align thefis, followed by a cross-sectional analysis of the aligned functions. This
procedure, once again, suffers from the problem of separation between the registration and the
comparison steps. Another issue here is: What shouldν be? It seems natural to use the cross-
sectional mean offis but that choice is problematic both empirically and conceptually (more on
that later). Tang and Müller [22] useν = fj , obtain a set of pairwise warping functionsγij for each
i, and average them to form the warping function forfi. Kneip and Ramsay [11] take a template-
based approach and use a differentν for eachi, given byνi =

∑p
j=1 c

i
jξj. Here, theξjs are certain

basis elements that are also estimated from the data and, in turn, relate to the principal components
of the observations. Although this formulation has the niceproperty of solving for the registration
and the principal components simultaneously, it implicitly uses the quantity in Eqn. 1 to compute
the residuals.

1.2 Proposed Approach

We are going to take a differential geometric approach that provides a natural and fundamental
framework for alignment of elastic functions. This approach is motivated by recent developments
in shape analysis of parametrized curves [27, 21]. The use ofelastic functions for analysis of
variance and clustering has also been studied in [9] and for analysis of spike train data in [26].

It is problematic to use the cross-sectional mean of{fi} in Eqn. 2 for finding optimal align-
ments. To understand this issue, consider the following estimation problem. Letfi = ci(g◦γi)+ei,
i = 1, 2, . . . , n, represent observations of a signalg ∈ F under random warpingsγi ∈ Γ, scalings
ci ∈ R+ and vertical translationsei ∈ R, and we seek an estimator forg given{fi}. Note that esti-
mation ofg is equivalent to the alignment offis since, giveng, one can estimateγis and compute

4



fi ◦ γ−1
i to align them. So, we focus on deriving an estimator forg. In this context, it is easy to

see that the cross-sectional mean for{fi} is not an estimator ofg. In fact, we claim that to derive
an estimator forg it is more natural to work in the quotient spaceF/Γ rather thanF itself. This
quotient space is the set of orbits of the types[f ] = {(f ◦γ)|γ ∈ Γ}. We will show that the Karcher
mean of the orbits{[fi]} is a consistent estimator of the orbit ofg and that a specific element of
that mean orbit, selected using a pre-determined criterion, is a consistent estimator ofg.

Now, the definition of Karcher mean requires a proper distance onF/Γ. The quantity in Eqn.
1 cannot be used since‖f1 − f2‖ 6= ‖(f1 ◦ γ) − (f2 ◦ γ)‖ for generalf1, f2 ∈ F andγ ∈ Γ.
(This point was also noted by Vantini [23] although the solution proposed [18], restricting to only
the linear warpings, is not for general use.) Instead, we usedFR, the distance resulting from the
Fisher-Rao Riemannian metric, since the action ofΓ is by isometries under that metric. That
is, dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ), for all f1, f2, andγ. Fisher-Rao Riemannian metric was
introduced in 1945 by C. R. Rao [17] where he used the Fisher information matrix to compare
different probability distributions. This metric was studied rigorously in the 70s and 80s by Amari
[1], Efron [4], Kass [8], Cencov [3], and others. While thoseearlier efforts were focused on
analyzing parametric families, we use thenonparametricversion of the Fisher-Rao Riemannian
metric in this paper. (This nonparametric form has found an important use in shape analysis of
curves [21].) An important attribute of this metric is that it is preserved under warping, and Cencov
[3] showed that it is the only metric with this attribute. It is difficult to compute the distancedFR
directly under this metric but Bhattacharya [2] introduceda square-root representation that greatly
simplifies this calculation. We will modify this square-root representations for use with more
general functions.

2 Function Representation and Metric

In order to develop a natural and efficient framework for aligning elastic functions, we introduce a
square-root representation of functions.

2.1 Representation Space of Functions

Let f be a real-valued function on the interval[0, 1]. We are going to restrict to thosef that are
absolutely continuous on[0, 1]; let F denote the set of all such functions. We define a mapping:

Q : R → R according to:Q(x) ≡
{

x/
√

|x| if |x| 6= 0

0 otherwise
. Note thatQ is a continuous map. For

the purpose of studying the functionf , we will represent it using a square-root velocity function

(SRVF) defined asq : [0, 1] → R, whereq(t) ≡ Q(ḟ(t)) = ḟ(t)/
√

|ḟ(t)|. This representation
includes those functions whose parameterization can become singular in the analysis. It can be
shown that if the functionf is absolutely continuous, then the resulting SRVF is squareintegrable.
Thus, we will defineL2([0, 1],R) (or simplyL2) to be the set of all SRVFs. For everyq ∈ L

2

there exists a functionf (unique up to a constant, or a vertical translation) such that the givenq
is the SRVF of thatf . In fact, this function can be obtained precisely using the equation:f(t) =
f(0) +

∫ t
0 q(s)|q(s)|ds. Thus, the representationf ⇔ (f(0), q) is invertible.

If we warp a functionf by γ, how does its SRVF change? The SRVF off ◦ γ is given by:

5



q̃(t) =
d
dt

(f◦γ)(t)√
| d

dt
(f◦γ)(t)|

= (q ◦ γ)(t)
√

γ̇(t). We will denote this transformation by(q, γ) = (q ◦ γ)
√
γ̇.

The motivations for using SRVF for functional analysis are many and to understand these merits
we first present the relevant metric.

2.2 Elastic Riemannian Metric

In this paper we will use the Fisher-Rao Riemannian metric for analyzing functions. We remind
the reader that a Riemmanian metric is a smoothly-varying inner product defined on the tangent
spaces of the manifold.

Definition 1 For anyf ∈ F andv1, v2 ∈ Tf(F), whereTf (F) is the tangent space toF at f , the
Fisher-Rao Riemannian metric is defined as the inner product:

〈〈v1, v2〉〉f =
1

4

∫ 1

0
v̇1(t)v̇2(t)

1

|ḟ(t)|
dt . (3)

In case we are dealing only with functions such thatḟ(t) ≥ 0, e.g. cumulative distribution func-
tions or growth curves, then we obtain a more classical version of the Fisher-Rao metric. Thus, the
above definition is a more general form of the Fisher-Rao metric, the one that deals with signed
functions instead of just density functions.

