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Abstract

We introduce a novel geometric framework for separatingphase and the amplitude
variability in functional data of the type frequently stadiin growth curve analysis. This
framework uses the Fisher-Rao Riemannian metric to dernueper distance on the quotient
space of functions modulo the time-warping group. A consehsquare-root velocity function
(SRVF) representation transforms the Fisher-Rao mettictime standard.? metric, simpli-
fying the computations. This distance is then used to defikaraher mean template and
warp the individual functions to align them with the Karclmeean template. The strength of
this framework is demonstrated by deriving a consisteritnegor of a signal observed under
random warping, scaling, and vertical translation. Theleas are demonstrated using both
simulated and real data from different application domathe Berkeley growth study, hand-
written signature curves, neuroscience spike trains, and gxpression signals. The proposed
method is empirically shown to be be superior in performatocseveral recently published
methods for functional alignment.

1 Introduction

The problem of statistical analysis in function spaces sdrtant in a wide variety of applications
arising in nearly every branch of science, ranging from spgeocessing to geology, biology and
chemistry. One can easily encounter a problem where then@igmns are real-valued functions
on an interval, and the goal is to perform their statisticellgsis. By statistical analysis we mean
to compare, align, average, and modetollection of such random observations. These problems
can, in principle, be addressed using tools from functi@mallysis, e.g. using the? Hilbert
structure of the function spaces, where one can coniptitistances, cross-sectional (i.e. point-
wise) means and variances, and principal components ofttherged functions [16]. However, a
serious challenge arises when functions are observed wiibility or domain warping along the

x axis. This warping may come either from an uncertainty inrtteasurement process, or may
simply denote an inherent variability in the underlyinggess itself that needs to be separated from
the variability along the axis (or the vertical axis), such as variations in matumtyhe context

of growth curves. As another possibility, the warping mayriisoduced as a tool to horizontally
align the observed functions, reduce their variance angase parsimony in the resulting model.
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Figure 1: Separation of phase and amplitude variabilityiimction data.

We will call these functionglastic functionskeeping in mind that we allow only the-axis (the
domain) to be warped and tlyevalues to change only consequentially.

Consider the set of functions shown in the top-left paneligf . These functions differ from
each other in both heights and locations of their peaks altelyga One would like to separate the
variability associated with the heights, called #mplitudevariability, from the variability associ-
ated with the locations, termed tpbasevariability. Extracting the amplitude variability impke
temporally aligning the given functions using nonlineandiwarping, with the result shown in the
bottom right. The corresponding set of warping functiomven in the top right, represent the
phase variability. The phase component can also be ilkestriay applying these warping func-
tions to the same function, also shown in the top right. Thenmeason for separating functional
data into these components is to better preserve the steusfithe observed data, since a separate
modeling of amplitude and phase variability will be moreunat, parsimonious and efficient.

As another, more practical, example we consider the heightigon of subjects in the famous
Berkeley growth dath Fig.[8 shows the time derivatives of the growth curves, éonéle and male
subjects, to highlight periods of faster growth. Althoubhk growth rates associated with different
individuals are different, it is of great interest to diseobroad common patterns underlying the
growth data, particularly after aligning functions usimge warping. Thus, one would like an
automated technique for alignment of functions. Sedfiohds examples of data sets from the
other applications studied in this paper, including hantiwg curves, gene expression signals, and
neuroscience spike trains.

In some applications it may be relatively easy to decide howarp functions for a proper
alignments. For instance, there may be some temporal latkdrttzat have to be aligned across
observations. In that case the warping functions can beepise smooth (e.g. linear) functions
that ensure that the landmarks are strictly aligned. Thiggon requires a manual specification
of landmarks which can be a cumbersome process, espeaallgrfe datasets. In some other
cases there may be some natural models that can be adoptkd fearping functions. However,
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in general, one does not have such landmarks or natural mgafpinctions, and needs a compre-
hensive framework where the alignment of observed funstisrperformed automatically in an
unsupervised fashion. We seek a principled framework thihiawtomatically estimate domain
warpings of the observed functions in order to optimallgmalthem. The two main goals of this
paper are:

1. Joint Alignment and Comparison (Section 3): There are two distinct steps in the analysis
of elastic functions: (1) warpings or registration of funas and (2) their comparison. An
important requirement in our framework is that these twacpsses, warping and compar-
ison, are performed in a single, unified framework, i.e. uralsingle objective function,
as for example was done in[11]. A fundamental idea is to atreidting warping as pre-
processingtep where the individual functions are warped accordirantobjective function
that is different from the metric used to compare them.

2. Signal Estimation Under Random Scales, Translations, and fpings (Section 4): An
application of this framework is in estimation of a signaden the following observation
model. Letf; be an observation of a functiopunder random scaling, random vertical
translation, and random warping, and we seek an estimatgrdeing{ f;,i = 1,2,...,n}.
We will use this estimator for performing the alignment mened in the previous item.

Before we introduce our framework that achieves these gaalpresent a brief summary of some
past methods, and their strengths and limitations.

1.1 Past Techniques

There exists a large literature on statistical analysisuotfions, in part due to the pioneering
efforts of Ramsay and Silverman [16], Kneip and Gasser [A04, several others [14,22]. When
restricting to the analysis of elastic functions, the &tere is relatively recent and limited 15, 5,
[14,[22]11]. There are basically two categories of the pgstiseon this subject. One set treats the
problem of functional alignment or registration as a preepssing step. Once the functions are
aligned, they are analyzed using the standard tools frowtifumal analysis, e.g the cross-sectional
mean and covariance computation and PCA. The second sepefgstudy both comparison and
analysis jointly, using energy-minimization proceduregdthough the latter generally provides
better results due to a joint solution, the choice of the gynainction deserves careful scrutiny.

As an example for the first set, in [14], the authors use warpinctions that are convex com-
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with the recommended values being= 0 andp = 1. Then, the warped functionsf; o +;} are
analyzed using standard statistical techniques underithertstructure of square-intergable func-
tions. Similarly, James [6] uses moment-based matchingligning functions, followed up by the
standard FPCA. The main problem with this approach is trebtijective function for alignment
is unrelated to the metric for comparing aligned functiofise two steps are conceptually disjoint
and a change in the objective function for alignment may gkeahe subsequent results.

