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Summary. This paper studies the problem of separating phase-amplitude components in

sample paths of a spherical process (longitudinal data on a unit two-sphere). Such separa-

tion is essential for efficient modeling and statistical analysis of spherical longitudinal data

in a manner that is invariant to any phase variability. The key idea is to represent each path

or trajectory with a pair of variables, a starting point and a Transported Square-Root Veloc-

ity Curve (TSRVC). A TSRVC is a curve in the tangent (vector) space at the starting point

and has some important invariance properties under the L2 norm. The space of all such

curves forms a vector bundle and the L2 norm, along with the standard Riemannian metric

on S2, provides a natural metric on this vector bundle. This invariant representation allows

for separating phase and amplitude components in given data, using a template-based

idea. Furthermore, the metric property is useful in deriving computational procedures for

clustering, mean computation, principal component analysis (PCA), and modeling. This

comprehensive framework is demonstrated using two datasets: a set of bird-migration

trajectories and a set of hurricane paths in the Atlantic ocean.

Keywords: Alignment; Manifold functional PCA; Phase-amplitude separation, Spher-

ical trajectories; Vector bundle
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1. Introduction

Many dynamical systems can be characterized as temporal evolutions of a state variable over

a nonlinear manifold M. Given discrete observations, or sample paths, of such systems, the

goal is to perform statistical modeling, prediction and parameter estimation. For instance, one

may be interested in defining and computing statistical summaries, i.e. mean and covariance, of

the given sample paths. Also, one can use these estimated summaries in discovering dominant

modes of variability and performing dimension reduction, e.g. using PCA. Another applica-

tion is to cluster and classify trajectories into some pre-determined classes. These problems are

complicated for several reasons. One is, of course, the nonlinear geometry ofM, which may

not allow for standard multivariate statistics to be applied directly. Secondly, very often the data

is collected in presence of phase variability, which further complicates data analysis. Roughly

speaking, the phase variability corresponds to a lack of registration of time points along trajec-

tories. If two trajectories follow the same sequence of points onM but at different times, then

they are said to have different phases but the same amplitude. If these phase variabilities are

not taken into account, they lead to loss of structure in the mean calculation, artificial inflation

of variance, and introduction of spurious principal components (Marron et al., 2015). In Fig. 1

we illustrate this effect, where the yellow line is the cross-sectional mean of 10 trajectories on

S2 plotted in blue lines. The overlapping blue trajectories follow the same sequence of points

but have different time parameterizations, and the mean ends up passing through a different se-

quence of points. Any resulting statistical model can be rendered ineffective due to this problem.

In order to overcome this issue, one has to register the trajectories or, in other words, perform

phase-amplitude separation.

Phase-amplitude separation for Euclidean data is well studied now. See, for example, the

papers (Liu and Mueller, 2004; Kneip and Ramsay, 2008; Tang and Mueller, 2008; Srivastava

et al., 2011b; Tucker et al., 2013; Marron et al., 2015, 2014) for scalar functions and (Younes,

1999; Younes et al., 2008; Srivastava et al., 2011a) for curves in R2 and higher dimensions.

There is limited discussion when the longitudinal data lies on nonlinear domains, see (Kume

et al., 2007; Su et al., 2014; Zhang et al., 2015b; Le Brigant et al., 2015; Le Brigant, 2016)

for some general frameworks. However, if the domain is a canonical one, such as M = S2,

it will be very useful to particularize these general solutions into efficient procedures using the
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Fig. 1. Cross-sectional mean of simulated trajectories. In each plot, blue lines show 10 trajecto-

ries with only phase differences, and the yellow line shows the cross-sectional mean of the 10

trajectories.

geometry of S2. For spherical longitudinal data, one expects a more efficient solution if the

detailed geometry of S2 is incorporated in the solution. The unit sphere plays an important role

in statistical analysis of directional data (Mardia and Jupp, 2008) and geophysical phenomena

(Kendall, 2014). To our knowledge, there is no current paper that advances the solution for

phase-amplitude separation in spherical trajectories explicitly.

To motivate this problem, we consider two datasets shown in Fig. 2. The left side shows

migration paths of a type of bird called Swainson hawk and the right side shows some tracks for

hurricanes originating in the Atlantic ocean. Since these tracks are expressed in geographical

coordinates, it is natural to treat the underlying domain as S2. During migration, flocks of birds

exhibit tremendous variability in travel rates over long distances – they take very similar routes

but their speed patterns along those routes can vastly differ. Similarly, different hurricanes

evolve at different temporal rates even if they go through similar geographical coordinates. If

we compute their cross-sectional statistics, i.e. point-wise mean and covariance with the given

time labels, we notice that the means are not representative of individual trajectories and the

variances are artificially large despite the trajectories being very similar.

To make these concepts precise, we develop some notation first. Let α : [0, 1] → S2 be a

trajectory, perhaps generated as observations of a dynamical system on the time interval [0, 1].

Also, let γ : [0, 1] → [0, 1] be a positive diffeomorphism such that γ(0) = 0 and γ(1) = 1.

Such a γ plays the role of a time-warping function, or a phase function, so that the composition
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Swainson’s hawk migration paths Hurricane tracks

Fig. 2. Bird migration paths and hurricane tracks as trajectories on S2.

α◦γ is now a time-warped or re-parameterized version of α. In other words, the trajectory α◦γ

has the same amplitude as that of α, but a different phase. With this notation, we can specify

the following registration problems.

(a) Pairwise Registration: For any two trajectories α1, α2 : [0, 1] → S2, the process of

registration of α1 and α2 is to find a time warping γ such that α1(t) is optimally registered

to α2(γ(t)) for all t ∈ [0, 1]. In order to ascribe a meaning to optimality, we have to

develop a well-defined criterion.

(b) Multiple Registration or Phase-Amplitude Separation: This problem can naturally

be extended to more than two trajectories: let α1, α2, . . . , αn be n trajectories on S2,

and we want to find out time warpings γ1, γ2, . . . , γn such that for all t, the variables

{αi(γi(t))}ni=1 are optimally registered. The function αi(γi(t)) represents the amplitude

and γi is called the phase of αi. If we have a solution from pairwise registration, it can

be extended to the multiple alignment problem as follows – for the given trajectories, first

define a template trajectory and then align each given trajectory to this template in a pair-

wise fashion. One way of defining this template is to use the mean of given trajectories

under an appropriately chosen metric.
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1.1. Past Work & Their Limitations

Let dm denote the geodesic distance resulting from the chosen Riemannian metric on S2. It

can be shown that the quantity
∫ 1

0 dm(α1(t), α2(t))dt forms a proper distance on the set {α :

[0, 1] → S2}, the space of all trajectories on S2. For example, Kendall (2014) uses this metric,

combined with the arc-length distance on S2, to cluster hurricane data. However, this metric

is not immune to different temporal evolutions of hurricane tracks. Handling this variability

requires temporal alignment before or during comparison. It is tempting to use the following

modification of this distance to align two trajectories:

inf
γ∈Γ

(∫ 1

0
dm(α1(t), α2(γ(t)))dt

)
,

but this can lead to degenerate solutions (also known as the pinching problem, described for

real-valued functions in (Marron et al., 2015)). While the degeneracy can be avoided using

a regularization penalty on γ, some of the other problems remain, including the fact that the

solution is not symmetric.