This metric has many fundamental advantages, including thefact that it is the only Riemannian
metric that is invariant to the domain warping [3], and has played an important role in information
geometry. This metric is somewhat complicated since it changes from point to point onF , and it is
not straightforward to derive equations for computing geodesics inF . For instance, the geodesic
distance between any two pointsf1, f2 ∈ F is based on finding a geodesic path between them
under the F-R metric. This minimization is non-trivial and only some numerical algorithms are
known to attempt this problem. Once we find a geodesic path connectingf1 and f2 in F , its
length becomes the geodesic distancedFR. However, a small transformation provide an enormous
simplification of this task. This motivates the use of SRVFs for representing and aligning elastic
functions.

Lemma 1 Under the SRVF representation, the Fisher-Rao Riemannian metric becomes the stan-
dardL2 metric.

Proof is given in the appendix. This result can be used to compute the distancedFR between any
two functions as follows. Simply compute theL2 distance between the corresponding SRVFs and
setdFR to that value:dFR(f1, f2) = ‖q1 − q2‖. The next question is: What is the effect of warping
ondFR? This is answered by the following result.

Lemma 2 For any two SRVFsq1, q2 ∈ L
2 andγ ∈ Γ, ‖(q1, γ) − (q2, γ)‖ = ‖q1 − q2‖.

See the appendix for the proof. In the case of functions with the non-negativity constraint (that is,
ḟ ≥ 0), this transformation was used by Bhattacharya [2].
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Table 1. Bijective Relationship Between Function SpaceF and SRVF spaceL2

Item Function SpaceF SRVF SpaceL2

Representation f (q, f(0))

Transformation f(t) = f(0) +
∫ t

0 q(s)|q(s)|ds q(t) = ḟ(t)/
√

|ḟ(t)|
Metric Fisher-Rao Metric L

2 Metric
〈〈v1, v2〉〉F =

∫ 1
0 v̇1(t)v̇2(t) 1

|ḟ(t)|dt 〈w1, w2〉 =
∫ 1

0 w1(t)w2(t)dt

Distance dFR(f1, f2) ‖q1 − q2‖
Isometry dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ) ‖q1 − q2‖ = ‖(q1, γ) − (q2, γ)‖
Geodesic Numerical Solution Straight Line

Elastic Distance d = infγ∈Γ dFR(f1, f2 ◦ γ) d = infγ∈Γ (‖q1 − (q2 ◦ γ)
√
γ̇)‖) in S

betweenf1 andf2 Solved Using Dynamic Programming

2.3 Elastic Distance on Quotient Space

So far we have defined the Fisher-Rao distance onF and have found a simple way to compute it
using SRVFs. But we have not involved any warping function inthe distance calculation and thus
it represents a non-elastic comparison of functions. The next step is to define an elastic distance
between functions as follows. The orbit of an SRVFq ∈ L

2 is given by:[q] = closure{(q, γ)|γ ∈
Γ} = closure{(q ◦ γ)

√
γ̇)|γ ∈ Γ}. It is the set of SRVFs associated with all the warpings of a

function, and their limit points. Any two elements of[q] represent functions which have the same
y variability but differentx variability. LetS denote the set of all such orbits. To compare any two
orbits we need a metric onS. We will use the Fisher-Rao distance to induce a distance between
orbits, and we can do that only because under this the action of Γ is by isometries.

Definition 2 For any two functionsf1, f2 ∈ F and the corresponding SRVFs,q1, q2 ∈ L
2, we

define the elastic distanced on the quotient spaceS to be:d([q1], [q2]) = infγ∈Γ ‖q1 − (q2, γ)‖.

Note that the distanced between a function and its domain-warped version is zero. However, it can
be shown that if two SRVFs belong to different orbits, then the distance between them is non-zero.
Thus, this distanced is a proper distance (i.e. it satisfies non-negativity, symmetry, and the triangle
inequality) onS but not onL2 itself, where it is only a pseudo-distance.

Table 1 provides a quick summary of relationships between the Fisher-Rao metric andF on
one hand, and theL2 metric and the space of SRVFs on the other.

3 Karcher Mean and Function Alignment

An important goal of this warping framework is to align the functions so as to improve the matching
of features (peaks and valleys) across functions. A naturalidea is to compute a cross-sectional
mean of the given functions and then align the given functions to this mean template. The problem
is that we do not have a proper distance function onL

2, invariant to time warpings, that can be
used to define a mean. But we have a distance function on the quotient spaceS, so we will use a
mean on that space to derive a template for function alignment. We will do so in two steps: First,
for a given collection of functionsf1, f2, . . . , fn, and their SRVFsq1, q2, . . . , qn, we compute the

7



mean of the corresponding orbits[q1], [q2], . . . , [qn] in the quotient spaceS; we will call it [µ]n.
Next, we compute an appropriate element of this mean orbit todefine a templateµn in L

2. Then,
the alignment of individual functions comes from warping their SRVFs to match the templateµn
under the elastic distance.

We remind the reader that ifdist denotes the geodesic distance between points on a Riemannian
manifoldM , and{pi, i = 1, 2, . . . , n} is a collection of points onM , then a local minimizer of
the cost functionp 7→ ∑n

i=1 dist(p, pi)
2 is defined as the Karcher mean of those points [7]. It is

also known by other names such as the intrinsic mean or the Fr´echet mean. The algorithm for
computing a Karcher mean is based on gradients and has becomea standard procedure in statistics
on nonlinear manifolds (see, for example [12]). We will not present the general procedure but will
describe its use in our problem.