We introduce some additional notation. Lebe the set of orientation-preserving diffeomor-
phisms of the unit intervgD, 1]: I' = {v : [0,1] — [0,1]]7(0) = 0, ~(1) = 1, ~ is adiffed}.

1/p
binations of functions of the typey;(t) = ( ) , Whererv andp are two parameters,



Elements ofl" form a group, i.e. (1) for anyy, v» € I, their compositiony; o v, € I'; and (2) for
anyy € I, its inversey™! € T', where the identity is the self-mapping;(t) = t. The role ofl’

in elastic function analysis is paramount. Why? For a funrcfi € 7, whereF is an appropriate
space of functions ofb, 1] (defined later), the compositigho v denotes thee-parameterization

or adomain warpingof f using~. Therefore ' is also referred to as the re-parameterization or
the warping group. In this paper we will ugé|| to denote( ;| f(¢)|?dt)/?, i.e., the standartl?
norm on the space of real-valued functiong@r]. A majority of past methods study the problem
of registration and comparisons of functions, either saedy or jointly, by solving:

,iYI€11£||f1— (faey) (1)

The use of this quantity is problematic because it is not sginm The optimal alignment of;
to f, gives a different minimum, in general, when compared to el alignment off; to f;.
One can enforce a symmetry in Eqn. 1 using a double optimizatie. by seeking a solution to
the probleminf ., ,yer«r ||(f1 ©71) — (f2 0 72)||. However, this is a degenerate problem. Another
way of ensuring symmetry is to solviif,cr || f1 — (f2 o v)|| + inf er || f2 — (f1 o )||. While this
is symmetric, it still does not lead to a proper distance asitace of functions.

The basic quantity in Egil] 1 is commonly used to form objechiinctions of the type:

Exilv] = inf, (Ifiom) = vl + X R(w)) » i=1,2,....m, )

whereR is a smoothness penalty on the to keep them close tg,(t) = ¢t. The optimah are
then used to align thé;s, followed by a cross-sectional analysis of the alignedttions. This
procedure, once again, suffers from the problem of separdtetween the registration and the
comparison steps. Another issue here is: What shoulé? It seems natural to use the cross-
sectional mean of;s but that choice is problematic both empirically and cotweaify (more on
that later). Tang and Miller [22] ugse= f;, obtain a set of pairwise warping functions for each

i, and average them to form the warping function forKneip and Ramsay [11] take a template-
based approach and use a differefior eachi, given byv; = >-"_, cjfj. Here, the;s are certain
basis elements that are also estimated from the data anotninrélate to the principal components
of the observations. Although this formulation has the miagperty of solving for the registration
and the principal components simultaneously, it implcitses the quantity in Eqfl] 1 to compute
the residuals.

1.2 Proposed Approach

We are going to take a differential geometric approach thatides a natural and fundamental
framework for alignment of elastic functions. This appio&motivated by recent developments
in shape analysis of parametrized curved [27, 21]. The usdastic functions for analysis of
variance and clustering has also been studield in [9] andfalyais of spike train data in [26].

It is problematic to use the cross-sectional mea# 6} in Eqn.[2 for finding optimal align-
ments. To understand this issue, consider the followirighasion problem. Leff; = ¢;(go~;)+e¢i,
i=1,2,...,n, represent observations of a siggat F under random warpingg < I, scalings
¢; € R, and vertical translations € R, and we seek an estimator fpgiven{f;}. Note that esti-
mation ofg is equivalent to the alignment gfs since, givery, one can estimatgs and compute
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f; ov; ! to align them. So, we focus on deriving an estimatorgoin this context, it is easy to
see that the cross-sectional mean{fés} is not an estimator of. In fact, we claim that to derive
an estimator fog it is more natural to work in the quotient spag¢[" rather thanF itself. This
quotient space is the set of orbits of the typ#s= {(fov)|y € I'}. We will show that the Karcher
mean of the orbitg|[f;]} is a consistent estimator of the orbit @¢fand that a specific element of
that mean orbit, selected using a pre-determined criteisanconsistent estimator of

Now, the definition of Karcher mean requires a proper distawcF /I'. The quantity in Eqgn.
[ cannot be used sindg — faf| # ||(fi o) — (f2 o ~y)|| for generalf,, fo € F and~y € T.
(This point was also noted by Vantini [23] although the siolufproposed [18], restricting to only
the linear warpings, is not for general use.) Instead, wedyge the distance resulting from the
Fisher-Rao Riemannian metric, since the actioi'aé by isometries under that metric. That
iS, drr(f1, f2) = drr(fi 07, fo 0 7), for all f1, f», and~. Fisher-Rao Riemannian metric was
introduced in 1945 by C. R. Rab [17] where he used the FisHernration matrix to compare
different probability distributions. This metric was sted rigorously in the 70s and 80s by Amari
[1], Efron [4], Kass [8], Cencovi ]3], and others. While thosarlier efforts were focused on
analyzing parametric families, we use thenparametricversion of the Fisher-Rao Riemannian
metric in this paper. (This nonparametric form has foundrapdrtant use in shape analysis of
curves[[21].) An important attribute of this metric is thiisipreserved under warping, and Cencov
[3] showed that it is the only metric with this attribute. $tdifficult to compute the distanck-r
directly under this metric but Bhattacharya [2] introdueestjuare-root representation that greatly
simplifies this calculation. We will modify this square-to@presentations for use with more
general functions.

2 Function Representation and Metric

In order to develop a natural and efficient framework forrmilng elastic functions, we introduce a
square-root representation of functions.

2.1 Representation Space of Functions

Let f/ be a real-valued function on the interyal 1. We are going to restrict to thogethat are
absolutely continuous off), 1] let denote the set of all such functions. We define a mapping:

Q : R — R according to:Q(x x/V i1z} 70 Note that() is a continuous map. For
otherwise’

the purpose of studying the functlg‘h we will represent it using a square-root velocity function
(SRVF) defined ag : [0,1] — R, whereq(t) = Q(f(t)) = f(t)/\/|f(t)|. This representation
includes those functions whose parameterization can becngular in the analysis. It can be
shown that if the functiorf is absolutely continuous, then the resulting SRVF is squeegrable.
Thus, we will definelL?([0, 1], R) (or simplyL?) to be the set of all SRVFs. For evegyc L?
there exists a functiorf (unique up to a constant, or a vertical translation) suchtti@giveng
is the SRVF of thaff. In fact, this function can be obtained precisely using tipgagion: f(t) =
£(0) + [ q(s)|q(s)|ds. Thus, the representatigh< (f(0), ) is invertible.