A recent paper Su et al. (2014) developed the concept of elastic trajectories to deal with the

phase variability in manifold-valued trajectories. Here, a trajectory on S2 is represented by its

transported square-root vector field (TSRVF) defined as: hα(t) =

(
α̇(t)√
|α̇(t)|

)
α(t)→c

∈ Tc(S2),

where c is a pre-determined reference point on S2 and → denotes a parallel transport of the

vector α̇(t)/
√
|α̇(t)| from the point α(t) to c along a geodesic path. This way a trajectory can

be mapped into the tangent space Tc(S2) and one can compare/align them using the L2 norm

on that vector space. More precisely, for any two spherical trajectories α1 and α2, the quantity

infγ ‖hα1
− hα2◦γ‖ provides not only a criterion estimating the phase ( γ) but it is also a proper

metric for averaging and other statistical analyses. The main limitation of this framework is that

the choice of reference point, c, is left arbitrary. It is possible that the results can change with c

and make the analysis difficult to interpret. A related, and bigger issue, is that the transport of

tangent vectors α̇(t)/
√
|α̇(t)| to c can introduce large distortion, especially when the trajectories

are far from c on the manifold S2. Consider an example where c is the north pole and two points

lying on the great circle passing through the two poles but on the opposite sides and close to

the south pole. If we take two tangent vectors at these two points, that are similar in direction

and magnitude, and transport them individually to c as discussed above, the resulting vectors at

c will be in opposite directions.
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1.2. Our Approach

In this paper, we overcome the problems associated with TSRVF of Su et al. (2014) using a more

intrinsic approach. Here the trajectories are represented by curves that will not be transported

to a global reference point. For a trajectory α, the reference point is chosen to be its starting

point α(0) ∈ S2, and the transport is performed along the trajectory itself. In other words, for

each t, the square-root velocity vector α̇(t)/
√
|α̇(t)| is transported along α to the tangent space

Tα(0)(S2). This results in a curve in the tangent space Tα(0)(S2) and our goal is to compare

and analyze such curves. However, for different trajectories, the starting points are different

and we need a proper metric to be able to compare these curves in different tangent spaces. We

define a natural metric on the representation space of such curves, and use it for comparing,

averaging, and modeling such curves. Similar to the earlier work, this framework is invariant

to the re-parameterization of trajectories, and provides a natural solution for performing phase-

amplitude separation.

The rest of the paper is organized as follows. In Appendix A, we introduce a basic Rie-

mannian structure on S2 to facilitate our analysis of trajectories on S2. In Section 2, we lay

out our framework of analyzing spherical trajectories, including a computational solution for

their phase-amplitude separation. Some statistical methods of modeling trajectories on S2 are

presented in Section 3. Section 4 presents the experimental results on both simulated and real

data, and the paper ends with a brief discussion in Section 5.

2. Analysis of Trajectories on S2

We have summarized briefly the Riemannian structure and certain geometric quantities on S2 in

the appendix. Now we focus on the problem of analyzing trajectories on S2.

2.1. Mathematical Representation of Trajectories on S2

Let α denote a smooth trajectory on S2 and F denote the set of all such trajectories: F = {α :

[0, 1]→ S2|α is smooth}. Define Γ to be the set of all orientation preserving diffeomorphisms

of [0, 1]: Γ = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. It is important

to note that Γ forms a group under the composition operation. If α is a trajectory on S2, then α◦γ

is a trajectory that follows the same sequence of points as α but at the evolution rate governed
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by γ. More technically, the group Γ acts on F , F × Γ→ F , according to (α ∗ γ) = α ◦ γ.

We now introduce a new representation of trajectories that forms the foundation of our statis-

tical analysis. Given a trajectory α, let (v)α(t1)→α(t2) denote the parallel transport of any vector

v ∈ Tα(t1)(S2) along α from Tα(t1)(S2) to Tα(t2)(S2).

DEFINITION 1. For a smooth spherical trajectory α : [0, 1] → S2, with its starting point

α(0) = p and velocity vector field α̇(t), define its transported square-root vector curve (TSRVC)

to be a scaled parallel transport of α̇(t) along α to the starting point p according to: q(t) =(
α̇(t)√
|α̇(t)|

)
α(t)→p

∈ Tp(S2) , where | · | denotes the L2 norm defined through the Riemannian

metric on S2.

Note that this representation is different from the one in Su et al. (2014) in two aspects: (1) The

reference point is chosen as the starting point of the trajectory. (2) The parallel transport of the

square-root velocity vector is along the trajectory α itself to the starting point, similar to the

idea discussed in (Kume et al., 2007). These two changes reduce the distortion in representation

relative to the parallel transport of Su et al. (2014) to a far away reference point.

The TSRVC representation maps a trajectory α to a Euclidean curve on the tangent space

Tα(0)(S2). What is the space in which these curves lie? For any point p ∈ S2, we denote the set

of square-integrable Euclidean curves on the tangent space at p as Cp = L2([0, 1], Tp(S2)); Cp
represents all trajectories on S2 that start from p. Therefore, the full space of interest becomes a

vector bundle C =
∐
p∈S2 L2([0, 1], Tp(S2)), which is the disjoint union of Cp over p ∈ S2. This

representation of spherical trajectories is invertible: any trajectory α is uniquely represented by

a pair (p, q(·)) ∈ C, where p = α(0) is the starting point and q(·) ∈ Cp is its TSRVC. (We will

write q(·) as q to reduce notation.) One can numerically reconstruct the trajectory α from its

representation (p, q) using Algorithm 1.

ALGORITHM 1. (Covariant integral of q along α)

Given the pair (p, q) ∈ C, we seek a trajectory α such that α(0) = p and q ∈ Cp is the

TSRVC of α. Suppose q is sampled at T equally-spaced times {tδ|t = 0, 1, 2, . . . , T − 1}, δ =

1/T . Then, the original trajectory α can be recovered as follows:

(a) Set α(0) = p, and compute α(δ) = expα(0)(δq(0)|q(0)|), where exp denotes the expo-

nential map on S2 (See Appendix A).
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(b) For t = 1, 2, . . . , T − 1

(i) Parallel transport q(tδ) to α(tδ) along current trajectory from α(0) to α(tδ), and

call it q‖(tδ).

(ii) Compute α((t+ 1)δ) = expα(tδ)(δq
‖(tδ)|q‖(tδ)|).

This numerical covariant integration results in a trajectory α whose TSRVC is q. Next, we

develop tools for comparing spherical trajectories, using geodesics and the geodesic distances.