3.1 Karcher Mean of Points inΓ

In this section we will define a Karcher mean of a set of warpingfunctions{γi}, under the Fisher-
Rao metric, using the differential geometry ofΓ. Analysis onΓ is not straightforward because
it is a nonlinear manifold. To understand its geometry, we will represent an elementγ ∈ Γ by
the square-root of its derivativeψ =

√
γ̇. Note that this is the same as the SRVF defined earlier

for elements ofF , except thaṫγ > 0 here. The identity elementγid maps to a constant function
with valueψid(t) = 1. Sinceγ(0) = 0, the mapping fromγ to ψ is a bijection and one can
reconstructγ from ψ usingγ(t) =

∫ t
0 ψ(s)2ds. An important advantage of this transformation is

that since‖ψ‖2 =
∫ 1

0 ψ(t)2dt =
∫ 1

0 γ̇(t)dt = γ(1) − γ(0) = 1, the set of all suchψs isS∞, the
unit sphere in the Hilbert spaceL2. In other words, the square-root representation simplifiesthe
complicated geometry ofΓ to the unit sphere. Recall that the distance between any two points
on the unit sphere, under the Euclidean metric, is simply thelength of the shortest arc of a great
circle connecting them on the sphere. Using Lemma 1, the Fisher-Rao distance between any two
warping functions is found to bedFR(γ1, γ2) = cos−1(

∫ 1
0

√

γ̇1(t)
√

γ̇2(t)dt). Now that we have a
proper distance onΓ, we can define a Karcher mean as follows.

Definition 3 For a given set of warping functionsγ1, γ2, . . . , γn ∈ Γ, define their Karcher mean
to beγ̄n = argminγ∈Γ

∑n
i=1 dFR(γ, γi)

2.

The search for this minimum is performed using Algorithm 1 asfollows:
Algorithm 1: Karcher Mean of {γi} Under dFR:
Let ψi =

√
γ̇i be the SRVFs for the given warping functions. Initializeµψ to be one of theψis or

usew/‖w‖, wherew = 1
n

∑n
i=1 ψi.

1. For i = 1, 2, . . . , n, compute the shooting vectorvi = θi

sin(θi)
(ψi − cos(θi)µψ), whereθi =

cos−1(
∫ 1

0 µψ(t)ψi(t)dt).

2. Compute the averagēv = 1
n

∑n
i=1 vi.

3. If ‖v̄‖ is small, then stop. Else, updateµψ 7→ cos(ǫ‖v̄‖)µψ + sin(ǫ‖v̄‖) v̄
‖v̄‖ , for a small step

sizeǫ > 0 and return to Step 1.

4. Compute the mean warping function usingγ̄n =
∫ t

0 µψ(s)2ds.
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3.2 Karcher Mean of Points inS = L
2/Γ

Next we consider the problem of finding means of points in the quotient spaceS. Since we already
have a well-defined distance onS (given in Definition 2), the definition of the Karcher mean
follows.

Definition 4 Define the Karcher mean[µ]n of the given SRVF orbits{[qi]} in the spaceS as a
local minimum of the sum of squares of elastic distances:

[µ]n = argmin
[q]∈S

n
∑

i=1

d([q], [qi])
2 . (4)

We emphasize that the Karcher mean[µ]n is actually an orbit of functions, rather than a function.
That is, ifµ0 is a minimizer of the cost function in Eqn. 4, then so is(µ0, γ) for anyγ. The full
algorithm for computing the Karcher mean inS is given next.

Algorithm 2: Karcher Mean of {[qi]} in S

1. Initialization Step: Selectµ = qj , wherej is any index inargmin1≤i≤n ||qi − 1
n

∑n
k=1 qk||.

2. For eachqi find γ∗
i by solving: γ∗

i = argminγ∈Γ ‖µ − (qi ◦ γ)
√
γ̇‖. The solution to this

optimization comes from a dynamic programming algorithm. In cases where a solution does
not exist inΓ, the dynamic programming algorithm still provides an approximation inΓ.

3. Compute the aligned SRVFs usingq̃i 7→ (qi ◦ γ∗
i )
√

γ̇∗
i .

4. If the increment‖ 1
n

∑n
i=1 q̃i − µ‖ is small, then stop. Else, update the mean usingµ 7→

1
n

∑n
i=1 q̃i and return to step 2.

The iterative update in Steps 2-4 is based on the gradient of the cost function given in Eqn. 4.
Although we prove its convergence next, its convergence to aglobal minimum is not guaranteed.
Denote the estimated mean in thekth iteration byµ(k). In thekth iteration, letγ(k)

i denote the

optimal domain warping fromqi toµ(k) and letq̃(k)
i = (qi◦γ(k)

i )
√

γ̇
(k)
i . Then,

∑n
i=1 d([µ(k)], [qi])

2 =
∑n
i=1 ‖µ(k) − q̃

(k)
i ‖2 ≥ ∑n

i=1 ‖µ(k+1) − q̃
(k)
i ‖2 ≥ ∑n

i=1 d([µ(k+1)], [qi])
2. Thus, the cost function

decreases iteratively and as zero is a natural lower bound,
∑n
i=1 d([µ(k)], [qi])

2 will always converge.

3.3 Center of an Orbit

The remaining task is to find a particular element of this meanorbit so that it can be used as a
template to align the given functions. Towards this purpose, we will define the center of an orbit
using a condition similar to past papers, see e.g. [22], which says that the mean of the warping
functions should be the identity. A major difference here isthat we use the Karcher mean and not
the cross-sectional mean as was done in the past.

Definition 5 For a given set of SRVFsq1, q2, . . . , qn andq, define an element̃q of [q] as the center
of [q] with respect to the set{qi} if the warping functions{γi}, whereγi = argminγ∈Γ ‖q̃−(qi, γ)‖,
have the Karcher meanγid.
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Figure 2: Finding center of the orbit[q] with respect to the set{qi}.

We will prove the existence of such an element by construction.
Algorithm 3: Finding Center of an Orbit : WLOG, letq be any element of the orbit[q].

1. For eachqi find γi by solving:γi = argminγ∈Γ (‖q − (qi ◦ γ)
√
γ̇‖).

2. Compute the mean̄γn of all {γi} using Algorithm 1. The center of[q] wrt {qi} is given by
q̃ = (q, γ̄−1

n ).