If we warp a functionf by ~, how does its SRVF change? The SRVFfof ~ is given by:



~ & (fon)(®)

t) = —dt
1) = Jagemm — . ' _
The motivations for using SRVF for functional analysis arenyand to understand these merits
we first present the relevant metric.

= (q o )(t)\/7(t). We will denote this transformation ky, v) = (¢ o v)v/7-

2.2 Elastic Riemannian Metric

In this paper we will use the Fisher-Rao Riemannian metni@afalyzing functions. We remind
the reader that a Riemmanian metric is a smoothly-varyingriproduct defined on the tangent
spaces of the manifold.

Definition 1 For any f € F anduv,,vo € T¢(F), whereT(F) is the tangent space t6 at f, the
Fisher-Rao Riemannian metric is defined as the inner product

(o1, 02)) ; = i/ol @l(t)vz(t)ﬁdt. 3)

In case we are dealing only with functions such tfiét) > 0, e.g. cumulative distribution func-
tions or growth curves, then we obtain a more classical oersi the Fisher-Rao metric. Thus, the
above definition is a more general form of the Fisher-Rao imédtre one that deals with signed
functions instead of just density functions.

This metric has many fundamental advantages, includintatiie¢hat it is the only Riemannian
metric that is invariant to the domain warping [3], and hasy/pt an important role in information
geometry. This metric is somewhat complicated since it glkarfrom point to point odF, and it is
not straightforward to derive equations for computing g=ick inF. For instance, the geodesic
distance between any two poinfs, fo € F is based on finding a geodesic path between them
under the F-R metric. This minimization is non-trivial andlypsome numerical algorithms are
known to attempt this problem. Once we find a geodesic pathexiimg f; and f> in F, its
length becomes the geodesic distarigg. However, a small transformation provide an enormous
simplification of this task. This motivates the use of SRV&isrepresenting and aligning elastic
functions.

Lemma 1 Under the SRVF representation, the Fisher-Rao Riemannitnerbecomes the stan-
dardL? metric.

Proof is given in the appendix. This result can be used to coenihe distancér; between any
two functions as follows. Simply compute thé distance between the corresponding SRVFs and
setdrg to that valuedrr(fi, f2) = ||l¢1 — ¢2||- The next question is: What is the effect of warping
ondrr? This is answered by the following result.

Lemma 2 For any two SRVFg,, g, € L? andy € T, [[(q1,7) — (g2, V)| = ller — gall-

See the appendix for the proof. In the case of functions vaghnion-negativity constraint (that is,
f > 0), this transformation was used by Bhattacharya [2].



Table 1. Bijective Relationship Between Function Spcand SRVF spack?

Item Function Space~ SRVF Spaci2
Representatior f (q f(0)
Transformation| f(t) = £(0) + f¢ q(s)|q(s)|ds /\/\f
Metric Fisher-Rao Metric ]L? Metrlc
((v1,02)) 7 = Jo L) 02() pdt]  (wr wa) = Jy wi(t)wa(t)dt
Distance drr(f1, f2) 1 — g
Isometry  |drr(f1,f2) = drr(fio, f209) Nl — gl = [l(¢1,7) — (g2,7)l
Geodesic Numerical Solution Straight Line
Elastic Distance  d = inf.crdpr(fi, f20v) d=1infier (lgn — (@2 0v)v/A)|) In S
betweenf; and f, Solved Using Dynamic Programming

2.3 Elastic Distance on Quotient Space

So far we have defined the Fisher-Rao distancéand have found a simple way to compute it
using SRVFs. But we have not involved any warping functiothendistance calculation and thus
it represents a non-elastic comparison of functions. The step is to define an elastic distance
between functions as follows. The orbit of an SRYE 1L? is given by:[q] = closurg (¢, )|y €

I'} = closurd(q o v)y/7)|y € I'}. Itis the set of SRVFs associated with all the warpings of a
function, and their limit points. Any two elements [gf represent functions which have the same
y variability but differentr variability. LetS denote the set of all such orbits. To compare any two
orbits we need a metric of. We will use the Fisher-Rao distance to induce a distancgdsst
orbits, and we can do that only because under this the actibrisoby isometries.

Definition 2 For any two functionsf;, f, € F and the corresponding SRVFg, ¢» € L%, we
define the elastic distanekon the quotient spac8 to be: d([¢1], [¢2]) = inf er [|g1 — (g2, 7) |-

Note that the distanaébetween a function and its domain-warped version is zeraveier, it can
be shown that if two SRVFs belong to different orbits, themdistance between them is non-zero.
Thus, this distancé is a proper distance (i.e. it satisfies non-negativity, swtmmand the triangle
inequality) onS but not onlL? itself, where it is only a pseudo-distance.

Table 1 provides a quick summary of relationships betweerFieher-Rao metric an# on
one hand, and the? metric and the space of SRVFs on the other.

3 Karcher Mean and Function Alignment

An important goal of this warping framework is to align theftions so as to improve the matching
of features (peaks and valleys) across functions. A natdeal is to compute a cross-sectional
mean of the given functions and then align the given funetiorthis mean template. The problem
is that we do not have a proper distance functiorildninvariant to time warpings, that can be
used to define a mean. But we have a distance function on theeguspaceS, so we will use a
mean on that space to derive a template for function alignmwe will do so in two steps: First,
for a given collection of functiong;, fs, ..., f,., and their SRVFs, ¢, . . ., ¢,, we compute the



mean of the corresponding orbitg ], [¢2], - - -, [¢.] in the quotient spacé; we will call it [u],.
Next, we compute an appropriate element of this mean orhiefime a templatg,, in 2. Then,
the alignment of individual functions comes from warpingittSRVFs to match the template
under the elastic distance.

We remind the reader thatdist denotes the geodesic distance between points on a Riemannia
manifold M, and{p;,i = 1,2,...,n} is a collection of points o/, then a local minimizer of
the cost functiorp — -7, dist(p, p;)? is defined as the Karcher mean of those points [7]. It is
also known by other names such as the intrinsic mean or thehBt ' mean. The algorithm for
computing a Karcher mean is based on gradients and has becstanedard procedure in statistics
on nonlinear manifolds (see, for examplel[12]). We will nagégent the general procedure but will
describe its use in our problem.