2.2. Geodesics between Spherical Trajectories

The representation space C is an infinite-dimensional vector bundle and to define geodesic dis-

tances on C, we need to impose a Riemannian structure on it. We start by specifying the tangent

spaces of C. For an element (x, v) in C, where x ∈ S2 and v ∈ Cx, we naturally identify the

tangent space at (x, v) to be T(x,v)(C) ∼= Tx(S2) ⊕ Cx. To see this, suppose we have a path in

C given by (β(s), q(s, t)), where the path parameter s ∈ (−ε, ε), t ∈ [0, 1] for a small ε > 0.

Assume that the path passes through (x, v) at time 0, i.e. β(0) = x and q(0, t) = v(t) for

t ∈ [0, 1]. Note that this path has two components: a baseline β(·), which is a curve on S2, and

q(s, ·) which is a Euclidean curve in Cβ(s) for each s. The velocity vector of this path at s = 0

is given by (xs(0),∇xs(0)q(0, ·)) ∈ Tx(S2) ⊕ Cx, where xs denotes dx/ds, and ∇xs denotes

covariant differentiation of tangent vectors.

Now, the Riemannian inner product on C is defined in a natural way: If (u1, w1) and (u2, w2)

are both elements of T(x,v)(C) ∼= Tx(S2)⊕ Cx, define

〈(u1, w1), (u2, w2)〉 = (u1 · u2) +

∫ 1

0
(w1 · w2) dt , (1)

where the “dot” products in the right indicate the original Riemannian inner product defined

on Tx(S2). The next challenge is to find geodesics between arbitrary points in C under this

Riemannian metric, and the following result characterizes these geodesics.

PROPOSITION 1. If a path (β(s), q(s, ·)), s ∈ [0, 1] is a geodesic in the vector bundle C,

then it has the following properties:

(a) The base curve β(·) is constant-speed parametrized. That is, |β̇(s)| is constant for all

s ∈ [0, 1].
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(b) The TSRVC part q(s, ·) is covariantly linear along β. That is,∇βs(∇βsq(s, t)) = 0 for all

t, s ∈ [0, 1].

We sketch a proof of this proposition in Appendix B for more details. It is important to note

that inverse does not hold, i.e. these properties do not imply that the path is a geodesic.

For any smooth path (β(s), q(s, ·)) that connects two points (p1, q1) and (p2, q2) on C with

(β(0), q(0, ·)) = (p1, q1) and (β(1), q(1, ·)) = (p2, q2) and satisfies these two properties, its

path length under chosen metric (1) is given by:

lC((β, q)) =

√
l2β +

∫ 1

0
‖q‖1, β(t)− q2(t)‖2dt , (2)

where l2β represents the squared length of β on S2, defined by
∫ 1

0 |β̇(s)|2ds, and q‖1,β represents

(q1)β(0)→β(1), the parallel transport of q1 from Tβ(0)(S2) to Tβ(1)(S2) along β on S2 (the same

space where q2 lies).

As mentioned above, there may be many paths connecting (p1, q1) and (p2, q2) that satisfy

the above two properties, but are not geodesics. The geodesic, by definition, is the shortest one

among those. In the following, we layout a way to identify the geodesic path. If a path satisfies

the two properties listed above, it is completely determined by the baseline β. The reason is

that given (p1, q1), (p2, q2) ∈ C and the baseline β, the choice of q(s, t) is restricted due to

the second property (covariant linearity). Therefore, to find the geodesic, the key is to find the

optimal baseline β∗ that minimizes the length of (β(s), q(s, ·)), s ∈ [0, 1] defined in (2):

β∗ = argmin
β∈B

(
l2β +

∫ 1

0
‖q‖1, β(t)− q2(t)‖2dt

)
, (3)

where B denotes the space of all valid paths. At this stage, we have B = {β : [0, 1] →

S2|β(0) = p1, β(1) = p2, |β̇(s)| is constant}, which is still a large set. To reduce the size of B,

we define the concept of a p-optimal (optimal parallel transport) curve on S2.

DEFINITION 2. (p-Optimality) Let T : Tp1(S2) 7→ Tp2(S2) be a linear, isometric map

between the two vector spaces. We define a curve β(t), t ∈ [0, 1], on S2 from p1 to p2, to be

p-optimal if: (1) the parallel transport map induced by the path β from p1 to p2 is the same as

T , and (2) β is the shortest amongst all such curves.
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Consider a geodesic path connecting p1 and p2 on S2. This geodesic is a p-optimal curve if T

is set to the mapping induced by parallel transport from p1 to p2 (along the geodesic). With this

definition of p-optimal curves, we have the following lemma.

LEMMA 1. If a path (β∗(s), q(s, ·)), s ∈ [0, 1], on C is a geodesic, the baseline β∗ is a

p-optimal curve.

The proof of this lemma is simple. If (β∗(s), q(s, ·)), s ∈ [0, 1] is a geodesic path connecting

(p1, q1) and (p2, q2) on C, then it will have the shortest length. So if we can find a shorter curve

than β̂∗ from p1 to p2, that induces the same parallel transport map, then we could reduce l2β∗

without affecting
∫ 1

0 ‖q
‖
1, β∗(t) − q2(t)‖2dt. This implied that (β∗(·), q(·, ·)) would not be a

geodesic on C.

Lemma 1 helps us reduce the search space for the desired geodesic to a smaller set B =

{β : [0, 1] → S2|β(0) = p1, β(1) = p2, β is a p-optimal curve and |β̇(s)| is constant}. The

next result further characterizes elements of this set.

LEMMA 2. For any two points p1, p2 ∈ S2, the only p-optimal curves connecting them are

the circular arcs between them.

See Appendix C for the proof. Using Lemma 1 and Lemma 2, the optimization in Eqn. 3 can

now be highly simplified: the argmin can be taken over all the circular arcs connecting p1 and

p2: B = {β : [0, 1]→ S2|β(0) = p1, β(1) = p2, β is a circular arc}. We propose the following

method in Algorithm 2 to generate all circular arcs from two points p1 to p2 in S2.

ALGORITHM 2. (Generating circular arcs from p1 to p2. )

Generate a unit vector v1 ∈ Tp1(S2) and a unit vector v2 ∈ Tp2(S2). For each θ ∈ [0, 2π),

(a) Compute the rotation matrix, for rotation by angle θ about an axis p2, using the formula:

R = I cos θ+sin θ [p2]×+(1−cos θ) p2⊗p2 , where [p2]× is the cross product matrix of

p2,⊗ is the tensor product and I is the identity matrix. This is a matrix form of Rodrigues’

rotation formula.

(b) Compute two frames f1 = [p1, v1, w1] and f2 = [p2, Rv2, w2], where w1 is the cross

product of p1 and v1 and w2 is the cross product of p2 and Rv2.

(c) Generate βθ(s) = esAθp1, s ∈ [0, 1],where Aθ = logm (f2f
T
1 ) .
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Fig. 3. Example of geodesics between two trajectories in S2. The p-optimal baseline trajectory

is shown in the solid line while a simple S2-geodesic between the end points is shown in the

broken line.