This algorithm is depicted pictorially in Fig. 2 We need to show thatq̃ resulting from Algorithm
3 satisfies the mean condition in Definition 5. Note thatγi is chosen to minimize‖q − (qi, γ)‖,
and also that‖q̃ − (qi, γ)‖ = ‖(q, γ̄−1

n ) − (qi, γ)‖ = ‖q − (qi, γ ◦ γ̄n)‖. Therefore,γ∗
i = γi ◦ γ̄−1

n

minimizes‖q̃ − (qi, γ)‖. That is,γ∗
i is a warping that alignsqi to q̃. To verify the Karcher mean

of γ∗
i , we compute the sum of squared distances

∑n
i=1 dFR(γ, γ∗

i )
2 =

∑n
i=1 dFR(γ, γi ◦ γ̄−1

n )2 =
∑n
i=1 dFR(γ ◦ γ̄n, γi)2. As γ̄n is already the mean ofγi, this sum of squares is minimized when

γ = γid. That is, the mean ofγ∗
i is γid.

We will apply this setup in our problem by finding the center of[µ]n with respect to the given
SRVFs{qi}.

3.4 Complete Alignment Algorithm

Now we can utilize the three algorithms, Algorithm 1-3, to present the full procedure for finding a
templateµn that is used to align the individual functions.
Complete Alignment Algorithm : Given a set of functionsf1, f2, . . . fn on [0, 1], let q1, q2, . . . , qn
denote their SRVFs, respectively.

1. Computer the Karcher mean of[q1], [q2], . . . , [qn] in S using Algorithm 2. Denote it by[µ]n.

2. Find the center of[µ]n wrt {qi} using Algorithm 3; call itµn. (Note that this algorithm
requires a step for computing the Karcher mean of warping functions using Algorithm 1).

3. Fori = 1, 2, . . . , n, find γ∗
i by solving:γ∗

i = argminγ∈Γ ‖µn − (qi, γ)‖.

4. Compute the aligned SRVFs̃qi = (qi, γ
∗
i ) and aligned functions̃fi = fi ◦ γ∗

i .

5. Return the templateµn, the warping functions{γ∗
i }, and the aligned functions{f̃i}.
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Figure 3: Results on simulated data set 1.

3.5 Simulation Results

To illustrate this method we use a number of simulated datasets. Although our framework is
developed for functions on[0, 1], it can easily be adapted to an arbitrary interval using a linear
transformation.

1. Simulated Data 1: As the first example, we study a set of simulated functions used previ-
ously in [11]. The individual functions are given by:yi(t) = zi,1e

−(t−1.5)2/2 +zi,2e
−(t+1.5)2/2,

i = 1, 2, . . . , 21, wherezi,1 andzi,2 are i.i.d normal with mean one and standard deviation
0.25. Each of these functions is then warped according to:γi(t) = 6( e

ai(t+3)/6−1
eai−1

) − 3 if
ai 6= 0, otherwiseγi = γid, whereai are equally spaced between−1 and1, and the observed
functions are computed usingfi(t) = yi(γi(t)). A set of 21 such functions forms the origi-
nal data and is shown in the left panel of Fig. 3, and the remaining panels show the results
of our method. The second panel presents the resulting aligned functions{f̃i} and the third
panel plots the corresponding warping functions{γ∗

i }. The remaining panels show the cross-
sectional mean and mean± standard deviations of{fi} and{f̃i}, respectively. The plot of
{f̃i} shows a tighter alignment of functions with sharper peaks and valleys. The two peaks
are at−1.5 and1.5 which is exactly what we expect. This means that the effects of warping
generated by theγis have been completely removed and only the randomness from theyis
remains. Also, the plot of mean± standard deviation shows a thinning of bands around the
mean due to the alignment.

2. Simulated Data 2: As a simple test of our method we analyze a set of functions with no
underlying phase variability. To do this, we take{yi}, as above, but this time we do not
warp them at all; these functions are shown in the left panel of Figure 4. Note that, by
construction, the two peaks in these functions are always aligned, only their amplitudes are
different. There is a slight misalignment in the valleys between the two peaks due to differing
mixture weights. The result of the alignment process is shown in the remaining panels. The
second panel shows that the aligned functions are very similar to the original data, except
for a better alignment of the valleys. The next panel shows the estimated warping functions
which are very close to the identity. The last panel shows themeans of the original and the
aligned functions and they are practically identical.

3. Simulated Data 3: In this case we take a family of Gaussian kernel functions with the
same shape but with significant phase variability, in the form of horizontal shifts, and minor
amplitude variation. Figure 5 shows the original29 functions{fi}, the aligned functions
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Figure 4: Results on simulated data 2.
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Figure 5: Results on simulated data 3.

{f̃i}, the warping functions{γ∗
i }, and the before-and-after cross sectional mean and standard

deviations. Once again we notice a tighter alignment of functions with only minor variability
left in {f̃i} reflecting the differing heights in the original data. The remaining two plots show
that mean± standard deviation of the aligned data is far more compact than the raw data.

4. Simulated Data 4: In this case we take a family of multimodal wave functions with the
same shape but different phase variations. The individual functions are defined on[0, 9]
and given by:fi(t) = (1 − (γi(t)/9 − 0.5)2) sin(πγi(t)), i = 1, 2, . . . , 9, with the warping
functionsγi(t) = 9( e

ait/9−1
eai−1

) if ai 6= 0, otherwiseγi = γid. Hereai are equally spaced
between−1.5 and1.5 with step size0.375. Figure 6 shows the original9 functions{fi}, the
aligned functions{f̃i} (clearly showing the common shape), the warping functions{γ∗

i },
and the before-and-after cross sectional mean and standarddeviations, again showing the
huge difference in apparent amplitude variation between aligned and unaligned functions. In
particular, with only the phase variability in the data, ourmethod has a perfect alignment of
given functions.
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Figure 6: Results on simulated data 4.
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4 Signal Estimation and Estimator Consistency

In this section we justify the proposed framework by posing and solving a model-based estimation
of alignment. Consider an observation modelfi = ci(g ◦ γi) + ei, i = 1, . . . , n, whereg is
an unknown signal, andci ∈ R+, γi ∈ Γ andei ∈ F are random. We will concentrate on a
simpler problem where the observation noiseei is set to a constant and, given the observations
{fi}, the goal is to estimate the signalg or, equivalently, the warping functions{γi}. This or
related problems have been considered previously by several papers, including [25, 15], but we
are not aware of any formal statistical solution. Here we show that the centerµn, resulting from
the complete alignment algorithm, leads to a consistent estimator ofg. The proofs of Lemmas and
Corollary are given in the appendix.