3.1 Karcher Mean of Points inT"

In this section we will define a Karcher mean of a set of warpimgtions{~;}, under the Fisher-
Rao metric, using the differential geometry Iof Analysis onl" is not straightforward because
it is a nonlinear manifold. To understand its geometry, wk ngpresent an element € I' by
the square-root of its derivative = /4. Note that this is the same as the SRVF defined earlier
for elements ofF, except thaty > 0 here. The identity element, maps to a constant function
with valuey;4(t) = 1. Sincev(0) = 0, the mapping fromy to ¢ is a bijection and one can
reconstructy from ¢ usingv(t) = Jf; ¥(s)?ds. An important advantage of this transformation is
that sincel|y||> = [y (t)2dt = [} 4(t)dt = v(1) — v(0) = 1, the set of all suchs isS.., the
unit sphere in the Hilbert spade’. In other words, the square-root representation simplifies
complicated geometry df to the unit sphere. Recall that the distance between any bid
on the unit sphere, under the Euclidean metric, is simplyehgth of the shortest arc of a great
circle connecting them on the sphere. Using Lemina 1, theeFRhAo distance between any two
warping functions is found to bérz(v1,72) = cos™ (fy v/#1(t)\/¥2(t)dt). Now that we have a
proper distance oh, we can define a Karcher mean as follows.

Definition 3 For a given set of warping functiong, v, ...,v, € I', define their Karcher mean
to bef?n = argmin’yél" Zznzl dFR(V? ’Yi)z'

The search for this minimum is performed using Algorithm Icews:

Algorithm 1: Karcher Mean of {v;} Under dgg:

Lety; = \/7; be the SRVFs for the given warping functions. Initializg to be one of the);s or
usew/||wl, wherew = L 37 ;.

1. Fori = 1,2,...,n, compute the shooting vectoy = Sif(gi)(zm — cos(6;) ), Wheref, =
cos™ (fi pu(t)s(8)dt).
2. Compute the average= - 3", v;.

3. If ||| is small, then stop. Else, updaig — cos(el|v]|)wy + sin(eH@H)ﬁ, for a small step
sizee > 0 and return to Step 1.

4. Compute the mean warping function using= [; j,(s)%ds.



3.2 Karcher Mean of Points inS = L.2/T

Next we consider the problem of finding means of points in ingtignt space. Since we already
have a well-defined distance &h (given in Definition[2), the definition of the Karcher mean
follows.

Definition 4 Define the Karcher meaju/|,, of the given SRVF orbit§[¢;]} in the spaceS as a
local minimum of the sum of squares of elastic distances:

(1] = argmin’y_ d([q], [¢:])* - (4)
[dJeS =1
We emphasize that the Karcher meéan, is actually an orbit of functions, rather than a function.
That is, if o is @ minimizer of the cost function in Eqfl 4, then sdig, ) for any~. The full
algorithm for computing the Karcher meandns given next.

Algorithm 2: Karcher Mean of {[¢]}in S
1. Initialization Step: Selegt = ¢;, wherej is any index imargmin, ., ,, ||¢; — £ >0, ax]|-

2. For eachy; find 4 by solving: v/ = argmin, r || — (g © 7)y/7]|- The solution to this
optimization comes from a dynamic programming algorithmcases where a solution does
not exist inI", the dynamic programming algorithm still provides an appration inI".

3. Compute the aligned SRVFs usifig— (g; o ’y;k)\/’yjfk.

4. If the increment| 2 7 | g, — | is small, then stop. Else, update the mean using:
1y | g and return to step 2.

The iterative update in Steps 2-4 is based on the gradierteo€dst function given in Eqri.] 4.
Although we prove its convergence next, its convergencegioldal minimum is not guaranteed.
Denote the estimated mean in thth iteration byp*). In the k:th iteration, Iet% denote the

optimal domainwarping frong; to ) and letj™ = (g;07")\/4 ™. Then >, d([p®)], [¢:])* =
S a® = g2 > s p® ) — g2 > s d((p® ], (@), Thus, the cost function
decreases iteratively and as zero is a natural lower boopd,d([:*)], [¢:])? will always converge.

3.3 Center of an Orbit

The remaining task is to find a particular element of this mewdnit so that it can be used as a
template to align the given functions. Towards this purpasewill define the center of an orbit
using a condition similar to past papers, see €.gl [22], wkays that the mean of the warping
functions should be the identity. A major difference herthat we use the Karcher mean and not
the cross-sectional mean as was done in the past.

Definition 5 For a given set of SRVFg, ¢2, . . ., ¢, andg, define an elementof [¢] as the center
of [¢] with respect to the sdly; } if the warping functiong; }, wherey; = argmin_r [|G— (g, 7)|],
have the Karcher meamn,.
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Figure 2: Finding center of the orij] with respect to the sdiy; }.

We will prove the existence of such an element by constractio
Algorithm 3: Finding Center of an Orbit : WLOG, letq be any element of the orhji].

1. For eachy; find ; by solving:v; = argmin. .- (|lg — (gi © 7))
2. Compute the mea, of all {-,} using Algorithm 1. The center d§] wrt {¢;} is given by
7= (q.%")-
This algorithm is depicted pictorially in Figl 2 We need tmshthatg resulting from Algorithm
3 satisfies the mean condition in Definitioh 5. Note thais chosen to minimizélq — (¢, )|,

and also tha g — (¢:.)I| = [1(¢.7,") — (@:.7)]| = lla — (g7 © 73, Thereforen; = 7,073,
minimizes||¢ — (¢;,v)||.- Thatis,y; is a warping that aligng; to ¢. To verify the Karcher mean
of 77, we compute the sum of squared distang®s, drr(v,7;)? = S drr(v,7i 09, 1)* =

S drr(Y © A, 7). As 7, is already the mean of;, this sum of squares is minimized when
v = 4. Thatis, the mean of; is ;.

We will apply this setup in our problem by finding the centefdf, with respect to the given
SRVFs{¢;}.

3.4 Complete Alignment Algorithm

Now we can utilize the three algorithms, Algorithm 1-3, tegent the full procedure for finding a
templateu,, that is used to align the individual functions.

Complete Alignment Algorithm: Given a set of functiong, fo, ... f, on[0,1], letq;, ¢, ..., qn
denote their SRVFs, respectively.