In this way, one can generate a one-parameter family of circular arcs βθ, connecting p1 and p2

and indexed by θ ∈ [0, 2π). The optimization problem in (3) now becomes:

θ∗ = argmin
θ∈[0,2π)

(
l2βθ +

∫ 1

0
‖q‖1, βθ(t)− q2(t)‖2dt

)
. (4)

We will call the resulting optimal curve β∗ = esAθ∗p1, obtained using Algorithm 2 and an

exhaustive search over θ.

After having β∗,the optimal baseline curve, the desired geodesic path in C can be written as

(β∗(s), q(s, t)), s, t ∈ [0, 1], where q(s, t) is covariantly linear and q(0, t) = q1(t), q(1, t) =

q2(t). More precisely, q(s, ·) = ((q1 + sw1))β∗(0)→β∗(s), where w1 denotes the difference of q1

and q2 at Tp1(S2) (defined as w1 = (q2)β∗(1)→β∗(0) − q1. According to (2), the length of the

geodesic path is given by:

d((p1, q1), (p2, q2)) =

√
l2β∗ +

∫ 1

0
‖q‖1,β∗(t)− q2(t)‖2dt . (5)

For displaying a geodesic path, we can recompute the trajectories on S2 for each s ∈ [0, 1],

using the numerical covariant integral laid out in Algorithm 1. That is, map (β∗(s), q(s, ·) back

to a trajectory on S2 by treating β∗(s) as the starting point and q(s, ·) as its TSRVC. Fig. 3

shows three examples of geodesic paths. In each case, the yellow solid line shows the optimal

baseline β∗ and the yellow dash line shows the simple S2-geodesic connecting β∗(0) and β∗(1)

on S2 for comparison.
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2.3. Phase-Amplitude Separation of Two Trajectories

The main motivation for using TSRVC representation comes from the following theorem. If a

trajectory α is warped by γ, resulting in α◦γ, what is the TSRVC of the time-warped trajectory?

This TSRVC is given by:

qα◦γ(t) =

(
(α̇(γ(t))γ̇(t))√
|α̇(γ(t))γ̇(t)|

)
α(γ(t))→p

=

(
(α̇(γ(t)))

√
γ̇(t)√

|α̇(γ(t))|

)
α(γ(t))→p

= qα(γ(t))
√
γ̇(t) ≡ (qα ∗ γ)(t) .

Under the TSRVC representation, the action of time-warping of original trajectories under the

metric d in (5) is by isometries.

THEOREM 1. For any two trajectories α1, α2 ∈ F , and the corresponding representa-

tion (p1, q1), (p2, q2) ∈ C, the metric d given in Eqn. 5 satisfies d((p1, qα1◦γ), (p2, qα2◦γ)) =

d((p1, qα)1), (p2, qα2
)), for any γ ∈ Γ.

The proof of this theorem is presented in Appendix D. This property termed the isometry of

(time-warping) action under the metric d, allows us to fully perform phase-invariant compar-

isons and analysis of trajectories. This is achieved by defining a metric in the amplitude space

of trajectories.

To formally define the amplitude of a trajectory, we introduce Γ̃, the set of all non-decreasing,

absolutely continuous functions γ on [0, 1] such that γ(0) = 0 and γ(1) = 1. Γ̃ is a larger set

of time-warping functions than Γ and it can be shown that Γ is a dense subset of Γ̃ (Su et al.,

2014).

DEFINITION 3. (Trajectory Amplitude) For any trajectory α, we define its amplitude to be

the set of all possible time warpings of α under Γ̃. In the representation space C, this amplitude

corresponds to the set:

[(p, q)] ≡ (p, [q]) = {(p, (q ◦ γ)
√
γ̇)|γ ∈ Γ̃}.

We define the amplitude space A as the set of amplitude of all trajectories.

Each amplitude is considered as an equivalence class. Any two trajectories α1, α2, with

representations of (p1, q1) and (p2, q2), are deemed equivalent if: (1) p1 = p2; and (2) there

exist a sequence γi ∈ Γ̃ such that qα2◦γi converges to q1. Theorem 1 indicates that if two
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trajectories are warped by the same γ function, then the distance d between them remains the

same. This leads to the definition of an amplitude distance between trajectories.

DEFINITION 4. (Ampltude Distance) For any two amplitudes (p1, [q1]) and (p2, [q2]) inA,

the amplitude distance between them is defined to be:

da((p1, [q1]), (p2, [q2])) = inf
γ1,γ2∈Γ̃

d((p1, (q1 ◦ γ1)
√
γ̇1), (p2, (q2 ◦ γ2)

√
γ̇2))

≈ inf
γ∈Γ

d((p1, q1), (p2, (q2 ◦ γ)
√
γ̇)) , (6)

where the last approximation comes from the fact that Γ is dense in Γ̃.

As stated earlier, our goal is to separate phase and amplitude of given trajectories, and then to

compare them in a way that is independent of their phases. The above definition achieves that

goal for pairwise comparisons. Note that Eqn. 6 provides not only a distance between two

amplitudes, which is invariant of the phases of α1 and α2, but it also gives the optimal time-

warping function γ to align trajectory α2 to α1. That is the point α1(t) is optimally matched

with the point α2(γ(t)). This γ is called the relative phase of α1 with respect to α2.

For a fixed γ, calculating the distance d((p1, q1), (p2, (q2 ◦ γ)
√
γ̇)) is an optimization prob-

lem with respect to θ ∈ [0, 2π), as discussed earlier. Hence, (6) represents a two-parameter

optimization problem:

min
θ,γ∈[0,2π)×Γ

(
l2βθ +

∫ 1

0
‖q‖1, βθ(t)− (q2 ∗ γ)(t)‖2dt

)
(7)

To solve the two-parameter optimization problem, we use the following strategy: for each θ ∈

[0, 2π], we optimize over γ ∈ Γ̃ and then find the best combination of θ and γ. The optimization

over γ is solved using Dynamic Programming algorithm (Bertsekas, 1995). The algorithm is

summarized below:

ALGORITHM 3. Computation of Amplitude Distance

(a) For each θ ∈ [0, 2π), solve γ̂ by Dynamic Programming:

γ∗θ = argmin
γ∈Γ

(∫ 1

0
‖q‖1, βθ(t)− (q2 ∗ γ(t))‖2dt

)
and let E(θ, γ∗θ ) = l2βθ +

∫ 1
0 ‖q

‖
1, βθ

(t)− (q2 ∗ γ∗θ (t))‖2dt

(b) Find (θ∗, γ∗θ ) such that θ∗ = argminθ∈[0,2π) (E(θ, γ∗θ )). The minimum value of E is the

amplitude distance da.
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2.4. Phase-Amplitude Separation of Multiple Trajectories

Using the amplitude distance, we can calculate sample mean and modes of variations for given

a collection of trajectories, while being invariant to their phases. The mean trajectory can be

treated as a template for registering the set of trajectories, i.e. phase-amplitude separation. In

this paper, the sample mean is calculated through the notion of Karcher mean (Karcher, 1977)

under da. Given a set of trajectories {αi, i = 1 . . . n}, and their representations {(pi, qi), i =

1 . . . n}, their Karcher mean in the amplitude space A is defined to be:

(µp, [µq]) = argmin
(p,[q])∈A

n∑
i=1

da((p, [q]), (pi, [qi]))
2 . (8)

Note that (µp, [µq]) is an orbit (equivalence class) and one can select any element of this orbit

as a template to help to align multiple trajectories. Since the original space C is a nonlinear Rie-

mannian manifold, the optimization of (8) requires the exponential map and inverse exponential

map. In the following, we will define the exponential map and inverse exponential map on C .