Theorem 1 For a functiong, consider a sequence of functionsfi(t) = cig(γi(t)) + ei, whereci
is a positive constant,ei is a constant, andγi is a time warping,i = 1, · · · , n. Denote byqg
and qi the SRVFs ofg andfi, respectively, and let̄s = 1

n

∑n
i=1

√
ci. Then, the Karcher mean of

{[qi], i = 1, 2, . . . , n} in S is s̄[qg]. That is,

[µ]n ≡ argmin
[q]

(

N
∑

i=1

d2([qi], [q])

)

= s̄[qg] = s̄{(qg, γ), γ ∈ Γ} .

We will prove this theorem in two steps. First we establish the following useful result.

Lemma 3 For any q1, q2 ∈ L
2 and a constantc > 0, we haveargminγ∈Γ ‖q1 − (q2, γ)‖ =

argminγ∈Γ ‖cq1 − (q2, γ)‖.

Corollary 1 For any functionq ∈ L
2 and constantc > 0, we haveγid ∈ argminγ∈Γ ‖cq− (q, γ)‖.

Moreover, if the set{t ∈ [0, 1]|q(t) = 0} has (Lebesgue) measure 0,γid = argminγ∈Γ ‖cq−(q, γ)‖.

Now we get back to the proof of Theorem 1. The SRVF of the functionfi = ci(g ◦γi) + ei is given
by qi =

√
ci(qg, γi), i = 1, · · · , n. For anyq, we get

d([qi], [q]) = d([
√
ci(qg, γi)], [q]) = inf

γ
‖√

ci(qg, γi) − (q, γ)‖

= inf
γ

‖√
ciqg − (q, γ ◦ γ−1

i )‖ = inf
γ

‖√
ciqg − (q, γ)‖ = d([

√
ciqg], [q]).

In the last line, the first equality is based on the isometry ofthe group action ofΓ onL
2 and the

second equality is based on the group structure ofΓ.
For any givenq, letγ∗ ∈ argminγ∈Γ ‖qg−(q, γ)‖. Then, using Lemma 3,γ∗ ∈ argminγ∈Γ ‖√

ciqg−
(q, γ)‖. Therefore,

n
∑

i=1

d2([qi], [q]) =
n
∑

i=1

d2([
√
ciqg], [q]) =

n
∑

i=1

‖√
ciqg − (q, γ∗)‖2 ≥

n
∑

i=1

‖√
ciqg − s̄qg‖2 .

The last inequality comes from the fact thats̄qg is simply the mean of{√
ciqg} in L

2 space. The
equality holds if and only if(q, γ∗) = s̄qg or q = (s̄qg, γ

∗−1).
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Actually, for any element of[s̄qg], say(s̄qg, γ) for anyγ ∈ Γ, we have

n
∑

i=1

d2([qi], [(s̄qg, γ)]) =
n
∑

i=1

d2([
√
ciqg], [s̄qg]) =

n
∑

i=1

‖√
ciqg − s̄qg‖2 .

Therefore,{(s̄qg, γ)|γ ∈ Γ} is the unique solution to the Karcher mean[µ]n ≡ argmin[q]

∑n
i=1 d

2([qi], [q]). �

Next, we present a simple fact about the Karcher mean of warping functions, where the Karcher
mean is given in Definition 3.

Lemma 4 Given a set{γi ∈ Γ|i = 1, ..., n} and aγ0 ∈ Γ, if the Karcher mean of{γi} is γ̄, then
the Karcher mean of{γi ◦ γ0} is γ̄ ◦ γ0.

Theorem 1 ensures that[µ]n belongs to the orbit of[qg] (up to a scale factor) but we are inter-
ested in estimatingg itself, rather than its orbit. Since we can writeg ◦ γi as(g ◦ γa) ◦ (γ−1

a ◦ γi),
for anyγa ∈ Γ, the functiong is not identifiable unless we impose an additional constraint on γi.
The same goes for the random variablesci andei. Under the assumption that the population means
of γ−1

i , ci, andei are known, we will show in two steps that Algorithm 3, that finds the center of
the orbit[µ]n, results in a consistent estimator forg.

Theorem 2 Under the same conditions as in Theorem 1, letµ = (s̄qg, γ0), for γ0 ∈ Γ, denote an
arbitrary element of the Karcher mean class[µ]n = s̄[qg]. Assume that the set{t ∈ [0, 1]|ġ(t) = 0}
has Lebesgue measure zero. If the population Karcher mean of{γ−1

i } is γid, then the center of the
orbit [µ]n, denoted byµn, satisfieslimn→∞ µn = E(s̄)qg.

Proof: In Algorithm 3, we first computẽγi = argminγ ‖(qi, γ)−µ‖ = argminγ ‖(
√
ci(qg, γi), γ)−

(s̄qg, γ0)‖ = argminγ ‖(
√
ciqg, γi ◦γ ◦γ−1

0 )− s̄qg‖. Since the set{t ∈ [0, 1]|ġ(t) = 0} has measure
zero, the set{t ∈ [0, 1]|qg(t) = 0} also has measure zero. Using Corollary 1, this above distance
is uniquely minimized whenγi ◦ γ̃i ◦ γ−1

0 = γid, or γ̃i = γ−1
i ◦ γ0. Denote the Karcher mean of

these warping functions{γ̃i} by γ̄n. Applying the inverse of this̄γn to µ, we getµn = (µ, γ̄−1
n ).