1. Computer the Karcher mean|qf], [¢], ..., [¢,] in S using Algorithm 2. Denote it byy],,.

2. Find the center ofu],, wrt {¢;} using Algorithm 3; call itu,. (Note that this algorithm
requires a step for computing the Karcher mean of warpingtfans using Algorithm 1).

3. Fori =1,2,...,n, find~; by solving:v; = argmin. cr ||t — (i, 7).
4. Compute the aligned SRVEs= (¢;,~;") and aligned functiong; = f; o v7.
5. Return the template,, the warping functiong~;}, and the aligned functiongf;}.
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Figure 3: Results on simulated data set 1.

3.5 Simulation Results

To illustrate this method we use a number of simulated detasalthough our framework is
developed for functions ofv, 1], it can easily be adapted to an arbitrary interval using ealin
transformation.

1. Simulated Data 1 As the first example, we study a set of simulated functiorslysevi-
ously in [T1]. The individual functions are given by;(t) = z; e~ (=15)°/2 5, je=(1415)%/2)
i=1,2,...,21, wherez; ; andz; , arei.i.d normal with mean one and standard deviation
0.25. Each of these functions is then warped accordingtét) = 6(<“o=1) — 3 if

a; # 0, otherwisey; = ~,4, Wherea; are equally spaced betweer andl, aiqd tlhe observed
functions are computed usin@(t) = v;(7:(t)). A set of 21 such functions forms the origi-
nal data and is shown in the left panel of Higl. 3, and the reimgipanels show the results
of our method. The second panel presents the resultingealifimctions{ f;} and the third
panel plots the corresponding warping functigns}. The remaining panels show the cross-
sectional mean and meanstandard deviations dff;} and{f;}, respectively. The plot of
{f;} shows a tighter alignment of functions with sharper peakb\atleys. The two peaks
are at—1.5 and1.5 which is exactly what we expect. This means that the effefotgagping
generated by the;s have been completely removed and only the randomness frepst
remains. Also, the plot of meah standard deviation shows a thinning of bands around the

mean due to the alignment.

2. Simulated Data 2 As a simple test of our method we analyze a set of functionls no
underlying phase variability. To do this, we takg}, as above, but this time we do not
warp them at all; these functions are shown in the left panéligure[4. Note that, by
construction, the two peaks in these functions are alwagsed, only their amplitudes are
different. There is a slight misalignment in the valleysitestn the two peaks due to differing
mixture weights. The result of the alignment process is shiovthe remaining panels. The
second panel shows that the aligned functions are veryaittalthe original data, except
for a better alignment of the valleys. The next panel showsttimated warping functions
which are very close to the identity. The last panel showsrikans of the original and the
aligned functions and they are practically identical.

3. Simulated Data 3 In this case we take a family of Gaussian kernel functionth \the
same shape but with significant phase variability, in thenfof horizontal shifts, and minor
amplitude variation. Figurel5 shows the origirzal functions{f;}, the aligned functions
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Figure 4: Results on simulated data 2.
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Figure 5: Results on simulated data 3.

{f;}, the warping function$~}, and the before-and-after cross sectional mean and sthndar
deviations. Once again we notice a tighter alignment oftione with only minor variability
leftin {ﬁ} reflecting the differing heights in the original data. Theeening two plots show
that meant standard deviation of the aligned data is far more compat the raw data.

. Simulated Data 4 In this case we take a family of multimodal wave functionshwthe
same shape but different phase variations. The individuattfons are defined ofo), 9]
and given by:f;(t) = (1 — (vi(¢)/9 — 0.5)?) sin(my;(t)), 1 = 1,2,...,9, with the warping
functions~;(t) = 9(6‘;"':;31) if a; # 0, otherwisey; = ~,4. Herea; are equally spaced
between-1.5 and1.5 with step sizé).375. Figurel& shows the originalfunctions{ f;}, the
aligned functions{ f;} (clearly showing the common shape), the warping functipys,
and the before-and-after cross sectional mean and staddaiations, again showing the
huge difference in apparent amplitude variation betweigmetl and unaligned functions. In
particular, with only the phase variability in the data, ougthod has a perfect alignment of

given functions.

{f} {v} meanz std, before meas: std, after

1] 1] 1

Figure 6: Results on simulated data 4.
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4 Signal Estimation and Estimator Consistency

In this section we justify the proposed framework by posing solving a model-based estimation
of alignment. Consider an observation model= ¢;(g o v;) + €;, @ = 1,...,n, whereg is

an unknown signal, and, € R, v; € I ande; € F are random. We will concentrate on a
simpler problem where the observation noises set to a constant and, given the observations
{f:}, the goal is to estimate the signalor, equivalently, the warping functionsy;}. This or
related problems have been considered previously by dgvapers, including[[25, 15], but we
are not aware of any formal statistical solution. Here wenstiat the centey.,,, resulting from

the complete alignment algorithm, leads to a consistemhagdr ofg. The proofs of Lemmas and
Corollary are given in the appendix.

Theorem 1 For a functiong, consider a sequence of functiofi$t) = c;g(y;(t)) + e;, wherec;

is a positive constang; is a constant, and; is a time warping;; = 1,---,n. Denote byg,
and ¢; the SRVFs of and f;, respectively, and let = %Z?:l VG- Then, the Karcher mean of
{la:il,i=1,2,...,n}inSis s[g,]. Thatis,

1, = g (z (g [qn) _ 5{g,) = 5{(gp.7), 7 € T}

We will prove this theorem in two steps. First we establishftillowing useful result.