Inverse Exponential Map on C: Given (p1, q1) and (p2, q2), let {(β(s), q(s, ·))|s ∈ [0, 1]} be

the geodesic connecting them on C. The inverse exponential map from (p2, q2) to (p1, q1) is

defined to be the mapping from C to T(p1,q1)(C) such that exp−1
(p1,q1)(p2, q2) = (u1, w1), where

u1 ∈ Tp1(S2) and u1 ⊥ p1 with ‖u1‖ = lβ . The expressions for u1 and w1 are given below:

• u1 = lβ
Aθp1
‖Aθp1‖ , where Aθ is defined in Algorithm 2 such that β(s) = esAθp1. It is easy to

show that Aθ is an asymmetric matrix, and trace(Aθ) = 0.

• w1 = q
‖
2,β − q1 ∈ L2([0, 1], Tp1(S2)), where q‖2,β denotes the backward parallel transport

of q2 along β from p2 to p1.

Exponential Map on C: Given a point (p1, q1) in C and a tangent vector (u1, w1) ∈ T(p1,q1)(C),

the exponential map is a mapping from T(p1,q1)(C) to C. Furthermore, exp(p1,q1)(s(u1, w1)),

with s ∈ [0, 1], provides a geodesic path on C; we will denote it by (β(s), q(s, ·)). Since the

geodesic is determined by the baseline β, we only need to find an asymmetric matrix A as

described in Algorithm 2 such that esAp1 = β(s) to determine the baseline. Here, A has three

unknown parameters because trace(A) = 0. To solve for A, we have the following equations:

(a) The vector fields β̇(s) take the value u1 at s = 0 by definition, and we have β̇(s)|s=0 =



Phase-Amplitude Separation and Modeling of Spherical Trajectories 15

Ap1. Therefore, the first equation for solving A is

Ap1 = u1. (9)

(b) According to the geodesic equations derived in Zhang et al. (2015b) on C, the second

derivative of the baseline β is determined by:

∇β̇(s)(β̇(s)) = −R(q(s), (∇β̇(s)q)(s))β̇(s),

whereR(·, ·) denotes the Riemannian curvature tensor. In the left side, we have∇β̇(s)(β̇(s))|s=0 =

PTp1 (S2)

(
d2

ds2 e
sAp1|s=0

)
, where PTp1 (S2)(·) denotes the projection of a vector to the tan-

gent space Tp1(S2). In the right side, given the baseline β, we know that q(s, ·) =

(q1 + sw1)p1→β(s) = (q1)p1→β(s) + s(w1)p1→β(s). Therefore, we have (∇β̇(s)q)(s) =

(w1)p1→β(s). At the point s = 0, R(q(s), (∇β̇(s)q)(s))β̇(s)|s=0 = R(q1, w1)β̇(0). There-

fore, the above equation simplifies at s = 0 to become:

PTp1 (S2)

(
d2

ds2
esAp1

)
= −R(q1, w1)u1 . (10)

(9) and (10) are used to solve for the asymmetric matrix A as the function of p1, q1, u1 and

w1. (9) provides two equations to solve unknown parameters in A since u1 ⊥ p1. It is the

same for (10) which provides two additional equations. So there are four equations for three

unknown parameters inA and one is redundant. GivenA, the exponential map can be expressed

as exp(p1,q1)(s(u1, w1)) = (esAp1, (q1 + sw1)p1→esAp1).

Once we have specified the exponential and the inverse exponential maps, we can adapt a

standard algorithm to find the mean of multiple trajectories {α1, α2, ..., αn}.

ALGORITHM 4. Karcher Mean of Amplitudes

Let (pi, qi) denote the pair representation of the trajectory αi, where pi = αi(0) and qi is its

TSRVC. Let (µjp, µ
j
q), j = 0 be the initial estimate of the Karcher mean.

(a) For each i = 1, ..., n, align each trajectory (pi, qi) to (µjp, µ
j
q) according to Eqn. (7) using

Algorithm 3, and let θ∗i and γ∗i denote the optimal solution. The aligned trajectory is given

as α̃i = αi ◦ γ∗i , and its representation is denoted as (pi, q̃i), where q̃i = (qi ∗ γ∗i ).

(b) Compute the inverse exponential map: (ui, wi) = exp−1
(µjp,µ

j
q)

(pi, q̃i), where ui = lβθ∗
i

Aθ∗
i
ujp

‖Aθ∗
i
ujp‖

,

and wi = q̃i − ujq.
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(c) Compute the average direction: ū = 1
n

∑n
i=1 ui, w̄ = 1

n

∑n
i=1wi.

(d) If ||ū||+||w̄|| is small, stop. Otherwise, update (µjp, µ
j
q) in the direction of (ū, w̄) according

to

(µj+1
p , µj+1

q ) = exp(µjp,µ
j
q)

(ε(ū, w̄)),

where ε is a small step size, typically 0.5.

(e) Set j = j + 1, return to step 1.

For the final output (µp, µq), we can reconstruct the mean trajectory using Algorithm 1, denoted

by µ. Note that Algorithm 4 provides three sets of output: (1) the mean trajectory µ; (2) the

aligned trajectories {α̃i} representing the amplitudes; and (3) the warping-functions or the phase

components {γ∗i }.

3. Statistical Modeling of Amplitudes of Trajectories

In this section, we use this framework to discover essential modes of variability in spherical

trajectories and to develop statistical models for capturing variability in amplitudes of these

trajectories.

3.1. Analysis of Modes of Amplitude Variability

First, we consider the problem of discovering dominant modes of variability in a training data.

This is achieved using manifold functional PCA (mfPCA), as described below. As a pre-

processing step, assume that we have extracted the amplitude components α̃1, · · · α̃n of a given

set of trajectories α1, · · · , αn, using Algorithm 4.

Let (p1, q̃1), · · · , (pn, q̃n) and (µp, µq) be the representations of the aligned trajectories and

the mean, respectively, in C. The main difficulty in performing mfPCA is the nonlinearity

of C. To overcome this problem, we choose the tangent space T(µp,µq)(C), a vector space

given by Tµp(S2) ⊕ Cµp , as the setting for PCA. The outcomes of Algorithm 4 include the

Karcher mean (µp, µq) and the shooting vectors (also the tangent vectors) (ui, wi), associated

with the amplitudes (p1, q̃1), · · · , (pn, q̃n) on T(µp,µq)(C). Each shooting vector has by two

parts: ui ∈ Tµp(S2), a vector of R3, and wi ∈ Cµp , an L2 function on Tµ(S2). Note that

Tµp(S2) is a two-dimensional space. Therefore, we define a new coordinate system using two



Phase-Amplitude Separation and Modeling of Spherical Trajectories 17

orthogonal unit vectors v1, v2 ∈ R3 on Tµp(S2), and use the new coordinate system to represent

each vector ui and each function wi. Under this new coordinate system, ui is a vector in R2 and

wi is a function in L2([0, 1],R2).