As n → ∞, the Karcher mean of̃γi converges to its population mean which, by Lemma 4, isγ0.
Thus,µn

n→∞−→ E(s̄)((qg, γ0), γ
−1
0 ) = E(s̄)qg. �

This result shows that asymptotically one can recover the SRVF of the original signal using
the Karcher mean of the SRVFs of the observed signals. Of course, one is really interested in the
signalg itself, rather than its SRVF. One can reconstructg using aligned functions{f̃i} generated
by the Alignment Algorithm in Section 3. As discussed above,we further assume the population
mean ofei is known.

Theorem 3 Under the same conditions as in Theorem 2, letγ∗
i = argminγ ‖(qi, γ) − µn‖ and

f̃i = fi◦γ∗
i . If we denotēc = 1

n

∑n
i=1 ci andē = 1

n

∑n
i=1 ei, thenlimn→∞

1
n

∑n
i=1 f̃i = E(c̄)g+E(ē).

Proof: In the proof for Theorem 2,̃γi = argminγ ‖(qi, γ) − µ‖ = argminγ ‖(qi, γ) − (µn, γ̄n)‖.
Henceγ∗

i = argminγ ‖(qi, γ) − µn‖ = γ̃i ◦ γ̄−1
n = γ−1

i ◦ γ0 ◦ γ̄−1
n . This implies thatf̃i = fi ◦ γ∗

i =

(ci(g ◦ γi) + ei) ◦ (γ−1
i ◦ γ0 ◦ γ̄−1

n ) = ci(g ◦ γ0 ◦ γ̄−1
n ) + ei. As γ̄n → γ0 whenn → ∞, we have

lim
n→∞

1

n

n
∑

i=1

f̃i = E(c̄)(g ◦ γ0) ◦ γ−1
0 + E(ē) = E(c̄)g + E(ē).
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Figure 7: Example of consistent estimation.

Illustration. We illustrate the estimation process using an example withg(t) = sin(5πt), t ∈ [0, 1].
We randomly generaten = 50 warping functions{γi} such that{γ−1

i } arei.i.d with meanγid. We
also generatei.i.d sequences{ci} and{ei} from the exponential distribution with mean 1 and the
standard normal distribution, respectively. Then we compute functionsfi = ci(g ◦ ri) + ei to form
the functional data. In Fig. 7, the first panel shows the function g, and the second panel shows the
data{fi}. The Alignment Algorithm in Section 3 results in the alignedfunctions{f̃i = fi◦γ∗

i } that
are are shown in the third panel in Fig. 7. Using Theorem 3, theoriginal signalg can be estimated
by ( 1

n

∑n
i=1 f̃i − E(ē))/E(c̄). In this case,E(c̄)) = 1, E(ē) = 0. This estimatedg (red) as well

as the trueg (blue) are shown in the fourth panel. Note that the estimate is reasonably successful
despite large variability in the raw data. Finally, we examine the performance of the estimator with
respect to the sample size, by performing this estimation for n equal to5, 10, 20, 30, and40. The
estimation errors, computed using theL

2 norm between estimatedg’s and the trueg, are shown in
the last panel. As expected from the earlier theoretical development, this estimate converges to the
trueg when the sample sizen grows large.

5 Experimental Evaluation of Function Alignment

In this section we take functional data from several application domains and analyze them using
the framework developed in this paper. Specifically, we willfocus on function alignment and
comparison of alignment performance with some previous methods on several datasets.

5.1 Applications on real data

We start with demonstrations of the proposed framework on some well known functional data.

1. Berkeley Growth Data: As a first example, we consider the Berkeley growth dataset for 54
female and 39 male subjects. For better illustrations, we have used the first derivatives of the
growth curves as the functions{fi} in our analysis. (In this case, since SRVF is based on the first
derivative off , we actually end up using the second derivatives of the growth functions.)

The results from our elastic function analysis on the femalegrowth curves are shown in Fig. 8
(left side). The top-left panel shows the original data. It can be seen from this plot that while the
growth spurts for different individuals occurs at slightlydifferent times, there are some underlying
patterns to be discovered. This can also be observed in the cross-sectional mean and mean± stan-
dard deviation plot in the bottom-left panel. In the second panel of the top row we show the aligned
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Figure 8: Analysis of growth data. Top: original data and thealigned functions. Bottom: the
corresponding cross-sectional mean and mean± standard deviations.

functionsf̃i(t). The panel below it, which shows the cross-sectional mean and mean± standard
deviation, exhibits a much tighter alignment of the functions and, in turn, an enhancement of peaks
and valleys in the aligned mean. In fact, this mean function suggests the presence of two growth
spurts, one between 3 and 4 years, and the other between 10 and12 years, on average. Similar
analysis is performed on the male growth curves and Fig. 8 (right) shows the results: the original
data (consisting of 39 derivatives of the original growth functions), the aligned functions̃fi(t), and
the corresponding cross-sectional means and means± standard deviations. The cross-sectional
mean functions also show a much tighter alignment of the functions and, in turn, an enhancement
of peaks and valleys in the aligned mean. This mean function suggests the presence of several
growth spurts, between: 3 and 5, 6 and 7, and 13 and 14 years, onaverage.

2. Handwriting Signature Data: As another example of the data that can be effectively modeled
using elastic functions, we consider some handwritten signatures and the acceleration functions
along the signature curves. This application was also considered in the paper [11]. Let(x(t), y(t))
denote thex andy coordinates of a signature traced as a function of timet. We study the accel-
eration functionsf(t) =

√

ẍ(t)2 + ÿ(t)2 for different instances of the signatures and study their
variability after alignment.

The left panel in Fig. 9 shows the 20 acceleration functions of 20 signatures that are used in our
analysis as{fi}. The corresponding cross-sectional mean and mean± standard deviations before
the alignment are shown in the next panel. The right two panels show the aligned functions̃fis
and the corresponding mean and mean± standard deviations after the alignment. A look at the
cross-sectional mean functions suggests that the aligned functions have much more exaggerated
peaks and valleys, resulting from the alignment of these features due to warping.