Lemma 3 For any qi;,¢; € L* and a constant: > 0, we haveargmin . [l¢1 — (¢2,7)|| =
argminvep leqr — (g2, 7)]|-

Corollary 1 For any functiorny € IL? and constant > 0, we havey;; € argmin, .r [|cq — (g, 7)][-
Moreover, if the seft € [0, 1]|¢(t) = 0} has (Lebesgue) measure\Q; = argmin, 1. [[cg—(gq,7)]|-

Now we get back to the proof of Theoréin 1. The SRVF of the fuimcf = ¢;(go ;) +e; is given
by ¢; = /¢i(qq,7), 1 = 1,--- ,n. For anyg, we get

d(lal,la]) = d([Veilgg 7)) la]) = inf [Veilag v:) = (,7)]]
= inf{lV/eigy — (g7 0% Il = inf | V/eigy — (¢, = d([veigy, [a])-

In the last line, the first equality is based on the isometrthefgroup action of’ onIL.? and the
second equality is based on the group structuré. of

For any givery, lety* € argmin_.r [|g,—(q, 7)||. Then, using Lemmid 3;* € argmin, . ||\/ciqy—
(q,7)]|- Therefore,

S (g, o)) = 3 (Ve ) = z Ve — (g7 12 = z IV — 5a,1

i=1 i=1

The last inequality comes from the fact tf3gy, is simply the mean of/c;q, } in L? space. The
equality holds if and only ifg, v*) = sq, or ¢ = (5¢,,7* ).
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Actually, for any element ofsq,|, say(sq,,v) for anyy € I', we have

id?([qi],uéqmn Y NCARE) ang a7

i=1

Therefore{(5q,, 7)|y € '} is the unique solution to the Karcher méah, = argming, >, d*([q], [¢]). O
Next, we present a simple fact about the Karcher mean of wgfpinctions, where the Karcher
mean is given in Definitionl3.

Lemma 4 Given asef{vy; € I'|i = 1,...,n} and ay, € I, if the Karcher mean of,} is 7, then
the Karcher mean of~; o v} is 5 o 7.

Theoreni ]l ensures that],, belongs to the orbit ofy,] (up to a scale factor) but we are inter-
ested in estimating itself, rather than its orbit. Since we can write ~; as(g o v,) o (v, o %),
for any~, € I, the functiong is not identifiable unless we impose an additional consti@iny;.
The same goes for the random variakliesnde;. Under the assumption that the population means
of 4,1, ¢;, ande; are known, we will show in two steps that Algorithm 3, that firttie center of
the orbit[x],,, results in a consistent estimator for

Theorem 2 Under the same conditions as in Theollem 1det (sg,,70), for v, € T', denote an
arbitrary element of the Karcher mean cldgs, = 5[¢,|. Assume that the sét € [0, 1}|g(t) = 0}
has Lebesgue measure zero. If the population Karcher mefm ot is +,4, then the center of the
orbit [4],,, denoted by, satisfiedim,,_, 1, = E£(5)qq

Proof: In Algorithm 3, we first computg; = argmin,, ||(¢;, v) —p|| = argmin. [|(/€i(qq, i), 7) —
(5¢4,70) L N(V/Giag viovors ) — 5yl Since the seft € [0,1]|¢(t) = 0} has measure
zero, the se{t < [0, 1]|g,(¢) = 0} also has measure zero. Using Corollary 1, this above distanc
is uniquely minimized when; o %, 0 75 ' = 7,4, Or % = 7; " o 7. Denote the Karcher mean of
these warping function&y;} by 7,,.. Applying the inverse of thig,, to u, we getu, = (1,7, ").
As n — oo, the Karcher mean of; converges to its population mean which, by Lenitha 4yis
Thus, i, =% E(5)((¢4,70):% 1) = E(5)gg. O

This result shows that asymptotically one can recover théFSét the original signal using
the Karcher mean of the SRVFs of the observed signals. Okepone is really interested in the
signalg itself, rather than its SRVF. One can reconstruasing aligned function$f;} generated
by the Alignment Algorithm in Sectionl 3. As discussed abave further assume the population
mean ofe, is known.

Theorem 3 Under the same conditions as in Theorem 2 fet= argmin (qi,y) — pnl| @and
fi = fio:. Ifwe denote = L =i cpande = 1 ~ i € thenlim,, ., + D D fi = E(¢)g+E(e).

Proof: In the proof for Theorerfl2j; = argmin, ||(g;,7) — pll = argmin, [|(gi,7) — (ktas 7) -
Hencey; = argmin, 1(q5,7) — pnll = Fi 077t = 77 L o9 07 L. This implies thatf; = f; oy} =
(ci(goyi)+e)o (%_—1 oo ) =ci(gov o)+ e. AsY, — v whenn — co, we have

lim — Zfl_ 90’70)0’70 + E(e) = E(¢)g + E(e).
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estimate ofy error w.r.t.n

Figure 7: Example of consistent estimation.

lllustration. We illustrate the estimation process using an examplegiith= sin(57t),t € [0, 1].

We randomly generate = 50 warping functions{~;} such that{~; '} arei.i.d with mean,,. We
also generatei.d sequences$c; } and{e;} from the exponential distribution with mean 1 and the
standard normal distribution, respectively. Then we comgunctionsf; = ¢;(g o r;) + e; to form
the functional data. In Fid.] 7, the first panel shows the fiancg, and the second panel shows the
data{ f;}. The Alignment Algorithm in Sectidf 3 results in the aligriadctions{ f; = f;o~*} that
are are shown in the third panel in Fig. 7. Using Thedrém 3ptiggnal signalg can be estimated
by (£ >, fi — E(€))/E(¢). In this caseF(¢)) = 1, E(é) = 0. This estimated (red) as well
as the trugy (blue) are shown in the fourth panel. Note that the estinsateasonably successful
despite large variability in the raw data. Finally, we exaeithe performance of the estimator with
respect to the sample size, by performing this estimatiom fequal to5, 10, 20, 30, and40. The
estimation errors, computed using th&norm between estimateds and the trugy, are shown in
the last panel. As expected from the earlier theoreticatldgment, this estimate converges to the
true ¢ when the sample sizegrows large.

5 Experimental Evaluation of Function Alignment

In this section we take functional data from several appbcadomains and analyze them using
the framework developed in this paper. Specifically, we ¥allus on function alignment and
comparison of alignment performance with some previoushods on several datasets.

5.1 Applications on real data

We start with demonstrations of the proposed framework emeseell known functional data.

1. Berkeley Growth Data: As a first example, we consider the Berkeley growth dataseb4
female and 39 male subjects. For better illustrations, we hesed the first derivatives of the
growth curves as the functiodd;} in our analysis. (In this case, since SRVF is based on the first
derivative off, we actually end up using the second derivatives of the dréwictions.)