For mfPCA, we will treat the two parts in the shooting vector (ui, wi) separately, by comput-

ing separate covariance matrices: (1) a sample covariance matrix for {ui}, Ku = 1
n−1

∑n
i=1 uiu

t
i;

and (2) a sample covariance function for {wi}, Kw(t1, t2) → 1
n−1

∑n
i=1 〈wi(t1), wi(t2)〉. In

practice, each function wi is sampled at a finite number of points, say T , and the resulting

covariance function is stored as a matrix. In most cases, the observation size n is much less

than T and, consequently, n controls the degree of variability in the stochastic model. Let

w ∈ R2T×n be the shooting vectors associated with the TSRVCs of aligned trajectories in Cµp ,

and let Kw ∈ R2T×2T be the sample covariance matrix with Kw = UΣwUT as its singular

value decomposition (SVD). The submatrix formed by the first r columns of U, denoted as Ur,

spans the principal subspace of the observed data. The principal coefficients for observations w

is given as C = UT
r w ∈ Rr×n.

To visualize the dominant modes of variations, we can calculate straight lines along these

directions for each component of the shooting vector, and project these lines back on S2 using

the exponential map exp(µp,µq)(τ(u,w)) for τ ∈ [−1, 1]. Here, u is the dominant direction for

the location and w is the principal direction for the second component.

3.2. Random Sampling from A Wrapped Gaussian Model on Amplitudes

Our next goal is to impose a simple probability model on the amplitudes of trajectories on S2,

and then validate it using random samples from the model. There are a few different options for

imposing such models (Kurtek et al., 2012; Mardia and Jupp, 2008; Srivastava et al., 2011a).

We take a common approach where we start with a probability density in the principal subspace

of a tangent space and then map it back to trajectories on S2 using exponential map. To be more

precise, we use the tangent space at the mean T(µp,µq)(C) = Tµp(S2)⊕Cµp as the vector space

to impose a probability model. Since each shooting vector in Tµp(S2) ⊕ Cµp has two com-

ponents, we model the two components independently by using multivariate Gaussian models

on the principal coefficients. For example, for the first component, let Ku = VΣuV
T be the

SVD of the sample covariance for ui, as earlier. A random variable cu can be sampled from
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N(0,Σu), and the corresponding random first component is u = Vcu. Similarly, for the sec-

ond component, a random variable cw can be sampled from N(0,Σw), and the random second

component is w = Ucw. One can reconstruct the sampled trajectory using the exponential map

exp(µp,µq)((u,w)) after mapping u and w back to the original coordinate system (using v1 and

v2 defined earlier). This provides a technique for sampling from the wrapped Gaussian model

on C.

4. Experimental Results

In this section, we present some experimental results to support this elastic framework, involving

both simulated and real data. These results include computation of geodesic paths, computation

of mean amplitudes, mfPCA of given spherical trajectories, clustering of trajectories under the

amplitude distance da, and random sampling of spherical trajectories under a simple statistical

model.

4.1. Simulated Data

Geodesic Computations: To start with we use some simulated spherical trajectories and com-

pute geodesic paths between them, without and with registration. Fig. 4 shows two examples

using arbitrary spherical trajectories. In each case, two corner trajectories form the original

given trajectories α1 and α2, and the intervening trajectories represent equally-spaced sample

points along geodesic paths. The optimal baseline curve is denoted by the solid yellow line

and, for the purpose of comparison, the dashed line denotes the simple S2-geodesic between the

starting points of α1 and α2. In each example, the first column shows results geodesic without

registration, the middle column shows results after phase separation and the last column shows

the relative phase, i.e. the optimal γ∗ for alignment. In both cases, geodesic paths after phase

removal better preserve structures during geodesic deformations and the resulting distances are

much smaller. In particular, the elastic geodesic in Example 1 preserves the “bump” in the

trajectory. Also, the optimal baseline curves noticeably different after phase removal, which

further improves interpretability of geodesic paths. After registration, the distance goes from

9.56 to da = 6.78 in Example 1, and from 4.41 to da = 3.05 in Example 2.
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Example 1
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Fig. 4. Geodesic paths between spherical trajectories before and after registration.

Mean Amplitude Computation or Phase-Amplitude Separation of Trajectories: We can

use Algorithm 4 to calculate the mean amplitude and to separate the phase and amplitude of

given trajectories. The mean calculation (Algorithm 4) requires certain computational tools de-

veloped in Section 3.4 (exponential map and inverse exponential map on C), and we first demon-

strate their use. Once again, given two trajectories α1 and α2, we represent them as (p1, q1)

and (p2, q2), where p1, p2 are the starting points and q1, q2 are their TSRVCs, respectively. The

geodesic between (p1, q1) and (p2, q2) is calculated using Algorithm 3. Using the expression for

the inverse exponential map, we first calculate the shooting vector (u1, w1) = exp−1
(p1,q1)(p2, q2).

Then, we use the exponential map given by exp(p1,q1)(s(u1, w1)) = (esAp1, (q1+sw1)p1→esAp1),

where s ∈ [0, 1] and A is solved by (9) and (10). Fig. 5 shows two examples of the ex-

ponential map. In both examples, the first column shows geodesic between two trajectories
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calculated using Algorithm 3 after temporal registration, where the red trajectory is α1 and the

pink trajectory is α2. The second column shows geodesic calculated using exponential map,

exp(p1,q1)(s(u1, w1)). The last column shows exp(p1,q1)(u1, w1) (solid line) and the “target” α2

(dash line). One can see that the developed exponential map and inverse exponential map works

well because the shot path exp(p1,q1)(u1, w1) is almost the same as the target trajectory (up to

some numerical errors).

Example 1

Example 2

Geodeisc calculated with Alg. 3 Shooting geodeisc exp(p1,q1)(u1, w1) and (p2, q2)

Fig. 5. Verification of the exponential map.

In the next experiment, we start from a trajectory, say α1, and then introduce arbitrary phases

to obtain α1 ◦γ. Time warping a trajectory does not change its amplitude, but changes its phase.

Fig. 6 shows ten such trajectories in the upper left panel, drawn in blue lines, and their Euclidean

mean (cross-sectional mean) in the red line. One can see that the Euclidean mean has different

amplitude from the original trajectories despite the original ones having the same amplitude.

Now, if we perform phase-amplitude separation, and compute the amplitude mean under da, the

result is shown in the middle upper panel (in green color). The mean trajectory has the exact

same amplitude as α1, and the relative phase γ∗i is shown in the last column.