3. Neuroscience Spike Data: Time-dependent information is represented via sequencesof stereo-
typed spike waveforms in the nervous system. These waveformsequences (or spike trains) have
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Figure 9: Analysis of signature profiles.
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Figure 10: Analysis of spike train data.

been commonly looked as thelanguageof the brain and are the focus of much investigation. Before
we apply our framework, we need to convert the spike information into functional data. Assume
s(t) is a spike train with spike times0 < t1 < t2 < · · · < tM < T , where[0, 1] denotes the record-
ing time domain. That is,s(t) =

∑M
i=1 δ(t− ti), t ∈ [0, 1] , whereδ(·) is the Dirac delta function.

One typically smooths the spike trains to better capture thetime correlation between spikes. In this
paper we use a Gaussian kernelK(t) = e−t2/(2σ2)/(

√
2πσ), σ ≥ 0 (σ = 1ms here). That is, the

smoothed spike train isf(t) = (s ∗K)(t) =
∑M
i=1

1√
2πσ

e−(t−ti)2/(2σ2).
Figure 10 left panel shows one example of such smoothed spiketrains for 10 trials of one neu-

rons in the primary motor cortex of a Macaque monkey subject that was performing a squared-path
movement [26]. The next panel shows the cross-sectional mean and mean± standard deviation of
the functions in this neuron. The third panel shows{f̃i} where we see that the functions are well
aligned with more exaggerated peaks and valleys. The next panel shows the mean and mean±
standard deviation. Similar to the growth data and signature data, an increased amplitude variation
and decreased standard deviation are observed in this plot.
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Figure 11: Analysis of gene expression data.
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4. Gene Expression data: In this example, we consider temporal microarray gene expression
profiles. The time ordering for yeast cell-cycle genes was investigated in [13], and we use the
same data in this study. The expression level was measured during a period of 119 minutes for a
total of 612 fully-recorded genes. There are 5 clusters withrespect to phases in these continuous
function. In particular, 159 of these functions were known to be related to M phase regulation
of the yeast cell cycle. These 159 functions used here are same as those used in [13], and are
shown in the left panel in Fig. 11. Although, in general, geneexpression analysis has many goals
and problems, we use focus only on the subproblem of expression alignment as functional data.
The corresponding cross-sectional mean and mean± standard deviations before the alignment are
shown in the next panel. The right two panels show the alignedfunctionsf̃is and the corresponding
mean and mean± standard deviations after the alignment. Once again we find astrong alignment
of functional data with improved peaks and valleys.

5.2 Comparisons with other Methods

In this section we compare the results from our method to someof the past ideas where the soft-
ware is available publicly. While we have compared our framework with other published work in
conceptual terms earlier, in this section we focus on a purely empirical evaluation. In particular,
we utilize several evaluation criteria for comparing the alignments of functional data in the several
simulated and real datasets discussed in previous sections. The choice of an evaluation criteria is
not obvious, as there is no single criterion that has been used consistently by past authors for mea-
suring the quality of alignment. Thus, we use three criteriaso that together they provide a more
comprehensive evaluation. We will continue to usefi andf̃i, i = 1, ..., N , to denote the original
and the aligned functions, respectively.

1. Least Squares: A cross-validated measure of the level of synchronization[6]:

ls =
1

N

N
∑

i=1

∫

(f̃i(t) − 1
N−1

∑

j 6=i f̃j(t))
2dt

∫

(fi(t) − 1
N−1

∑

j 6=i fj(t))2dt
, (5)

lsmeasures the total cross-sectional variance of the alignedfunctions, relative to the original
value. The smaller the value ofls, the better the alignment is.

2. Pairwise Correlation: It measures pairwise correlation between functions:

pc =

∑

i6=j cc(f̃i(t), f̃j(t))
∑

i6=j cc(fi(t), fj(t))
, (6)

wherecc(f, g) is the pairwise Pearson’s correlation between functions. The larger the value
of pc, the better the alignment between functions in general.

3. Sobolev Least Squares: This time we compute the least squares using the first derivative of
the functions:

sls =

∑N
i=1

∫

( ˙̃fi(t) − 1
N

∑N
j=1

˙̃fj)
2dt

∑N
i=1

∫

(ḟi(t) − 1
N

∑N
j=1 ḟj)

2dt
, (7)

This criterion measures the total cross-sectional variance of the derivatives of the aligned
functions, relative to the original value, and is an alternative measure of the synchronization.
The smaller the value ofsls, the better synchronization the method achieves.
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Method AUTC [14]PACE [22]SMR [5]MBM [6] F-R
Software Matlab Matlab Matlab R Matlab

Gaussian kernel0.07sec 68sec 7.7sec 101sec 25sec
Bimodal 0.02sec 80sec 4.5sec 150sec 17sec

Growth-male 0.03sec 254sec 14.5sec 175sec 22sec
Signature 0.02sec 145sec 4.2sec 117sec 27sec

Table 1: Computational cost of the five methods some datasetsused in Fig. 12.

We compare our Fisher-Rao (F-R) method with the area under the curve (AUTC) method pre-
sented in [14], the Tang-Müller method [22] provided in principal analysis by conditional expec-
tation (PACE) package, the self-modeling registration (SMR) method presented in [5], and the
moment-based matching (MBM) technique presented in [6]. Fig. 12 summarizes the values of
(ls, pc, sls) for these five methods using 3 simulated and 4 real datasets. From the results, we
can see that the F-R method does uniformly well in functionalalignment under all the evaluation
metrics. We have found that thels criterion is sometimes misleading in the sense that a low value
can result even if the functions are not very well aligned. This is the case, for example, in the
male growth data under SMR method. Here thels = 0.45, while for our methodls = 0.64, even
though it is easy to see that latter has performed a better alignment. On the other hand, thesls
criterion seems to best correlate with a visual evaluation of the alignment. Sometimes all three
criteria fail to evaluate the alignment performance properly, especially when preserving the shapes
of the original signals are considered. This is the case in the first row of the figure where the AUTC
method has the same values ofls, pc, andsls as our method but shapes of the individual functions
have been significantly distorted. The wave function simulated data is the most challenging and no
other method except ours does a good job. Another point of evaluation is the number of parameters
used by different methods. While our method does not have anyparameter to choose, the other
methods involve choosing at least two but often more parameters which makes it challenging for
a user to apply them in different scenarios. The computational costs associated with the different
methods are given in Table 5.2. This table is for some of the datasets used in our experiments and
are representative of the general complexities of these methods.