The results from our elastic function analysis on the fengabevth curves are shown in Figl 8
(left side). The top-left panel shows the original data.ah de seen from this plot that while the
growth spurts for different individuals occurs at slighdijferent times, there are some underlying
patterns to be discovered. This can also be observed indks-sectional mean and mearstan-
dard deviation plot in the bottom-left panel. In the secoaded of the top row we show the aligned
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Figure 8: Analysis of growth data. Top: original data and #éiigned functions. Bottom: the
corresponding cross-sectional mean and meatandard deviations.

functions f;(t). The panel below it, which shows the cross-sectional medmesan+ standard
deviation, exhibits a much tighter alignment of the fune@nd, in turn, an enhancement of peaks
and valleys in the aligned mean. In fact, this mean functiaygests the presence of two growth
spurts, one between 3 and 4 years, and the other between IR aredrs, on average. Similar
analysis is performed on the male growth curves and[Fig.ghtrshows the results: the original
data (consisting of 39 derivatives of the original growthdtions), the aligned functions(t), and

the corresponding cross-sectional means and meastsindard deviations. The cross-sectional
mean functions also show a much tighter alignment of thetfons and, in turn, an enhancement
of peaks and valleys in the aligned mean. This mean functiggests the presence of several
growth spurts, between: 3 and 5, 6 and 7, and 13 and 14 yeaasgoage.

2. Handwriting Signature Data: As another example of the data that can be effectively neatlel
using elastic functions, we consider some handwrittenadiges and the acceleration functions
along the signature curves. This application was also densil in the paper [11]. Lét:(¢), y(t))
denote ther andy coordinates of a signature traced as a function of timé/e study the accel-
eration functionsf (¢t) = /(t)? + y(t)? for different instances of the signatures and study their
variability after alignment.

The left panel in Figl. 9 shows the 20 acceleration functidriaignatures that are used in our
analysis aq f;}. The corresponding cross-sectional mean and reeatandard deviations before
the alignment are shown in the next panel. The right two saslebw the aligned functiongs
and the corresponding mean and meastandard deviations after the alignment. A look at the
cross-sectional mean functions suggests that the aligmedions have much more exaggerated
peaks and valleys, resulting from the alignment of thestifea due to warping.

3. Neuroscience Spike DataTime-dependent information is represented via sequesfceereo-
typed spike waveforms in the nervous system. These wavesequences (or spike trains) have
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Figure 10: Analysis of spike train data.

been commonly looked as tlkenguageof the brain and are the focus of much investigation. Before
we apply our framework, we need to convert the spike inforomainto functional data. Assume
s(t) is a spike train with spike times < ¢; < t, < --- < t)y < T, where|0, 1] denotes the record-
ing time domain. Thatiss(t) = >, 6(t —t;), t € [0,1], whered(-) is the Dirac delta function.
One typically smooths the spike trains to better capturdinhe correlation between spikes. In this
paper we use a Gaussian kerdglt) = ¢~**/%7") /(\/270), 0 > 0 (0 = 1ms here). That is, the
smoothed spike train is(t) = (s x K)(t) = 2M, L (=11)*/(20%)

=1 \/oro :

Figurel10 left panel shows one example of such smoothed spikes for 10 trials of one neu-
rons in the primary motor cortex of a Macaque monkey subfettwas performing a squared-path
movement([26]. The next panel shows the cross-sectionat iawed meant standard deviation of
the functions in this neuron. The third panel shdws where we see that the functions are well
aligned with more exaggerated peaks and valleys. The nex ghows the mean and mean
standard deviation. Similar to the growth data and sigeadata, an increased amplitude variation
and decreased standard deviation are observed in this plot.
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Figure 11: Analysis of gene expression data.
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4. Gene Expression data In this example, we consider temporal microarray gene esgion
profiles. The time ordering for yeast cell-cycle genes wasstigated in[[13], and we use the
same data in this study. The expression level was measuredyaguperiod of 119 minutes for a
total of 612 fully-recorded genes. There are 5 clusters v@fipect to phases in these continuous
function. In particular, 159 of these functions were knowrbe related to M phase regulation
of the yeast cell cycle. These 159 functions used here are santhose used if [13], and are
shown in the left panel in Fig._11. Although, in general, gerpression analysis has many goals
and problems, we use focus only on the subproblem of expresdignment as functional data.
The corresponding cross-sectional mean and restandard deviations before the alignment are
shown in the next panel. The right two panels show the aligmections/;s and the corresponding
mean and meatt standard deviations after the alignment. Once again we fgitbag alignment

of functional data with improved peaks and valleys.

5.2 Comparisons with other Methods

In this section we compare the results from our method to sointiee past ideas where the soft-
ware is available publicly. While we have compared our frenord with other published work in
conceptual terms earlier, in this section we focus on a pweipirical evaluation. In particular,
we utilize several evaluation criteria for comparing thigmnents of functional data in the several
simulated and real datasets discussed in previous seclitieschoice of an evaluation criteria is
not obvious, as there is no single criterion that has beeth cmesistently by past authors for mea-
suring the quality of alignment. Thus, we use three criteadahat together they provide a more
comprehensive evaluation. We will continue to ysand f;, i = 1, ..., N, to denote the original
and the aligned functions, respectively.

1. Least Squares A cross-validated measure of the level of synchronizdiejn
ls = i i f(fz(t) - ﬁ Dt ﬂ(t))zdt
N i=1 f(fz(t) - ﬁ Zj;éi fj(t))zdt 7

ls measures the total cross-sectional variance of the alifymations, relative to the original
value. The smaller the value &f, the better the alignment is.

()

2. Pairwise Correlation: It measures pairwise correlation between functions:

Dit cc(ﬁ(t), fj(t>>
pc = , (6)
iz ce(fi(D), f5(1))
wherecc(f, g) is the pairwise Pearson’s correlation between functiohe [&rger the value
of pc, the better the alignment between functions in general.

3. Sobolev Least SquaresThis time we compute the least squares using the first dewvaf
the functions: . .

_ XL (i) - v X5 )t @)
S Sfult) = 5 S5, fy)2dt

This criterion measures the total cross-sectional vaeasfdhe derivatives of the aligned

functions, relative to the original value, and is an altéx@ameasure of the synchronization.
The smaller the value of s, the better synchronization the method achieves.

sls
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Method |AUTC [14]JPACE [225MR [5]MBM [6]| F-R
Software Matlab | Matlab | Matlab R Matlak
Gaussian kernel0.07sec| 68sec | 7.7sec| 101sec|25secq
Bimodal 0.02sec| 80sec | 4.5sec| 150sec|17seq
Growth-male| 0.03sec| 254sec |14.5se¢ 175sec|22seq
Signature | 0.02sec| 145sec| 4.2sec| 117sec|27seq

Table 1: Computational cost of the five methods some datasetsin Fig[1P.