Next, we simulate two spherical trajectories with two “bumps” each, as shown in the bottom-
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Fig. 6. Comparison of Euclidean mean and Karcher mean. The two rows denote two different

examples.

left panel (in blue lines) of Fig. 6. and the red line is their cross-sectional mean. Then we

compute their amplitude mean which is shown in green line in the bottom-middle panel. One

can see that the mean amplitude (after phase-amplitude separation) better preserves the bump

features, as compared to the Euclidean mean. The relative phase {γ∗i } is shown in the bottom-

right panel.

4.2. Real Data

In this section, we illustrate our framework on two real datasets: bird migration data (Kochert

et al., 2011) and hurricane tracks (Landsea et al., 2015).

(a) Bird Migration Data: The bird migration data in Kochert et al. (2011) contains 35 mi-

gration trajectories of Swainson’s Hawk, observed during 1995 to 1997. The migration of

each Swainson’s Hawk was tracked using satellite tag and their locations was recorded by

the satellite every 1-4 days.

(b) Hurricane Tracks: We use the Atlantic hurricane database (HURDAT2) (Landsea et al.,

2015) to get hurricane tracks. HURDAT2 is a tropical cyclone historical database contain-

ing hurricanes starting from north Atlantic ocean and Gulf of Mexico from 1851 to 2015.
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The database contains six-hourly information on the locations, maximum winds, central

pressures and so on for each of the relevant hurricane.

We randomly choose 7 hurricane trajectories and 10 migration trajectories, and calculate

their Euclidean means and mean amplitudes (Karhcer mean with phase removal). The results

are shown in Fig. 7. The first column shows the original data, second column shows their Eu-

clidean means and the third column shows the Karcher means of the amplitude components.

Separating the phase components reduces temporal variance inside the trajectories and makes

the remaining amplitude components compact. To emphasize this point, we calculate the cross-

sectional variance at some discrete sampling points along the mean trajectory, say {t1, ..., t7}.

At each ti, the cross-sectional variance is a 3 × 3 matrix, and we use its first two principal di-

rections to display this variance matrix as a tangential ellipsoid. Fig. 7 (columns two and three)

show these ellipsoids along the mean trajectories before and after phase separation. Another

way to illustrate variance reduction due to phase removal is shown in Fig. 8 column one, where

the x-axis is time and y-axis is the trace of the variance matrix. The relative phase components

are shown in the second column in Fig.8. From Fig. 7 and Fig. 8 one can see that before

alignment, the variance at each sampling point is mainly along the trajectories, especially in the

bird migration case, which means that the birds are flying at different speeds, and this inflates

variance tremendously. The alignment process separates the phase from amplitude, and retains

only the amplitude differences. Also, we note that phase variability in the hurricane data is

relatively small.

We also use the method described in Section 3.1 to perform mfPCA on amplitudes in the

two datasets. We show the first two principal directions for the two datasets in Fig. 9. In each

row, in the left panel, we let the second component w = 0 and show the two modes of variation

in the first component ui, and in the right panel, we let u = 0 and show the first two modes of

variation in wi. The middle curve in magenta color, with τ = 0, is the mean trajectory. In the

parentheses in each row, we show the percentage of variation that was explained by the first two

PCs.

To capture the distributions of the bird migration and hurricane subsets, we use the wrapped

Gaussian model described in Section 3.2 to generate random samples. Fig. 10 displays some

random samples from the wrapped Gaussian distribution on C.
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Hurricane example

Bird migration example

Fig. 7. Examples of Karcher mean trajectory in real data. The first column shows the original

data, the second column shows the cross-sectional mean and the third column shows the mean

after temporal alignment. The yellow ellipsoids shows the cross-sectional variance for data

along the mean trajectory.
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Fig. 8. Variance of the amplitude components and phase functions for bird migration (first row)

and hurricane (second row) examples.
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First two PCs for u with w = 0 (100%) First two PCs for w with u = 0 (41.89%)

First two PCs for u with w = 0 (100%) First two PCs for w with u = 0 (69.44%)

Fig. 9. PCA for bird migration and hurricane data in Fig. 7. The first row shows result for bird

migration data and the second row shows result for hurricane data.

Fig. 10. Examples of random sampling from the wrapped Gaussian model. The left panel shows

samples from bird migration data and the right panel shows the samples from the hurricane

trajectories.
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Fig. 11. (a) 138 selected hurricanes starting before latitudes of of 20oN and ending after 35oN

(b) The averaged sum of squared error versus the chosen k for k-means method.

4.3. Clustering of Hurricane Trajectories

Next we consider the problem of clustering of hurricane trajectories, in a manner that is invariant

to their phase variability. For this experiment, we extract all those trajectories that start before

latitude of 20oN and end after 35oN from the database of trajectories recorded during 1969-

2014, similar to the data used in Kendall (2014). This extraction results in 138 trajectories and

Fig. 11 (a) shows some examples.

To cluster these tracks, one of the simplest methods is k-means clustering algorithm, using

the amplitude distance da and use Algorithm 4 to calculate a mean trajectory under da. We

use Lloyd’s algorithm (Lloyd, 2006) for k-means: beginning with a random initial set of k

trajectories serving as cluster centroid trajectories, the algorithm first associates each trajectory

to the closest cluster centroid trajectory (measured by Eqn.7), and then replacing each cluster

centroid trajectory by the computed Karcher mean trajectory (calculated by Eqn. (8)) for the

cluster. The algorithm is iterative and is guaranteed to coverage locally. However, k-means

algorithm requires us to provide the number of clusters k, which in unknown for the hurricane

trajectories. Although some methods, such as G-means (Hamerly and Elkan, 2004), X-means

(Pelleg and Moore, 2000), provide some algorithms to decide k, but they only work in the

Euclidean cases. Here we use the classical “Elbow” method to decide k. The averaged sum of

squared error (ASSE) for each value of k is calculated and plotted. ASSE decreases as k gets
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larger, and the Elbow method is to choose the k at which the ASSE stops decreasing abruptly.

In Fig. 11 (b), we show the plot the ASSE versus k, and we choose k = 3.

With a fixed k, we apply the k-means algorithm to cluster 138 hurricanes. However, it is well

known that k-means is not robust to different initializations and results in a local minimum. As a

result, k-means method might have different results with different initializations. To tackle this

problem, we propose a vote-based k-means method, i.e. we run k-means algorithm multiple

times, with different initial conditions, and the final result is based on the average of these k-

means results. Similar to (Zhang et al., 2015a), for each k-means clustering result, we use a

binary matrix B to represent the clustering configuration such that B(i, j) = 1 if i-th and j-th

elements are from the same cluster. Given n different k-means clustering results, denoted as Bi

for i = 1, ..., n, the final B is obtained by calculating the extrinsic mean of Bis using Algorithm

2 in Zhang et al. (2015a). In Fig. 12, we show the final clustering result based on the voting of

50 k-means clustering results (by setting k = 3).