6 Discussion

In this paper we have described a parameter-free approach for an automated alignment of given
functions using time warping. The basic idea is to use the Fisher-Rao Riemannian metric and the
resulting geodesic distance to define a proper distance, called elastic distance, between warping
orbits of functions. This distance is used to compute a Karcher mean of the orbits, and a template
is selected from the mean orbit using an additional condition that the mean of the warping functions
is identity. Then, individual functions are aligned to the template using the elastic distance and a
natural separation of the amplitude and phase variability of the function data is achieved. One
interesting application of this framework is in estimatinga signal observed under random time
warpings. We propose the Karcher mean template as an estimator of the original signal and prove
that it is a consistent estimator of the signal under some basic conditions on the random warping
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Original AUTC [14] PACE [22] SMR [5] MBM [6] F-R
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Figure 12: Empirical evaluation of five methods on 3 simulated datasets and 4 real datasets, with
the alignment performance computed using three criteria(ls, pc, sls). The best cases are shown in
boldface.
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functions.
Important future directions in this work include: (1) the development of joint statistical models

for the amplitude and phase components of the data, and (2) the use of such models for classifi-
cation of observed functions into pre-determined classes.While the techniques for modeling the
amplitude variability are quite common, e.g. using functional principal component analysis, the
corresponding ideas for the phase component are relativelylimited. The main reason is thatΓ is a
nonlinear manifold and one cannot directly apply FPCA here.We mention that some solutions to
this problem have been presented in [19, 20, 24] albeit in different contexts.
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A Proofs of Lemmas 1 and 2

Proof of Lemma 1: The mapping fromf to q is as follows: f(t)
d
dt→ ḟ(t)

Q→ q(t). For any

v ∈ Tf (F), the differential of this mapping is:v(t)
d
dt→ v̇(t)

Q
∗,f(t)→ w(t). To evaluate the expression

for w, we need the expression forQ∗. In casex > 0, we haveQ(x) =
√
x and its directional

derivative in the direction ofy ∈ R is y/(2
√
x). In casex < 0, we haveQ(x) = −√−x

and its directional derivative in the direction ofy ∈ R is y/(2
√

−x). Combining the two, the

directional derivative ofQ is Q∗,x(y) = y/(2
√

|x|). Now, to apply this result to our situation,
consider two tangent vectorsv1, v2 ∈ Tf (F), and define their mappings underQ∗ aswi(t) ≡
Q∗,ḟ(t)(v̇i(t)) = v̇i(t)/(2

√

|ḟ(t)|). Taking theL2 inner-product between the resulting tangent vec-
tors, we get:〈w1(t), w2(t)〉 =

∫ 1
0 w1(t)w2(t)dt = 1

4

∫ 1
0 v̇1(t)v̇2(t)

1
|ḟ(t)|dt. The RHS is compared

with Eqn. 3 to complete the proof.�
Proof of Lemma 2: For an arbitrary elementγ ∈ Γ, and q1, q2 ∈ L

2, we have: ‖(q1, γ) −
(q2, γ)‖2 =

∫ 1
0 (q1(γ(t))

√

γ̇(t) − q2(γ(t))
√

γ̇(t))2dt =
∫ 1

0 (q1(γ(t)) − q2(γ(t)))2γ̇(t)dt = ‖q1 −
q2‖2 .�

B Proofs of Lemma 3, Corollary 1, and Lemma 4

Proof of Lemma 3: Using the definition:‖cq1−(q2, γ)‖2 =
∫ 1

0 (cq1(t)−(q2, γ)(t))2dt = c2‖q1‖2+
‖q2‖2 − 2c

∫ 1
0 q1(t)(q2, γ)(t)dt. Note that we have used‖(q2, γ)‖2 = ‖q2‖2, an important fact, in

the last equality. Thus,

argmin
γ∈Γ

‖q1 − (q2, γ)‖ = argmax
γ∈Γ

∫ 1

0
q1(t)(q2, γ)(t)dt = argmin

γ∈Γ
‖cq1 − (q2, γ)‖. �

Proof of Corollary 1 : γid ∈ argminγ∈Γ ‖cq − (q, γ)‖ follows directly from Lemma 3 sinceγid
minimizes‖q− (q, γ)‖. Next we show that this minimizer is unique if the set{t ∈ [0, 1]|q(t) = 0}
has measure 0. In this case, if we defineF (t) =

∫ t
0 q(s)

2ds, thenF is a strictly increasing function
on [0, 1].

Using Lemma 3 again, we only need to show thatγid is the unique minimizer for‖q − (q, γ)‖.
For anyγ∗ ∈ Γ that minimizes‖q−(q, γ)‖, we have‖q−(q, γ∗)‖ = ‖q−(q, γid)‖ = 0. Therefore,

q(t) = q(γ∗(t))
√

γ̇∗(t) (almost everywhere), andF (t) =
∫ t

0 q(s)
2ds =

∫ t
0 q(γ

∗(s))2γ̇∗(s)ds =
∫ γ∗(t)

0 q(r)2dr = F (γ∗(t)). AsF is strictly increasing, we must haveγ∗ = γid. �

Proof of Lemma 4: First we observe that for any twoγ1, γ2 ∈ Γ, we havedFR(γ1, γ2) =
dFR(γ1 ◦ γ, γ2 ◦ γ) for any γ ∈ Γ. This comes directly from the isometry of the group action
of Γ on itself (proof is similar to that of Lemma 2). This implies that: argminγ

∑n
i=1 dFR(γi ◦

γ0, γ)2 = argminγ
∑n
i=1 dFR(γi, γ ◦ γ−1

0 )2. Let γ∗ denote the optimalγ in the last term. Since
argminγ

∑n
i=1 dFR(γi, γ)2 = γ̄, this implies thatγ∗ ◦ γ−1

0 = γ̄ or γ∗ = γ̄ ◦ γ0. �
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