We compare our Fisher-Rao (F-R) method with the area unéesutve (AUTC) method pre-
sented in[[14], the Tang-Miller methdd [22] provided innmipal analysis by conditional expec-
tation (PACE) package, the self-modeling registration E§Nhethod presented inl[5], and the
moment-based matching (MBM) technique presentedlin [6¢. Ei2 summarizes the values of
(Is, pc, sls) for these five methods using 3 simulated and 4 real datasetsn the results, we
can see that the F-R method does uniformly well in functi@tigihment under all the evaluation
metrics. We have found that the criterion is sometimes misleading in the sense that a loweval
can result even if the functions are not very well aligned.isTib the case, for example, in the
male growth data under SMR method. Here the- 0.45, while for our methods = 0.64, even
though it is easy to see that latter has performed a betgmraknt. On the other hand, thés
criterion seems to best correlate with a visual evaluatiothe alignment. Sometimes all three
criteria fail to evaluate the alignment performance propespecially when preserving the shapes
of the original signals are considered. This is the casedffitst row of the figure where the AUTC
method has the same valued @fpc, andslis as our method but shapes of the individual functions
have been significantly distorted. The wave function sitedalata is the most challenging and no
other method except ours does a good job. Another point dfiatran is the number of parameters
used by different methods. While our method does not havepargmeter to choose, the other
methods involve choosing at least two but often more pararmethich makes it challenging for
a user to apply them in different scenarios. The computatioosts associated with the different
methods are given in Table 5.2. This table is for some of thasgds used in our experiments and
are representative of the general complexities of theshadst

6 Discussion

In this paper we have described a parameter-free approa@nfautomated alignment of given
functions using time warping. The basic idea is to use thkdfiRao Riemannian metric and the
resulting geodesic distance to define a proper distancdedcalastic distance, between warping
orbits of functions. This distance is used to compute a Karamean of the orbits, and a template
is selected from the mean orbit using an additional conalitiat the mean of the warping functions
is identity. Then, individual functions are aligned to teenplate using the elastic distance and a
natural separation of the amplitude and phase variabifitthe function data is achieved. One
interesting application of this framework is in estimatiagignal observed under random time
warpings. We propose the Karcher mean template as an estiofdhe original signal and prove
that it is a consistent estimator of the signal under some lcasditions on the random warping
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Figure 12: Empirical evaluation of five methods on 3 simudatatasets and 4 real datasets, with
the alignment performance computed using three critésiac, sls). The best cases are shown in
boldface.
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functions.

Important future directions in this work include: (1) thevdldpment of joint statistical models
for the amplitude and phase components of the data, and€2)s of such models for classifi-
cation of observed functions into pre-determined clas¥ésile the techniques for modeling the
amplitude variability are quite common, e.g. using funeébprincipal component analysis, the
corresponding ideas for the phase component are relativgtgd. The main reason is thatis a
nonlinear manifold and one cannot directly apply FPCA h¥ve.mention that some solutions to
this problem have been presented in/ [19,20, 24] albeit fierdint contexts.
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A Proofs of Lemmasl and 2

d

Proof of Lemmal[l The mapping fromf to ¢ is as follows: f(¢) & f(t) =

= ¢(t). For any

v € Ty(F), the differential of this mapping is:(t) # o(t) =5 (). To evaluate the expression
for w, we need the expression f@,. In caser > 0, we haveQ( ) = /= and its directional
derivative in the direction of) € R is y/(2y/x). In casex < 0, we haveQ(z) = —/—=x
and its directional derivative in the direction gfe R is y/(2v/—x). Combining the two, the
directional derivative ofy) is Q. .(y) = y/(Z\/H). Now, to apply this result to our situation,
consider two tangent vectorts, v, € Ty(F), and define their mappings und@r. asw;(t) =

Q. juy(0i(t)) = o:(t)/(21/|f(t)]). Taking thelL? inner-product between the resulting tangent vec-
tors, we get:(w; (t), wy(t)) = Jo wi(t)wa(t)dt = L [ 01 (t)0s(t )rjrdt- The RHS is compared
with Eqn.[3 to complete the prodf]

Proof of Lemmal(2 For an arbitrary element € T', andq;, ¢ € L? we have:|(qi,7) —

(@2 = fo (@ @)3(E) — (WD)t = 3 (@(1(#) — @(v(1)4)dt = |lar —

QQHZ D

B Proofs of Lemmal3, Corollary[d, and Lemmad. 4

Proof of LemmalZ Using the definitioni|cq, — (g2, 7)||? = [ (cqu(t) — (g2, 7) (t))2dt = || ||>+
g211? — 2¢ Jy ¢1(t)(g2,7)(t)dt. Note that we have usefg, 7)|*> = ||¢||?, an important fact, in
the last equality. Thus,

1
argmin |1 — (g2,7)|| = argmax / ¢1(t)(q2,7)(t)dt = argmin [[cqi — (¢2,7)[|. O
~el’ ~yel 0 ~yel’

Proof of Corollary L} v,y € argmin, .- [|cq — (¢,7)]| follows directly from Lemma[ since;q
minimizes||q — (¢, v)||. Next we show that this minimizer is unique if the $ete [0, 1]|¢(¢) = 0}
has measure 0. In this case, if we defin@) = [, ¢(s)2ds, thenF is a strictly increasing function
on [0, 1].

Using LemmaB again, we only need to show thatis the unique minimizer follq — (¢, )]l
For anyy* € Fthatminimizesﬂq (g,7)|l, we have|qg—(q,v")|| = |l¢— (g, via)|| = 0. Therefore,

a(t) = q(v*(1)/3"(1) (almost everywhere), and(t) = [{ q(s)*ds = Ji q(7"(s))*5" (s)ds =
1794 )2dr = F(v*(t)). As F is strictly increasing, we must havé = ~,,. O

Proof of Lemmal[4 First we observe that for any twe;, v, € T', we havedrg(y1,72) =
drr(y1 07,72 o 7) for any~y € I'. This comes directly from the isometry of the group action
of T on itself (proof is similar to that of Lemnid 2). This impliesat: argmin, 37", dpr(7; ©
Y0.7)? = argmin, 37 dpr(vi,7 07 )% Lety* denote the optimad in the last term. Since

argmin,, 7, dpr(v;,7)? = 7, thisimplies thaty* o4y =y 0ry* =509, O
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