To validate our k-means clustering result, we employe the stochastic simulated annealing

clustering algorithm in Srivastava et al. (2005) to perform the clustering. Pairwise amplitude

distances da between 138 hurricane tracks are calculated, and then an annealing method is used

to re-arrange the tracks into k = 3 clusters. This clustering of tracks is found to agree with

the vote-based k-means result for 96% of the tracks, thus validating our clustering results. As

another comparison, we treat the hurricane trajectories as regular curves in R3, and then we

can use the elastic shape analysis framework in (Srivastava et al., 2011a) to calculate the pair-

wise distance between the shapes of trajectories (by removing the translation, rotation, scaling

and re-parameteriation). Using this distance, we can perform the clustering. Fig. 13 shows

the clustering result using k-means method by setting k = 3. Comparing with the clustering

result of the proposed framework (in Fig. 12) we can see that the proposed method has more

meaningful result: the hurricanes starting from Gulf of Mexico and Caribbean Sea tend to move

along the east coast and are less curved comparing with hurricanes starting in the North Atlantic

Ocean; the hurricanes starting from the part of North Atlantic Ocean near Africa tend to have

long lengths and are left curved; hurricanes starting from the part of North Atlantic Ocean near

South America have shapes in between of the pervious two classes.
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(a) (b)

(c) (d)

Fig. 12. K-means clustering result. (d) shows the mean tracks of the three clusters in (a), (b)

and (c).

Fig. 13. Clustering result by treating hurricane trajectories as curves in R3.
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5. Conclusion

In summary, we have proposed a principled approach for phase-amplitude separation of spher-

ical trajectories, using a metric that has appropriate invariance properties. Each spherical tra-

jectory is represented by a pair: a starting point and a curve on the tangent space of the starting

point, called TSVRC. Such representation forms a vector bundle and allows separating of phase

from the amplitude of the trajectory. Using simple geometry of S2, we have defined fast al-

gorithms to calculate geodesics between elements of this vector bundle. Explicit expressions

for exponential map and inverse exponential map are also developed to facilitate the analysis

of multiple trajectories: calculating the Karcher mean, separating phase-amplitude for multi-

ple trajectories and performing PCA on the aligned trajectories. Both simulated and real data

are used to validate the developed procedures and demonstrate the advantages of analyzing and

modeling the trajectories after alignment.

APPENDIX A. Riemannian Structure on S2

To perform the trajectory analysis on the manifold S2, one needs a Riemannian structure on

this manifold. Specially, we need the following tools: (1) geodesic between two points on the

manifold, (2) parallel transport of tangent vectors along the geodesic path, (3) exponential map,

(4) inverse exponential map and (5) Riemannian curvature tensor.

We use a simple Euclidean inner product as the Riemannian metric on S2: for any v1, v2 ∈

Tp(M), the metric is defined to be: 〈v1, v2〉 = vt1v2. For any two points p, q ∈ S2(p 6= q) and a

tangent vector v ∈ Tp(S2), we have the following closed solutions for the tools we need:

(a) Geodesic: The geodesic between p and q is the great circle connecting them: α(t) =

1/sin(θ)(sin(θ(1− t))p+ sin(θt)q), where θ is determined by cos(θ) = 〈p, q〉 and 0 <

θ < π

(b) Parallel Transport: The parallel transport (v)p→q along the shortest geodesic (i.e. great

circle) from p to q is given by v − 2 〈v, q〉 (p+ q)/|p+ q|2.

(c) Exponential Map: The exponential map expp(v) is cos(‖v‖)p+ sin(‖v‖)v/‖v‖.

(d) Inverse Exponential Map: The inverse exponential map exp−1
p (q) is (q−p cos(θ))θ/ sin(θ),

θ = cos−1(〈g1, g2〉).
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(e) Riemannian Curvature Tensor: For three tangent vectors x, y, z on Tp(S2), the Rieman-

nian curvature tensor R(x, y)(z) = 〈y, z〉x− 〈x, z〉 y = −(x× y× z), where 〈·〉 denotes

the ordinary inner product, and × denotes the cross product.

APPENDIX B. Two properties for geodesics on C

Suppose that (β(t), q(t)) is a geodesic on C, where t ∈ I = [0, 1]. Let L denote the length of

the path β : I → S2. Let β̃ : I → S2 be a constant speed re-parametrization of β. For each

t0 ∈ I , define Zt0 : L2(I, Tβ̃(0)(S
2))→ L2(I, Tβ̃(t0)(S

2)) by parallel transporting each tangent

vector along β̃(t). Then we can define

Z : [0, L]× L2(I, Tβ̃(0)(S
2))→ C

by Z(s, q) = (β̃(s/L), Z(s/L)(q)). A routine verification shows that if we put the standard

product Riemannian metric on [0, L] × L2(I, Tβ̃(0)(S
2)), then Z is an isometric immersion.

Since our original geodesic (β(t), q(t)) is contained in the image of Z, its inverse image under

Z in [0, L]× L2(I, Tβ̃(0)(S
2)) must be a geodesic. But since this latter space is Euclidean (i.e.,

we are using the same Riemannian metric at each point), it follows that the inverse image of

our geodesic must be a straight line in this space. It follows immediately that β(t) must have

constant speed and q(t) must be covariantly linear.

APPENDIX C. Proof of Lemma 2

Let β be the shortest geodesic joining p1 to p2 and let L : Tp1(S2) → Tp2(S2) be the parallel

translation map induced by β. Let ζ be any other path from p1 to p2 that is disjoint from

β. The Gauss Bonnet Theorem states that the angle of rotation of the parallel translation map

Tp2(S2)→ Tp2(S2) induced by the concatenation ζ−1∗β is equal to the integral of the Gaussian

curvature over the region enclosed by the loop β ∪ ζ. Since the Gaussian curvature of S2 equals

+1 at every point, this implies that this angle of rotation is equal to the area enclosed by the loop.

However, it is well known that of all curves that enclose a given area, a circle is the shortest!

From this, it is easy to prove that if part of your loop is already given (by the geodesic, as in this

case), then the shortest way to fill in the rest of your arc to enclose a given area is by a circular

arc. This proves Lemma 2.
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APPENDIX D. Proof of Theorem 1

Let γ ∈ Γ be a warping function, and let γ act on the space C by (x, q) ∗ γ = (x, (q ∗ γ)). The

differential of this action is the map T(x,q)(C) → T(x,(q∗γ))(C) given by (u,w) 7→ (u,w ∗ γ).

We prove that this differential preserves our Riemannian inner product (Eqn. 1) as follows: let

(u1, w1) and (u2, w2) be two tangent vectors on T(x,q)(C); it follows that

〈(u1, w1 ∗ γ), (u2, w2 ∗ γ)〉 = u1 · u2 +

∫ 1

0
w1(γ(t))

√
γ̇(t)w2(γ(t))

√
γ̇(t)dt

= u1 · u2 +

∫ 1

0
w1(γ)w2(γ)dγ

= u1 · u2 +

∫ 1

0
w1(s)w2(s)ds

= 〈(u1, w1), (u2, w2)〉

Since Γ acts on C by isometries, i.e. preserving the Riemannian inner product, it follows imme-

diately that it takes geodesics to geodesics, and preserves geodesic distance. It also follows that

it preserves the baselines of these geodesics, i.e. β∗.
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